51
|
Gericota B, Anderson JS, Mitchell G, Borjesson DL, Sturges BK, Nolta JA, Sieber-Blum M. Canine epidermal neural crest stem cells: characterization and potential as therapy candidate for a large animal model of spinal cord injury. Stem Cells Transl Med 2014; 3:334-45. [PMID: 24443004 PMCID: PMC3952930 DOI: 10.5966/sctm.2013-0129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023] Open
Abstract
The discovery of multipotent neural crest-derived stem cells, named epidermal neural crest stem cells (EPI-NCSC), that persist postnatally in an easy-to-access location-the bulge of hair follicles-opens a spectrum of novel opportunities for patient-specific therapies. We present a detailed characterization of canine EPI-NCSC (cEPI-NCSC) from multiple dog breeds and protocols for their isolation and ex vivo expansion. Furthermore, we provide novel tools for research in canines, which currently are still scarce. In analogy to human and mouse EPI-NCSC, the neural crest origin of cEPI-NCSC is shown by their expression of the neural crest stem cell molecular signature and other neural crest-characteristic genes. Similar to human EPI-NCSC, cEPI-NCSC also expressed pluripotency genes. We demonstrated that cEPI-NCSC can generate all major neural crest derivatives. In vitro clonal analyses established multipotency and self-renewal ability of cEPI-NCSC, establishing cEPI-NCSC as multipotent somatic stem cells. A critical analysis of the literature on canine spinal cord injury (SCI) showed the need for novel treatments and suggested that cEPI-NCSC represent viable candidates for cell-based therapies in dog SCI, particularly for chondrodystrophic dogs. This notion is supported by the close ontological relationship between neural crest stem cells and spinal cord stem cells. Thus, cEPI-NCSC promise to offer not only a potential treatment for canines but also an attractive and realistic large animal model for human SCI. Taken together, we provide the groundwork for the development of a novel cell-based therapy for a condition with extremely poor prognosis and no available effective treatment.
Collapse
|
52
|
Motoneuron intrinsic properties, but not their receptive fields, recover in chronic spinal injury. J Neurosci 2014; 33:18806-13. [PMID: 24285887 DOI: 10.1523/jneurosci.2609-13.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proper movement execution relies on precise input processing by spinal motoneurons (MNs). Spinal MNs are activated by limb joint rotations. Typically, their movement-related receptive fields (MRRFs) are sharply focused and joint-specific. After acute spinal transection MRRFs become wide, but their manifestation is not apparent, as intrinsic excitability, primarily resulting from the loss of persistent inward currents (PICs), dramatically decreases. PICs undergo a remarkable recovery with time after injury. Here we investigate whether MRRFs undergo a recovery that parallels that of the PIC. Using the chronic spinal cat in acute terminal decerebrate preparations, we found that MRRFs remain expanded 1 month after spinal transaction, whereas PICs recovered to >80% of their preinjury amplitudes. These recovered PICs substantially amplified the expanded inputs underlying the MRRFs. As a result, we show that single joint rotations lead to the activation of muscles across the entire limb. These results provide a potential mechanism for the propagation of spasms throughout the limb.
Collapse
|
53
|
Viscomi MT, Molinari M. Remote neurodegeneration: multiple actors for one play. Mol Neurobiol 2014; 50:368-89. [PMID: 24442481 DOI: 10.1007/s12035-013-8629-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
Remote neurodegeneration significantly influences the clinical outcome in many central nervous system (CNS) pathologies, such as stroke, multiple sclerosis, and traumatic brain and spinal cord injuries. Because these processes develop days or months after injury, they are accompanied by a therapeutic window of opportunity. The complexity and clinical significance of remote damage is prompting many groups to examine the factors of remote degeneration. This research is providing insights into key unanswered questions, opening new avenues for innovative neuroprotective therapies. In this review, we evaluate data from various remote degeneration models to describe the complexity of the systems that are involved and the importance of their interactions in reducing damage and promoting recovery after brain lesions. Specifically, we recapitulate the current data on remote neuronal degeneration, focusing on molecular and cellular events, as studied in stroke and brain and spinal cord injury models. Remote damage is a multifactorial phenomenon in which many components become active in specific time frames. Days, weeks, or months after injury onset, the interplay between key effectors differentially affects neuronal survival and functional outcomes. In particular, we discuss apoptosis, inflammation, oxidative damage, and autophagy-all of which mediate remote degeneration at specific times. We also review current findings on the pharmacological manipulation of remote degeneration mechanisms in reducing damage and sustaining outcomes. These novel treatments differ from those that have been proposed to limit primary lesion site damage, representing new perspectives on neuroprotection.
