51
|
Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 2015; 36:161-78. [PMID: 25687683 DOI: 10.1016/j.it.2015.01.003] [Citation(s) in RCA: 586] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
Thirty years after the discovery of its production by activated macrophages, our appreciation of the diverse roles of nitric oxide (NO) continues to grow. Recent findings have not only expanded our understanding of the mechanisms controlling the expression of NO synthases (NOS) in innate and adaptive immune cells, but have also revealed new functions and modes of action of NO in the control and escape of infectious pathogens, in T and B cell differentiation, and in tumor defense. I discuss these findings, in the context of a comprehensive overview of the various sources and multiple reaction partners of NO, and of the regulation of NOS2 by micromilieu factors, antisense RNAs, and 'unexpected' cytokines.
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie, und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Wasserturmstraße 3/5, 91054 Erlangen, Germany.
| |
Collapse
|
52
|
Ramos-Molina B, López-Contreras AJ, Lambertos A, Dardonville C, Cremades A, Peñafiel R. Influence of ornithine decarboxylase antizymes and antizyme inhibitors on agmatine uptake by mammalian cells. Amino Acids 2015; 47:1025-34. [PMID: 25655388 DOI: 10.1007/s00726-015-1931-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
Abstract
Agmatine (4-aminobutylguanidine), a dicationic molecule at physiological pH, exerts relevant modulatory actions at many different molecular target sites in mammalian cells, having been suggested that the administration of this compound may have therapeutic interest. Several plasma membrane transporters have been implicated in agmatine uptake by mammalian cells. Here we report that in kidney-derived COS-7 cell line, at physiological agmatine levels, the general polyamine transporter participates in the plasma membrane translocation of agmatine, with an apparent Km of 44 ± 7 µM and Vmax of 17.3 ± 3.3 nmol h(-1) mg(-1) protein, but that at elevated concentrations, agmatine can be also taken up by other transport systems. In the first case, the physiological polyamines (putrescine, spermidine and spermine), several diguanidines and bis(2-aminoimidazolines) and the polyamine transport inhibitor AMXT-1501 markedly decreased agmatine uptake. In cells transfected with any of the three ornithine decarboxylase antizymes (AZ1, AZ2 and AZ3), agmatine uptake was dramatically reduced. On the contrary, transfection with antizyme inhibitors (AZIN1 and AZIN2) markedly increased the transport of agmatine. Furthermore, whereas putrescine uptake was significantly decreased in cells transfected with ornithine decarboxylase (ODC), the accumulation of agmatine was stimulated, suggesting a trans-activating effect of intracellular putrescine on agmatine uptake. All these results indicate that ODC and its regulatory proteins (antizymes and antizyme inhibitors) may influence agmatine homeostasis in mammalian tissues.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
53
|
Agmatine attenuates methamphetamine-induced hyperlocomotion and stereotyped behavior in mice. Behav Pharmacol 2014; 25:158-65. [PMID: 24557322 DOI: 10.1097/fbp.0000000000000030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated whether pretreatment with the neurotransmitter/neuromodulator agmatine (decarboxylated L-arginine) affected methamphetamine (METH)-induced hyperlocomotion and stereotypy in male ICR mice. Agmatine pretreatment alone had no effects on locomotion or stereotypy, but it produced a dose-dependent attenuation of locomotion and the total incidence of stereotyped behavior induced by a low dose of METH (5 mg/kg). The stereotypy induced by this dose was predominantly characterized by stereotyped sniffing. By contrast, agmatine did not affect the total incidence of stereotypy induced by a higher dose of METH (10 mg/kg). However, the nature of stereotypy induced by this dose of METH was substantially altered; agmatine pretreatment significantly reduced stereotyped biting but significantly increased stereotyped sniffing and persistent locomotion. Agmatine pretreatment therefore appears to produce a rightward shift in the dose-response curve for METH. Pretreatment of mice with piperazine-1-carboxamidine (a putative agmatinase inhibitor) had no effect on locomotion or stereotypy induced by a low dose of METH, suggesting that endogenous agmatine may not regulate the METH action.
