51
|
McHugh KL, Kelly JP. Modulation of the central opioid system as an antidepressant target in rodent models. PROGRESS IN BRAIN RESEARCH 2018; 239:49-87. [DOI: 10.1016/bs.pbr.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
52
|
Adem A, Madjid N, Kahl U, Holst S, Sadek B, Sandin J, Terenius L, Ögren SO. Nociceptin and the NOP receptor in aversive learning in mice. Eur Neuropsychopharmacol 2017; 27:1298-1307. [PMID: 29102248 DOI: 10.1016/j.euroneuro.2017.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/13/2017] [Accepted: 09/25/2017] [Indexed: 11/27/2022]
Abstract
The endogenous neuropeptide nociceptin (N/OFQ), which mediates its actions via the nociceptin receptor (NOP), is implicated in multiple behavioural and physiological functions. This study examined the effects of the NOP agonists N/OFQ and the synthetic agonist Ro 64-6198, the antagonists NNN and NalBzoH, as well as deletion of the Pronociceptin gene on emotional memory in mice. The animals were tested in the passive avoidance (PA) task, dependent on hippocampal and amygdala functions. N/OFQ injected intraventricularly (i.c.v.) prior to training produced a biphasic effect on PA retention; facilitation at a low dose and impairment at higher doses. Ro 64-6198 also displayed a biphasic effect with memory facilitation at lower doses and impairment at a high dose. None of the agonists influenced PA training latencies. NNN did not significantly modulate retention in the PA task but antagonized the inhibitory effects of N/OFQ. NalBzoH facilitated memory retention in a dose-dependent manner and blocked the impairing effects of N/OFQ. However, neither NNN nor NalBzoH blocked the memory-impairing effects of Ro 64-6198. Finally, the Pnoc knockout mice exhibited enhanced PA retention latencies compared to the wild type mice. The biphasic effect of the natural ligand and Ro 64-6198 and the failure of the antagonists to block the action of Ro 64-6198 indicate complexity in ligand-receptor interaction. These results indicate that brain nociceptin and its NOP has a subtle role in regulation of mechanisms of relevance for treatment of disorders with processing disturbances of aversive events e.g. Alzheimer's disease, anxiety, depression and PTSD.
Collapse
Affiliation(s)
- Abdu Adem
- Department of Neuroscience, Retzius väg 8, S-171 77 Stockholm, Sweden.
| | - Nather Madjid
- Department of Pharmacology & Therapeutics Faculty of Medicine & Health Sciences UAE University, Al Ain, UAE; Department of Neuroscience, Retzius väg 8, S-171 77 Stockholm, Sweden
| | - Ulrika Kahl
- Department of Pharmacology & Therapeutics Faculty of Medicine & Health Sciences UAE University, Al Ain, UAE
| | - Sarah Holst
- Department of Pharmacology & Therapeutics Faculty of Medicine & Health Sciences UAE University, Al Ain, UAE
| | - Bassem Sadek
- Department of Neuroscience, Retzius väg 8, S-171 77 Stockholm, Sweden
| | - Johan Sandin
- AlzeCure Foundation, Karolinska Institutet Science Park, Hälsovägen 7, S-141 57 Huddinge, Stockholm, Sweden
| | - Lars Terenius
- Department of Clinical Neuroscience, Karolinska Institutet, CMM L8:01, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Sven Ove Ögren
- Department of Pharmacology & Therapeutics Faculty of Medicine & Health Sciences UAE University, Al Ain, UAE.
| |
Collapse
|
53
|
Ferrari F, Malfacini D, Journigan BV, Bird MF, Trapella C, Guerrini R, Lambert DG, Calo' G, Zaveri NT. In vitro pharmacological characterization of a novel unbiased NOP receptor-selective nonpeptide agonist AT-403. Pharmacol Res Perspect 2017; 5. [PMID: 28805972 PMCID: PMC5684865 DOI: 10.1002/prp2.333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/04/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ) regulates several biological functions via selective activation of the N/OFQ receptor (NOP), a member of the opioid receptor family. We recently identified a new high affinity and highly selective NOP agonist AT-403. In this study, we characterized the functional profile of AT-403 and compared it to other known nonpeptide NOP agonists Ro 65-6570, Ro 2q, SCH-221510, MCOPPB, AT-202 and SCH-486757, using the following assays: GTPγ[35 S] stimulated binding, calcium mobilization assay in cells-expressing human NOP or classical opioid receptors and chimeric G proteins, bioluminescence resonance energy transfer (BRET) based assay for studying NOP receptor interaction with G protein and arrestin, and the electrically stimulated mouse vas deferens bioassay. All compounds behaved as NOP full agonists consistently showing the following rank order of potency MCOPPB > AT-403 > Ro 65-6570 = Ro 2q > SCH-221510 > AT-202 > SCH-486757. AT-403 and MCOPPB displayed the highest NOP selectivity both at human and murine receptors. Interestingly, while all the other nonpeptide NOP agonists displayed bias toward G protein-mediated signaling in the BRET assay, AT-403, similar to the natural ligand N/OFQ, behaved as an unbiased agonist, activating G-protein-mediated function as well as arrestin recruitment. AT-403 may be a useful nonpeptide tool compound to study the pharmacology of NOP activation in disease states.