Collapse
Affiliation(s)
- Maria Teresa Viscomi
- Experimental Neurorehabilitation Laboratory, Santa Lucia Foundation I.R.C.C.S., Via del Fosso di Fiorano 65, 00143, Rome, Italy,
| | | |
Collapse
|
54
|
Chen Y, Chen L, Liu R, Wang Y, Chen XY, Wolpaw JR. Locomotor impact of beneficial or nonbeneficial H-reflex conditioning after spinal cord injury. J Neurophysiol 2013; 111:1249-58. [PMID: 24371288 DOI: 10.1152/jn.00756.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When new motor learning changes neurons and synapses in the spinal cord, it may affect previously learned behaviors that depend on the same spinal neurons and synapses. To explore these effects, we used operant conditioning to strengthen or weaken the right soleus H-reflex pathway in rats in which a right spinal cord contusion had impaired locomotion. When up-conditioning increased the H-reflex, locomotion improved. Steps became longer, and step-cycle asymmetry (i.e., limping) disappeared. In contrast, when down-conditioning decreased the H-reflex, locomotion did not worsen. Steps did not become shorter, and asymmetry did not increase. Electromyographic and kinematic analyses explained how H-reflex increase improved locomotion and why H-reflex decrease did not further impair it. Although the impact of up-conditioning or down-conditioning on the H-reflex pathway was still present during locomotion, only up-conditioning affected the soleus locomotor burst. Additionally, compensatory plasticity apparently prevented the weaker H-reflex pathway caused by down-conditioning from weakening the locomotor burst and further impairing locomotion. The results support the hypothesis that the state of the spinal cord is a "negotiated equilibrium" that serves all the behaviors that depend on it. When new learning changes the spinal cord, old behaviors undergo concurrent relearning that preserves or improves their key features. Thus, if an old behavior has been impaired by trauma or disease, spinal reflex conditioning, by changing a specific pathway and triggering a new negotiation, may enable recovery beyond that achieved simply by practicing the old behavior. Spinal reflex conditioning protocols might complement other neurorehabilitation methods and enhance recovery.
Collapse
Affiliation(s)
- Yi Chen
- Wadsworth Center, New York State Department of Health, Albany, New York
| | | | | | | | | | | |
Collapse
|
55
|
Woller SA, Hook MA. Opioid administration following spinal cord injury: implications for pain and locomotor recovery. Exp Neurol 2013; 247:328-41. [PMID: 23501709 PMCID: PMC3742731 DOI: 10.1016/j.expneurol.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/18/2022]
Abstract
Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries.
