51
|
Abstract
The ongoing Coronavirus disease 2019 (COVID-19) outbreak in China has become the
world's leading health headline and is causing major panic and public concerns. After emerging in the
City of Wuhan, China, COVID-19 has spread to several countries becoming a worldwide pandemia.
Among the studies on COVID-19, it has been demonstrated that novel coronavirus pneumonia is closely
associated with inflammatory storms. Controlling the inflammatory response may be as important as
targeting the virus. Irisin is a muscle-contraction-induced immunomodulatory myokine related to physical
activity. Irisin drives the “browning” of white adipocytes, so enhancing metabolic uncoupling and
hence caloric expenditure. Irisin has been clearly shown to be a handyman molecule by exerting beneficial
effects on adipose tissues, pancreas, and bone through “cross-talk” between skeletal muscleadipocyte,
skeletal muscle-pancreas, and skeletal muscle-bone, respectively. Irisin has been proposed as
a promising strategy for early diagnosis and treatment of various types of cancers, neurological diseases
and inflammatory conditions. Irisin has been demonstrated to suppress the immune response, too. The
importance of irisin is demonstrated by the increase in the number of scientific papers and patents in
recent years. The identification of irisin receptor should greatly facilitate the understanding of irisin’s
function in exercise and human health. This review examines the structure and recent advances in activities
of irisin, suggesting it for further studies on the prevention and cure of COVID-19. Nowadays, studies
on irisin plasma levels and physical activity may be useful tools to further investigate the prevention
of COVID-19. Irisin may be suggested as a potential novel intervention for COVID-19 by mitigating
inflammatory storms, suppressing the immune response and simultaneously alleviating neurological disorders
such as depression and anxiety.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari, 70126, Bari, Italy
| |
Collapse
|
52
|
Li Q, Tan Y, Chen S, Xiao X, Zhang M, Wu Q, Dong M. Irisin alleviates LPS-induced liver injury and inflammation through inhibition of NLRP3 inflammasome and NF-κB signaling. J Recept Signal Transduct Res 2020; 41:294-303. [PMID: 32814473 DOI: 10.1080/10799893.2020.1808675] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipopolysaccharide (LPS) provokes severe inflammation and cell death in sepsis, with liver being the major affected organ. Up-to-date, neither the mechanism of action nor target treatment is readily available for LPS-induced liver injury. This study examined the effect of irisin, an endogenous hormonal peptide, on LPS-induced liver injury using animal and cell models, and the mechanism involved with a special focus on pyroptosis. Irisin is known to regulate glucose metabolism, inflammation, and immune response, while our earlier work denoted the anti-inflammatory and anti-apoptotic properties for irisin. Inflammatory factors and AST/ALT were also detected. Pyroptosis, apoptosis, and reactive oxygen species (ROS) were evaluated using PI staining, TUNEL staining, DCFH-DA fluorescence, and western blot, respectively. Our results indicated that irisin attenuated LPS-induced liver injury and release of inflammatory cytokines. Increased activity of NLRP3 inflammasome was discovered in LPS-challenged Raw264.7 cells, along with elevated levels of inflammation and apoptosis, the effects of which were mediated by activation of ROS and nuclear factor κB (NF-κB) signaling. These changes were reversed following irisin treatment. Our study demonstrated that irisin countered LPS-mediated liver injury via inhibiting apoptosis, NLRP3 inflammasome activation and NF-κB signaling. These findings revealed the role of irisin as a promising new anti-pyroptosis/apoptosis agent to reconcile the onset and progression of septic liver injury.
Collapse
Affiliation(s)
- Qian Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Sainan Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaochan Xiao
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingming Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Maolong Dong
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
53
|
Guo A, Li K, Xiao Q. Sarcopenic obesity: Myokines as potential diagnostic biomarkers and therapeutic targets? Exp Gerontol 2020; 139:111022. [PMID: 32707318 DOI: 10.1016/j.exger.2020.111022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Sarcopenic obesity (SO) is a condition characterized by the occurrence of both sarcopenia and obesity and imposes a heavy burden on the health of the elderly. Controversies and challenges regarding the definition, diagnosis and treatment of SO still remain because of its complex pathogenesis and limitations. Over the past few decades, numerous studies have revealed that myokines secreted from skeletal muscle play significant roles in the regulation of muscle mass and function as well as metabolic homeostasis. Abnormalities in myokines may trigger and promote the pathogenesis underlying age-related and metabolic diseases, including obesity, sarcopenia, type 2 diabetes (T2D), and SO. This review mainly focuses on the role of myokines as potential biomarkers for the early diagnosis and therapeutic targets in SO.
