51
|
Bal R, Ozturk G, Etem EO, Eraslan E, Ozaydin S. Modulation of the excitability of stellate neurons in the ventral cochlear nucleus of mice by TRPM2 channels. Eur J Pharmacol 2020; 882:173163. [PMID: 32485244 DOI: 10.1016/j.ejphar.2020.173163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/14/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Oxidative stress-induced Ca2+ permeable transient receptor potential melastatin 2 (TRPM2) channels are expressed at high levels in the brain, appear to link neuronal excitability to cellular metabolism, and are involved in the pathogenesis of neurodegenerative disorders. We aimed to study the electrophysiological properties of TRPM2 channels in stellate cells of the mouse ventral cochlear nucleus (VCN) using molecular, immunohistochemical and electrophysiological approaches. In the present study, the real time PCR analysis revealed the presence of the TRPM2 mRNA in the mouse VCN tissue. Cell bodies of stellate cells were moderately labeled with TRPM2 antibodies using immunohistochemical staining. Stellate cells were sensitive to intracellular ADP-ribose (ADPR), a TRPM2 agonist. Upon the application of ADPR, the resting membrane potential of the stellate cells was significantly depolarized, shifting from -61.2 ± 0.9 mV to -57.0 ± 0.8 mV (P < 0.001; n = 21), and the firing rate significantly increased (P < 0.001, n = 6). When the pipette solution contained ADPR (300 μM) and the TRPM2 antagonists flufenamic acid (FFA) (100 μM), N-(p-amylcinnamoyl) anthranilic acid (ACA) (50 μM) and 8-bromo-cADP-Ribose (8-Br-cADPR) (50 μM), the membrane potential shifted in a hyperpolarizing direction. ADPR did not significantly change the resting membrane potential and action potential firing rate of stellate cells from TRPM2-/- mice. In conclusion, the results obtained using these molecular, immunohistochemical and electrophysiological approaches reveal the expression of functional TRPM2 channels in stellate neurons of the mouse VCN. TRPM2 might exert a significant modulatory effect on setting the level of resting excitability.
Collapse
Affiliation(s)
- Ramazan Bal
- Dept. of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.
| | - Gurkan Ozturk
- Department of Physiology, Faculty of Medicine, Medipol University, Istanbul, Turkey
| | - Ebru Onalan Etem
- Dept. of Medical Biology, Faculty of Medicine, Firat University, 23119, Elazig, Turkey
| | - Ersen Eraslan
- Dept. of Physiology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Seda Ozaydin
- Dept. of Medical Biology, Faculty of Medicine, Firat University, 23119, Elazig, Turkey
| |
Collapse
|
52
|
Buntschu S, Tscherter A, Heidemann M, Streit J. Critical Components for Spontaneous Activity and Rhythm Generation in Spinal Cord Circuits in Culture. Front Cell Neurosci 2020; 14:81. [PMID: 32410961 PMCID: PMC7198714 DOI: 10.3389/fncel.2020.00081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/19/2020] [Indexed: 11/23/2022] Open
Abstract
Neuronal excitability contributes to rhythm generation in central pattern generating networks (CPGs). In spinal cord CPGs, such intrinsic excitability partly relies on persistent sodium currents (INaP), whereas respiratory CPGs additionally depend on calcium-activated cation currents (ICAN). Here, we investigated the contributions of INaP and ICAN to spontaneous rhythm generation in neuronal networks of the spinal cord and whether they mainly involve Hb9 neurons. We used cultures of ventral and transverse slices from the E13-14 embryonic rodent lumbar spinal cord on multielectrode arrays (MEAs). All cultures showed spontaneous bursts of network activity. Blocking synaptic excitation with the AMPA receptor antagonist CNQX suppressed spontaneous network bursts and left asynchronous intrinsic activity at about 30% of the electrodes. Such intrinsic activity was completely blocked at all electrodes by both the INaP blocker riluzole as well as by the ICAN blocker flufenamic acid (FFA) and the more specific TRPM4 channel antagonist 9-phenanthrol. All three antagonists also suppressed spontaneous bursting completely and strongly reduced stimulus-evoked bursts. Also, FFA reduced repetitive spiking that was induced in single neurons by injection of depolarizing current pulses to few spikes. Other antagonists of unspecific cation currents or calcium currents had no suppressing effects on either intrinsic activity (gadolinium chloride) or spontaneous bursting (the TRPC channel antagonists clemizole and ML204 and the T channel antagonist TTA-P2). Combined patch-clamp and MEA recordings showed that Hb9 interneurons were activated by network bursts but could not initiate them. Together these findings suggest that both INaP through Na+-channels and ICAN through putative TRPM4 channels contribute to spontaneous intrinsic and repetitive spiking in spinal cord neurons and thereby to the generation of network bursts.
Collapse
Affiliation(s)
| | | | | | - Jürg Streit
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
53
|
Basu M, Gupta P, Dutta A, Jana K, Ukil A. Increased host ATP efflux and its conversion to extracellular adenosine is crucial for establishing Leishmania infection. J Cell Sci 2020; 133:jcs239939. [PMID: 32079656 DOI: 10.1242/jcs.239939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Intracellular survival of Leishmania donovani demands rapid production of host ATP for its sustenance. However, a gradual decrease in intracellular ATP in spite of increased glycolysis suggests ATP efflux during infection. Accordingly, upon infection, we show here that ATP is exported and the major exporter was pannexin-1, leading to raised extracellular ATP levels. Extracellular ATP shows a gradual decrease after the initial increase, and analysis of cell surface ATP-degrading enzymes revealed induction of the ectonucleotidases CD39 and CD73. Ectonucleotidase-mediated ATP degradation leads to increased extracellular adenosine (eADO), and inhibition of CD39 and CD73 in infected cells decreased adenosine concentration and parasite survival, documenting the importance of adenosine in infection. Inhibiting adenosine uptake by cells did not affect parasite survival, suggesting that eADO exerts its effect through receptor-mediated signalling. We also show that Leishmania induces the expression of adenosine receptors A2AR and A2BR, both of which are important for anti-inflammatory responses. Treating infected BALB/c mice with CD39 and CD73 inhibitors resulted in decreased parasite burden and increased host-favourable cytokine production. Collectively, these observations indicate that infection-induced ATP is exported, and after conversion into adenosine, propagates infection via receptor-mediated signalling.
Collapse
Affiliation(s)
- Moumita Basu
- Department of Biochemistry, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Purnima Gupta
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 69372, Lyon Cedex 08, France
| | - Ananya Dutta
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme, VIIM, Kolkata, 700054, West Bengal, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme, VIIM, Kolkata, 700054, West Bengal, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata 700019, West Bengal, India
| |
Collapse
|
54
|
Inhibition of Fast Nerve Conduction Produced by Analgesics and Analgesic Adjuvants-Possible Involvement in Pain Alleviation. Pharmaceuticals (Basel) 2020; 13:ph13040062. [PMID: 32260535 PMCID: PMC7243109 DOI: 10.3390/ph13040062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Nociceptive information is transmitted from the periphery to the cerebral cortex mainly by action potential (AP) conduction in nerve fibers and chemical transmission at synapses. Although this nociceptive transmission is largely inhibited at synapses by analgesics and their adjuvants, it is possible that the antinociceptive drugs inhibit nerve AP conduction, contributing to their antinociceptive effects. Many of the drugs are reported to inhibit the nerve conduction of AP and voltage-gated Na+ and K+ channels involved in its production. Compound action potential (CAP) is a useful measure to know whether drugs act on nerve AP conduction. Clinically-used analgesics and analgesic adjuvants (opioids, non-steroidal anti-inflammatory drugs, 2-adrenoceptor agonists, antiepileptics, antidepressants and local anesthetics) were found to inhibit fast-conducting CAPs recorded from the frog sciatic nerve by using the air-gap method. Similar actions were produced by antinociceptive plant-derived chemicals. Their inhibitory actions depended on the concentrations and chemical structures of the drugs. This review article will mention the inhibitory actions of the antinociceptive compounds on CAPs in frog and mammalian peripheral (particularly, sciatic) nerves and on voltage-gated Na+ and K+ channels involved in AP production. Nerve AP conduction inhibition produced by analgesics and analgesic adjuvants is suggested to contribute to at least a part of their antinociceptive effects.
Collapse
|
55
|
Dissolution Behavior of Flufenamic Acid in Heated Mixtures with Nanocellulose. Molecules 2020; 25:molecules25061277. [PMID: 32168901 PMCID: PMC7144018 DOI: 10.3390/molecules25061277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
Abstract
Flufenamic acid (FFA) is a problem drug that has up to eight different polymorphs and shows poor solubility. Variability in bioavailability has been reported in the past resulting in limited use of FFA in the oral solid dosage form. The goal of this article was to investigate the polymorphism and amorphization behavior of FFA in non-heated and heated mixtures with high surface area nanocellulose, i.e., Cladophora cellulose (CLAD). As a benchmark, low surface area microcrystalline cellulose (MCC) was used. The solid-state properties of mixtures were characterized with X-ray diffraction, Fourier-transform infrared spectroscopy, and differential scanning calorimetry. The dissolution behavior of mixtures was studied in three biorelevant media, i.e., fasted state simulated gastric fluid, fasted state simulated intestinal fluid, and fed state simulated intestinal fluid. Additional thermal analysis and dissolution tests were carried out following 4 months of storage at 75% RH and room temperature. Heated mixtures of FFA with CLAD resulted in complete amorphization of the drug, whereas that with MCC produced a mixture of up to four different polymorphs. The amorphous FFA mixture with CLAD exhibited rapid and invariable fasted/fed state dissolution in simulated intestinal fluids, whereas that of MCC mixtures was highly dependent on the biorelevant medium. The storage of the heated FFA-CLAD mixture did not result in recrystallization or changes in dissolution profile, whereas heated FFA-MCC mixture showed polymorphic changes. The straightforward dry powder formulation strategy presented here bears great promise for reformulating a number of problem drugs to enhance their dissolution properties and reduce the fasted/fed state variability.
Collapse
|
56
|
Maestrelli F, Rossi P, Paoli P, De Luca E, Mura P. The role of solid state properties on the dissolution performance of flufenamic acid. J Pharm Biomed Anal 2020; 180:113058. [PMID: 31881398 DOI: 10.1016/j.jpba.2019.113058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
Flufenamic acid is a nonsteroidal anti-inflammatory drug characterized by a low solubility and a variable oral bioavailability. Flufenamic acid is present in the commercial products in two polymorphic enantiotropic forms (Form I and III). Bioinequivalence was observed for commercial solid dosage forms due to the different dissolution rate of batches. Aim of this work is the full characterization of the solid state properties of flufenamic acid in order to evidence reasons of its variable dissolution properties. Two different batches of pure drug obtained by different suppliers were fully characterized. In order to evaluate the effect of the technological processes used for tablet production, the powders were submitted to grinding, kneading, and compression. Thermal analysis and X-ray diffraction studies proved that the drug was provided by both suppliers as Form I, Form III is obtained by recrystallization from ethanol or ethanol/water of both batches and no changes were observed after the different mechanical treatments. No difference was observed between the two forms in terms of equilibrium solubility values. Dissolution rate studies evidenced a difference between the two batches due to their different particle size, which disappeared after sieving. Interestingly, a significant difference in terms of intrinsic dissolution rate and surface wettability of the two compacted powders was observed, even after sieving, probably related to a different behavior of the two powder samples under compaction. These results should be taken into account, during a tablet formulation, in order to obtain a reproducible dissolution performance of the drug, regardless of its original supplier.