Collapse
|
54
|
Bazer FW, Wu G, Johnson GA, Wang X. Environmental factors affecting pregnancy: endocrine disrupters, nutrients and metabolic pathways. Mol Cell Endocrinol 2014; 398:53-68. [PMID: 25224489 DOI: 10.1016/j.mce.2014.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 11/15/2022]
Abstract
Uterine adenogenesis, a unique post-natal event in mammals, is vulnerable to endocrine disruption by estrogens and progestins resulting in infertility or reduced prolificacy. The absence of uterine glands results in insufficient transport of nutrients into the uterine lumen to support conceptus development. Arginine, a component of histotroph, is substrate for production of nitric oxide, polyamines and agmatine and, with secreted phosphoprotein 1, it affects cytoskeletal organization of trophectoderm. Arginine is critical for development of the conceptus, pregnancy recognition signaling, implantation and placentation. Conceptuses of ungulates and cetaceans convert glucose to fructose which is metabolized via multiple pathways to support growth and development. However, high fructose corn syrup in soft drinks and foods may increase risks for metabolic disorders and increase insulin resistance in adults. Understanding endocrine disrupters and dietary substances, and novel pathways for nutrient metabolism during pregnancy can improve survival and growth, and prevent chronic metabolic diseases in offspring.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas 77843, United States.
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas 77843, United States
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Xiaoqiu Wang
- Department of Animal Science, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
55
|
Zádori ZS, Tóth VE, Fehér Á, Philipp K, Németh J, Gyires K. Evidence for the gastric cytoprotective effect of centrally injected agmatine. Brain Res Bull 2014; 108:51-9. [DOI: 10.1016/j.brainresbull.2014.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/19/2014] [Accepted: 07/31/2014] [Indexed: 02/07/2023]
|
56
|
Sertbaş M, Ülgen K, Çakır T. Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network. FEBS Open Bio 2014; 4:542-53. [PMID: 25061554 PMCID: PMC4104795 DOI: 10.1016/j.fob.2014.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 01/02/2023] Open
Abstract
Network-oriented analysis is essential to identify those parts of a cell affected by a given perturbation. The effect of neurodegenerative perturbations in the form of diseases of brain metabolism was investigated by using a newly reconstructed brain-specific metabolic network. The developed stoichiometric model correctly represents healthy brain metabolism, and includes 630 metabolic reactions in and between astrocytes and neurons, which are controlled by 570 genes. The integration of transcriptome data of six neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, schizophrenia) with the model was performed to identify reporter features specific and common for these diseases, which revealed metabolites and pathways around which the most significant changes occur. The identified metabolites are potential biomarkers for the pathology of the related diseases. Our model indicated perturbations in oxidative stress, energy metabolism including TCA cycle and lipid metabolism as well as several amino acid related pathways, in agreement with the role of these pathways in the studied diseases. The computational prediction of transcription factors that commonly regulate the reporter metabolites was achieved through binding-site analysis. Literature support for the identified transcription factors such as USF1, SP1 and those from FOX families are known from the literature to have regulatory roles in the identified reporter metabolic pathways as well as in the neurodegenerative diseases. In essence, the reconstructed brain model enables the elucidation of effects of a perturbation on brain metabolism and the illumination of possible machineries in which a specific metabolite or pathway acts as a regulatory spot for cellular reorganization.