Collapse
Affiliation(s)
- Ai Guo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Kai Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
54
|
Ren Y, Zhang J, Wang M, Bi J, Wang T, Qiu M, Lv Y, Wu Z, Wu R. Identification of irisin as a therapeutic agent that inhibits oxidative stress and fibrosis in a murine model of chronic pancreatitis. Biomed Pharmacother 2020; 126:110101. [PMID: 32199226 DOI: 10.1016/j.biopha.2020.110101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Abnormal activation of pancreatic stellate cells (PSCs) plays a crucial role in the pathogenesis of chronic pancreatitis (CP). Irisin, an exercise-induced hormone, has been shown to mitigate liver fibrosis by inhibiting the activation of hepatic stellate cells. However, the effect of irisin in CP has not been evaluated. METHODS This study aimed to determine whether irisin is protective in CP. CP was induced by 6 IP injections of cerulein (50 μg/kg/body weight). HPSCs were treated with 5 ng/ml TGF-β1 as in vitro experiment. RESULTS Our results showed that repeated cerulein injection induced severe pancreatic injury and fibrosis in mice and the serum irisin level in cerulein-treated mice decreased as in CP patients. Excessive oxidative and ER stress was also present in the pancreas of cerulein-treated mice. Irisin treatment significantly alleviated pancreatic injury and fibrosis, which was associated with reduced oxidative and ER stress. In cultured PSCs, irisin directly inhibited TGF-β-induced α-SMA and collagen I expression. This effect appears to be mediated through downregulation of kindlin-2 and inhibition of the SMAD2/3 pathway. CONCLUSIONS Irisin alleviated pancreatic injury and fibrosis, which was associated with reduced oxidative and ER stress. Thus, irisin may offer therapeutic potential for patients with CP.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Minglong Qiu
- Department of Orthopedic, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
55
|
Bi J, Yang L, Wang T, Zhang J, Li T, Ren Y, Wang M, Chen X, Lv Y, Wu R. Irisin Improves Autophagy of Aged Hepatocytes via Increasing Telomerase Activity in Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6946037. [PMID: 31976032 PMCID: PMC6959141 DOI: 10.1155/2020/6946037] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
An aged liver has decreased reparative capacity during ischemia-reperfusion (IR) injury. A recent study showed that plasma irisin levels predict telomere length in healthy adults. The aim of the present study is to clarify the role of irisin, telomerase activity, and autophagy during hepatic IR in the elderly. To study this, hepatic IR was established in 22-month- and 3-month-old rats and primary hepatocytes were isolated. The results showed that the old rats exhibited more serious liver injury and lower levels of irisin expression, telomerase activity, autophagy ability, and mitochondrial function than young rats during hepatic IR. Irisin activated autophagy and improved mitochondrial function via increasing telomerase activity in aged hepatocytes. Inhibition of telomerase activity by BIBP1532 abolished the protective role of irisin in hepatocytes during hypoxia and reoxygenation. Additionally, this study proved irisin increased the telomerase activity via inhibition of the phosphorylation of JNK during hepatic IR. Administration of exogenous irisin significantly mitigated the inflammation, oxidative stress, apoptosis, and liver injury in an old rat model of hepatic IR. In conclusion, irisin improves autophagy of aged hepatocytes via increasing telomerase activity in hepatic IR. Irisin exhibits conspicuous benefits in increasing reparative capacity of an aged liver during hepatic IR.
Collapse
Affiliation(s)
- Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Lifei Yang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Teng Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
56
|
Erdogan MA, Yalcin A. Protective effects of benfotiamine on irisin activity in methotrexate-induced liver injury in rats. Arch Med Sci 2020; 16:205-211. [PMID: 32051725 PMCID: PMC6963132 DOI: 10.5114/aoms.2018.80002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Methotrexate (MTX) causes hepatotoxicity by producing oxidative stress. Benfotiamine and irisin have protective effects against oxidative stress. The aim of this study was to investigate the changes in irisin activity in the liver as a result of toxicity produced by MTX and the protective role of benfotiamine in the hepatotoxicity. MATERIAL AND METHODS Rats were divided into 4 groups as follows: control, benfotiamine (50 mg/kg, oral gavage (o.g.), for 14 days), MTX (MTX 20 mg/kg intraperitoneally (i.p.) on day 1), MTX + benfotiamine (MTX 20 mg/kg (i.p.) on day 1, then 50 mg/kg (o.g.) benfotiamine for 14 days). Liver tissue was used to examine histopathological and immunohistochemical changes. Serum was used to look for oxidative stress markers (total antioxidant status (TAS) and total oxidant status (TOS)). RESULTS Administration of MTX caused a significant TOS increase and TAS decrease in the serum as compared to the control group. Immunohistochemically, irisin was significantly increased in immunoreactivity in the MTX group as compared to the control group (p < 0.05). Significant histopathological improvement and decrease in serum TOS levels were observed in the MTX + benfotiamine group compared to the MTX group (p < 0.05). In addition, an increase in TAS level and a decrease in irisin immunoreactivity were observed but they were not statistically significant (p > 0.05). CONCLUSIONS Our results showed that MTX caused an increase in the activity of irisin after producing toxicity in the liver. In addition, we found that benfotiamine was effective in preventing damage caused by MTX in the liver.