Collapse
Affiliation(s)
- Sarah A Woller
- Texas A&M Institute for Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | | |
Collapse
|
56
|
McCormick AM, Wijekoon A, Leipzig ND. Specific immobilization of biotinylated fusion proteins NGF and Sema3A utilizing a photo-cross-linkable diazirine compound for controlling neurite extension. Bioconjug Chem 2013; 24:1515-26. [PMID: 23909702 DOI: 10.1021/bc400058n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study we report the successful synthesis of N-(2-mercaptoethyl)-3-(3-methyl-3H-diazirine-3-yl) propanamide (N-MCEP-diazirine), with sulfhydryl and amine photoreactive ends to allow recombinant protein tethering to chitosan films. This regimen allows mimicry of the physiological endeavor of axon pathfinding in the nervous system where neurons rely on cues for guidance during development and regeneration. Our strategy incorporates strong covalent and noncovalent interactions, utilizing N-MCEP-diazirine, maleimide-streptavidin complex, and two custom biotinylated-fusion proteins, nerve growth factor (bNGF), and semaphorin3A (bSema3A). Synthetic yield of N-MCEP-diazirine was 87.3 ± 1.9%. Characteristic absorbance decrease at 348 nm after N-MCEP-diazirine exposure to UV validated the photochemical properties of the diazirine moiety, and the attachment of cross-linker to chitosan films was verified with Fourier transform infrared spectroscopy (FTIR). Fluorescence techniques showed no significant difference in the detection of immobilized proteins compared to absorbing the proteins to films (p < 0.05); however, in vitro outgrowth of dorsal root ganglia (DRG) was more responsive to immobilized bNGF and bSema3A compared to adsorbed bNGF and bSema3A over a 5 day period. Immobilized bNGF significantly increased DRG length over time (p < 0.0001), but adsorbed bNGF did not increase in axon extension from day 1 to day 5 (p = 0.4476). Immobilized bSema3A showed a significant decrease in neurite length (524.42 ± 57.31 μm) at day 5 compared to adsorbed bSema3A (969.13 ± 57.31 μm). These results demonstrate the superiority of our immobilization approach to protein adsorption because biotinylated-fusion proteins maintain their active confirmation and their tethering can be spatially controlled via a UV activated N-MCEP-diazirine cross-linker.
Collapse
Affiliation(s)
- Aleesha M McCormick
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio, United States
| | | | | |
Collapse
|
57
|
Pinkernelle J, Fansa H, Ebmeyer U, Keilhoff G. Prolonged minocycline treatment impairs motor neuronal survival and glial function in organotypic rat spinal cord cultures. PLoS One 2013; 8:e73422. [PMID: 23967343 PMCID: PMC3742532 DOI: 10.1371/journal.pone.0073422] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/21/2013] [Indexed: 11/28/2022] Open
Abstract
Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients.
Collapse
Affiliation(s)
- Josephine Pinkernelle
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | | | | | | |
Collapse
|
58
|
Teshigawara K, Kuboyama T, Shigyo M, Nagata A, Sugimoto K, Matsuya Y, Tohda C. A novel compound, denosomin, ameliorates spinal cord injury via axonal growth associated with astrocyte-secreted vimentin. Br J Pharmacol 2013; 168:903-19. [PMID: 22978525 DOI: 10.1111/j.1476-5381.2012.02211.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/07/2012] [Accepted: 09/05/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE In the spinal cord injury (SCI) axon regeneration is inhibited by the glial scar, which contains reactive astrocytes that secrete inhibitory chondroitin sulphate proteoglycan (CSPG). We previously reported that a novel compound, denosomin, promotes axonal growth under degenerative conditions in cultured cortical neurons. In this study, we investigated the effects of denosomin on functional recovery in SCI mice and elucidated the mechanism though which denosomin induces axonal growth in the injured spinal cord. EXPERIMENTAL APPROACH Denosomin was administered p.o. for 7 or 14 days to contusion mice. Behavioural evaluations and immunohistochemistry were done. Primary cultured cortical neurons and astrocytes were treated with denosomin to investigate the mechanism of axonal growth facilitation. KEY RESULTS Denosomin improved hind limb motor dysfunction and axonal growth, especially in the 5-HT-positive tracts across the scar and increased the density of astrocytes. Denosomin increased astrocyte proliferation, inhibited astrocytic death and increased the expression and secretion of vimentin in cultured astrocytes. Furthermore, vimentin increased axonal outgrowth in cultured neurons, even in the presence of inhibitory CSPG. Denosomin increased the number of vimentin-expressing astrocytes inside glial scars of SCI mice, and 5-HT-positive axonal growth occurred in a vimentin-associated manner. CONCLUSION AND IMPLICATIONS Denosomin increased the ratio of astrocytes that secrete vimentin as an axonal growth facilitator, which, we propose enhances axonal growth beyond the glial scar and promotes functional recovery in SCI mice. This study is the first to demonstrate this novel role of vimentin in SCI and drug-mediated modification of the inhibitory property of reactive astrocytes.