Collapse
Key Words
- AD, Alzheimer’s disease
- ALS, amyotrophic lateral sclerosis
- Brain metabolic network
- Computational systems biology
- FBA, flux balance analysis
- GABA, gamma-aminobutyric acid
- HD, Huntington’s disease
- KIV, ketoisovalerate
- KLF, Krüppel-like factor
- KMV, alpha-keto-beta-methylvalerate
- MS, multiple sclerosis
- Neurodegenerative diseases
- Neurometabolism
- PCA, principal component analysis
- PD, Parkinson’s disease
- RMA, reporter metabolite analysis
- RPA, reporter pathway analysis
- Reporter metabolite
- SCHZ, schizophrenia
- TCA, tricarboxylic acid
- Transcriptome
- USF, upstream stimulatory factor
Collapse
Affiliation(s)
- Mustafa Sertbaş
- Department of Bioengineering, Gebze Institute of Technology, Gebze, Kocaeli, Turkey
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Turkey
| | - Kutlu Ülgen
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Institute of Technology, Gebze, Kocaeli, Turkey
| |
Collapse
|
57
|
|
58
|
Alpha-2 adrenoceptors and imidazoline receptors in cardiomyocytes mediate counterbalancing effect of agmatine on NO synthesis and intracellular calcium handling. J Mol Cell Cardiol 2014; 68:66-74. [DOI: 10.1016/j.yjmcc.2013.12.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/11/2013] [Accepted: 12/31/2013] [Indexed: 12/17/2022]
|
59
|
Cofre J, Montes P, Vallejos A, Benítez J, García D, Martínez-Oyanedel J, Carvajal N, Uribe E. Further insight into the inhibitory action of a LIM/double zinc-finger motif of an agmatinase-like protein. J Inorg Biochem 2014; 132:92-5. [DOI: 10.1016/j.jinorgbio.2013.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 11/26/2022]
|
60
|
Gilad GM, Gilad VH. Evidence for oral agmatine sulfate safety – A 95-day high dosage pilot study with rats. Food Chem Toxicol 2013; 62:758-62. [DOI: 10.1016/j.fct.2013.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/26/2013] [Accepted: 10/04/2013] [Indexed: 12/29/2022]
|
61
|
Martens-Lobenhoffer J, Bode-Böger SM. Mass spectrometric quantification of L-arginine and its pathway related substances in biofluids: the road to maturity. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 964:89-102. [PMID: 24210895 DOI: 10.1016/j.jchromb.2013.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/18/2022]
Abstract
The amino acid L-arginine together with its metabolites and related substances is in the center of many biologically important pathways, especially the urea cycle and the nitric oxide (NO) synthesis. Therefore, the concentrations of these substances in various biological fluids are of great interest as predictive markers for health and disease. Yet, they provide major analytical difficulties as they are very polar in nature and therefore not easily to be separated on standard reversed phase HPLC stationary phases. Furthermore, as endogenous substances, no analyte-free matrix is available, a fact that results in complicated calibration procedures. This review evaluates the analytical literature for the determination of L-arginine, symmetric dimethylarginine, asymmetric dimethylarginine, monomethylarginine, L-citrulline, L-ornithine, L-homoarginine, agmatine and dimethylguanidinovaleric acid in biological fluids. Papers are discussed, which were published since 2007 and describe methods applying capillary electrophoresis (CE), gas chromatography (GC), reversed phase HPLC or polar phase HPLC, coupled to mass spectrometric quantification. Nowadays, many carefully developed and validated methods for L-arginine and its related substances are available to the scientific community. The use of stable isotope labeled internal standards enables high precision and accuracy in mass spectrometry-based quantitative analysis.