Collapse
Affiliation(s)
- Mehmet Ali Erdogan
- Department of Gastroenterology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Alper Yalcin
- Department of Histology and Embryology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
57
|
Kubo H, Asai K, Kojima K, Sugitani A, Kyomoto Y, Okamoto A, Yamada K, Ijiri N, Watanabe T, Hirata K, Kawaguchi T. Exercise Ameliorates Emphysema Of Cigarette Smoke-Induced COPD In Mice Through The Exercise-Irisin-Nrf2 Axis. Int J Chron Obstruct Pulmon Dis 2019; 14:2507-2516. [PMID: 31814716 PMCID: PMC6862806 DOI: 10.2147/copd.s226623] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/31/2019] [Indexed: 01/12/2023] Open
Abstract
Background Oxidative stress is one of the important mechanisms underlying the pathogenesis of chronic obstructive pulmonary disease (COPD). Irisin is a type of myokine secreted from the muscle during exercise and acts against oxidative stress via nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor with antioxidant properties. Here, we examined the emphysema suppressive effects of the exercise-irisin-Nrf2 axis in mice. Methods Mice were divided into three groups, namely, the control, smoking, and exercise + smoking groups. All mice from the smoking and exercise + smoking groups were exposed to cigarette smoke once a day. The mice from the exercise + smoking group were adapted to a treadmill once a day. To investigate the Nrf2 cascade, after 12 weeks, serum irisin concentration and Nrf2 and heme oxygenase-1 (HO-1) expression in the lung homogenate were determined. To evaluate cigarette smoke-induced COPD, the number of inflammatory cells in bronchoalveolar lavage fluid (BALF), mean linear intercept (MLI), and destructive index in the lung tissue were examined. Results Serum irisin concentration and the expression levels of Nrf2 and HO-1 in the lung homogenate were significantly higher in mice from the exercise + smoking group than in those from the control and smoking groups. The proportion of neutrophils in the BALF was significantly lower in the exercise + smoking group than in the smoking group. The MLI and destructive index were also significantly smaller in mice from the exercise + smoking group than mice from the smoking group. Conclusion Irisin secreted from the muscle during exercise may exert protective effects against oxidative stress via Nrf2 and HO-1, and ameliorate emphysema of cigarette smoke-induced COPD. The exercise-irisin-Nrf2 axis may serve as a novel target for COPD treatment.
Collapse
Affiliation(s)
- Hiroaki Kubo
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kazuya Kojima
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Arata Sugitani
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yohkoh Kyomoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Atsuko Okamoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kazuhiro Yamada
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Naoki Ijiri
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kazuto Hirata
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Tomoya Kawaguchi
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
58
|
Hirsch HJ, Gross-Tsur V, Sabag Y, Nice S, Genstil L, Benarroch F, Constantini N. Myokine levels after resistance exercise in young adults with Prader-Willi syndrome (PWS). Am J Med Genet A 2019; 182:115-121. [PMID: 31692257 DOI: 10.1002/ajmg.a.61391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022]
Abstract
Individuals with PWS require marked caloric restriction and daily exercise to prevent morbid obesity. Lower energy expenditure, hypotonia, decreased muscle mass, and cognitive impairment make exercise challenging for this population. Exercise guidelines include resistance training as an important component. Myokine responses to resistance exercise may mediate beneficial metabolic effects. We aimed to determine if young PWS adults can perform a resistance exercise program and to measure myokine responses in PWS versus age- and BMI-matched controls. Each group included 11 participants (7M/4F). Ages and BMI for PWS and controls were 30.7 ± 4.6 versus 30.1 ± 4.3 years and 28.3 ± 4.3 versus 28.2 ± 4.2 kg/m2 , respectively. Glucose, creatine kinase (CK), lactate, and myokines were measured before, after, 30, and 60 min after completing eight resistance exercises. Myokines were assayed using a multiplex myokine panel (Merck Millipore). CK was lower in PWS versus controls (62 ± 16 vs.322 ± 100 U/L, p < .04). Peak lactate was 3.7 ± 0.7 in PWS versus 7.3 ± 0.7 mmol/Lin controls (p < .001). The increase in interleukin-6 was similar in PWS and controls (41 ± 16% and 35 ± 10%, respectively). Pre- and post-exercise levels of the six myokines assayed showed no consistent differences between the PWS and control participants. PWS young adults are capable of performing resistance/strength-building exercise. The lower CK and peak lactate levels in PWS may reflect decreased muscle mass in this population. Further studies are needed to determine optimal exercise regimens and assess the role of myokines incontributing to the metabolic phenotype of PWS.
Collapse
Affiliation(s)
- Harry J Hirsch
- Multidisciplinary Prader-Willi Syndrome Clinic, Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Varda Gross-Tsur
- Multidisciplinary Prader-Willi Syndrome Clinic, Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel.,The Hebrew University School of Medicine, Jerusalem, Israel
| | - Yanir Sabag
- The Hebrew University School of Medicine, Jerusalem, Israel
| | - Shachar Nice
- Heidi Rothberg Sport Medicine Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Larry Genstil
- Multidisciplinary Prader-Willi Syndrome Clinic, Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Fortu Benarroch
- Multidisciplinary Prader-Willi Syndrome Clinic, Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel.,The Hebrew University School of Medicine, Jerusalem, Israel.,Herman Dana Division of Child and Adolescent Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Naama Constantini
- The Hebrew University School of Medicine, Jerusalem, Israel.,Heidi Rothberg Sport Medicine Center, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
59
|
Zhou K, Qiao X, Cai Y, Li A, Shan D. Lower circulating irisin in middle-aged and older adults with osteoporosis: a systematic review and meta-analysis. Menopause 2019; 26:1302-1310. [PMID: 31688577 DOI: 10.1097/gme.0000000000001388] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Osteoporosis has imposed a heavy socioeconomic burden worldwide, especially in postmenopausal women. As a newly found protein, irisin has an important physiological role in bone metabolism. This meta-analysis intends to identify the association between circulating irisin levels and osteoporosis. METHODS This meta-analysis was conducted following the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guideline. A comprehensive search of five databases was performed from inception to January 2019. Studies with original date on middle-aged and older participants were included. Data were analyzed according to study characteristics and heterogeneity between studies. The quality of each study and the presence of publication bias were assessed by Newcastle-Ottawa score (NOS) and normal quantile plot. RESULTS Seven studies, with a total of 1,018 participants, conducted in four countries, were included. Six of them were identified as high-quality research. Five studies included postmenopausal women, and two studies included both men and women. Possible publication bias was found in the analysis of irisin and osteoporosis. Pooled analysis indicated decreased irisin levels in osteoporotic participants (mean difference -87.91, 95% CI, -92.56 to -83.25). Subgroup analysis revealed an even lower level of irisin in postmenopausal women and in participants with a history of fractures. Analysis on associations between irisin and femoral neck or lumbar spine bone mineral density showed a weak positive correlation. CONCLUSIONS The findings of this analysis suggested that circulating irisin levels were decreased in middle-aged and older participants with osteoporosis. Irisin was positively correlated with bone mineral density.