Collapse
Affiliation(s)
- Francesca Maestrelli
- Department of Chemistry "U. Schiff", University of Florence, via U. Schiff, 6 Sesto Fiorentino, Florence, Italy.
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence, via Santa Marta 3, Florence, Italy.
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence, via Santa Marta 3, Florence, Italy.
| | - Enrico De Luca
- Department of Chemistry "U. Schiff", University of Florence, via U. Schiff, 6 Sesto Fiorentino, Florence, Italy.
| | - Paola Mura
- Department of Chemistry "U. Schiff", University of Florence, via U. Schiff, 6 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
57
|
Involvement of TRPC4 and 5 Channels in Persistent Firing in Hippocampal CA1 Pyramidal Cells. Cells 2020; 9:cells9020365. [PMID: 32033274 PMCID: PMC7072216 DOI: 10.3390/cells9020365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/17/2022] Open
Abstract
Persistent neural activity has been observed in vivo during working memory tasks, and supports short-term (up to tens of seconds) retention of information. While synaptic and intrinsic cellular mechanisms of persistent firing have been proposed, underlying cellular mechanisms are not yet fully understood. In vitro experiments have shown that individual neurons in the hippocampus and other working memory related areas support persistent firing through intrinsic cellular mechanisms that involve the transient receptor potential canonical (TRPC) channels. Recent behavioral studies demonstrating the involvement of TRPC channels on working memory make the hypothesis that TRPC driven persistent firing supports working memory a very attractive one. However, this view has been challenged by recent findings that persistent firing in vitro is unchanged in TRPC knock out (KO) mice. To assess the involvement of TRPC channels further, we tested novel and highly specific TRPC channel blockers in cholinergically induced persistent firing in mice CA1 pyramidal cells for the first time. The application of the TRPC4 blocker ML204, TRPC5 blocker clemizole hydrochloride, and TRPC4 and 5 blocker Pico145, all significantly inhibited persistent firing. In addition, intracellular application of TRPC4 and TRPC5 antibodies significantly reduced persistent firing. Taken together these results indicate that TRPC4 and 5 channels support persistent firing in CA1 pyramidal neurons. Finally, we discuss possible scenarios causing these controversial observations on the role of TRPC channels in persistent firing.
Collapse
|
58
|
Di Pizio A, Waterloo LAW, Brox R, Löber S, Weikert D, Behrens M, Gmeiner P, Niv MY. Rational design of agonists for bitter taste receptor TAS2R14: from modeling to bench and back. Cell Mol Life Sci 2020; 77:531-542. [PMID: 31236627 PMCID: PMC11104859 DOI: 10.1007/s00018-019-03194-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
Human bitter taste receptors (TAS2Rs) are a subfamily of 25 G protein-coupled receptors that mediate bitter taste perception. TAS2R14 is the most broadly tuned bitter taste receptor, recognizing a range of chemically diverse agonists with micromolar-range potency. The receptor is expressed in several extra-oral tissues and is suggested to have physiological roles related to innate immune responses, male fertility, and cancer. Higher potency ligands are needed to investigate TAS2R14 function and to modulate it for future clinical applications. Here, a structure-based modeling approach is described for the design of TAS2R14 agonists beginning from flufenamic acid, an approved non-steroidal anti-inflammatory analgesic that activates TAS2R14 at sub-micromolar concentrations. Structure-based molecular modeling was integrated with experimental data to design new TAS2R14 agonists. Subsequent chemical synthesis and in vitro profiling resulted in new TAS2R14 agonists with improved potency compared to the lead. The integrated approach provides a validated and refined structural model of ligand-TAS2R14 interactions and a general framework for structure-based discovery in the absence of closely related experimental structures.
Collapse
Affiliation(s)
- Antonella Di Pizio
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University, Rehovot, Israel
- Section In Silico Biology & Machine Learning, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354, Freising, Germany
| | - Lukas A W Waterloo
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Regine Brox
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Transfusion Medicine and Haemostaseology, University Hospital, Erlangen, Germany
| | - Stefan Löber
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Maik Behrens
- Section Chemoreception and Biosignals, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354, Freising, Germany.
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| | - Masha Y Niv
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
59
|
Zheng Y, McTavish J, Smith PF. Pharmacological Evaluation of Drugs in Animal Models of Tinnitus. Curr Top Behav Neurosci 2020; 51:51-82. [PMID: 33590458 DOI: 10.1007/7854_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the pressing need for effective drug treatments for tinnitus, currently, there is no single drug that is approved by the FDA for this purpose. Instead, a wide range of unproven over-the-counter tinnitus remedies are available on the market with little or no benefit for tinnitus but with potential harm and adverse effects. Animal models of tinnitus have played a critical role in exploring the pathophysiology of tinnitus, identifying therapeutic targets and evaluating novel and existing drugs for tinnitus treatment. This review summarises and compares the studies on pharmacological evaluation of tinnitus treatment in different animal models based on the pharmacological properties of the drug and provides insights into future directions for tinnitus drug discovery.
Collapse
Affiliation(s)
- Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand. .,Brain Research New Zealand, Auckland, New Zealand. .,Brain Health Research Centre, University of Otago, Dunedin, New Zealand. .,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand.
| | - Jessica McTavish
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
60
|
Zhang S, Huo S, Li H, Tang H, Nie B, Qu X, Yue B. Flufenamic acid inhibits osteoclast formation and bone resorption and act against estrogen-dependent bone loss in mice. Int Immunopharmacol 2020; 78:106014. [DOI: 10.1016/j.intimp.2019.106014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/26/2022]
|
61
|
Hagger-Vaughan N, Storm JF. Synergy of Glutamatergic and Cholinergic Modulation Induces Plateau Potentials in Hippocampal OLM Interneurons. Front Cell Neurosci 2019; 13:508. [PMID: 31780902 PMCID: PMC6861217 DOI: 10.3389/fncel.2019.00508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/28/2019] [Indexed: 01/18/2023] Open
Abstract
Oriens-lacunosum moleculare (OLM) cells are hippocampal inhibitory interneurons that are implicated in the regulation of information flow in the CA1 circuit, inhibiting cortical inputs to distal pyramidal cell dendrites, whilst disinhibiting CA3 inputs to pyramidal cells. OLM cells express metabotropic cholinergic (mAChR) and glutamatergic (mGluR) receptors, so modulation of these cells via these receptors may contribute to switching between functional modes of the hippocampus. Using a transgenic mouse line to identify OLM cells, we found that both mAChR and mGluR activation caused the cells to exhibit long-lasting depolarizing plateau potentials following evoked spike trains. Both mAChR- and mGluR-induced plateau potentials were eliminated by blocking transient receptor potential (TRP) channels, and were dependent on intracellular calcium concentration and calcium entry. Pharmacological tests indicated that Group I mGluRs are responsible for the glutamatergic induction of plateaus. There was also a pronounced synergy between the cholinergic and glutamatergic modulation, plateau potentials being generated by agonists applied together at concentrations too low to elicit any change when applied individually. This synergy could enable OLM cells to function as coincidence detectors of different neuromodulatory systems, leading to their enhanced and prolonged activation and a functional change in information flow within the hippocampus.
Collapse
Affiliation(s)
| | - Johan F. Storm
- Brain Signaling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
62
|
Kim JN, Kim BJ. Depolarization of pacemaker potentials by caffeic acid phenethyl ester in interstitial cells of Cajal from the murine small intestine. Can J Physiol Pharmacol 2019; 98:201-210. [PMID: 31689119 DOI: 10.1139/cjpp-2019-0452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interstitial cells of Cajal (ICCs) are pacemaker cells in the gastrointestinal (GI) tract and generate pacemaker potentials. In this study, we investigated the effects of caffeic acid phenethyl ester (CAPE) on the pacemaker potentials of ICCs from the mouse small or large intestine. Using the whole-cell patch-clamp configuration, we found that CAPE depolarized the pacemaker potentials of cultured ICCs from the murine small intestine in a dose-dependent manner. The estrogen receptor (ER) β antagonist PHTPP completely inhibited CAPE-induced depolarization, but the ERα antagonist BHPI did not. Intracellular GDP-β-S and pretreatment with Ca2+-free solution or thapsigargin also blocked CAPE-induced depolarization. To investigate the mechanisms of CAPE-mediated depolarization of ICCs, we used the nonselective cation channel (NSCC) inhibitor flufenamic acid, the Cl- channel blocker, mitogen-activated protein kinase (MAPK) inhibitors PD98059, SB203580, or SP600125, and PI3 kinase inhibitor LY294002. All inhibitors blocked the CAPE-induced pacemaker potential depolarization of ICCs. These results suggest that CAPE induces pacemaker potential depolarization through ERβ in a G protein, NSCC, Cl- channel, MAPK- and PI3 kinase dependent manner via intracellular and extracellular Ca2+ regulation in the murine small intestine. CAPE may therefore modulate GI motility by acting on ICCs in the murine small intestine.
Collapse
Affiliation(s)
- Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
63
|
Fu X, Ye H, Jia H, Wang X, Chomiak T, Luo F. Muscarinic acetylcholine receptor-dependent persistent activity of layer 5 intrinsic-bursting and regular-spiking neurons in primary auditory cortex. J Neurophysiol 2019; 122:2344-2353. [PMID: 31596630 DOI: 10.1152/jn.00184.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic signaling coupled to sensory-driven neuronal depolarization is essential for modulating lasting changes in deep-layer neural excitability and experience-dependent plasticity in the primary auditory cortex. However, the underlying cellular mechanism(s) associated with coincident cholinergic receptor activation and neuronal depolarization of deep-layer cortical neurons remains unknown. Using in vitro whole cell patch-clamp recordings targeted to neurons (n = 151) in isolated brain slices containing the primary auditory cortex (AI), we investigated the effects of cholinergic receptor activation and neuronal depolarization on the electrophysiological properties of AI layer 5 intrinsic-bursting and regular-spiking neurons. Bath application of carbachol (5 µM; cholinergic receptor agonist) paired with suprathreshold intracellular depolarization led to persistent activity in these neurons. Persistent activity may involve similar cellular mechanisms and be generated intrinsically in both intrinsic-bursting and regular-spiking neurons given that it 1) persisted under the blockade of ionotropic glutamatergic (kynurenic acid, 2 mM) and GABAergic receptors (picrotoxin, 100 µM), 2) was fully blocked by both atropine (10 µM; nonselective muscarinic antagonist) and flufenamic acid [100 µM; nonspecific Ca2+-sensitive cationic channel (CAN) blocker], and 3) was sensitive to the voltage-gated Ca2+ channel blocker nifedipine (50 µM) and Ca2+-free artificial cerebrospinal fluid. Together, our results support a model through which coincident activation of AI layer 5 neuron muscarinic receptors and suprathreshold activation can lead to sustained changes in layer 5 excitability, providing new insight into the possible role of a calcium-CAN-dependent cholinergic mechanism of AI cortical plasticity. These findings also indicate that distinct streams of auditory processing in layer 5 intrinsic-bursting and regular-spiking neurons may run in parallel during learning-induced auditory plasticity.NEW & NOTEWORTHY Cholinergic signaling coupled to sensory-driven neuronal depolarization is essential for modulating lasting changes in experience-dependent plasticity in the primary auditory cortex. Cholinergic activation together with cellular depolarization can lead to persistent activity in both intrinsic-bursting and regular-spiking layer 5 pyramidal neurons. A similar mechanism involving muscarinic acetylcholine receptor, voltage-gated Ca2+ channel, and possible Ca2+-sensitive nonspecific cationic channel activation provides new insight into our understanding of the cellular mechanisms that govern learning-induced auditory cortical and subcortical plasticity.