Collapse
Affiliation(s)
- Kiyoshi Teshigawara
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
59
|
Yu Y, Schachner M. Syntenin-a promotes spinal cord regeneration following injury in adult zebrafish. Eur J Neurosci 2013; 38:2280-9. [PMID: 23607754 DOI: 10.1111/ejn.12222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 02/05/2023]
Abstract
In contrast to mammals, adult zebrafish recover locomotor function after spinal cord injury, in part due to the capacity of the central nervous system to repair severed connections. To identify molecular cues that underlie regeneration, we conducted mRNA expression profiling and found that syntenin-a expression is upregulated in the adult zebrafish spinal cord caudal to the lesion site after injury. Syntenin is a scaffolding protein involved in mammalian cell adhesion and movement, axonal outgrowth, establishment of cell polarity, and protein trafficking. It could thus be expected to be involved in supporting regeneration in fish. Syntenin-a mRNA and protein are expressed in neurons, glia and newly generated neural cells, and upregulated caudal to the lesion site on days 6 and 11 following spinal cord injury. Treatment of spinal cord-injured fish with two different antisense morpholinos to knock down syntenin-a expression resulted in significant inhibition of locomotor recovery at 5 and 6 weeks after injury, when compared to control morpholino-treated fish. Knock-down of syntenin-a reduced regrowth of descending axons from brainstem neurons into the spinal cord caudal to the lesion site. These observations indicate that syntenin-a is involved in regeneration after traumatic insult to the central nervous system of adult zebrafish, potentially leading to novel insights into the cellular and molecular mechanisms that require activation in the regeneration-deficient mammalian central nervous system.
Collapse
Affiliation(s)
- Yong Yu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| | | |
Collapse
|
60
|
Effect of infliximab combined with methylprednisolone on expressions of NF-κB, TRADD, and FADD in rat acute spinal cord injury. Spine (Phila Pa 1976) 2013; 38:E861-9. [PMID: 23574812 DOI: 10.1097/brs.0b013e318294892c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The possibility to prevent acute spinal cord injury (ASCI) by selective infliximab combined with methylprednisolone (MP) was assessed in experimental ASCI. OBJECTIVE To investigate the effects of infliximab, MP, and the combination of these 2 agents on expressions of NF-κB (nuclear factor Kappa B), TRADD (tumor necrosis factor receptor associated death domain), and FADD (fas associated death domain) in a rat model of acute spinal cord injury (ASCI), and to confirm the therapeutic efficacy and possible mechanism of infliximab combined with MP in the treatment of ASCI. SUMMARY OF BACKGROUND DATA The theory that SCI can induce tumor necrosis factor-α expression at the injury site has been evaluated. However, there are few data to confirm the therapeutic efficacy of infliximab combinated with MP in the treatment of rat SCI METHODS: One hundred eighty adult male Sprague Dawley rats with 280 to 300 g body weight were allocated randomly and accordingly. We applied Basso, Beattie, Bresnahan locomotor rating scale to assess the hindlimb motor functional score (10 rats × 6 groups), the hematoxylin and eosin stain and immunohistochemistry stain (10 rats × 6 groups) to assay the morphological changes of spinal cord, the arrangement and expressions of NF-κB, TRADD and FADD, and the RT-PCR (10 rats × 6 groups) to evaluate the messenger RNA expressions of NF-κB, TRADD, and FADD. RESULTS The results showed that both infliximab and MP could lower the expressions of NF-κB, TRADD, and FADD 24 hours after the ASCI, and increased Basso, Beattie, Bresnahan score on the 14th and the 21st days after ASCI, suggesting possible neuroprotective effectiveness on attenuating the severity of neurological deficits and improving the locomotor function in the rat ASCI model. Moreover, infliximab combined with MP exhibited the more powerful ability to this amelioration. CONCLUSION Infliximab combined with methylprednisolone may be an effective treatment for the recovery of ASCI. Further study is needed to determine if this neuroprotective effect is seen for long-term outcomes especially in human ASCI.