Collapse
Affiliation(s)
- Federica Ferrari
- Section of Pharmacology, Department of Medical Sciences and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy
| | - Davide Malfacini
- Section of Pharmacology, Department of Medical Sciences and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy
| | - Blair V Journigan
- Astraea Therapeutics, LLC. 320 Logue Avenue, Mountain View, California
| | - Mark F Bird
- Division of Anaesthesia, Department of Cardiovascular Sciences, University of Leicester, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Claudio Trapella
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - David G Lambert
- Division of Anaesthesia, Department of Cardiovascular Sciences, University of Leicester, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Girolamo Calo'
- Section of Pharmacology, Department of Medical Sciences and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy
| | - Nurulain T Zaveri
- Astraea Therapeutics, LLC. 320 Logue Avenue, Mountain View, California
| |
Collapse
|
54
|
Vitale G, Filaferro M, Micioni Di Bonaventura MV, Ruggieri V, Cifani C, Guerrini R, Simonato M, Zucchini S. Effects of [Nphe 1, Arg 14, Lys 15] N/OFQ-NH 2 (UFP-101), a potent NOP receptor antagonist, on molecular, cellular and behavioural alterations associated with chronic mild stress. J Psychopharmacol 2017; 31:691-703. [PMID: 28417659 DOI: 10.1177/0269881117691456] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study investigated the effect of [Nphe1] Arg14, Lys15-N/OFQ-NH2 (UFP-101), a selective NOP receptor antagonist, in chronic mild stress (CMS) in male Wistar rats. NOP receptor antagonists were reported to elicit antidepressant-like effects in rodents. Our aim was to investigate UFP-101 effects on CMS-induced anhedonia and impairment of hippocampal neurogenesis. UFP-101 (10 nmol/rat intracerebroventricularly) did not influence sucrose intake in non-stressed animals, but reinstated basal sucrose consumption in stressed animals from the second week of treatment. UFP-101 also reversed stress effects in forced swimming test and in open field. Fluoxetine (10 mg/kg intraperitoneally) produced similar effects. Moreover, we investigated whether UFP-101 could affect CMS-induced impairment in hippocampal cell proliferation and neurogenesis, and in fibroblast growth factor (FGF-2) expression. Our data confirm that CMS reduced neural stem cell proliferation and neurogenesis in adult rat hippocampus. Chronic UFP-101 treatment did not affect the reduced proliferation (bromodeoxyuridine-positive cells) observed in stressed animals. However, UFP-101 increased the number of doublecortin-positive cells, restoring neurogenesis. Finally, UFP-101 significantly increased FGF-2 expression, reduced by CMS. These findings support the view that blockade of NOP receptors produces antidepressant-like effects in CMS associated with positive effects on neurogenesis and FGF-2 expression. Therefore, NOP receptors may represent a target for innovative antidepressant drugs.