Collapse
Affiliation(s)
| | - Stefanie M Bode-Böger
- Institute of Clinical Pharmacology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
62
|
Suárez C, Espariz M, Blancato VS, Magni C. Expression of the agmatine deiminase pathway in Enterococcus faecalis is activated by the AguR regulator and repressed by CcpA and PTS(Man) systems. PLoS One 2013; 8:e76170. [PMID: 24155893 PMCID: PMC3796520 DOI: 10.1371/journal.pone.0076170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/21/2013] [Indexed: 11/29/2022] Open
Abstract
Although the agmatine deiminase system (AgDI) has been investigated in Enterococcus faecalis, little information is available with respect to its gene regulation. In this study we demonstrate that the presence of exogenous agmatine induces the expression of agu genes in this bacterium. In contrast to the homologous and extensively characterized AgDI system of S. mutants, the aguBDAC operon in E. faecalis is not induced in response to low pH. In spite of this, agmatine catabolism in this bacterium contributes by neutralizing the external medium while enhancing bacterial growth. Our results indicate that carbon catabolic repression (CCR) operates on the AgDI system via a mechanism that involves interaction of CcpA and P-Ser-HPr with a cre site found in an unusual position considering the aguB promoter (55 nt upstream the +1 position). In addition, we found that components of the mannose phosphotransferase (PTSMan) system also contributed to CCR in E. faecalis since a complete relief of the PTS-sugars repressive effect was observed only in a PTSMan and CcpA double defective strain. Our gene context analysis revealed that aguR is present in oral and gastrointestinal microorganisms. Thus, regulation of the aguBDAC operon in E. faecalis seems to have evolved to obtain energy and resist low pH conditions in order to persist and colonize gastrointestinal niches.
Collapse
Affiliation(s)
- Cristian Suárez
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Rosario, Santa Fe, Argentina
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Rosario, Santa Fe, Argentina
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Víctor S. Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Rosario, Santa Fe, Argentina
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Rosario, Santa Fe, Argentina
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- * E-mail:
| |
Collapse
|
63
|
Lowery RP, Joy JM, Dudeck JE, Oliveira de Souza E, McCleary SA, Wells S, Wildman R, Wilson JM. Effects of 8 weeks of Xpand® 2X pre workout supplementation on skeletal muscle hypertrophy, lean body mass, and strength in resistance trained males. J Int Soc Sports Nutr 2013; 10:44. [PMID: 24107586 PMCID: PMC3851572 DOI: 10.1186/1550-2783-10-44] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xpand® 2X is a proprietary blend comprised of branched chain amino acids, creatine monohydrate, beta-alanine (CarnoSyn®), quercetin, coenzymated B-vitamins, alanyl-glutamine (Sustamine®), and natural nitrate sources from pomegranate and beet root extracts purported to enhance the neuromuscular adaptations of resistance training. However to date, no long-term studies have been conducted with this supplement. The purpose of this study was to investigate the effects of a multi-ingredient performance supplement (MIPS) on skeletal muscle hypertrophy, lean body mass and lower body strength in resistance-trained males. METHODS Twenty resistance-trained males (21.3 ± 1.9 years) were randomly assigned to consume a MIPS or a placebo of equal weight and volume (food-grade orange flavors and sweeteners) in a double-blind manner, 30 minutes prior to exercise. All subjects participated in an 8-week, 3-day per week, periodized, resistance-training program that was split-focused on multi-joint movements such as leg press, bench press, and bent-over rows. Ultrasonography measured muscle thickness of the quadriceps, dual-energy X-ray absorptiometry (DEXA) determined lean body mass, and strength of the bench press and leg press were determined at weeks 0, 4, and 8 of the study. Data were analyzed with a 2 × 3 repeated measures ANOVA with LSD post hoc tests utilized to locate differences. RESULTS There was a significant group-by-time interaction in which the MIPS supplementation resulted in a significant (p < 0.01) increase in strength of the bench press (18.4% vs. 9.6%) compared with placebo after 4 and 8 weeks of training. There were no significant group by time interactions between MIPS supplementation nor the placebo in leg press strength (p = .08). MIPS supplementation also resulted in a significant increase in lean body mass (7.8% vs. 3.6%) and quadriceps muscle thickness (11.8% vs. 4.5%) compared with placebo (group*time, p <0.01). CONCLUSIONS These results suggest that this MIPS can positively augment adaptations in strength, and skeletal muscle hypertrophy in resistance-trained men.