Collapse
|
61
|
Liu G, Zhao J, Chang Z, Guo G. CaMKII activates ASK1 to induce apoptosis of spinal astrocytes under oxygen-glucose deprivation. Cell Mol Neurobiol 2013; 33:543-9. [PMID: 23504235 PMCID: PMC11497890 DOI: 10.1007/s10571-013-9920-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous, structurally complex multifunctional protein serine/threonine kinase that plays an important role in cell apoptosis via linking the ER stress and mitochondrial apoptosis pathways. Recently, CaMKII has been correlated with apoptosis signal-regulating kinase 1 (ASK1) activity and the ASK1-dependent apoptosis pathway through the direct phosphorylation of Thr845 of ASK1. The specific role of CaMKII in hypoxia-reoxygenation (H/R)-induced spinal astrocyte apoptosis, however, remains unclear. In this study, we investigated the effects of CaMKIIγ (an isoform of CaMKII) on spinal astrocyte apoptosis using an in vitro oxygen-glucose deprivation (OGD/R) model which mimics hypoxic/ischemic conditions in vivo. OGD/R increased cell death and the activation of CaMKII. Deletion of CaMKIIγ results in the reduced activation of CaMKII and apoptosis in astrocytes under OGD/R conditions. Notably, the deletion of CaMKIIγ induced ASK1 phosphorylation at Thr845 in astrocytes. The activation of JNK and p38 and the downstream effect of ASK1 were also reduced. These data suggest that CaMKIIγ is required for the CaMKII-dependent regulation of ASK1, affecting the apoptosis of a biologically important cell type under spinal cord injury.
Collapse
Affiliation(s)
- Gang Liu
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002 Jiangsu China
| | - Jianning Zhao
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002 Jiangsu China
| | - Zhiyong Chang
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002 Jiangsu China
| | - Guodong Guo
- Department of Orthopedic Surgery, Jinling Hospital, 305# East Zhongshan Road, Nanjing, 210002 Jiangsu China
| |
Collapse
|
62
|
Bharne AP, Upadhya MA, Shelkar GP, Singru PS, Subhedar NK, Kokare DM. Neuroprotective effect of cocaine- and amphetamine-regulated transcript peptide in spinal cord injury in mice. Neuropharmacology 2013; 67:126-35. [DOI: 10.1016/j.neuropharm.2012.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 10/13/2012] [Accepted: 10/20/2012] [Indexed: 10/27/2022]
|
63
|
Lad SP, Umeano OA, Karikari IO, Somasundaram A, Bagley CA, Gottfried ON, Isaacs RE, Ugiliweneza B, Patil CG, Huang K, Boakye M. Racial Disparities in Outcomes after Spinal Cord Injury. J Neurotrauma 2013; 30:492-7. [DOI: 10.1089/neu.2012.2540] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Shivanand P. Lad
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Odera A. Umeano
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Isaac O. Karikari
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Aravind Somasundaram
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Carlos A. Bagley
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Oren N. Gottfried
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Robert E. Isaacs
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Beatrice Ugiliweneza
- Center for Neurosurgical Outcomes Research, Maxine Dunitz Neurosurgical Institute, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chirag G. Patil
- Center for Neurosurgical Outcomes Research, Maxine Dunitz Neurosurgical Institute, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kevin Huang
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Maxwell Boakye
- Department of Neurosurgery, University of Louisville and Robley Rex VA, Louisville, Kentucky
| |
Collapse
|
64
|
Mladinic M, Nistri A. Microelectrode arrays in combination with in vitro models of spinal cord injury as tools to investigate pathological changes in network activity: facts and promises. FRONTIERS IN NEUROENGINEERING 2013; 6:2. [PMID: 23459694 PMCID: PMC3586932 DOI: 10.3389/fneng.2013.00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/12/2013] [Indexed: 12/23/2022]
Abstract
Microelectrode arrays (MEAs) represent an important tool to study the basic characteristics of spinal networks that control locomotion in physiological conditions. Fundamental properties of this neuronal rhythmicity like burst origin, propagation, coordination, and resilience can, thus, be investigated at multiple sites within a certain spinal topography and neighboring circuits. A novel challenge will be to apply this technology to unveil the mechanisms underlying pathological processes evoked by spinal cord injury (SCI). To achieve this goal, it is necessary to fully identify spinal networks that make up the locomotor central pattern generator (CPG) and to understand their operational rules. In this review, the use of isolated spinal cord preparations from rodents, or organotypic spinal slice cultures is discussed to study rhythmic activity. In particular, this review surveys our recently developed in vitro models of SCI by evoking excitotoxic (or even hypoxic/dysmetabolic) damage to spinal networks and assessing the impact on rhythmic activity and cell survival. These pathological processes which evolve via different cell death mechanisms are discussed as a paradigm to apply MEA recording for detailed mapping of the functional damage and its time-dependent evolution.