Collapse
Affiliation(s)
- Xin Fu
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Huan Ye
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Huijuan Jia
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xin Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Taylor Chomiak
- Department of Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Feng Luo
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
64
|
Ottolini M, Hong K, Sonkusare SK. Calcium signals that determine vascular resistance. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1448. [PMID: 30884210 PMCID: PMC6688910 DOI: 10.1002/wsbm.1448] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Small arteries in the body control vascular resistance, and therefore, blood pressure and blood flow. Endothelial and smooth muscle cells in the arterial walls respond to various stimuli by altering the vascular resistance on a moment to moment basis. Smooth muscle cells can directly influence arterial diameter by contracting or relaxing, whereas endothelial cells that line the inner walls of the arteries modulate the contractile state of surrounding smooth muscle cells. Cytosolic calcium is a key driver of endothelial and smooth muscle cell functions. Cytosolic calcium can be increased either by calcium release from intracellular stores through IP3 or ryanodine receptors, or the influx of extracellular calcium through ion channels at the cell membrane. Depending on the cell type, spatial localization, source of a calcium signal, and the calcium-sensitive target activated, a particular calcium signal can dilate or constrict the arteries. Calcium signals in the vasculature can be classified into several types based on their source, kinetics, and spatial and temporal properties. The calcium signaling mechanisms in smooth muscle and endothelial cells have been extensively studied in the native or freshly isolated cells, therefore, this review is limited to the discussions of studies in native or freshly isolated cells. This article is categorized under: Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Physical Education, Chung-Ang University, Seoul, 06974, South Korea
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
65
|
Multiple actions of fenamates and other nonsteroidal anti-inflammatory drugs on GABAA receptors. Eur J Pharmacol 2019; 853:247-255. [DOI: 10.1016/j.ejphar.2019.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
|
66
|
Pouokam E, Diener M. Segmental differences in ion transport in rat cecum. Pflugers Arch 2019; 471:1007-1023. [PMID: 31093757 DOI: 10.1007/s00424-019-02276-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
Abstract
Ion-transport properties of the epithelium of the cecum, the biggest fermental chamber in non-ruminant species, are largely unknown. Recently, in Ussing chamber experiments, segmental differences in basal short-circuit current (Isc) in rat corpus ceci were observed. The oral segment usually exhibited a much lower or even negative basal Isc in comparison with the aboral segment. The aim of the present study was the closer characterization of these differences. Basal Isc was inhibited by bumetanide and tetrodotoxin in both segments, whereas indomethacin reduced basal Isc only in the aboral corpus. Amiloride did not inhibit basal Isc suggesting that spontaneous anion secretion (but not electrogenic Na+ absorption via ENaC) contributes to the baseline current. In both segments, mucosally applied K+ channel blockers increased Isc indicating a spontaneous K+ secretion. Basolateral depolarization was used to characterize the ion conductances in the apical membrane. When a Cl- gradient was applied, apical Cl- conductance stimulated by carbachol and by forskolin was revealed. When the Cl- gradient was omitted and instead a K+ gradient was used to drive currents across apical K+ channels, a Ba2+-sensititve K+ conductance was observed in both segments, and carbachol stimulated this conductance leading to a negative Isc. Conversely, forskolin induced a positive Isc under these conditions which was dependent on the presence of mucosal Na+ consistent with electrogenic Na+ absorption. This current was reduced by amiloride and several blockers of members of the TRP channel superfamily. These results indicate that similar transport mechanisms are involved in electrogenic ion transport across cecal oral and aboral segments, but with a higher spontaneous prostaglandin production in the aboral segment responsible for higher basal transport rates of both anions and cations.
Collapse
Affiliation(s)
- Ervice Pouokam
- Institute for Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Diener
- Institute for Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
67
|
Expressional and functional involvement of gap junctions in aqueous humor outflow into the ocular trabecular meshwork of the anterior chamber. Mol Vis 2019; 25:255-265. [PMID: 31205407 PMCID: PMC6545340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/23/2019] [Indexed: 12/04/2022] Open
Abstract
PURPOSE The ocular trabecular meshwork (TM) responsible for aqueous humor (AH) drainage is crucial for regulating intraocular pressure (IOP) of the eye. An IOP elevation that causes distended TM is involved in the pathogenesis of glaucoma, suggesting intercellular connections important for the TM pathophysiology. The goal of this study was to examine whether gap junction proteins between endothelial cells in the TM are expressional and functional. METHODS The expression levels of the gap junction channels in normal human TM cells were determined with real-time PCR and western blot assays. Immunohistochemistry (IHC) staining was performed to examine the localization of gap junction proteins in normal human TM cells and tissues. IOP and the outflow of AH were measured after intercameral injection of gap junction blockers in C57/BL6 mice. RESULTS Gap junction proteins GJA1, GJA8, GJB6, and GJC1 were robustly expressed in human TM cells from three individuals. Among the four gap junction channels, GJA1 and GJA8 exhibited the most abundance in the TM. The IHC analysis further confirmed that these proteins were expressed on the membrane between adjacent cells. In the human TM tissues, GJA1, GJA8, GJB6, and GJC1 were also observed along the trabecular beams. Inhibition of gap junctions with intracameral injection of blockers resulted in a statistically significant increase in aqueous humor outflow resistance and IOP elevation in mice. CONCLUSIONS The GJA1 and GJA8 gap junction proteins, in particular, are robustly expressed in human TM cells and tissues. Pharmacological inhibition of gap junction channels causes an increased resistance of AH outflow and an elevation of IOP in mice. The present findings suggest the functional role of gap junction channels for regulation of AH outflow in the TM, and activation of gap junctions might represent a therapeutic strategy for treatment of glaucoma.
Collapse
|
68
|
Discovery and characterization of a positive allosteric modulator of transient receptor potential canonical 6 (TRPC6) channels. Cell Calcium 2018; 78:26-34. [PMID: 30594060 DOI: 10.1016/j.ceca.2018.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 01/13/2023]
Abstract
The non-selective second messenger-gated cation channel TRPC6 (transient receptor potential canonical 6) is activated by diacylglycerols (DAG) in a PKC-independent manner and plays important roles in a variety of physiological processes and diseases. In order to facilitate novel therapies, the development of potent inhibitors as well as channel-activating agents is of great interest. The screening of a chemical library, comprising about 17,000 small molecule compounds, revealed an agent, which induced increases in intracellular Ca2+ concentrations ([Ca2+]i) in a concentration-dependent manner (EC50 = 2.37 ± 0.25 μM) in stably TRPC6-expressing HEK293 cells. This new compound (C20) selectively acts on TRPC6, unlike OAG (1-oleoyl-1-acetyl-sn-glycerol), which also activates PKC and does not discriminate between TRPC6 and the closely related channels TRPC3 and TRPC7. Further evaluation by Ca2+ assays and electrophysiological studies revealed that C20 rather operated as an enhancer of channel activation than as an activator by itself and led to the assumption that the compound C20 is an allosteric modulator of TRPC6, enabling low basal concentrations of DAG to induce activation of the ion channel. Furthermore, C20 was tested in human platelets that express TRPC6. A combined activation of TRPC6 with C20 and OAG elicited a robust increase in [Ca2+]i in human platelets. This potentiated channel activation was sensitive to TRPC6 channel blockers. To achieve sufficient amounts of C20 for biological studies, we applied a one-pot synthesis strategy. With regard to studies in native systems, the sensitizing ability of C20 can be a valuable pharmacological tool to selectively exaggerate TRPC6-dependent signals.
Collapse
|
69
|
Cáceres-Chávez VA, Hernández-Martínez R, Pérez-Ortega J, Herrera-Valdez MA, Aceves JJ, Galarraga E, Bargas J. Acute dopamine receptor blockade in substantia nigra pars reticulata: a possible model for drug-induced Parkinsonism. J Neurophysiol 2018; 120:2922-2938. [PMID: 30256736 DOI: 10.1152/jn.00579.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dopamine (DA) depletion modifies the firing pattern of neurons in the substantia nigra pars reticulata (SNr), shifting their mostly tonic firing toward irregularity and bursting, traits of pathological firing underlying rigidity and postural instability in Parkinson's disease (PD) patients and animal models of Parkinsonism (PS). Drug-induced Parkinsonism (DIP) represents 20-40% of clinical cases of PS, becoming a problem for differential diagnosis, and is still not well studied with physiological tools. It may co-occur with tardive dyskinesia. Here we use in vitro slice preparations including the SNr to observe drug-induced pathological firing by using drugs that most likely produce it, DA-receptor antagonists (SCH23390 plus sulpiride), to compare with firing patterns found in DA-depleted tissue. The hypothesis is that SNr firing would be similar under both conditions, a prerequisite to the proposal of a similar preparation to test other DIP-producing drugs. Firing was analyzed with three complementary metrics, showing similarities between DA depletion and acute DA-receptor blockade. Moreover, blockade of either nonselective cationic channels or Cav3 T-type calcium channels hyperpolarized the membrane and abolished bursting and irregular firing, silencing SNr neurons in both conditions. Therefore, currents generating firing in control conditions are in part responsible for pathological firing. Haloperidol, a DIP-producing drug, reproduced DA-receptor antagonist firing modifications. Since acute DA-receptor blockade induces SNr neuron firing similar to that found in the 6-hydroxydopamine model of PS, output basal ganglia neurons may play a role in generating DIP. Therefore, this study opens the way to test other DIP-producing drugs. NEW & NOTEWORTHY Dopamine (DA) depletion enhances substantia nigra pars reticulata (SNr) neuron bursting and irregular firing, hallmarks of Parkinsonism. Several drugs, including antipsychotics, antidepressants, and calcium channel antagonists, among others, produce drug-induced Parkinsonism. Here we show the first comparison between SNr neuron firing after DA depletion vs. firing found after acute blockade of DA receptors. It was found that firing in both conditions is similar, implying that pathological SNr neuron firing is also a physiological correlate of drug-induced Parkinsonism.