Collapse
Affiliation(s)
- Ryan P Lowery
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Raemdonck K, Martens TF, Braeckmans K, Demeester J, De Smedt SC. Polysaccharide-based nucleic acid nanoformulations. Adv Drug Deliv Rev 2013; 65:1123-47. [PMID: 23680381 DOI: 10.1016/j.addr.2013.05.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 04/24/2013] [Accepted: 05/03/2013] [Indexed: 12/24/2022]
Abstract
Therapeutic application of nucleic acids requires their encapsulation in nanosized carriers that enable safe and efficient intracellular delivery. Before the desired site of action is reached, drug-loaded nanoparticles (nanomedicines) encounter numerous extra- and intracellular barriers. Judicious nanocarrier design is highly needed to stimulate nucleic acid delivery across these barriers and maximize the therapeutic benefit. Natural polysaccharides are widely used for biomedical and pharmaceutical applications due to their inherent biocompatibility. At present, there is a growing interest in applying these biopolymers for the development of nanomedicines. This review highlights various polysaccharides and their derivatives, currently employed in the design of nucleic acid nanocarriers. In particular, recent progress made in polysaccharide-assisted nucleic acid delivery is summarized and the specific benefits that polysaccharides might offer to improve the delivery process are critically discussed.
Collapse
|
65
|
Abdulhussein AA, Wallace HM. Polyamines and membrane transporters. Amino Acids 2013; 46:655-60. [PMID: 23851697 DOI: 10.1007/s00726-013-1553-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/28/2013] [Indexed: 12/15/2022]
Abstract
In recent years, our understanding of the importance of membrane transporters (MTs) in the disposition of and response to drugs has increased significantly. MTs are proteins that regulate the transport of endogenous molecules and xenobiotics across the cell membrane. In mammals, two super-families have been identified: ATP-binding cassette (ABC) and solute carrier (SLC) transporters. There is evidence that MTs might mediate polyamines (PA) transport. PA are ubiquitous polycations which are found in all living cells. In mammalian cells, three major PA are synthesised: putrescine, spermidine and spermine; whilst the decarboxylated arginine (agmatine) is not produced by mammals but is synthesised by plants and bacteria. In addition, research in the PA field suggests that PA are transported into cells via a specific transporter, the polyamine transport system(s) (PTS). Although the PTS has not been fully defined, there is evidence that some of the known MTs might be involved in PA transport. In this mini review, eight SLC transporters will be reviewed and their potential to mediate PA transport in human cells discussed. These transporters are SLC22A1, SLC22A2, SLC22A3, SLC47A1, SLC7A1, SLC3A2, SLC12A8A, and SLC22A16. Preliminary data from our laboratory have revealed that SLC22A1 might be involved in the PA uptake; in addition to one member of ABC superfamily (MDR1 protein) might also mediate the efflux of polyamine like molecules.
Collapse
Affiliation(s)
- Ahmed A Abdulhussein
- Division of Applied Medicine, Kosterlitz Centre for Therapeutics, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | | |
Collapse
|
66
|
Nakipova OV, Averin AS, Tarlachkov SV, Kokoz YM. The effect of agmatine on the rhythmoinotropic properties of the cardiac papillary muscle of hibernating animals. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2013; 451:203-208. [PMID: 23975457 DOI: 10.1134/s0012496613040121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Indexed: 06/02/2023]
Affiliation(s)
- O V Nakipova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, Russia
| | | | | | | |
Collapse
|
67
|
Maltsev AV, Nenov MN, Pimenov OY, Kokoz YM. Modulation of L-type Ca2+ currents and intracellular calcium by agmatine in rat cardiomyocytes. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2013. [DOI: 10.1134/s1990747813020050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
68
|
Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues ALS, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM. Agmatine: clinical applications after 100 years in translation. Drug Discov Today 2013; 18:880-93. [PMID: 23769988 DOI: 10.1016/j.drudis.2013.05.017] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/27/2013] [Accepted: 05/22/2013] [Indexed: 12/13/2022]
Abstract
Agmatine (decarboxylated arginine) has been known as a natural product for over 100 years, but its biosynthesis in humans was left unexplored owing to long-standing controversy. Only recently has the demonstration of agmatine biosynthesis in mammals revived research, indicating its exceptional modulatory action at multiple molecular targets, including neurotransmitter systems, nitric oxide (NO) synthesis and polyamine metabolism, thus providing bases for broad therapeutic applications. This timely review, a concerted effort by 16 independent research groups, draws attention to the substantial preclinical and initial clinical evidence, and highlights challenges and opportunities, for the use of agmatine in treating a spectrum of complex diseases with unmet therapeutic needs, including diabetes mellitus, neurotrauma and neurodegenerative diseases, opioid addiction, mood disorders, cognitive disorders and cancer.