Collapse
Affiliation(s)
- Miranda Mladinic
- Neuroscience Department, International School for Advanced Studies (SISSA) Trieste, Italy ; Spinal Person Injury Neurorehabilitation Applied Laboratory, Istituto di Medicina Fisica e Riabilitazione Udine, Italy ; Department of Biotechnology, University of Rijeka Rijeka, Croatia
| | | |
Collapse
|
65
|
G protein-coupled estrogen receptor: a new therapeutic target in stroke and traumatic brain/spinal cord injury? Crit Care Med 2013; 40:3323-5. [PMID: 23164781 DOI: 10.1097/ccm.0b013e31826be998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
66
|
Mountney A, Zahner MR, Sturgill ER, Riley CJ, Aston JW, Oudega M, Schramm LP, Hurtado A, Schnaar RL. Sialidase, chondroitinase ABC, and combination therapy after spinal cord contusion injury. J Neurotrauma 2013; 30:181-90. [PMID: 22934782 DOI: 10.1089/neu.2012.2353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Axon regeneration in the central nervous system is severely hampered, limiting functional recovery. This is in part because of endogenous axon regeneration inhibitors that accumulate at the injury site. Therapeutic targeting of these inhibitors and their receptors may facilitate axon outgrowth and enhance recovery. A rat model of spinal cord contusion injury was used to test the effects of two bacterial enzyme therapies that target independent axon regeneration inhibitors, sialidase (Vibrio cholerae) and chondroitinase ABC (ChABC, Proteus vulgaris). The two enzymes, individually and in combination, were infused for 2 weeks via implanted osmotic pumps to the site of a moderate thoracic spinal cord contusion injury. Sialidase was completely stable, whereas ChABC retained>30% of its activity in vivo over the 2 week infusion period. Immunohistochemistry revealed that infused sialidase acted robustly throughout the spinal cord gray and white matter, whereas ChABC activity was more intense superficially. Sialidase treatment alone resulted in improved behavioral and anatomical outcomes. Rats treated exclusively with sialidase showed significantly increased hindlimb motor function, evidenced by higher Basso Beattie and Bresnahan (BBB) and BBB subscores, and fewer stepping errors on a horizontal ladder. Sialidase-treated rats also had increased serotonergic axons caudal to the injury. ChABC treatment, in contrast, did not enhance functional recovery or alter axon numbers after moderate spinal cord contusion injury, and dampened the response of sialidase in the dual enzyme treatment group. We conclude that sialidase infusion enhanced recovery from spinal cord contusion injury, and that combining sialidase with ChABC failed to improve outcomes.