Collapse
Affiliation(s)
| | - Ricardo Hernández-Martínez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City, México
| | - Jesús Pérez-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México , Querétaro, México
| | - Marco Arieli Herrera-Valdez
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México , México City, México
| | - Jose J Aceves
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, México
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City, México
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City, México
| |
Collapse
|
70
|
Vanden Daele L, Boydens C, Van de Voorde J. Characterization of the retina-induced relaxation in mice. Graefes Arch Clin Exp Ophthalmol 2018; 256:1905-1912. [PMID: 30105641 DOI: 10.1007/s00417-018-4096-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/27/2018] [Accepted: 07/30/2018] [Indexed: 01/24/2023] Open
Abstract
PURPOSE The retinal relaxing factor (RRF) is a continuously released factor from the retina that causes vasorelaxation, the identity and potential role in physiology of which remain largely unknown. Experiments were performed to find out whether the RRF-induced relaxation is influenced by serotonin, glutamate, L-cysteine, the cytochrome P450 pathway, the cyclooxygenase pathway, or oxidative stress. In addition, the sensitivity of retinal and non-retinal arteries towards the RRF was compared. METHODS In vitro tension measurements were performed on isolated mouse femoral or bovine retinal arteries to study the vasorelaxing effect of the RRF, induced by mouse or bovine retinas. RESULTS The presence of serotonin, glutamate, or L-cysteine did not alter the RRF-induced relaxation. Increasing oxidative stress by hydroquinone and diethyldithiocarbamic acid sodium salt enhanced the RRF response. Inhibition of the cytochrome P450 or the cyclooxygenase pathway did not cause any alteration. Surprisingly, the RRF-induced relaxation was enhanced by the presence of flufenamic acid or carbenoxolone. Furthermore, bringing retinal tissue in close contact with retinal or non-retinal arteries induced comparable relaxations. CONCLUSIONS Serotonin, glutamate, L-cysteine, the cytochrome P450, and the cyclooxygenase pathway do not influence the RRF-induced relaxation and the RRF-induced relaxation seems to be resistant to oxidative stress. The mechanism responsible for the enhanced RRF-induced relaxation in the presence of flufenamic acid or carbenoxolone remains elusive and the RRF does not show more effectivity on retinal arteries.
Collapse
Affiliation(s)
- Laura Vanden Daele
- Department of Pharmacology - Vascular Research Unit, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Charlotte Boydens
- Department of Pharmacology - Vascular Research Unit, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Johan Van de Voorde
- Department of Pharmacology - Vascular Research Unit, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
71
|
Yao Y, Xu J, Yu T, Chen Z, Xiao Z, Wang J, Hu Y, Wu Y, Zhu D. Flufenamic acid inhibits secondary hemorrhage and BSCB disruption after spinal cord injury. Am J Cancer Res 2018; 8:4181-4198. [PMID: 30128046 PMCID: PMC6096396 DOI: 10.7150/thno.25707] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
Acute spinal cord injury (SCI) induces secondary hemorrhage and initial blood-spinal cord barrier (BSCB) disruption. The transient receptor potential melastatin 4 (Trpm4) together with sulfonylurea receptor 1 (Sur1) forms the Sur1-Trpm4 channel complex. The up-regulation of Sur1-Trpm4 after injury plays a crucial role in secondary hemorrhage, which is the most destructive mechanism in secondary injuries of the central nervous system (CNS). The matrix metalloprotease (MMP)-mediated disruption of the BSCB leads to an inflammatory response, neurotoxin production and neuronal cell apoptosis. Thus, preventing secondary hemorrhage and BSCB disruption should be an important goal of therapeutic interventions in SCI. Methods: Using a moderate contusion injury model at T10 of the spinal cord, flufenamic acid (FFA) was injected intraperitoneally 1 h after SCI and then continuously once per day for one week. Results: Trpm4 expression is highly up-regulated in capillaries 1 d after SCI. Treatment with flufenamic acid (FFA) inhibited Trpm4 expression, secondary hemorrhage, and capillary fragmentation and promoted angiogenesis. In addition, FFA significantly inhibited the expression of MMP-2 and MMP-9 at 1 d after SCI and significantly attenuated BSCB disruption at 1 d and 3 d after injury. Furthermore, we found that FFA decreased the hemorrhage- and BSCB disruption-induced activation of microglia/macrophages and was associated with smaller lesions, decreased cavity formation, better myelin preservation and less reactive gliosis. Finally, FFA protected motor neurons and improved locomotor functions after SCI. Conclusion: This study indicates that FFA improves functional recovery, in part, due to the following reasons: (1) it inhibits the expression of Trpm4 to reduce the secondary hemorrhage; and (2) it inhibits the expression of MMP-2 and MMP-9 to block BSCB disruption. Thus, the results of our study suggest that FFA may represent a potential therapeutic agent for promoting functional recovery.
Collapse
|
72
|
Role of the TRPM4 Channel in Cardiovascular Physiology and Pathophysiology. Cells 2018; 7:cells7060062. [PMID: 29914130 PMCID: PMC6025450 DOI: 10.3390/cells7060062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/31/2022] Open
Abstract
The transient receptor potential cation channel subfamily M member 4 (TRPM4) channel influences calcium homeostasis during many physiological activities such as insulin secretion, immune response, respiratory reaction, and cerebral vasoconstriction. This calcium-activated, monovalent, selective cation channel also plays a key role in cardiovascular pathophysiology; for example, a mutation in the TRPM4 channel leads to cardiac conduction disease. Recently, it has been suggested that the TRPM4 channel is also involved in the development of cardiac ischemia-reperfusion injury, which causes myocardial infarction. In the present review, we discuss the physiological function of the TRPM4 channel, and assess its role in cardiovascular pathophysiology.
Collapse
|
73
|
Loucif AJC, Saintot P, Liu J, Antonio BM, Zellmer SG, Yoger K, Veale EL, Wilbrey A, Omoto K, Cao L, Gutteridge A, Castle NA, Stevens EB, Mathie A. GI-530159, a novel, selective, mechanosensitive two-pore-domain potassium (K 2P ) channel opener, reduces rat dorsal root ganglion neuron excitability. Br J Pharmacol 2018; 175:2272-2283. [PMID: 29150838 PMCID: PMC5980259 DOI: 10.1111/bph.14098] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE TREK two-pore-domain potassium (K2P ) channels play a critical role in regulating the excitability of somatosensory nociceptive neurons and are important mediators of pain perception. An understanding of the roles of TREK channels in pain perception and, indeed, in other pathophysiological conditions, has been severely hampered by the lack of potent and/or selective activators and inhibitors. In this study, we describe a new, selective opener of TREK channels, GI-530159. EXPERIMENTAL APPROACH The effect of GI-530159 on TREK channels was demonstrated using 86 Rb efflux assays, whole-cell and single-channel patch-clamp recordings from recombinant TREK channels. The expression of K2P 2.1 (TREK1), K2P 10.1 (TREK2) and K2P 4.1 (TRAAK) channels was determined using transcriptome analysis from single dorsal root ganglion (DRG) cells. Current-clamp recordings from cultured rat DRG neurons were used to measure the effect of GI-530159 on neuronal excitability. KEY RESULTS For recombinant human TREK1 channels, GI-530159 had similar low EC50 values in Rb efflux experiments and electrophysiological recordings. It activated TREK2 channels, but it had no detectable action on TRAAK channels nor any significant effect on other K channels tested. Current-clamp recordings from cultured rat DRG neurones showed that application of GI-530159 at 1 μM resulted in a significant reduction in firing frequency and a small hyperpolarization of resting membrane potential. CONCLUSIONS AND IMPLICATIONS This study provides pharmacological evidence for the presence of mechanosensitive TREK K2P channels in sensory neurones and suggests that development of selective K2P channel openers like GI-530159 could aid in the development of novel analgesic agents. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emma L Veale
- Medway School of PharmacyUniversity of KentChatham MaritimeKentUK
| | | | | | | | | | | | | | - Alistair Mathie
- Medway School of PharmacyUniversity of KentChatham MaritimeKentUK
| |
Collapse
|
74
|
Abstract
Breathing is a well-described, vital and surprisingly complex behaviour, with behavioural and physiological outputs that are easy to directly measure. Key neural elements for generating breathing pattern are distinct, compact and form a network amenable to detailed interrogation, promising the imminent discovery of molecular, cellular, synaptic and network mechanisms that give rise to the behaviour. Coupled oscillatory microcircuits make up the rhythmic core of the breathing network. Primary among these is the preBötzinger Complex (preBötC), which is composed of excitatory rhythmogenic interneurons and excitatory and inhibitory pattern-forming interneurons that together produce the essential periodic drive for inspiration. The preBötC coordinates all phases of the breathing cycle, coordinates breathing with orofacial behaviours and strongly influences, and is influenced by, emotion and cognition. Here, we review progress towards cracking the inner workings of this vital core.
Collapse
Affiliation(s)
- Christopher A Del Negro
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA, USA
| | - Gregory D Funk
- Department of Physiology, Neuroscience and Mental Health Institute, Women's and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, Center for Health Sciences, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
75
|
Triple combination of FDA-approved drugs including flufenamic acid, clarithromycin and zanamivir improves survival of severe influenza in mice. Arch Virol 2018; 163:2349-2358. [PMID: 29736671 DOI: 10.1007/s00705-018-3852-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Seasonal influenza virus remains a common cause of mortality despite the use of neuraminidase inhibitors. This study evaluated the efficacy of a triple combination of zanamivir, clarithromycin and flufenamic acid (FFA) in the treatment of influenza virus A(H1N1) infection. An in vitro cell protection assay and a multiple-cycle growth assay showed that the antiviral activity of zanamivir was enhanced when combined with clarithromycin or FFA. A mouse challenge model was used here for the evaluation of the in vivo efficacy of the triple combination treatment. We found that mice receiving the triple combination of FFA, zanamivir, and clarithromycin had a significantly better survival rate than those receiving the double combination of zanamivir and clarithromycin (88% versus 44%, P = 0.0083) or zanamivir monotherapy (88% versus 26%, P = 0.0002). Mice in the FFA-zanamivir-clarithromycin triple combination group also exhibited significantly less body weight loss than those in the zanamivir-clarithromycin double combination group. There was no significant difference in the lung viral titers among the different groups from day 2 to day 6 postinfection. However, the levels of IL-1β, TNF-α and RANTES in the FFA-zanamivir-clarithromycin triple combination group were significantly lower than those in the zanamivir-clarithromycin double combination group, zanamivir monotherapy group, or solvent group on day 2 postinfection. Our findings showed that the FFA-zanamivir-clarithromycin triple combination improved the inflammatory markers and survival of severe influenza A(H1N1) infection in mice.
Collapse
|
76
|
Belrose JC, Jackson MF. TRPM2: a candidate therapeutic target for treating neurological diseases. Acta Pharmacol Sin 2018; 39:722-732. [PMID: 29671419 PMCID: PMC5943913 DOI: 10.1038/aps.2018.31] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/24/2018] [Indexed: 12/25/2022]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a calcium (Ca2+)-permeable non-selective cation channel belonging to the TRP ion channel family. Oxidative stress-induced TRPM2 activation provokes aberrant intracellular Ca2+ accumulation and cell death in a variety of cell types, including neurons. Aberrant TRPM2 function has been implicated in several neurological disorders including ischemia/stroke, Alzheimer's disease, neuropathic pain, Parkinson's disease and bipolar disorder. In addition to research identifying a role for TRPM2 in disease, progress has been made in the identification of physiological functions of TRPM2 in the brain, including recent evidence that TRPM2 is necessary for the induction of N-methyl-D-aspartate (NMDA) receptor-dependent long-term depression, an important form of synaptic plasticity at glutamate synapses. Here, we summarize recent evidence on the role of TRPM2 in the central nervous system (CNS) in health and disease and discuss the potential therapeutic implications of targeting TRPM2. Collectively, these studies suggest that TRPM2 represents a prospective novel therapeutic target for neurological disorders.