Collapse
Affiliation(s)
- Giovanni Vitale
- 1 Department Life Sciences, University of Modena and RE, Modena, Italy
| | - Monica Filaferro
- 2 Department Biomedical, Metabolical and Neuro-Sciences, University of Modena and RE, Modena, Italy
| | | | - Valentina Ruggieri
- 4 Department Medical and Surgical Sciences for Children & Adults - University Hospital of Modena, Modena, Italy
| | - Carlo Cifani
- 3 School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Remo Guerrini
- 5 Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- 6 Department Medical Sciences and Laboratory for the Technologies for Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Silvia Zucchini
- 6 Department Medical Sciences and Laboratory for the Technologies for Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
55
|
Kallupi M, Scuppa G, de Guglielmo G, Calò G, Weiss F, Statnick MA, Rorick-Kehn LM, Ciccocioppo R. Genetic Deletion of the Nociceptin/Orphanin FQ Receptor in the Rat Confers Resilience to the Development of Drug Addiction. Neuropsychopharmacology 2017; 42:695-706. [PMID: 27562376 PMCID: PMC5240182 DOI: 10.1038/npp.2016.171] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 12/14/2022]
Abstract
The nociceptin (NOP) receptor is a G-protein-coupled receptor whose natural ligand is the NOP/orphanin FQ (N/OFQ) peptide. Evidence from pharmacological studies suggests that the N/OFQ system is implicated in the regulation of several addiction-related phenomena, such as drug intake, withdrawal, and relapse. Here, to further explore the role of NOP system in addiction, we used NOP (-/-) rats to study the motivation for cocaine, heroin, and alcohol self-administration in the absence of N/OFQ function. Conditioned place preference (CPP) and saccharin (0.2% w/v) self-administration were also investigated. Results showed that NOP (-/-) rats self-administer less cocaine (0.25, 0.125, or 0.5 mg/infusion) both under a fixed ratio 1 and a progressive ratio schedule of reinforcement compared with wild-type (Wt) controls. Consistently, cocaine (10 mg/kg, i.p.) was able to induce CPP in Wt but not in NOP (-/-). When NOP (-/-) rats were tested for heroin (20 μg/infusion) and ethanol (10% v/v) self-administration, they showed significantly lower drug intake compared with Wt. Conversely, saccharin self-administration was not affected by NOP deletion, excluding the possibility of nonspecific learning deficits or generalized disruption of reward mechanisms in NOP (-/-) rats. These findings were confirmed with pharmacological experiments using two selective NOP antagonists, SB-612111 and LY2817412. Both drugs attenuated alcohol self-administration in Wt rats but not in NOP (-/-) rats. In conclusion, our results demonstrate that genetic deletion of NOP receptors confers resilience to drug abuse and support a role for NOP receptor antagonism as a potential treatment option for drug addiction.
Collapse
Affiliation(s)
- Marsida Kallupi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy,Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Giulia Scuppa
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Giordano de Guglielmo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy,Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Girolamo Calò
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Friedbert Weiss
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael A Statnick
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN USA
| | | | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy,School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032 Italy, Tel: +39 07 3740 3313, Fax: +39 07 3740 3325, E-mail:
| |
Collapse
|
56
|
Witkin JM, Rorick-Kehn LM, Benvenga MJ, Adams BL, Gleason SD, Knitowski KM, Li X, Chaney S, Falcone JF, Smith JW, Foss J, Lloyd K, Catlow JT, McKinzie DL, Svensson KA, Barth VN, Toledo MA, Diaz N, Lafuente C, Jiménez A, Benito A, Pedregal C, Martínez-Grau MA, Post A, Ansonoff MA, Pintar JE, Statnick MA. Preclinical findings predicting efficacy and side-effect profile of LY2940094, an antagonist of nociceptin receptors. Pharmacol Res Perspect 2016; 4:e00275. [PMID: 28097008 PMCID: PMC5226289 DOI: 10.1002/prp2.275] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 12/28/2022] Open
Abstract
Nociceptin/Orphanin FQ (N/OFQ) is a 17 amino acid peptide whose receptor is designated ORL1 or nociceptin receptor (NOP). We utilized a potent, selective, and orally bioavailable antagonist with documented engagement with NOP receptors in vivo to assess antidepressant‐ and anxiolytic‐related pharmacological effects of NOP receptor blockade along with measures of cognitive and motor impingement. LY2940094 ([2‐[4‐[(2‐chloro‐4,4‐difluoro‐spiro[5H‐thieno[2,3‐c]pyran‐7,4′‐piperidine]‐1′‐yl)methyl]‐3‐methyl‐pyrazol‐1‐yl]‐3‐pyridyl]methanol) displayed antidepressant‐like behavioral effects in the forced‐swim test in mice, an effect absent in NOP−/− mice. LY2940094 also augmented the behavioral effect of fluoxetine without changing target occupancies (NOP and serotonin reuptake transporter [SERT]). LY2940094 did not have effects under a differential‐reinforcement of low rate schedule. Although anxiolytic‐like effects were not observed in some animal models (conditioned suppression, 4‐plate test, novelty‐suppressed feeding), LY2940094 had effects like that of anxiolytic drugs in three assays: fear‐conditioned freezing in mice, stress‐induced increases in cerebellar cGMP in mice, and stress‐induced hyperthermia in rats. These are the first reports of anxiolytic‐like activity with a systemically viable NOP receptor antagonist. LY2940094 did not disrupt performance in either a 5‐choice serial reaction time or delayed matching‐to‐position assay. LY2940094 was also not an activator or suppressor of locomotion in rodents nor did it induce failures of rotarod performance. These data suggest that LY2940094 has unique antidepressant‐ and anxiolytic‐related pharmacological effects in rodents. Clinical proof of concept data on this molecule in depressed patients have been reported elsewhere.