Collapse
Affiliation(s)
- Kunyan Zhou
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- The Joint Laboratory for Reproductive Medicine, Sichuan University-Chinese University of Hong Kong, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xiaoyong Qiao
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- The Joint Laboratory for Reproductive Medicine, Sichuan University-Chinese University of Hong Kong, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yitong Cai
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Ailin Li
- Department of Ophthalmology, Chengde Medical University, Chengde, Hebei, China
| | - Dan Shan
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- The Joint Laboratory for Reproductive Medicine, Sichuan University-Chinese University of Hong Kong, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
60
|
Ren Y, Qiu M, Zhang J, Bi J, Wang M, Hu L, Du Z, Li T, Zhang L, Wang Y, Lv Y, Wu Z, Wu R. Low Serum Irisin Concentration Is Associated with Poor Outcomes in Patients with Acute Pancreatitis, and Irisin Administration Protects Against Experimental Acute Pancreatitis. Antioxid Redox Signal 2019; 31:771-785. [PMID: 31250660 DOI: 10.1089/ars.2019.7731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims: Severe acute pancreatitis (AP) is a serious condition without specific treatment. Mitochondrial dysfunction plays a crucial role in the pathogenesis of AP. Irisin, a novel exercise-induced hormone, contributes to many health benefits of physical activity. We and others have shown that irisin protects against ischemia reperfusion-induced organ injury by alleviating mitochondrial damage. However, the role of irisin in AP has not been evaluated. The purpose of this study was to investigate the role of serum irisin levels in patients with AP and the effect of irisin administration in experimental AP. Results: Serum irisin levels were decreased in AP patients, and low serum irisin levels were associated with worse outcomes in these patients. Treatment with exogenous irisin increased survival and mitigated pancreatic injury in experimental AP. The protective effects of irisin in AP were associated with improvement in mitochondrial function and reduction in ER stress. Moreover, irisin upregulated UCP2 expression in the pancreas, and administration of genipin, a specific UCP2 antagonist, abolished irisin's beneficial effects in L-arginine-induced AP. Innovation and Conclusion: Low serum irisin was associated with poor outcomes in AP patients, and irisin administration protected against experimental AP by restoring mitochondrial function via activation of UCP2. Restoration of mitochondrial function by irisin may offer therapeutic potential for patients with AP. Antioxid. Redox Signal. 31, 771-785.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minglong Qiu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangshuo Hu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhaoqing Du
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Teng Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lin Zhang
- Department of Laboratory Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yawen Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
61
|
Lee J, Park J, Kim YH, Lee NH, Song KM. Irisin promotes C2C12 myoblast proliferation via ERK-dependent CCL7 upregulation. PLoS One 2019; 14:e0222559. [PMID: 31518371 PMCID: PMC6743866 DOI: 10.1371/journal.pone.0222559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/03/2019] [Indexed: 11/18/2022] Open
Abstract
Irisin is an exercise-induced myokine that has various physiological functions, such as roles in energy expenditure, glucose/lipid metabolism, and muscle development. In muscle development, myoblast proliferation is known to be a first step, and recent studies have reported that an increased irisin level is involved in the promotion of cell proliferation in various cell types, including myoblasts. However, the exact mechanism of action by which irisin promotes myoblast proliferation has not been reported. In this study, we aimed to determine the pro-proliferative effect of irisin on C2C12 myoblasts and its mechanism of action. Irisin induced C2C12 cell proliferation and upregulated the mRNA levels of markers of proliferation Pcna, Mki67, and Mcm2. Irisin increased extracellular signal-regulated kinase (ERK) phosphorylation, and U0126, an ERK pathway inhibitor, suppressed irisin-induced C2C12 cell proliferation. Transcriptomic and qRT-PCR analysis showed that Ccl2, Ccl7, Ccl8, and C3 are potential downstream regulators of ERK signaling that promote C2C12 cell proliferation. Knockdown of Ccl7 revealed that irisin upregulates chemokine (C-C motif) ligand 7 (CCL7) and subsequently promotes C2C12 cell proliferation. These results suggest that irisin promotes C2C12 myoblast proliferation via ERK-dependent CCL7 upregulation and may aid in understanding how irisin contributes to muscle development.