Collapse
Affiliation(s)
- Jillian Corinne Belrose
- Department of Anesthesia & Perioperative Medicine, Schulich Medicine & Dentistry, Western University, London, Ontario, N6A 5A5, Canada
- E-mail
| | - Michael Frederick Jackson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, R3E 0T6, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, R3E 3J7, Canada
| |
Collapse
|
77
|
Suzuki R, Fujita T, Mizuta K, Kumamoto E. Inhibition by non-steroidal anti-inflammatory drugs of compound action potentials in frog sciatic nerve fibers. Biomed Pharmacother 2018; 103:326-335. [PMID: 29665554 DOI: 10.1016/j.biopha.2018.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 02/01/2023] Open
Abstract
AIMS Although antinociception produced by non-steroidal anti-inflammatory drugs (NSAIDs) is partly attributed to nerve conduction inhibition, this has not been thoroughly examined yet. The aim of the present study was to reveal quantitatively how various types of NSAIDs affect compound action potentials (CAPs), a measure of nerve conduction. MAIN METHODS CAPs were recorded from the frog sciatic nerve by using the air-gap method. KEY FINDINGS Soaking the sciatic nerve with acetic acid-based NSAIDs (diclofenac and aceclofenac) reduced the peak amplitude of CAP in a concentration-dependent manner; their IC50 values were 0.94 and 0.47 mM, respectively. Other acetic acid-based NSAIDs (indomethacin, acemetacin and etodolac) also inhibited CAPs [the extent of inhibition: some 40% (1 mM), 40% (0.5 mM) and 15% (1 mM), respectively], except for sulindac and felbinac at 1 mM that had no effects on CAP peak amplitudes. A similar inhibition was produced by fenamic acid-based NSAIDs [tolfenamic acid (IC50 = 0.29 mM), meclofenamic acid (0.19 mM), flufenamic acid (0.22 mM) and mefenamic acid] which are similar in chemical structure to diclofenac and aceclofenac; their derivatives (2,6-dichlorodiphenylamine and N-phenylanthranilic acid) also inhibited. On the other hand, salicylic acid-based (aspirin), propionic acid-based (ketoprofen, naproxen, ibuprofen, loxoprofen and flurbiprofen) and enolic acid-based (meloxicam and piroxicam) NSAIDs had no effects on CAP peak amplitudes. SIGNIFICANCE At least a part of antinociception produced by NSAIDs used as a dermatological drug to alleviate pain may be attributed to their inhibitory effects on nerve conduction, which depend on the chemical structures of NSAIDs.
Collapse
Affiliation(s)
- Rika Suzuki
- Department of Physiology, Saga Medical School, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Tsugumi Fujita
- Department of Physiology, Saga Medical School, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Kotaro Mizuta
- Department of Physiology, Saga Medical School, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Eiichi Kumamoto
- Department of Physiology, Saga Medical School, Nabeshima 5-1-1, Saga 849-8501, Japan.
| |
Collapse
|
78
|
Ma R, Seifi M, Papanikolaou M, Brown JF, Swinny JD, Lewis A. TREK-1 Channel Expression in Smooth Muscle as a Target for Regulating Murine Intestinal Contractility: Therapeutic Implications for Motility Disorders. Front Physiol 2018; 9:157. [PMID: 29563879 PMCID: PMC5845753 DOI: 10.3389/fphys.2018.00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/16/2018] [Indexed: 11/24/2022] Open
Abstract
Gastrointestinal (GI) motility disorders such as irritable bowel syndrome (IBS) can occur when coordinated smooth muscle contractility is disrupted. Potassium (K+) channels regulate GI smooth muscle tone and are key to GI tract relaxation, but their molecular and functional phenotypes are poorly described. Here we define the expression and functional roles of mechano-gated K2P channels in mouse ileum and colon. Expression and distribution of the K2P channel family were investigated using quantitative RT-PCR (qPCR), immunohistochemistry and confocal microscopy. The contribution of mechano-gated K2P channels to mouse intestinal muscle tension was studied pharmacologically using organ bath. Multiple K2P gene transcripts were detected in mouse ileum and colon whole tissue preparations. Immunohistochemistry confirmed TREK-1 expression was smooth muscle specific in both ileum and colon, whereas TREK-2 and TRAAK channels were detected in enteric neurons but not smooth muscle. In organ bath, mechano-gated K2P channel activators (Riluzole, BL-1249, flufenamic acid, and cinnamyl 1-3,4-dihydroxy-alpha-cyanocinnamate) induced relaxation of KCl and CCh pre-contracted ileum and colon tissues and reduced the amplitude of spontaneous contractions. These data reveal the specific expression of mechano-gated K2P channels in mouse ileum and colon tissues and highlight TREK-1, a smooth muscle specific K2P channel in GI tract, as a potential therapeutic target for combating motility pathologies arising from hyper-contractility.
Collapse
Affiliation(s)
- Ruolin Ma
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Mohsen Seifi
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Maria Papanikolaou
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - James F Brown
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jerome D Swinny
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Anthony Lewis
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
79
|
Transient Receptor Potential Channels TRPM4 and TRPC3 Critically Contribute to Respiratory Motor Pattern Formation but not Rhythmogenesis in Rodent Brainstem Circuits. eNeuro 2018; 5:eN-NWR-0332-17. [PMID: 29435486 PMCID: PMC5806591 DOI: 10.1523/eneuro.0332-17.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/17/2022] Open
Abstract
Transient receptor potential channel, TRPM4, the putative molecular substrate for Ca2+-activated nonselective cation current (ICAN), is hypothesized to generate bursting activity of pre-Bötzinger complex (pre-BötC) inspiratory neurons and critically contribute to respiratory rhythmogenesis. Another TRP channel, TRPC3, which mediates Na+/Ca2+ fluxes, may be involved in regulating Ca2+-related signaling, including affecting TRPM4/ICAN in respiratory pre-BötC neurons. However, TRPM4 and TRPC3 expression in pre-BötC inspiratory neurons and functional roles of these channels remain to be determined. By single-cell multiplex RT-PCR, we show mRNA expression for these channels in pre-BötC inspiratory neurons in rhythmically active medullary in vitro slices from neonatal rats and mice. Functional contributions were analyzed with pharmacological inhibitors of TRPM4 or TRPC3 in vitro as well as in mature rodent arterially perfused in situ brainstem-spinal cord preparations. Perturbations of respiratory circuit activity were also compared with those by a blocker of ICAN. Pharmacologically attenuating endogenous activation of TRPM4, TRPC3, or ICANin vitro similarly reduced the amplitude of inspiratory motoneuronal activity without significant perturbations of inspiratory frequency or variability of the rhythm. Amplitude perturbations were correlated with reduced inspiratory glutamatergic pre-BötC neuronal activity, monitored by multicellular dynamic calcium imaging in vitro. In more intact circuits in situ, the reduction of pre-BötC and motoneuronal inspiratory activity amplitude was accompanied by reduced post-inspiratory motoneuronal activity, without disruption of rhythm generation. We conclude that endogenously activated TRPM4, which likely mediates ICAN, and TRPC3 channels in pre-BötC inspiratory neurons play fundamental roles in respiratory pattern formation but are not critically involved in respiratory rhythm generation.
Collapse
|
80
|
Philippaert K, Kerselaers S, Voets T, Vennekens R. A Thallium-Based Screening Procedure to Identify Molecules That Modulate the Activity of Ca2+-Activated Monovalent Cation-Selective Channels. SLAS DISCOVERY 2018; 23:341-352. [DOI: 10.1177/2472555217748932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TRPM5 functions as a calcium-activated monovalent cation-selective ion channel and is expressed in a variety of cell types. Dysfunction of this type of channel has been recently implied in cardiac arrhythmias, diabetes, and other pathologies. Therefore, a growing interest has emerged to develop the pharmacology of these ion channels. We optimized a screening assay based on the thallium flux through the TRPM5 channel and a fluorescent thallium dye as a probe for channel activity. We show that this assay is capable of identifying molecules that inhibit or potentiate calcium-activated monovalent cation-selective ion channels.
Collapse
Affiliation(s)
- Koenraad Philippaert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Vlaams Brabant, Belgium
- TRP Research Platform Leuven (TRPLe), KULeuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Sara Kerselaers
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Vlaams Brabant, Belgium
- TRP Research Platform Leuven (TRPLe), KULeuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Vlaams Brabant, Belgium
- TRP Research Platform Leuven (TRPLe), KULeuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Vlaams Brabant, Belgium
- TRP Research Platform Leuven (TRPLe), KULeuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| |
Collapse
|
81
|
Modulation of Ether-à-Go-Go Related Gene (ERG) Current Governs Intrinsic Persistent Activity in Rodent Neocortical Pyramidal Cells. J Neurosci 2017; 38:423-440. [PMID: 29175952 DOI: 10.1523/jneurosci.1774-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/28/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022] Open
Abstract
While cholinergic receptor activation has long been known to dramatically enhance the excitability of cortical neurons, the cellular mechanisms responsible for this effect are not well understood. We used intracellular recordings in rat (both sexes) neocortical brain slices to assess the ionic mechanisms supporting persistent firing modes triggered by depolarizing stimuli following cholinergic receptor activation. We found multiple lines of evidence suggesting that a component of the underlying hyperexcitability associated with persistent firing reflects a reduction in the standing (leak) K+ current mediated by Ether-a-go-go-Related Gene (ERG) channels. Three chemically diverse ERG channel blockers (terfenadine, ErgToxin-1, and E-4031) abolished persistent firing and the underlying increase in input resistance in deep pyramidal cells in temporal and prefrontal association neocortex. Calcium accumulation during triggering stimuli appears to attenuate ERG currents, leading to membrane potential depolarization and increased input resistance, two critical elements generating persistent firing. Our results also suggest that ERG current normally governs cortical neuron responses to depolarizing stimuli by opposing prolonged discharges and by enhancing the poststimulus repolarization. The broad expression of ERG channels and the ability of ERG blocks to abolish persistent firing evoked by both synaptic and intracellular step stimuli suggest that modulation of ERG channels may underlie many forms of persistent activity observed in vivoSIGNIFICANCE STATEMENT Persistent activity, where spiking continues beyond the triggering stimulus, is a common phenomenon observed in many types of neurons. Identifying the mechanism underlying this elementary process of memory is a step forward in understanding higher cognitive function including short-term memory. Our results suggest that a reduction in the currents normally mediated by Ether-a-go-go-Related Gene (ERG) K+ channels contributes to persistent firing in neocortical pyramidal cells. ERG currents have been previously studied primarily in the heart; relatively little is known about ERG function in the brain, although mutations in ERG channels have recently been linked to schizophrenia. The present study is among the first to describe its role in neocortex in relation to biophysical correlates of memory function.