Collapse
Affiliation(s)
- Andrea Mountney
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Schiller M, Mobbs R. The historical evolution of the management of spinal cord injury. J Clin Neurosci 2012; 19:1348-53. [DOI: 10.1016/j.jocn.2012.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/04/2012] [Accepted: 03/07/2012] [Indexed: 12/23/2022]
|
68
|
Silva NA, Sousa RA, Fraga JS, Fontes M, Leite-Almeida H, Cerqueira R, Almeida A, Sousa N, Reis RL, Salgado AJ. Benefits of spine stabilization with biodegradable scaffolds in spinal cord injured rats. Tissue Eng Part C Methods 2012; 19:101-8. [PMID: 22779715 DOI: 10.1089/ten.tec.2012.0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Spine stabilization upon spinal cord injury (SCI) is a standard procedure in clinical practice, but rarely employed in experimental models. Moreover, the application of biodegradable biomaterials for this would come as an advantage as it would eliminate the presence of a nondegradable prosthesis within the vertebral bone. Therefore, in the present work, we propose the use of a new biodegradable device specifically developed for spine stabilization in a rat model of SCI. A 3D scaffold based on a blend of starch with polycaprolactone was implanted, replacing delaminated vertebra, in male Wistar rats with a T8-T9 spinal hemisection. The impact of spinal stabilization on the locomotor behavior was then evaluated for a period of 12 weeks. Locomotor evaluation--assessed by Basso, Beatie, and Bresnahan test; rotarod; and open field analysis--revealed that injured rats subjected to spine stabilization significantly improved their motor performance, including higher coordination and rearing activity when compared with SCI rats without stabilization. Histological analysis further revealed that the presence of the scaffolds not only stabilized the area, but also simultaneously prevented the infiltration of the injury site by connective tissue. Overall, these results reveal that SCI stabilization using a biodegradable scaffold at the vertebral bone level leads to an improvement of the motor deficits and is a relevant element for the successful treatment of SCI.
Collapse
Affiliation(s)
- Nuno A Silva
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Lee K, Na W, Lee JY, Na J, Cho H, Wu H, Yune TY, Kim WS, Ju BG. Molecular mechanism of Jmjd3-mediated interleukin-6 gene regulation in endothelial cells underlying spinal cord injury. J Neurochem 2012; 122:272-82. [PMID: 22578249 DOI: 10.1111/j.1471-4159.2012.07786.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The inflammatory response contributes substantially to secondary injury cascades after spinal cord injury, with both neurotoxic and protective effects. However, epigenetic regulations of inflammatory genes following spinal cord injury have yet to be characterized thoroughly. In this study, we found that histone H3K27me3 demethylase Jmjd3 expression is acutely up-regulated in blood vessels of the injured spinal cord. We also observed up-regulation of Jmjd3 gene expression in bEnd.3 endothelial cells that were subjected to oxygen-glucose deprivation/reperfusion injury. When Jmjd3 was depleted by siRNA, oxygen-glucose deprivation/reperfusion injury-induced up-regulation of IL-6 was significantly inhibited. In addition, Jmjd3 associated with NF-κB (p65/p50) and CCAAT-enhancer-binding protein β at the IL-6 gene promoter. The recruitment of Jmjd3 coincided with decreased levels of tri-methylated H3K27 as well as increased levels of mono-methylated H3K27 at the IL-6 gene promoter. Furthermore, Jmjd3 depletion did not result in significant changes of methylation level of H3K27 at the IL-6 gene promoter. Collectively, our findings imply that Jmjd3-mediated H3K27me3 demethylation is crucial for IL-6 gene activation in endothelial cells, and this molecular event may regulate acute inflammatory response and integrity of the blood-spinal cord barrier following spinal cord injury.