Collapse
Affiliation(s)
- Jangho Lee
- Research Division of Food Functionality, Korea Food Research Institute, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Joon Park
- Research Division of Food Functionality, Korea Food Research Institute, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Young Ho Kim
- Research Division of Strategic Food Technology, Korea Food Research Institute, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Nam Hyouck Lee
- Research Division of Strategic Food Technology, Korea Food Research Institute, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Kyung-Mo Song
- Research Division of Strategic Food Technology, Korea Food Research Institute, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
- * E-mail:
| |
Collapse
|
62
|
Zhang D, Zhang P, Li L, Tang N, Huang F, Kong X, Tan X, Shi G. Irisin functions to inhibit malignant growth of human pancreatic cancer cells via downregulation of the PI3K/AKT signaling pathway. Onco Targets Ther 2019; 12:7243-7249. [PMID: 31564907 PMCID: PMC6732507 DOI: 10.2147/ott.s214260] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/15/2019] [Indexed: 01/10/2023] Open
Abstract
Introduction Irisin is a newly identified cytokine that has gained increasing attention because of its potential therapeutic applications in metabolic diseases and human cancers. Recently, accumulating evidence indicates that irisin plays an important role in the development and metastasis of various tumors. The aim of this study was to evaluate the effects and underlying mechanisms of irisin on malignant growth of pancreatic cancer cells. Materials and methods The anti-proliferative effect of irisin was examined using the CCK-8 assay. Irisin-induced apoptosis was determined by the annexin V-FITC/PI staining assay. The effects of irisin on cell migration and invasion were assessed using the scratch-induced wound healing assay and transwell invasion assay, respectively. The expression and phosphorylation of signaling proteins were detected by Western blot analysis. Results Our results showed that irisin inhibited cell proliferation and induced apoptosis of pancreatic cancer cells in a dose-dependent manner. In addition, irisin decreased the migration and invasion of pancreatic cancer cells. Finally, Western blot analysis revealed that irisin downregulated the PI3K/AKT signaling pathway. Conclusion Our findings suggest that irisin is a novel therapeutic agent for pancreatic cancer.
Collapse
Affiliation(s)
- Deguo Zhang
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Chengyang District People's Hospital of Qingdao University, Qingdao 266109, Shandong Province, People's Republic of China.,Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong Province, People's Republic of China
| | - Ping Zhang
- Department of Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong Province, People's Republic of China
| | - Luan Li
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong Province, People's Republic of China
| | - Nan Tang
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Chengyang District People's Hospital of Qingdao University, Qingdao 266109, Shandong Province, People's Republic of China.,Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong Province, People's Republic of China
| | - Fei Huang
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong Province, People's Republic of China.,Department of Gastrointestinal Hernia Surgery, Qianxinan People's Hospital, Xingyi 562400, Guizhou Province, People's Republic of China
| | - Xianguo Kong
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia 19107, PA, USA
| | - Xueying Tan
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong Province, People's Republic of China
| | - Guangjun Shi
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266000, Shandong Province, People's Republic of China
| |
Collapse
|
63
|
Ye X, Shen Y, Ni C, Ye J, Xin Y, Zhang W, Ren Y. Irisin reverses insulin resistance in C2C12 cells via the p38-MAPK-PGC-1α pathway. Peptides 2019; 119:170120. [PMID: 31351089 DOI: 10.1016/j.peptides.2019.170120] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Insulin resistance (IR) is a fundamental pathogenic factor shared by a myriad of metabolic disorders, including obesity and type 2 diabetes. The mechanism of IR is usually accompanied by mitochondrial dysfunction. Irisin has been proposed to act as a hormone in the regulation of energy homeostasis and metabolism. However, the effects of irisin on IR and mitochondrial function have not yet been fully investigated. Here, our research shows that irisin increases glucose uptake in C2C12 myoblast cells via the p38-mitogen-activated protein kinase (MAPK)-PGC-1α pathway. Irisin can also enhance mitochondrial function and mitochondrial respiration. Moreover, irisin stimulates autophagy via PGC-1α. Collectively, these data provide basic evidence to support the therapeutic potential of irisin for IR, which may rely on p38-MAPK-PGC-1α pathway activation and enhance mitochondrial function.
Collapse
Affiliation(s)
- Xiao Ye
- Department of Endocrinology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China
| | - YiMin Shen
- Department of Endocrinology, Second Affiliated Hospital, Medical School of Zhejiang University, Hangzhou 310003, China
| | - Chao Ni
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China
| | - Jun Ye
- Department of Gastroenterology, Second Affiliated Hospital, Medical School of Zhejiang University, Hangzhou 310003, China
| | - Yubo Xin
- Department of Endocrinology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China
| | - Wei Zhang
- Department of Endocrinology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China.