Collapse
|
82
|
Dengler F, Rackwitz R, Pfannkuche H, Gäbel G. Glucose transport across lagomorph jejunum epithelium is modulated by AMP-activated protein kinase under hypoxia. J Appl Physiol (1985) 2017; 123:1487-1500. [PMID: 28860168 DOI: 10.1152/japplphysiol.00436.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The gastrointestinal epithelium possesses adaptation mechanisms to cope with huge variations in blood flow and subsequently oxygenation. Since sufficient energy supply is crucial under hypoxic conditions, glucose uptake especially must be regulated by these adaptation mechanisms. Therefore, we investigated glucose transport under hypoxic conditions. Jejunal epithelia of rabbits were incubated in Ussing chambers under short-circuit current conditions. Hypoxia was simulated by gassing with 1% O2 instead of 100% O2. The activity of sodium-coupled glucose transporter-1 (SGLT-1) was assessed by measuring the increase of short circuit current ( Isc) after the addition of 2 mM glucose to the mucosal buffer solution. We observed decreased activity of SGLT-1 after hypoxia compared with control conditions. To investigate underlying mechanisms, epithelia were exposed to agonists and antagonists of AMP-activated protein kinase (AMPK) before assessment of SGLT-1-mediated transport and the pAMPK/AMPK protein ratio. Preincubation with the antagonist restored SGLT-1 activity under hypoxic conditions to the level of control conditions, indicating an involvement of AMPK in the downregulation of SGLT-1 activity under hypoxia, which was confirmed in Western blot analysis of pAMPK/AMPK. Transepithelial flux studies using radioactively labeled glucose, ortho-methyl-glucose, fructose, and mannitol revealed no changes after hypoxic incubation. Therefore, we could exclude a decreased transepithelial glucose transport rate and increased paracellular conductance under hypoxia. In conclusion, our study hints at a decreased activity of SGLT-1 under hypoxic conditions in an AMPK-dependent manner. However, transepithelial transport of glucose is maintained. Therefore, we suggest other transport mechanisms, especially glucose transporter 1 and/or 2 to substitute SGLT-1 under hypoxia. NEW & NOTEWORTHY To our knowledge, this is the first approach to simulate hypoxia and study its effects in the jejunal epithelium using the Ussing chamber technique. We were able show that AMPK plays a role in the downregulation of SGLT-1 and that there seems to be an upregulation of other glucose transport mechanisms in the apical membrane of lagomorph jejunum epithelium under hypoxia, securing the epithelial energy supply and thus integrity.
Collapse
Affiliation(s)
| | - Reiko Rackwitz
- Institute of Veterinary Physiology, University of Leipzig , Germany
| | - Helga Pfannkuche
- Institute of Veterinary Physiology, University of Leipzig , Germany
| | - Gotthold Gäbel
- Institute of Veterinary Physiology, University of Leipzig , Germany
| |
Collapse
|
83
|
Zylberberg J, Strowbridge BW. Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory. Annu Rev Neurosci 2017; 40:603-627. [PMID: 28772102 PMCID: PMC5995341 DOI: 10.1146/annurev-neuro-070815-014006] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A commonly observed neural correlate of working memory is firing that persists after the triggering stimulus disappears. Substantial effort has been devoted to understanding the many potential mechanisms that may underlie memory-associated persistent activity. These rely either on the intrinsic properties of individual neurons or on the connectivity within neural circuits to maintain the persistent activity. Nevertheless, it remains unclear which mechanisms are at play in the many brain areas involved in working memory. Herein, we first summarize the palette of different mechanisms that can generate persistent activity. We then discuss recent work that asks which mechanisms underlie persistent activity in different brain areas. Finally, we discuss future studies that might tackle this question further. Our goal is to bridge between the communities of researchers who study either single-neuron biophysical, or neural circuit, mechanisms that can generate the persistent activity that underlies working memory.
Collapse
Affiliation(s)
- Joel Zylberberg
- Department of Physiology and Biophysics, Center for Neuroscience, and Computational Bioscience Program, University of Colorado School of Medicine, Aurora, Colorado 80045
- Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Ben W Strowbridge
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106;
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
84
|
Lin EC, Combe CL, Gasparini S. Differential Contribution of Ca 2+-Dependent Mechanisms to Hyperexcitability in Layer V Neurons of the Medial Entorhinal Cortex. Front Cell Neurosci 2017; 11:182. [PMID: 28713246 PMCID: PMC5491848 DOI: 10.3389/fncel.2017.00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/13/2017] [Indexed: 11/13/2022] Open
Abstract
Temporal lobe epilepsy is characterized by recurrent seizures in one or both temporal lobes of the brain; some in vitro models show that epileptiform discharges initiate in entorhinal layer V neurons and then spread into other areas of the temporal lobe. We previously found that, in the presence of GABAA receptor antagonists, stimulation of afferent fibers, terminating both at proximal and distal dendritic locations, initiated hyperexcitable bursts in layer V medial entorhinal neurons. We investigated the differential contribution of Ca2+-dependent mechanisms to the plateaus underlying these bursts at proximal and distal synapses. We found that the NMDA glutamatergic antagonist D,L-2-amino-5-phosphonovaleric acid (APV; 50 μM) reduced both the area and duration of the bursts at both proximal and distal synapses by about half. The L-type Ca2+ channel blocker nimodipine (10 μM) and the R- and T-type Ca2+ channel blocker NiCl2 (200 μM) decreased the area of the bursts to a lesser extent; none of these effects appeared to be location-dependent. Remarkably, the perfusion of flufenamic acid (FFA; 100 μM), to block Ca2+-activated non-selective cation currents (ICAN) mediated by transient receptor potential (TRP) channels, had a location-dependent effect, by abolishing burst firing and switching the suprathreshold response to a single action potential (AP) for proximal stimulation, but only minimally affecting the bursts evoked by distal stimulation. A similar outcome was found when FFA was pressure-applied locally around the proximal dendrite of the recorded neurons and in the presence of a selective blocker of melastatin TRP (TRPM) channels, 9-phenanthrol (100 μM), whereas a selective blocker of canonical TRP (TRPC) channels, SKF 96365, did not affect the bursts. These results indicate that different mechanisms might contribute to the initiation of hyperexcitability in layer V neurons at proximal and distal synapses and could shed light on the initiation of epileptiform activity in the entorhinal cortex.
Collapse
Affiliation(s)
- Eric C Lin
- Neuroscience Center of Excellence, Louisiana State University Health Sciences CenterNew Orleans, LA, United States
| | - Crescent L Combe
- Neuroscience Center of Excellence, Louisiana State University Health Sciences CenterNew Orleans, LA, United States
| | - Sonia Gasparini
- Neuroscience Center of Excellence, Louisiana State University Health Sciences CenterNew Orleans, LA, United States.,Department of Cell Biology and Anatomy, Louisiana State University Health Sciences CenterNew Orleans, LA, United States
| |
Collapse
|
85
|
Nielsen BS, Hansen DB, Ransom BR, Nielsen MS, MacAulay N. Connexin Hemichannels in Astrocytes: An Assessment of Controversies Regarding Their Functional Characteristics. Neurochem Res 2017; 42:2537-2550. [DOI: 10.1007/s11064-017-2243-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022]
|
86
|
Flufenamic acid protects against intestinal fluid secretion and barrier leakage in a mouse model of Vibrio cholerae infection through NF-κB inhibition and AMPK activation. Eur J Pharmacol 2017; 798:94-104. [DOI: 10.1016/j.ejphar.2017.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 11/19/2022]
|
87
|
Foote JR, Behe P, Frampton M, Levine AP, Segal AW. An Exploration of Charge Compensating Ion Channels across the Phagocytic Vacuole of Neutrophils. Front Pharmacol 2017; 8:94. [PMID: 28293191 PMCID: PMC5329019 DOI: 10.3389/fphar.2017.00094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
Neutrophils phagocytosing bacteria and fungi exhibit a burst of non-mitochondrial respiration that is required to kill and digest the engulfed microbes. This respiration is accomplished by the movement of electrons across the wall of the phagocytic vacuole by the neutrophil NADPH oxidase, NOX2. In this study, we have attempted to identify the non-proton ion channels or transporters involved in charge compensation by examining the effect of inhibitors on vacuolar pH and cross-sectional area, and on oxygen consumption. The chloride channel inhibitors 4-[(2-Butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid (DCPIB) and flufenamic acid (FFA) were the most effective inhibitors of alkalinisation in human neutrophil vacuoles, suggesting an efflux of chloride from the vacuole. The proton channel inhibitor, zinc (Zn2+), combined with DCPIB caused more vacuolar swelling than either compound alone, suggesting the conductance of osmotically active cations into the vacuole. Support for cation influx was provided by the broad-spectrum cation transport inhibitors anandamide and quinidine which inhibited vacuolar alkalinisation and swelling when applied with zinc. Oxygen consumption was generally unaffected by these anion or cation inhibitors alone, but when combined with Zn2+ it was dramatically reduced, suggesting that multiple channels in combination can compensate the charge. In an attempt to identify specific channels, we tested neutrophils from knock-out mouse models including CLIC1, ClC3, ClC4, ClC7, KCC3, KCNQ1, KCNE3, KCNJ15, TRPC1/3/5/6, TRPA1/TRPV1, TRPM2, and TRPV2, and double knockouts of CLIC1, ClC3, KCC3, TRPM2, and KCNQ1 with HVCN1, and humans with channelopathies involving BEST1, ClC7, CFTR, and MCOLN1. No gross abnormalities in vacuolar pH or area were found in any of these cells suggesting that we had not tested the correct channel, or that there is redundancy in the system. The respiratory burst was suppressed in the KCC3-/- and enhanced in the CLIC1-/- cells, but was normal in all others, including ClC3-/-. These results suggest charge compensation by a chloride conductance out of the vacuole and by cation/s into it. The identity of these channels remains to be established.
Collapse
Affiliation(s)
- Juliet R Foote
- Division of Medicine, Centre for Molecular Medicine, University College London London, UK
| | - Philippe Behe
- Division of Medicine, Centre for Molecular Medicine, University College London London, UK
| | - Mathew Frampton
- Division of Medicine, Centre for Molecular Medicine, University College London London, UK
| | - Adam P Levine
- Division of Medicine, Centre for Molecular Medicine, University College London London, UK
| | - Anthony W Segal
- Division of Medicine, Centre for Molecular Medicine, University College London London, UK
| |
Collapse
|
88
|
Spike and Neuropeptide-Dependent Mechanisms Control GnRH Neuron Nerve Terminal Ca 2+ over Diverse Time Scales. J Neurosci 2017; 37:3342-3351. [PMID: 28235895 DOI: 10.1523/jneurosci.2925-16.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 01/30/2023] Open
Abstract
Fast cell-to-cell communication in the brain is achieved by action potential-dependent synaptic release of neurotransmitters. The fast kinetics of transmitter release are determined by transient Ca2+ elevations in presynaptic nerve terminals. Neuromodulators have previously been shown to regulate transmitter release by inhibiting presynaptic Ca2+ influx. Few studies to date have demonstrated the opposite, that is, neuromodulators directly driving presynaptic Ca2+ rises and increases in nerve terminal excitability. Here we use GCaMP Ca2+ imaging in brain slices from mice to address how nerve terminal Ca2+ is controlled in gonadotropin-releasing hormone (GnRH) neurons via action potentials and neuromodulators. Single spikes and bursts of action potentials evoked fast, voltage-gated Ca2+ channel-dependent Ca2+ elevations. In contrast, brief exposure to the neuropeptide kisspeptin-evoked long-lasting Ca2+ plateaus that persisted for tens of minutes. Neuropeptide-mediated Ca2+ elevations were independent of action potentials, requiring Ca2+ entry via voltage-gated Ca2+ channels and transient receptor potential channels in addition to release from intracellular store mechanisms. Together, these data reveal that neuromodulators can exert powerful and long-lasting regulation of nerve terminal Ca2+ independently from actions at the soma. Thus, GnRH nerve terminal function is controlled over disparate timescales via both classical spike-dependent and nonclassical neuropeptide-dependent mechanisms.SIGNIFICANCE STATEMENT Nerve terminals are highly specialized regions of a neuron where neurotransmitters and neurohormones are released. Many neuroendocrine neurons release neurohormones in long-duration bursts of secretion. To understand how this is achieved, we have performed live Ca2+ imaging in the nerve terminals of gonadotropin-releasing hormone neurons. We find that bursts of action potentials and local neuropeptide signals are both capable of evoking large increases in nerve terminal Ca2+ Increases in Ca2+ driven by spike bursts last seconds; however, the increases in nerve terminal Ca2+ driven by neuropeptides can persist for tens of minutes. These findings reveal new mechanisms by which neuroendocrine nerve terminal Ca2+ can be controlled in the brain.