Collapse
Affiliation(s)
- John E Piletz
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Payandemehr B, Rahimian R, Bahremand A, Ebrahimi A, Saadat S, Moghaddas P, Fadakar K, Derakhshanian H, Dehpour AR. Role of nitric oxide in additive anticonvulsant effects of agmatine and morphine. Physiol Behav 2013; 118:52-7. [DOI: 10.1016/j.physbeh.2013.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/17/2013] [Accepted: 05/07/2013] [Indexed: 11/28/2022]
|
70
|
Kotagale NR, Tripathi SJ, Aglawe MM, Chopde CT, Umekar MJ, Taksande BG. Evidences for the agmatine involvement in antidepressant like effect of bupropion in mouse forced swim test. Pharmacol Biochem Behav 2013; 107:42-7. [PMID: 23583442 DOI: 10.1016/j.pbb.2013.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 03/25/2013] [Accepted: 03/30/2013] [Indexed: 11/19/2022]
Abstract
Although bupropion has been widely used in the treatment of depression, the precise mechanism of its therapeutic actions is not fully understood. The present study investigated the role of agmatine in an antidepressant like effect of bupropion in mouse forced swim test. The antidepressant like effect of bupropion was potentiated by pretreatment with agmatine (10-20mg/kg, ip) and by the drugs known to increase endogenous agmatine levels in brain viz., l-arginine (40 μg/mouse, icv), an agmatine biosynthetic precursor, ornithine decarboxylase inhibitor, dl-α-difluoromethyl ornithine hydrochloride, DFMO (12.5 μg/mouse, icv), diamine oxidase inhibitor, aminoguanidine (6.5 μg/mouse, icv) and agmatinase inhibitor, arcaine (50 μg/mouse, icv) as well as imidazoline I1 receptor agonists, moxonidine (0.25mg/kg, ip) and clonidine (0.015 mg/kg, ip) and imidazoline I2 receptor agonist, 2-(2-benzofuranyl)-2-imidazoline hydrochloride, 2-BFI (5mg/kg, ip). Conversely, prior administration of I1 receptor antagonist, efaroxan (1mg/kg, ip) and I2 receptor antagonist, idazoxan (0.25mg/kg, ip) blocked the antidepressant like effect of bupropion and its synergistic combination with agmatine. These results demonstrate involvement of agmatine in the antidepressant like effect of bupropion and suggest agmatine and imidazoline receptors as a potential therapeutic target for the treatment of depressive disorders.