| | - YueZhong Ren
- Department of Endocrinology, Second Affiliated Hospital, Medical School of Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
64
|
Mazur-Bialy AI. Superiority of the Non-Glycosylated Form Over the Glycosylated Form of Irisin in the Attenuation of Adipocytic Meta-Inflammation: A Potential Factor in the Fight Against Insulin Resistance. Biomolecules 2019; 9:biom9090394. [PMID: 31438646 PMCID: PMC6770638 DOI: 10.3390/biom9090394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Irisin is an adipomyokine that promotes the browning of white adipose tissue and exhibits protective potential against the development of insulin resistance and type 2 diabetes. In our bodies, it occurs in its glycosylated form (G-IR): its activity is still poorly understood, because the majority of studies have used its non-glycosylated counterpart (nG-IR). Glycosylation can affect protein function: therefore, the present study attempted to compare the actions of both forms of irisin toward inflammatory activation of the main component of adipose tissue. The study was carried out in a coculture of 3T3 adipocytes and RAW 264.7 macrophages maintained in the presence of nG-IR or G-IR. The impact on vitality and the expression and release of key inflammatory mediators important for insulin resistance and diabetes development were assessed. The studies showed that both forms effectively inhibited the expression and release of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, macrophage chemotactic protein (MCP)-1, high-mobility group box (HMGB1), leptin, and adiponectin. However, in the case of TNF-α, IL-1β, MCP-1, and HMGB1, the inhibition exerted by nG-IR was more prominent than that by G-IR. In addition, only nG-IR significantly inhibited macrophage migration. Here, nG-IR seemed to be the stronger inhibitor of the development of obesity-related inflammation; however, G-IR also had anti-inflammatory potential.
Collapse
Affiliation(s)
- Agnieszka Irena Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Institute of Physiotherapy, Faculty of Health Science, Jagiellonian University Medical College, Grzegorzecka 20, 31-531 Krakow, Poland.
| |
Collapse
|
65
|
Irisin as a Multifunctional Protein: Implications for Health and Certain Diseases. ACTA ACUST UNITED AC 2019; 55:medicina55080485. [PMID: 31443222 PMCID: PMC6722973 DOI: 10.3390/medicina55080485] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 01/10/2023]
Abstract
Sedentary life style is considered to be an independent risk factor for many disorders, including development of type 2 diabetes, obesity, immune dysfunction, asthma, and neurological or coronary heart disease. Irisin is released from myocytes during physical activity, and acts as a link between muscles and other tissues and organs. This myokine is produced as a result of proteolytic cleavage of FNDC5 protein present in the membrane of myocytes. Secretion of irisin is regulated by N-linked oligosaccharides attached to the protein molecule. The two N-glycan molecules, which constitute a significant part of the irisin glycoprotein, regulate the browning of adipocytes, which is the most important function of irisin. A receptor specific for irisin has still not been discovered. In some tissues irisin probably acts via integrins, which are widely expressed transmembrane receptors. Many studies have confirmed the multifunctional role of irisin and the beneficial effects of this molecule on body homeostasis. Irisin reduces systemic inflammation, maintains the balance between resorption and bone formation, and modulates metabolic processes and the functioning of the nervous system. It suppresses the expression and release of pro-inflammatory cytokines in obese individuals and attenuates inflammation in adipose tissue. The impact of irisin on cancer cell proliferation, migration, and invasion has also been demonstrated in numerous studies, which proves its role in carcinogenesis. Owing to these pleiotropic and beneficial properties, irisin may be a potential option to prevent and treat civilization-related diseases which are, nowadays, considered to be the major health problems in Western societies.
Collapse
|
66
|
Chen S, Wang L, Gao X, Chen M, Zeng Z, Zhao L. Characterization of serum irisin in patients with severe acute pancreatitis. Eur J Gastroenterol Hepatol 2019; 31:985-991. [PMID: 31180990 DOI: 10.1097/meg.0000000000001454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Irisin, as a novel and versatile hormone secreted by skeletal myocytes and fat tissues, is reported to be involved in inflammation-related diseases; one of the main characteristics of severe acute pancreatitis (SAP) is inflammatory responses. This study aims to describe the characteristics of irisin in SAP. PATIENTS AND METHODS Here, we enrolled 50 controls, 20 with no acute pancreatitis (AP), 20 AP, and 12 SAP patients, determined white blood cell, blood glucose, C-reactive protein, urine amylase, blood lipase, and serum irisin using an analyzer and enzyme-linked immunosorbent assay at the indicated time-points, analyzed the correlations of irisin with blood glucose, sex, and age, and then predicted the morality and complications of organ failure and/or exacerbations of comorbidities in SAP by irisin. RESULTS The results showed no significant difference in all groups in the clinical parameters (P>0.05), except that white blood cell was significantly higher in no AP, AP, and SAP than the controls (P<0.05). In addition, irisin levels were significantly lower and maintained a steadily low trend in the process of SAP than others (P<0.05), whereas C-reactive protein, urine amylase, and blood lipase in the SAP and AP groups were higher than others and kept decreasing tendency (P<0.01). Moreover, the irisin level in female SAP patients was significantly higher than that in male patients, but no differences were found in the other groups (P>0.05). In addition, the correlation between irisin levels and blood glucose was better in the SAP group than that between irisin levels and age in SAP patients and controls, although a relatively better correlation was found in SAP patients than the controls. Finally, the prognostic significance of mortality and complications of SAP according to irisin levels represented significantly, especially for complications of organ failure and/or exacerbations of comorbidities in female SAP. CONCLUSION Therefore, serum irisin level has unique characteristics and may be an independent factor and useful to predict the mortality, and complications in SAP patients, especially in female SAP patients.