Collapse
|
89
|
Nordeman P, Chow SY, Odell AF, Antoni G, Odell LR. Palladium-mediated11C-carbonylations using aryl halides and cyanamide. Org Biomol Chem 2017; 15:4875-4881. [DOI: 10.1039/c7ob01064h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rapid, efficient and high-yielding synthesis of11C-cyanobenzamides, including novel analogs of various drug molecules, is described.
Collapse
Affiliation(s)
- P. Nordeman
- Preclinical PET Platform Chemistry
- Department of Medicinal Chemistry
- Uppsala University
- Sweden
| | - S. Y. Chow
- Division of Organic Pharmaceutical Chemistry
- Department of Medicinal Chemistry
- Uppsala University
- Uppsala
- Sweden
| | - A. F. Odell
- School of Medicine
- St James’ University Hospital
- University of Leeds
- Leeds
- UK
| | - G. Antoni
- Preclinical PET Platform Chemistry
- Department of Medicinal Chemistry
- Uppsala University
- Sweden
| | - L. R. Odell
- Division of Organic Pharmaceutical Chemistry
- Department of Medicinal Chemistry
- Uppsala University
- Uppsala
- Sweden
| |
Collapse
|
90
|
Certal M, Vinhas A, Barros-Barbosa A, Ferreirinha F, Costa MA, Correia-de-Sá P. ADP-Induced Ca 2+ Signaling and Proliferation of Rat Ventricular Myofibroblasts Depend on Phospholipase C-Linked TRP Channels Activation Within Lipid Rafts. J Cell Physiol 2016; 232:1511-1526. [PMID: 27755650 DOI: 10.1002/jcp.25656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/17/2016] [Indexed: 01/23/2023]
Abstract
Nucleotides released during heart injury affect myocardium electrophysiology and remodeling through P2 purinoceptors activation in cardiac myofibroblasts. ATP and UTP endorse [Ca2+ ]i accumulation and growth of DDR-2/α-SMA-expressing myofibroblasts from adult rat ventricles via P2Y4 and P2Y2 receptors activation, respectively. Ventricular myofibroblasts also express ADP-sensitive P2Y1 , P2Y12 , and P2Y13 receptors as demonstrated by immunofluorescence confocal microscopy and western blot analysis, but little information exists on ADP effects in these cells. ADP (0.003-3 mM) and its stable analogue, ADPßS (100 μM), caused fast [Ca2+ ]i transients originated from thapsigargin-sensitive internal stores, which partially declined to a plateau sustained by capacitative Ca2+ entry through transient receptor potential (TRP) channels inhibited by 2-APB (50 μM) and flufenamic acid (100 μM). Hydrophobic interactions between Gq/11 -coupled P2Y purinoceptors and TRP channels were suggested by prevention of the ADP-induced [Ca2+ ]i plateau following PIP2 depletion with LiCl (10 mM) and cholesterol removal from lipid rafts with methyl-ß-cyclodextrin (2 mM). ADP [Ca2+ ]i transients were insensitive to P2Y1 , P2Y12 , and P2Y13 receptor antagonists, MRS2179 (10μM), AR-C66096 (0.1 μM), and MRS2211 (10μM), respectively, but were attenuated by suramin and reactive blue-2 (100 μM) which also blocked P2Y4 receptors activation by UTP. Cardiac myofibroblasts growth and type I collagen production were favored upon activation of MRS2179-sensitive P2Y1 receptors with ADP or ADPßS (30 μM). In conclusion, ADP exerts a dual role on ventricular myofibroblasts: [Ca2+ ]i transients are mediated by fast-desensitizing P2Y4 receptors, whereas the pro-fibrotic effect of ADP involves the P2Y1 receptor activation. Data also show that ADP-induced capacitative Ca2+ influx depends on phospholipase C-linked TRP channels opening in lipid raft microdomains. J. Cell. Physiol. 232: 1511-1526, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mariana Certal
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Adriana Vinhas
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Aurora Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal.,Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
91
|
Daniels MJD, Rivers-Auty J, Schilling T, Spencer NG, Watremez W, Fasolino V, Booth SJ, White CS, Baldwin AG, Freeman S, Wong R, Latta C, Yu S, Jackson J, Fischer N, Koziel V, Pillot T, Bagnall J, Allan SM, Paszek P, Galea J, Harte MK, Eder C, Lawrence CB, Brough D. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models. Nat Commun 2016; 7:12504. [PMID: 27509875 PMCID: PMC4987536 DOI: 10.1038/ncomms12504] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase-1 (COX-1) and COX-2 enzymes. The NLRP3 inflammasome is a multi-protein complex responsible for the processing of the proinflammatory cytokine interleukin-1β and is implicated in many inflammatory diseases. Here we show that several clinically approved and widely used NSAIDs of the fenamate class are effective and selective inhibitors of the NLRP3 inflammasome via inhibition of the volume-regulated anion channel in macrophages, independently of COX enzymes. Flufenamic acid and mefenamic acid are efficacious in NLRP3-dependent rodent models of inflammation in air pouch and peritoneum. We also show therapeutic effects of fenamates using a model of amyloid beta induced memory loss and a transgenic mouse model of Alzheimer's disease. These data suggest that fenamate NSAIDs could be repurposed as NLRP3 inflammasome inhibitors and Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Michael J. D. Daniels
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Jack Rivers-Auty
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Tom Schilling
- St. George's University of London, Institute for Infection and Immunity, Cranmer Terrace, London SW17 0RE, UK
| | - Nicholas G. Spencer
- St. George's University of London, Institute for Infection and Immunity, Cranmer Terrace, London SW17 0RE, UK
| | - William Watremez
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | - Victoria Fasolino
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | - Sophie J. Booth
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Claire S. White
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Alex G. Baldwin
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | - Sally Freeman
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | - Raymond Wong
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Clare Latta
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Shi Yu
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Joshua Jackson
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | - James Bagnall
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Stuart M. Allan
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - Pawel Paszek
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - James Galea
- Division of Neuroscience, Ninewells Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Michael K. Harte
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, UK
| | - Claudia Eder
- St. George's University of London, Institute for Infection and Immunity, Cranmer Terrace, London SW17 0RE, UK
| | - Catherine B. Lawrence
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | - David Brough
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
92
|
Chevalier M, Toporikova N, Simmers J, Thoby-Brisson M. Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network. eLife 2016; 5:e16125. [PMID: 27434668 PMCID: PMC4990420 DOI: 10.7554/elife.16125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
Breathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances. The respective proportion of the different inspiratory pacemaker subtypes changes during prenatal development. Concomitantly, network rhythmogenesis switches from a purely INaP/ICAN-dependent mechanism at E16.5 to a combined pacemaker/network-driven process at E18.5. Our results provide the first description of pacemaker bursting properties in embryonic preBötC neurons and indicate that network rhythmogenesis undergoes important changes during prenatal development through alterations in both circuit properties and the biophysical characteristics of pacemaker neurons.
Collapse
Affiliation(s)
- Marc Chevalier
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux, France
| | - Natalia Toporikova
- Department of Biology, Washington and Lee University, Lexington, United States
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
93
|
Malinovskaja-Gomez K, Labouta H, Schneider M, Hirvonen J, Laaksonen T. Transdermal iontophoresis of flufenamic acid loaded PLGA nanoparticles. Eur J Pharm Sci 2016; 89:154-62. [DOI: 10.1016/j.ejps.2016.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/30/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022]
|
94
|
Neyer C, Herr D, Kohmann D, Budde T, Pape HC, Coulon P. mGluR-mediated calcium signalling in the thalamic reticular nucleus. Cell Calcium 2016; 59:312-23. [PMID: 27041217 DOI: 10.1016/j.ceca.2016.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
The thalamic reticular nucleus (TRN) plays a major role in modulating the transfer of information from the thalamus to the cortex. GABAergic inhibition via the TRN is differentially regulated by metabotropic glutamate receptors (mGluRs) and the effect of mGluRs on the membrane potential, on ion channels, and on the plasticity of electrical coupling of TRN neurons has been studied previously. Although mGluRs are generally known to trigger Ca(2+) transients, mGluR-mediated Ca(2+)-transients in TRN neurons have not yet been investigated. In this study, we show that mGluRs can trigger Ca(2+)-transients in TRN neurons, that these transients depend on intracellular Ca(2+)-stores, and are mediated by IP3 receptors. Ca(2+) transients caused by the group I mGluR agonist DHPG elicit a current that is sensitive to flufenamic acid and has a reversal potential around -40mV. Our results add mGluR-mediated Ca(2+)-signalling in the TRN to the state-dependent modulators of the thalamocortical system.
Collapse
Affiliation(s)
- Christina Neyer
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - David Herr
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Denise Kohmann
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Thomas Budde
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Hans-Christian Pape
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Philippe Coulon
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany; Center For Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
95
|
Bal R, Ustundag Y, Bulut F, Demir CF, Bal A. Flufenamic acid prevents behavioral manifestations of salicylate-induced tinnitus in the rat. Arch Med Sci 2016; 12:208-15. [PMID: 26925138 PMCID: PMC4754382 DOI: 10.5114/aoms.2016.57597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/21/2014] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Tinnitus is defined as a phantom auditory sensation, the perception of sound in the absence of external acoustic stimulation. Given that flufenamic acid (FFA) blocks TRPM2 cation channels, resulting in reduced neuronal excitability, we aimed to investigate whether FFA suppresses the behavioral manifestation of sodium salicylate (SSA)-induced tinnitus in rats. MATERIAL AND METHODS Tinnitus was evaluated using a conditioned lick suppression model of behavioral testing. Thirty-one Wistar rats, randomly divided into four treatment groups, were trained and tested in the behavioral experiment: (1) control group: DMSO + saline (n = 6), (2) SSA group: DMSO + SSA (n = 6), (3) FFA group: FFA (66 mg/kg bw) + saline (n = 9), (4) FFA + SSA group: FFA (66 mg/kg bw) + SSA (400 mg/kg bw) (n = 10). Localization of TRPM2 to the plasma membrane of cochlear nucleus neurons was demonstrated by confocal microscopy. RESULTS Pavlovian training resulted in strong suppression of licking, having a mean value of 0.05 ±0.03 on extinction day 1, which is below the suppression training criterion level of 0.20 in control tinnitus animals. The suppression rate for rats having both FFA (66 mg/kg bw) and SSA (400 mg/kg bw) injections was significantly lower than that for the rats having SSA injections (p < 0.01). CONCLUSIONS We suggest that SSA-induced tinnitus could possibly be prevented by administration of a TRPM2 ion channel antagonist, FFA at 66 mg/kg bw.