Collapse
Affiliation(s)
- Nandkishor R Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441 002, India
| | | | | | | | | | | |
Collapse
|
71
|
Zádori ZS, Fehér Á, Al-Khrasani M, Lackó E, Tóth VE, Brancati SB, Hein L, Mátyus P, Gyires K. Imidazoline versus alpha2-adrenoceptors in the control of gastric motility in mice. Eur J Pharmacol 2013; 705:61-7. [DOI: 10.1016/j.ejphar.2013.02.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/16/2013] [Accepted: 02/24/2013] [Indexed: 10/27/2022]
|
72
|
Piletz JE, Klenotich S, Lee KS, Zhu QL, Valente E, Collins MA, Jones V, Lee SN, Yangzheng F. Putative agmatinase inhibitor for hypoxic-ischemic new born brain damage. Neurotox Res 2013; 24:176-90. [PMID: 23334804 DOI: 10.1007/s12640-013-9376-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/10/2012] [Accepted: 01/08/2013] [Indexed: 01/27/2023]
Abstract
Agmatine is an endogenous brain metabolite, decarboxylated arginine, which has neuroprotective properties when injected intraperitoneally (i.p.) into rat pups following hypoxic-ischemia. A previous screen for compounds based on rat brain lysates containing agmatinase with assistance from computational chemistry, led to piperazine-1-carboxamidine as a putative agmatinase inhibitor. Herein, the neuroprotective properties of piperazine-1-carboxamidine are described both in vitro and in vivo. Organotypic entorhinal-hippocampal slices were firstly prepared from 7-day-old rat pups and exposed in vitro to atmospheric oxygen depletion for 3 h. Upon reoxygenation, the slices were treated with piperazine-1-carboxamidine or agmatine (50 μg/ml agents), or saline, and 15 h later propidium iodine was used to stain. Piperazine-1-carboxamidine or agmatine produced substantial in vitro protection compared to post-reoxygenated saline-treated controls. An in vivo model involved surgical right carotid ligation followed by exposure to hypoxic-ischemia (8 % oxygen) for 2.5 h. Piperazine-1-carboxamidine at 50 mg/kg i.p. was given 15 min post-reoxygenation and continued twice daily for 3 days. Cortical agmatine levels were elevated (+28.5 %) following piperazine-1-carboxamidine treatment with no change in arginine or its other major metabolites. Histologic staining with anti-Neun monoclonal antibody also revealed neuroprotection of CA1-3 layers of the hippocampus. Until endpoint at 22 days of age, no adverse events were observed in treated pups' body weights, rectal temperatures, or prompted ambulation. Piperazine-1-carboxamidine therefore appears to be a neuroprotective agent of a new category, agmatinase inhibitor.
Collapse
Affiliation(s)
- John E Piletz
- Department of Psychiatry, Stritch School of Medicine, Loyola University Chicago, Loyola University Medical Center, 2160 South First Ave, Maywood, IL 60153, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Effects of prolonged agmatine treatment in aged male Sprague-Dawley rats. Neuroscience 2013; 234:116-24. [PMID: 23318245 DOI: 10.1016/j.neuroscience.2013.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/29/2012] [Accepted: 01/05/2013] [Indexed: 11/22/2022]
Abstract
Increasing evidence suggests that altered arginine metabolism contributes to cognitive decline during ageing. Agmatine, decarboxylated arginine, has a variety of pharmacological effects, including the modulation of behavioural function. A recent study demonstrated the beneficial effects of short-term agmatine treatment in aged rats. The present study investigated how intraperitoneal administration of agmatine (40mg/kg, once daily) over 4-6weeks affected behavioural function and neurochemistry in aged Sprague-Dawley rats. Aged rats treated with saline displayed significantly reduced exploratory activity in the open field, impaired spatial learning and memory in the water maze and object recognition memory relative to young rats. Prolonged agmatine treatment improved animals' performance in the reversal test of the water maze and object recognition memory test, and significantly suppressed age-related elevation in nitric oxide synthase activity in the dentate gyrus of the hippocampus and prefrontal cortex. However, this prolonged supplementation was unable to improve exploratory activity and spatial reference learning and memory in aged rats. These findings further demonstrate that exogenous agmatine selectively improves behavioural function in aged rats.