Collapse
Affiliation(s)
- Shayan Chen
- Department of Laboratory Science, Nankai Hospital, Nankai Clinical College, Tianjin Medical University
- Department of Laboratory Science, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine (Nankai Hospital), Tianjin
| | - Lina Wang
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining City
| | - Xue Gao
- Binzhou Medical University, Yantai City, Shandong, People's Republic of China
| | - Minghui Chen
- Department of Laboratory Science, Nankai Hospital, Nankai Clinical College, Tianjin Medical University
- Department of Laboratory Science, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine (Nankai Hospital), Tianjin
| | - Zhaowei Zeng
- Department of Laboratory Science, Nankai Hospital, Nankai Clinical College, Tianjin Medical University
- Department of Laboratory Science, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine (Nankai Hospital), Tianjin
| | - Lin Zhao
- Department of Laboratory Science, Nankai Hospital, Nankai Clinical College, Tianjin Medical University
- Department of Laboratory Science, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine (Nankai Hospital), Tianjin
| |
Collapse
|
67
|
Expression Analysis of Fibronectin Type III Domain-Containing (FNDC) Genes in Inflammatory Bowel Disease and Colorectal Cancer. Gastroenterol Res Pract 2019; 2019:3784172. [PMID: 31093274 PMCID: PMC6481110 DOI: 10.1155/2019/3784172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022] Open
Abstract
Background Fibronectin type III domain-containing (FNDC) proteins fulfill manifold functions in tissue development and regulation of cellular metabolism. FNDC4 was described as anti-inflammatory factor, upregulated in inflammatory bowel disease (IBD). FNDC signaling includes direct cell-cell interaction as well as release of bioactive peptides, like shown for FNDC4 or FNDC5. The G-protein-coupled receptor 116 (GPR116) was found as a putative FNDC4 receptor. We here aim to comprehensively analyze the mRNA expression of FNDC1, FNDC3A, FNDC3B, FNDC4, FNDC5, and GPR116 in nonaffected and affected mucosal samples of patients with IBD or colorectal cancer (CRC). Methods Mucosa samples were obtained from 30 patients undergoing diagnostic colonoscopy or from surgical resection of IBD or CRC. Gene expression was determined by quantitative real-time PCR. In addition, FNDC expression data from publicly available Gene Expression Omnibus (GEO) data sets (GDS4296, GDS4515, and GDS5232) were analyzed. Results Basal mucosal expression revealed higher expression of FNDC3A and FNDC5 in the ileum compared to colonic segments. FNDC1 and FNDC4 were significantly upregulated in IBD. None of the investigated FNDCs was differentially expressed in CRC, just FNDC3A trended to be upregulated. The GEO data set analysis revealed significantly downregulated FNDC4 and upregulated GPR116 in microsatellite unstable (MSI) CRCs. The expression of FNDCs and GPR116 was independent of age and sex. Conclusions FNDC1 and FNDC4 may play a relevant role in the pathobiology of IBD, but none of the investigated FNDCs is regulated in CRC. GPR116 may be upregulated in advanced or MSI CRC. Further studies should validate the altered FNDC expression results on protein levels and examine the corresponding functional consequences.
Collapse
|
68
|
Halon-Golabek M, Borkowska A, Herman-Antosiewicz A, Antosiewicz J. Iron Metabolism of the Skeletal Muscle and Neurodegeneration. Front Neurosci 2019; 13:165. [PMID: 30949015 PMCID: PMC6436082 DOI: 10.3389/fnins.2019.00165] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies clearly indicate that the endocrine function of the skeletal muscle is essential for a long and healthy life. Regular exercise, which has been shown to stimulate the release of myokines, lowers the risk of many diseases, including Alzheimer’s and Parkinson’s disease, emphasizing the role of skeletal muscle in proper functioning of other tissues. In addition, exercise increases insulin sensitivity, which may also impact iron metabolism. Even though the role of iron in neurodegeneration is well established, the exact mechanisms of iron toxicity are not known. Interestingly, exercise has been shown to modulate iron metabolism, mainly by reducing body iron stores. Insulin signaling and iron metabolism are interconnected, as high tissue iron stores are associated with insulin resistance, and conversely, impaired insulin signaling may lead to iron accumulation in an affected tissue. Excess iron accumulation in tissue triggers iron-dependent oxidative stress. Further, iron overload in the skeletal muscle not only negatively affects muscle contractility but also might impact its endocrine function, thus possibly affecting the clinical outcome of diseases, including neurodegenerative diseases. In this review, we discuss possible mechanisms of iron dependent oxidative stress in skeletal muscle, its impact on muscle mass and endocrine function, as well as on neurodegeneration processes.