Collapse
Affiliation(s)
- Kwanghyun Lee
- Department of Life Science, Sogang University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Castiglione F, Bergamini A, Bettiga A, Bivalacqua TJ, Benigni F, Strittmatter F, Gandaglia G, Rigatti P, Montorsi F, Hedlund P. Perioperative betamethasone treatment reduces signs of bladder dysfunction in a rat model for neurapraxia in female urogenital surgery. Eur Urol 2012; 62:1076-85. [PMID: 22542670 DOI: 10.1016/j.eururo.2012.04.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/10/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND Information on autonomic neurapraxia in female urogenital surgery is scarce, and a model to study it is not available. OBJECTIVE To develop a model to study the impact of autonomic neurapraxia on bladder function in female rats, as well as to assess the effects of corticosteroid therapy on the recovery of bladder function in this model. DESIGN, SETTING, AND PARTICIPANTS Female Sprague-Dawley rats were subjected to bilateral pelvic nerve crush (PNC) and perioperatively treated with betamethasone or vehicle. Bladder function and morphology of bladder tissue were evaluated and compared with sham-operated rats. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Western blot, immunohistochemistry, organ bath experiments, and cystometry. RESULTS AND LIMITATIONS Sham-operated rats exhibited regular micturitions without nonvoiding contractions (NVCs). Crush of all nerve branches of the pelvic plexus or PNC resulted in overflow incontinence and/or NVCs. Betamethasone treatment improved recovery of regular micturitions (87.5% compared with 27% for vehicle; p<0.05), reduced lowest bladder pressure (8 ± 2 cm H(2)O compared with 21 ± 5 cm H(2)O for vehicle; p<0.05), and reduced the amplitude of NVCs but had no effect on NVC frequency in PNC rats. Compared with vehicle, betamethasone-treated PNC rats had less CD68 (a macrophage marker) in the pelvic plexus and bladder tissue. Isolated bladder from betamethasone-treated PNC rats exhibited better nerve-induced contractions, contained more cholinergic and sensory nerves, and expressed lower amounts of collagen III than bladder tissue from vehicle-treated rats. CONCLUSIONS PNC causes autonomic neurapraxia and functional and morphologic changes of isolated bladder tissue that can be recorded as bladder dysfunction during awake cystometry in female rats. Perioperative systemic betamethasone treatment reduced macrophage contents of the pelvic plexus and bladder, partially counteracted changes in the bladder tissue, and had protective effects on micturition function.
Collapse
Affiliation(s)
- Fabio Castiglione
- Urological Research Institute, San Raffaele University, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
McCreedy DA, Sakiyama-Elbert SE. Combination therapies in the CNS: engineering the environment. Neurosci Lett 2012; 519:115-21. [PMID: 22343313 DOI: 10.1016/j.neulet.2012.02.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 01/03/2023]
Abstract
The inhibitory extracellular environment that develops in response to traumatic brain injury and spinal cord injury hinders axon growth thereby limiting restoration of function. Several strategies have been developed to engineer a more permissive central nervous system (CNS) environment to promote regeneration and functional recovery. The multi-faced inhibitory nature of the CNS lesion suggests that therapies used in combination may be more effective. In this mini-review we summarize the most recent attempts to engineer the CNS extracellular environment after injury using combinatorial strategies. The advantages and limits of various combination therapies utilizing neurotrophin delivery, cell transplantation, and biomaterial scaffolds are discussed. Treatments that reduce the inhibition by chondroitin sulfate proteoglycans, myelin-associated inhibitors, and other barriers to axon regeneration are also reviewed. Based on the current state of the field, future directions are suggested for research on combination therapies in the CNS.
Collapse
Affiliation(s)
- Dylan A McCreedy
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr. Box 1097, St. Louis, MO 63130, United States
| | | |
Collapse
|
72
|
Potential for neural differentiation of mesenchymal stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 129:89-115. [PMID: 22899379 DOI: 10.1007/10_2012_152] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adult human stem cells have gained progressive interest as a promising source of autologous cells to be used as therapeutic vehicles. Particularly, mesenchymal stem cells (MSCs) represent a great tool in regenerative medicine because of their ability to differentiate into a variety of specialized cells. Among adult tissues in which MSCs are resident, adipose tissue has shown clear advantages over other sources of MSCs (ease of surgical access, availability, and isolation), making adipose tissue the ideal large-scale source for research on clinical applications. Stem cells derived from the adipose tissue (adipose-derived stem cells = ADSCs) possess a great and unique regenerative potential: they are self-renewing and can differentiate along several mesenchymal tissue lineages (adipocytes, osteoblasts, myocytes, chondrocytes, endothelial cells, and cardiomyocytes), among which neuronal-like cells gained particular interest. In view of the promising clinical applications in tissue regeneration, research has been conducted towards the creation of a successful protocol for achieving cells with a well-defined neural phenotype from adipose tissue. The promising results obtained open new scenarios for innovative approaches for a cell-based treatment of neurological degenerative disorders.
Collapse
|