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Lilly Research Laboratories Eli Lilly and Company Indianapolis Indiana
| | | | - Mark J Benvenga
- Lilly Research Laboratories Eli Lilly and Company Indianapolis Indiana
| | - Benjamin L Adams
- Lilly Research Laboratories Eli Lilly and Company Indianapolis Indiana
| | - Scott D Gleason
- Lilly Research Laboratories Eli Lilly and Company Indianapolis Indiana
| | - Karen M Knitowski
- Lilly Research Laboratories Eli Lilly and Company Indianapolis Indiana
| | - Xia Li
- Lilly Research Laboratories Eli Lilly and Company Indianapolis Indiana
| | - Steven Chaney
- Lilly Research Laboratories Eli Lilly and Company Indianapolis Indiana
| | - Julie F Falcone
- Lilly Research Laboratories Eli Lilly and Company Indianapolis Indiana
| | - Janice W Smith
- Lilly Research Laboratories Eli Lilly and Company Windlesham Surrey United Kingdom
| | - Julie Foss
- Lilly Research Laboratories Eli Lilly and Company Windlesham Surrey United Kingdom
| | - Kirsti Lloyd
- Lilly Research Laboratories Eli Lilly and Company Windlesham Surrey United Kingdom
| | - John T Catlow
- Lilly Research Laboratories Eli Lilly and Company Indianapolis Indiana
| | - David L McKinzie
- Lilly Research Laboratories Eli Lilly and Company Indianapolis Indiana
| | - Kjell A Svensson
- Lilly Research Laboratories Eli Lilly and Company Indianapolis Indiana
| | - Vanessa N Barth
- Lilly Research Laboratories Eli Lilly and Company Indianapolis Indiana
| | - Miguel A Toledo
- Lilly Research Laboratories Eli Lilly and Company Indianapolis Indiana; Lilly Research Laboratories Eli Lilly and Company Alcobendas Madrid Spain
| | - Nuria Diaz
- Lilly Research Laboratories Eli Lilly and Company Alcobendas Madrid Spain
| | - Celia Lafuente
- Lilly Research Laboratories Eli Lilly and Company Alcobendas Madrid Spain
| | - Alma Jiménez
- Lilly Research Laboratories Eli Lilly and Company Alcobendas Madrid Spain
| | - Alfonso Benito
- Lilly Research Laboratories Eli Lilly and Company Alcobendas Madrid Spain
| | | | | | - Anke Post
- Lilly Research Laboratories Eli Lilly and Company Windlesham Surrey United Kingdom
| | - Michael A Ansonoff
- Lilly Research Laboratories Eli Lilly and Company Rutgers-Robert Wood Johnson Medical School New Brunswick New Jersey
| | - John E Pintar
- Lilly Research Laboratories Eli Lilly and Company Rutgers-Robert Wood Johnson Medical School New Brunswick New Jersey
| | | |
Collapse
|
57
|
Villar IC, Bubb KJ, Moyes AJ, Steiness E, Gulbrandsen T, Levy FO, Hobbs AJ. Functional pharmacological characterization of SER100 in cardiovascular health and disease. Br J Pharmacol 2016; 173:3386-3401. [PMID: 27667485 DOI: 10.1111/bph.13634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE SER100 is a selective nociceptin (NOP) receptor agonist with sodium-potassium-sparing aquaretic and anti-natriuretic activity. This study was designed to characterize the functional cardiovascular pharmacology of SER100 in vitro and in vivo, including experimental models of cardiovascular disease. EXPERIMENTAL APPROACH Haemodynamic, ECG parameters and heart rate variability (HRV) were determined using radiotelemetry in healthy, conscious mice. The haemodynamic and vascular effects of SER100 were also evaluated in two models of cardiovascular disease, spontaneously hypertensive rats (SHR) and murine hypoxia-induced pulmonary hypertension (PH). To elucidate mechanisms underlying the pharmacology of SER100, acute blood pressure recordings were performed in anaesthetized mice, and the reactivity of rodent aorta and mesenteric arteries in response to electrical- and agonist-stimulation assessed. KEY RESULTS SER100 caused NOP receptor-dependent reductions in mean arterial blood pressure and heart rate that were independent of NO. The hypotensive and vasorelaxant actions of SER100 were potentiated in SHR compared with Wistar Kyoto. Moreover, SER100 reduced several indices of disease severity in experimental PH. Analysis of HRV indicated that SER100 decreased the low/high frequency ratio, an indicator of sympatho-vagal balance, and in electrically stimulated mouse mesenteric arteries SER100 inhibited sympathetic-induced contractions. CONCLUSIONS AND IMPLICATIONS SER100 exerts a chronic hypotensive and bradycardic effects in rodents, including models of systemic and pulmonary hypertension. SER100 produces its cardiovascular effects, at least in part, by inhibition of cardiac and vascular sympathetic activity. SER100 may represent a novel therapeutic candidate in systemic and pulmonary hypertension.