Collapse
|
74
|
Mar GY, Chou MT, Chung HH, Chiu NH, Chen MF, Cheng JT. Changes of imidazoline receptors in spontaneously hypertensive rats. Int J Exp Pathol 2012; 94:17-24. [PMID: 23176371 DOI: 10.1111/iep.12000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/13/2012] [Indexed: 12/27/2022] Open
Abstract
The role of imidazoline receptors in the regulation of vascular function remains unclear. In this study, we evaluated the effect of agmatine, an imidazoline receptor agonist, on systolic blood pressure (SBP) in spontaneously hypertensive rats (SHRs) and investigated the expressions of imidazoline receptors by Western blot. The isometric tension of aortic rings isolated from male SHRs was also estimated. Agmatine decreased SBP in a dose-dependent manner in SHRs but not in the normal group [Wistar-Kyoto (WKY) rats]. This reduction in SBP in SHRs was abolished by BU224, a selective antagonist of imidazoline I(2) -receptors. Higher expression of imidazoline receptors in SHR was observed. Moreover, agmatine-induced relaxation in isolated aortic rings precontracted with phenylephrine or KCl. This relaxation was also abolished by BU224 but was not modified by efaroxan, an imidazoline I(1) -receptor antagonist. Agmatine-induced relaxation was also attenuated by PNU 37883, a selective blocker of vascular ATP-sensitive potassium (K(ATP) ) channels. Additionally, vasodilatation by agmatine was reduced by an inhibitor of protein kinase A (PKA). We suggest that agmatine can lower blood pressure in SHRs through activation of the peripheral imidazoline I(2) -receptor, which is expressed more highly in SHRs.
Collapse
Affiliation(s)
- Guang-Yuan Mar
- Department of Cardiology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | | | | | | | | | | |
Collapse
|
75
|
Rushaidhi M, Jing Y, Zhang H, Liu P. Participation of hippocampal agmatine in spatial learning: an in vivo microdialysis study. Neuropharmacology 2012; 65:200-5. [PMID: 23116777 DOI: 10.1016/j.neuropharm.2012.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/07/2012] [Accepted: 10/09/2012] [Indexed: 01/11/2023]
Abstract
Agmatine, decarboxylated arginine, is widely distributed in mammalian brains and is considered as a novel putative neurotransmitter. Recent research demonstrates spatial learning-induced increases in agmatine in memory-related structures at the tissue and presynaptic terminal levels. By using the in vivo microdialysis technique coupled with highly sensitive liquid chromatography/mass spectrometry assay, we investigated dynamic changes of extracellular agmatine in the rat dorsal hippocampus before, during and after water maze training to find a fixed hidden platform on the first and forth day of testing. It was firstly noted that the basal level of extracellular agmatine was significantly elevated on day 4. While swimming per se had no effect, a rapid rise (2-6 folds) in extracellular agmatine was observed during water maze training regardless of testing day. Such learning-induced rise was found to successively lessen across the multiple blocks of training on day 1. However, this pattern was reversed on day 4 when the platform was removed during the final training trial. The present study, for the first time, demonstrates water maze training-induced increase of extracellular agmatine in the dorsal hippocampus. The results suggest a role of endogenous agmatine in the encoding and retrieval of spatial information.
Collapse
Affiliation(s)
- Madihah Rushaidhi
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | | | | | | |
Collapse
|
76
|
Differential topochemistry of three cationic amino acid transporter proteins, hCAT1, hCAT2 and hCAT3, in the adult human brain. Amino Acids 2012; 44:423-33. [DOI: 10.1007/s00726-012-1348-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/20/2012] [Indexed: 11/26/2022]
|
77
|
LEE LM, LIN CH, CHUNG HH, CHENG JT, CHEN IH, TONG YC. Agmatine Induces Rat Prostate Relaxation through Activation of Peripheral Imidazoline I2-Receptors. Low Urin Tract Symptoms 2012; 5:39-43. [DOI: 10.1111/j.1757-5672.2012.00158.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|