Collapse
Affiliation(s)
- Ramazan Bal
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Yasemin Ustundag
- Department of Anatomy, Faculty of Veterinary, Firat University, Elazig, Turkey
| | - Funda Bulut
- Department of Medical Biology, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Caner Feyzi Demir
- Department of Neurology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ali Bal
- Department of Plastic-Reconstructive and Esthetic Surgery, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
96
|
Ta CM, Adomaviciene A, Rorsman NJG, Garnett H, Tammaro P. Mechanism of allosteric activation of TMEM16A/ANO1 channels by a commonly used chloride channel blocker. Br J Pharmacol 2016; 173:511-28. [PMID: 26562072 PMCID: PMC4728427 DOI: 10.1111/bph.13381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/15/2015] [Accepted: 10/29/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Calcium-activated chloride channels (CaCCs) play varied physiological roles and constitute potential therapeutic targets for conditions such as asthma and hypertension. TMEM16A encodes a CaCC. CaCC pharmacology is restricted to compounds with relatively low potency and poorly defined selectivity. Anthracene-9-carboxylic acid (A9C), an inhibitor of various chloride channel types, exhibits complex effects on native CaCCs and cloned TMEM16A channels providing both activation and inhibition. The mechanisms underlying these effects are not fully defined. EXPERIMENTAL APPROACH Patch-clamp electrophysiology in conjunction with concentration jump experiments was employed to define the mode of interaction of A9C with TMEM16A channels. KEY RESULTS In the presence of high intracellular Ca(2+) , A9C inhibited TMEM16A currents in a voltage-dependent manner by entering the channel from the outside. A9C activation, revealed in the presence of submaximal intracellular Ca(2+) concentrations, was also voltage-dependent. The electric distance of A9C inhibiting and activating binding site was ~0.6 in each case. Inhibition occurred according to an open-channel block mechanism. Activation was due to a dramatic leftward shift in the steady-state activation curve and slowed deactivation kinetics. Extracellular A9C competed with extracellular Cl(-) , suggesting that A9C binds deep in the channel's pore to exert both inhibiting and activating effects. CONCLUSIONS AND IMPLICATIONS A9C is an open TMEM16A channel blocker and gating modifier. These effects require A9C to bind to a region within the pore that is accessible from the extracellular side of the membrane. These data will aid the future drug design of compounds that selectively activate or inhibit TMEM16A channels.
Collapse
Affiliation(s)
- Chau M Ta
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Aiste Adomaviciene
- Department of Pharmacology, University of Oxford, Oxford, UK.,Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Nils J G Rorsman
- Department of Pharmacology, University of Oxford, Oxford, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Hannah Garnett
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Paolo Tammaro
- Department of Pharmacology, University of Oxford, Oxford, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| |
Collapse
|
97
|
Rhett JM, Wang H, Bainbridge H, Song L, Yost MJ. Connexin-Based Therapeutics and Tissue Engineering Approaches to the Amelioration of Chronic Pancreatitis and Type I Diabetes: Construction and Characterization of a Novel Prevascularized Bioartificial Pancreas. J Diabetes Res 2015; 2016:7262680. [PMID: 26788521 PMCID: PMC4691620 DOI: 10.1155/2016/7262680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/31/2015] [Accepted: 08/18/2015] [Indexed: 01/08/2023] Open
Abstract
Total pancreatectomy and islet autotransplantation is a cutting-edge technique to treat chronic pancreatitis and postoperative diabetes. A major obstacle has been low islet cell survival due largely to the innate inflammatory response. Connexin43 (Cx43) channels play a key role in early inflammation and have proven to be viable therapeutic targets. Even if cell death due to early inflammation is avoided, insufficient vascularization is a primary obstacle to maintaining the viability of implanted cells. We have invented technologies targeting the inflammatory response and poor vascularization: a Cx43 mimetic peptide that inhibits inflammation and a novel prevascularized tissue engineered construct. We combined these technologies with isolated islets to create a prevascularized bioartificial pancreas that is resistant to the innate inflammatory response. Immunoconfocal microscopy showed that constructs containing islets express insulin and possess a vascular network similar to constructs without islets. Glucose stimulated islet-containing constructs displayed reduced insulin secretion compared to islets alone. However, labeling for insulin post-glucose stimulation revealed that the constructs expressed abundant levels of insulin. This discrepancy was found to be due to the expression of insulin degrading enzyme. These results suggest that the prevascularized bioartificial pancreas is potentially a tool for improving long-term islet cell survival in vivo.
Collapse
Affiliation(s)
- J. Matthew Rhett
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Heather Bainbridge
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lili Song
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael J. Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
98
|
Doerner JF, Delling M, Clapham DE. Ion channels and calcium signaling in motile cilia. eLife 2015; 4. [PMID: 26650848 PMCID: PMC4714969 DOI: 10.7554/elife.11066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/27/2015] [Indexed: 01/15/2023] Open
Abstract
The beating of motile cilia generates fluid flow over epithelia in brain ventricles, airways, and Fallopian tubes. Here, we patch clamp single motile cilia of mammalian ependymal cells and examine their potential function as a calcium signaling compartment. Resting motile cilia calcium concentration ([Ca2+] ~170 nM) is only slightly elevated over cytoplasmic [Ca2+] (~100 nM) at steady state. Ca2+ changes that arise in the cytoplasm rapidly equilibrate in motile cilia. We measured CaV1 voltage-gated calcium channels in ependymal cells, but these channels are not specifically enriched in motile cilia. Membrane depolarization increases ciliary [Ca2+], but only marginally alters cilia beating and cilia-driven fluid velocity within short (~1 min) time frames. We conclude that beating of ependymal motile cilia is not tightly regulated by voltage-gated calcium channels, unlike that of well-studied motile cilia and flagella in protists, such as Paramecia and Chlamydomonas. DOI:http://dx.doi.org/10.7554/eLife.11066.001 Certain specialized cells in the brain, airways and Fallopian tubes have large numbers of hair-like structures called motile cilia on their surface. By beating in a synchronized manner, these cilia help to move fluids across the surface of the cells: for example, cilia on lung cells beat to clear mucus away, while those in the brain help the cerebrospinal fluid to circulate. Motile cilia in mammals are structurally similar to the flagella that propel sperm cells and certain single-celled organisms around their environments. These flagella have specialized pore-forming proteins called ion channels in their membrane through which calcium ions can move. This flow of calcium ions controls the beating of the flagella. However, it is unclear whether a similar movement of calcium ions across the cilia membrane regulates motile cilia beating in mammals. Doerner et al. have now used a method called patch clamping to study the movement of calcium ions across the membrane of the motile cilia found on a particular type of mouse brain cell. This revealed that unlike flagella, these motile cilia have very few voltage-gated calcium channels; instead, the vast majority of these ion channels reside in the main body of the cell. Furthermore, the level of calcium ions in the motile cilia follows changes in calcium ion levels that originate in the cell body. Overall, Doerner et al. demonstrate that the activity of voltage-gated calcium channels does not control the beating rhythm of the motile cilia in the mouse brain or how quickly the fluid above the cell surface moves. Future work should investigate whether this is also the case for the cells that line the trachea and Fallopian tubes. DOI:http://dx.doi.org/10.7554/eLife.11066.002
Collapse
Affiliation(s)
- Julia F Doerner
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Markus Delling
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - David E Clapham
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
99
|
Hendriks CMM, Penning TM, Zang T, Wiemuth D, Gründer S, Sanhueza IA, Schoenebeck F, Bolm C. Pentafluorosulfanyl-containing flufenamic acid analogs: Syntheses, properties and biological activities. Bioorg Med Chem Lett 2015; 25:4437-40. [PMID: 26372652 PMCID: PMC4599580 DOI: 10.1016/j.bmcl.2015.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 01/15/2023]
Abstract
Pentafluorosulfanyl-containing analogs of flufenamic acid have been synthesized in high yields. Computationally, pKa, LogP and LogD values have been determined. Initial bioactivity studies reveal effects as ion channel modulators and inhibitory activities on aldo-keto reductase 1C3 (AKR1C3) as well as COX-1 and COX-2.
Collapse
Affiliation(s)
- Christine M M Hendriks
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III, 421 Curie Blvd, Philadelphia, PA 19104-6160, United States
| | - Tianzhu Zang
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III, 421 Curie Blvd, Philadelphia, PA 19104-6160, United States
| | - Dominik Wiemuth
- Institute of Physiology, Universitätsklinikum Aachen, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, Universitätsklinikum Aachen, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Italo A Sanhueza
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| |
Collapse
|
100
|
Bencze M, Behuliak M, Vavřínová A, Zicha J. Broad-range TRP channel inhibitors (2-APB, flufenamic acid, SKF-96365) affect differently contraction of resistance and conduit femoral arteries of rat. Eur J Pharmacol 2015; 765:533-40. [PMID: 26384458 DOI: 10.1016/j.ejphar.2015.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/07/2015] [Accepted: 09/10/2015] [Indexed: 11/27/2022]
Abstract
Transient receptor potential (TRP) channels are proposed to contribute to membrane depolarization and Ca2+ influx into vascular smooth muscle (VSM) cells. Our aim was to study the effects of widely used broad-range TRP channel inhibitors--2-aminoethoxydiphenyl borate (2-APB), flufenamic acid (FFA) and SKF-96365--on the contraction of freshly isolated small and large arteries. Endothelium-denuded resistance (≈250 µm) and conduit (≈1000 µm) femoral arteries were isolated from adult Wistar rats and mounted in wire myograph. The effects of the above mentioned TRP channel inhibitors and voltage-dependent calcium channel inhibitor nifedipine were studied on arterial contractions induced by phenylephrine, U-46619 or K+. Phenylephrine-induced contractions were also studied in the absence of extracellular Na+. mRNA expression of particular canonical and melastatin TRP channel subunits in femoral vascular bed was determined. TRP channel inhibitors attenuated K+-induced contraction less than nifedipine. Phenylephrine-induced contraction was more influenced by 2-APB in resistance arteries, while FFA completely prevented U-46619-induced contraction in both sizes of arteries. The absence of extracellular Na+ prevented the inhibitory effects of 2-APB, but not those of FFA. The observed effects of broad-range TRP channel inhibitors, which were dependent on the size of the artery, confirmed the involvement of TRP channels in agonist-induced contractions. The inhibitory effects of 2-APB (but not those of FFA or SKF-96365) were dependent on the presence of extracellular Na+.
Collapse
Affiliation(s)
- Michal Bencze
- Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Michal Behuliak
- Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Vavřínová
- Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Josef Zicha
- Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|