Collapse
Affiliation(s)
- Inmaculada C Villar
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kristen J Bubb
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | - Finn Olav Levy
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
58
|
Ferrari F, Cerlesi MC, Malfacini D, Asth L, Gavioli EC, Journigan BV, Kamakolanu UG, Meyer ME, Yasuda D, Polgar WE, Rizzi A, Guerrini R, Ruzza C, Zaveri NT, Calo G. In vitro functional characterization of novel nociceptin/orphanin FQ receptor agonists in recombinant and native preparations. Eur J Pharmacol 2016; 793:1-13. [PMID: 27780725 DOI: 10.1016/j.ejphar.2016.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022]
Abstract
Nociceptin/Orphanin FQ (N/OFQ) regulates several biological functions via selective activation of the N/OFQ receptor (NOP). In this study novel nonpeptide NOP ligands were characterized in vitro in receptor binding and [35S]GTPγS stimulated binding in membranes of cells expressing human NOP and classical opioid receptors, calcium mobilization assay in cells coexpressing the receptors and chimeric G proteins, bioluminescence resonance energy transfer (BRET) based assay for studying NOP receptor interaction with G protein and arrestin, the electrically stimulated mouse vas deferens and the mouse colon bioassays. The action of the AT compounds were compared with standard NOP agonists (N/OFQ and Ro 65-6570) and the NOP selective antagonist SB-612111. AT compounds displayed high NOP affinity and behaved as NOP agonists in all the functional assays consistently showing the following rank order of potency AT-127≥AT-090≥AT-035>AT-004= AT-001. AT compounds behaved as NOP full agonists in the calcium mobilization and mouse colon assays and as partial agonists in the [35S]GTPγS and BRET assays. Interestingly AT-090 and AT-127, contrary to standard nonpeptide agonists that display G protein biased agonism, behaved as an unbiased agonists. AT-090 and AT-127 displayed higher NOP selectivity than Ro 65-6570 at native mouse receptors. AT-090 and AT-127 might be useful pharmacological tools for investigating the therapeutic potential of NOP partial agonists.
Collapse
Affiliation(s)
- Federica Ferrari
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy
| | - Maria Camilla Cerlesi
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy
| | - Davide Malfacini
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy
| | - Laila Asth
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Elaine C Gavioli
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Michael E Meyer
- Astraea Therapeutics, LLC. 320 Logue Avenue, Mountain View, CA, USA
| | - Dennis Yasuda
- Astraea Therapeutics, LLC. 320 Logue Avenue, Mountain View, CA, USA
| | - Willma E Polgar
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA, USA
| | - Anna Rizzi
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Italy
| | - Chiara Ruzza
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy
| | | | - Girolamo Calo
- Section of Pharmacology, Department of Medical Sciences, and National Institute of Neurosciences, University of Ferrara, Italy.