Collapse
Affiliation(s)
- Malgorzata Halon-Golabek
- Department of Physiotherapy, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| | - Andzelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jedrzej Antosiewicz
- Department of Biochemistry, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| |
Collapse
|
69
|
Lombardi G, Ziemann E, Banfi G. Physical Activity and Bone Health: What Is the Role of Immune System? A Narrative Review of the Third Way. Front Endocrinol (Lausanne) 2019; 10:60. [PMID: 30792697 PMCID: PMC6374307 DOI: 10.3389/fendo.2019.00060] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Bone tissue can be seen as a physiological hub of several stimuli of different origin (e.g., dietary, endocrine, nervous, immune, skeletal muscle traction, biomechanical load). Their integration, at the bone level, results in: (i) changes in mineral and protein composition and microarchitecture and, consequently, in shape and strength; (ii) modulation of calcium and phosphorous release into the bloodstream, (iii) expression and release of hormones and mediators able to communicate the current bone status to the rest of the body. Different stimuli are able to act on either one or, as usual, more levels. Physical activity is the key stimulus for bone metabolism acting in two ways: through the biomechanical load which resolves into a direct stimulation of the segment(s) involved and through an indirect load mediated by muscle traction onto the bone, which is the main physiological stimulus for bone formation, and the endocrine stimulation which causes homeostatic adaptation. The third way, in which physical activity is able to modify bone functions, passes through the immune system. It is known that immune function is modulated by physical activity; however, two recent insights have shed new light on this modulation. The first relies on the discovery of inflammasomes, receptors/sensors of the innate immunity that regulate caspase-1 activation and are, hence, the tissue triggers of inflammation in response to infections and/or stressors. The second relies on the ability of certain tissues, and particularly skeletal muscle and adipose tissue, to synthesize and secrete mediators (namely, myokines and adipokines) able to affect, profoundly, the immune function. Physical activity is known to act on both these mechanisms and, hence, its effects on bone are also mediated by the immune system activation. Indeed, that immune system and bone are tightly connected and inflammation is pivotal in determining the bone metabolic status is well-known. The aim of this narrative review is to give a complete view of the exercise-dependent immune system-mediated effects on bone metabolism and function.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Physiology and Pharmacology, Faculty of Rehabilitation and Kinesiology, Gdansk University of Physical Education and Sport, Gdansk, Poland
- *Correspondence: Giovanni Lombardi
| | - Ewa Ziemann
- Department of Physiology and Pharmacology, Faculty of Rehabilitation and Kinesiology, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
70
|
Agostini D, Zeppa Donati S, Lucertini F, Annibalini G, Gervasi M, Ferri Marini C, Piccoli G, Stocchi V, Barbieri E, Sestili P. Muscle and Bone Health in Postmenopausal Women: Role of Protein and Vitamin D Supplementation Combined with Exercise Training. Nutrients 2018; 10:nu10081103. [PMID: 30115856 PMCID: PMC6116194 DOI: 10.3390/nu10081103] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/25/2022] Open
Abstract
Menopause is an age-dependent physiological condition associated with a natural decline in oestrogen levels, which causes a progressive decrease of muscle mass and strength and bone density. Sarcopenia and osteoporosis often coexist in elderly people, with a prevalence of the latter in elderly women. The profound interaction between muscle and bone induces a negative resonance between the two tissues affected by these disorders worsening the quality of life in the postmenopausal period. It has been estimated that at least 1 in 3 women over age 50 will experience osteoporotic fractures, often requiring hospitalisation and long-term care, causing a large financial burden to health insurance systems. Hormonal replacement therapy is effective in osteoporosis prevention, but concerns have been raised with regard to its safety. On the whole, the increase in life expectancy for postmenopausal women along with the need to improve their quality of life makes it necessary to develop specific and safe therapeutic strategies, alternative to hormonal replacement therapy, targeting both sarcopenia and osteoporosis progression. This review will examine the rationale and the effects of dietary protein, vitamin D and calcium supplementation combined with a specifically-designed exercise training prescription as a strategy to counteract these postmenopausal-associated disorders.
Collapse
Affiliation(s)
- Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Sabrina Zeppa Donati
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Francesco Lucertini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Carlo Ferri Marini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
- Interuniversity Institute of Myology (IIM), University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| |
Collapse
|
71
|
Ko JR, Seo DY, Park SH, Kwak HB, Kim M, Ko KS, Rhee BD, Han J. Aerobic exercise training decreases cereblon and increases AMPK signaling in the skeletal muscle of STZ-induced diabetic rats. Biochem Biophys Res Commun 2018; 501:448-453. [PMID: 29730289 DOI: 10.1016/j.bbrc.2018.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022]
Abstract
Cereblon (CRBN) has been reported as a negative regulator of adenosine monophosphate-activated protein kinase (AMPK). Aerobic exercise training has been shown to increase AMPK, which resulted in glucose regulation in skeletal muscle. However, the expression level of CRBN and its association with the physiological modulation of glucose are still unclear. Male Sprague-Dawley rats (5-week-old, n = 18) were assigned to control, streptozotocin (STZ, 65 mg/kg)-induced diabetic group, and STZ + exercise (STZ + EXE) group with six rats in each group. Rats in the STZ + EXE group exercised by treadmill running (20 m/min, 60 min, 4 times/week) for 8 weeks. Compared with the STZ group, blood glucose was significantly decreased in the STZ + EXE group. The skeletal muscle of rats in the STZ + EXE group showed a significant decrease in CRBN levels and an increase in AMPK, protein kinase B, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, fibronectin type III domain-containing protein 5, glucose transporter type 4, superoxide dismutase 1, and uncoupling protein 3 levels. These results suggest that CRBN is a potential regulator of glucose homeostasis in the skeletal muscle. Moreover, our results suggest that aerobic exercise training may provide an important physiological treatment for type 1 diabetes by decreasing CRBN and increasing AMPK signaling in skeletal muscle.
Collapse
Affiliation(s)
- Jeong Rim Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Se Hwan Park
- Department of Physical Education, Korea National University of Education, Cheongju, Republic of Korea
| | - Hyo Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Min Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|