| |
Collapse
|
59
|
Interaction Between Nociceptin/Orphanin FQ and Adrenergic System on Food Intake in Neonatal Chicken. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9548-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
60
|
Holanda VAD, Medeiros IU, Asth L, Guerrini R, Calo' G, Gavioli EC. Antidepressant activity of nociceptin/orphanin FQ receptor antagonists in the mouse learned helplessness. Psychopharmacology (Berl) 2016; 233:2525-32. [PMID: 27129865 DOI: 10.1007/s00213-016-4310-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/14/2016] [Indexed: 02/07/2023]
Abstract
RATIONALE Pharmacological and genetic evidence support antidepressant-like effects elicited by the blockade of the NOP receptor. The learned helplessness (LH) model employs uncontrollable and unpredictable electric footshocks as a stressor stimulus to induce a depressive-like phenotype that can be reversed by classical antidepressants. OBJECTIVES The present study aimed to evaluate the action of NOP receptor antagonists in helpless mice. METHODS Male Swiss mice were subjected to the three steps of the LH paradigm (i.e., (1) induction, (2) screening, and (3) test). Only helpless animals were subjected to the test session. During the test session, animals were placed in the electrified chamber and the latency to escape after the footshock and the frequency of escape failures were recorded. The effect of the following treatments administered before the test session were evaluated: nortriptyline (30 mg/kg, ip, 60 min), fluoxetine (30 mg/kg, ip, four consecutive days of treatment), and NOP antagonists SB-612111 (1-10 mg/kg, ip, 30 min) and UFP-101 (1-10 nmol, icv, 5 min). To rule out possible biases, the effects of treatments on controllable stressful and non stressful situations were assessed. RESULTS In helpless mice, nortriptyline, fluoxetine, UFP-101 (3-10 nmol), and SB-612111 (3-10 mg/kg) significantly reduced escape latencies and escape failures. No effects of drug treatments were observed in mice subjected to the controllable electric footshocks and non stressful situations. CONCLUSIONS Acute treatment with NOP antagonists reversed helplessness similarly to the classical antidepressants. These findings support the proposal that NOP receptor antagonists are worthy of development as innovative antidepressant drugs.
Collapse
Affiliation(s)
- Victor A D Holanda
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, Natal, Brazil, 59072-970
| | - Iris U Medeiros
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, Natal, Brazil, 59072-970
| | - Laila Asth
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, Natal, Brazil, 59072-970
| | - Remo Guerrini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo'
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Elaine C Gavioli
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, Natal, Brazil, 59072-970.
| |
Collapse
|
61
|
A Selective Nociceptin Receptor Antagonist to Treat Depression: Evidence from Preclinical and Clinical Studies. Neuropsychopharmacology 2016; 41:1803-12. [PMID: 26585287 PMCID: PMC4869049 DOI: 10.1038/npp.2015.348] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/26/2015] [Accepted: 11/17/2015] [Indexed: 11/08/2022]
Abstract
Nociceptin/Orphanin FQ (N/OFQ) is an endogenous ligand of the N/OFQ peptide (NOP) receptor, which is a G protein-coupled receptor in brain regions associated with mood disorders. We used a novel, potent, and selective orally bioavailable antagonist, LY2940094, to test the hypothesis that blockade of NOP receptors would induce antidepressant effects. In this study we demonstrate that targeting NOP receptors with LY2940094 translates to antidepressant-like effects in rodent models and, importantly, to antidepressant efficacy in patients with major depressive disorder (MDD). The proof-of-concept study (POC) was an 8-week, double-blind, placebo-controlled trial that evaluated LY2940094 as a novel oral medication for the treatment of patients with MDD. Once daily oral dosing of LY2940094 at 40 mg for 8 weeks vs placebo provided some evidence for an antidepressant effect based on the change from baseline to week 8 in the GRID-Hamilton Depression Rating Scale-17 item total score, although the predefined POC efficacy criterion (probability of LY2940094 being better than placebo⩾88%) was not met (82.9%). LY2940094 also had an early effect on the processing of emotional stimuli at Week 1 as shown by an increased recognition of positive relative to negative facial expressions in an emotional test battery. LY2940094 was safe and well tolerated. Overall, these are the first human data providing evidence that the blockade of NOP receptor signaling represents a promising strategy for the treatment of MDD.
Collapse
|
62
|
Rorick-Kehn LM, Ciccocioppo R, Wong CJ, Witkin JM, Martinez-Grau MA, Stopponi S, Adams BL, Katner JS, Perry KW, Toledo MA, Diaz N, Lafuente C, Jiménez A, Benito A, Pedregal C, Weiss F, Statnick MA. A Novel, Orally Bioavailable Nociceptin Receptor Antagonist, LY2940094, Reduces Ethanol Self-Administration and Ethanol Seeking in Animal Models. Alcohol Clin Exp Res 2016; 40:945-54. [PMID: 27084498 DOI: 10.1111/acer.13052] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/24/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND The nociceptin/orphanin-FQ (or opioid receptor-like [ORL1]) receptor (NOP) is localized in the mesolimbic reward pathway and has been suggested to play a role in feeding, mood, stress, and addiction. Since its deorphanization in 1995, there has been a clear dichotomy in the literature regarding whether an agonist or antagonist would provide therapeutic benefit. Specifically, the literature reports indicate that NOP receptor antagonists produce efficacy in animal models of hyperphagia and antidepressant-like activity, whereas NOP agonists produce anxiolytic-like effects and dampen reward/addiction behaviors including ethanol consumption. METHODS We characterize here the potent, orally bioavailable NOP antagonist, LY2940094, in rodent models of ethanol consumption, including ethanol self-administration, progressive ratio operant self-administration, stress-induced reinstatement of ethanol seeking, and in vivo microdialysis in the nucleus accumbens. RESULTS LY2940094 dose dependently reduced homecage ethanol self-administration in Indiana alcohol-preferring (P) and Marchigian Sardinian alcohol-preferring (msP) rats, without affecting food/water intake or locomotor activity. Reduced ethanol intake in P rats did not show significant tolerance over 4 days of subchronic dosing. LY2940094 attenuated progressive ratio operant responding and break points for ethanol in P rats. Moreover, stress-induced reinstatement of ethanol seeking in msP rats was completely blocked by LY2940094. Furthermore, LY2940094 blocked ethanol-stimulated dopamine release in response to ethanol challenge (1.1 g/kg, intraperitoneally). CONCLUSIONS Our findings demonstrate for the first time that blockade of NOP receptors attenuates ethanol self-administration and ethanol-motivated behaviors, stress-induced ethanol seeking, and ethanol-induced stimulation of brain reward pathways in lines of rats that exhibit excessive ethanol consumption. Results suggest that LY2940094 may have potential therapeutic utility in treating alcohol addiction.
Collapse
Affiliation(s)
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Conrad J Wong
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Jeffrey M Witkin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | - Serena Stopponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Benjamin L Adams
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Jason S Katner
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Kenneth W Perry
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | | | | | | - Friedbert Weiss
- Department of Molecular and Cellular Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Michael A Statnick
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
63
|
Toll L, Bruchas MR, Calo' G, Cox BM, Zaveri NT. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems. Pharmacol Rev 2016; 68:419-57. [PMID: 26956246 PMCID: PMC4813427 DOI: 10.1124/pr.114.009209] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor.
Collapse
Affiliation(s)
- Lawrence Toll
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Michael R Bruchas
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Girolamo Calo'
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Brian M Cox
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Nurulain T Zaveri
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| |
Collapse
|
64
|
Zaveri NT. Nociceptin Opioid Receptor (NOP) as a Therapeutic Target: Progress in Translation from Preclinical Research to Clinical Utility. J Med Chem 2016; 59:7011-28. [PMID: 26878436 DOI: 10.1021/acs.jmedchem.5b01499] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the two decades since the discovery of the nociceptin opioid receptor (NOP) and its ligand, nociceptin/orphaninFQ (N/OFQ), steady progress has been achieved in understanding the pharmacology of this fourth opioid receptor/peptide system, aided by genetic and pharmacologic approaches. This research spawned an explosion of small-molecule NOP receptor ligands from discovery programs in major pharmaceutical companies. NOP agonists have been investigated for their efficacy in preclinical models of anxiety, cough, substance abuse, pain (spinal and peripheral), and urinary incontinence, whereas NOP antagonists have been investigated for treatment of pain, depression, and motor symptoms in Parkinson's disease. Translation of preclinical findings into the clinic is guided by PET and receptor occupancy studies, particularly for NOP antagonists. Recent progress in preclinical NOP research suggests that NOP agonists may have clinical utility for pain treatment and substance abuse pharmacotherapy. This review discusses the progress toward validating the NOP-N/OFQ system as a therapeutic target.
Collapse
Affiliation(s)
- Nurulain T Zaveri
- Astraea Therapeutics , 320 Logue Avenue, Suite 142, Mountain View, California 94043, United States
| |
Collapse
|
65
|
Asth L, Ruzza C, Malfacini D, Medeiros I, Guerrini R, Zaveri NT, Gavioli EC, Calo' G. Beta-arrestin 2 rather than G protein efficacy determines the anxiolytic-versus antidepressant-like effects of nociceptin/orphanin FQ receptor ligands. Neuropharmacology 2016; 105:434-442. [PMID: 26867504 DOI: 10.1016/j.neuropharm.2016.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Nociceptin/orphanin FQ (N/OFQ) receptor (NOP) agonists produce anxiolytic-like effects in rodents while antagonists promote antidepressant-like effects. The aim of this study was to investigate the effect on anxiety and depression of NOP receptor partial agonists such as the peptides [F/G]N/OFQ(1-13)NH2 and UFP-113 and the non-peptide AT-090. EXPERIMENTAL APPROACH In vitro AT-090, UFP-113, and [F/G]N/OFQ(1-13)NH2 were tested for their ability to promote NOP/G-protein and NOP/β-arrestin 2 interaction, using a bioluminescence resonance energy transfer assay. In vivo, they were tested in mice in the elevated plus maze (EPM) and in the forced swim (FST) tests. NOP partial agonists effects were systematically compared to those of full agonists (N/OFQ and Ro 65-6570) and antagonists (UFP-101 and SB-612111). KEY RESULTS In vitro, AT-090, UFP-113, and [F/G]N/OFQ(1-13)NH2 promoted NOP/G protein interaction, with maximal effects lower than those evoked by N/OFQ and Ro 65-6570. AT-090 behaved as a NOP partial agonist also in inducing β-arrestin 2 recruitment, while UFP-113 and [F/G]N/OFQ(1-13)NH2 were inactive in this assay. In vivo, AT-090 induced anxiolytic-like effects in the EPM but was inactive in the FST. Opposite results were obtained with UFP-113 and [F/G]N/OFQ(1-13)NH2. CONCLUSIONS AND IMPLICATIONS NOP ligands producing similar effects on NOP/G protein interaction (partial agonism) but showing different effects on β-arrestin 2 recruitment (partial agonism vs antagonism) elicited different actions on anxiety and mood. These results suggest that the action of a NOP ligand on emotional states is better predicted based on its β-arrestin 2 rather than G-protein efficacy.
Collapse
Affiliation(s)
- L Asth
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - C Ruzza
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy.
| | - D Malfacini
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - I Medeiros
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - R Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - N T Zaveri
- Astraea Therapeutics, LLC., 320 Logue Avenue, Mountain View, CA 94043, United States
| | - E C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - G Calo'
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
66
|
Statnick MA, Chen Y, Ansonoff M, Witkin JM, Rorick-Kehn L, Suter TM, Song M, Hu C, Lafuente C, Jiménez A, Benito A, Diaz N, Martínez-Grau MA, Toledo MA, Pintar JE. A Novel Nociceptin Receptor Antagonist LY2940094 Inhibits Excessive Feeding Behavior in Rodents: A Possible Mechanism for the Treatment of Binge Eating Disorder. J Pharmacol Exp Ther 2016; 356:493-502. [PMID: 26659925 DOI: 10.1124/jpet.115.228221] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ), a 17 amino acid peptide, is the endogenous ligand of the ORL1/nociceptin-opioid-peptide (NOP) receptor. N/OFQ appears to regulate a variety of physiologic functions including stimulating feeding behavior. Recently, a new class of thienospiro-piperidine-based NOP antagonists was described. One of these molecules, LY2940094 has been identified as a potent and selective NOP antagonist that exhibited activity in the central nervous system. Herein, we examined the effects of LY2940094 on feeding in a variety of behavioral models. Fasting-induced feeding was inhibited by LY2940094 in mice, an effect that was absent in NOP receptor knockout mice. Moreover, NOP receptor knockout mice exhibited a baseline phenotype of reduced fasting-induced feeding, relative to wild-type littermate controls. In lean rats, LY2940094 inhibited the overconsumption of a palatable high-energy diet, reducing caloric intake to control chow levels. In dietary-induced obese rats, LY2940094 inhibited feeding and body weight regain induced by a 30% daily caloric restriction. Last, in dietary-induced obese mice, LY2940094 decreased 24-hour intake of a high-energy diet made freely available. These are the first data demonstrating that a systemically administered NOP receptor antagonist can reduce feeding behavior and body weight in rodents. Moreover, the hypophagic effect of LY2940094 is NOP receptor dependent and not due to off-target or aversive effects. Thus, LY2940094 may be useful in treating disorders of appetitive behavior such as binge eating disorder, food choice, and overeating, which lead to obesity and its associated medical complications and morbidity.
Collapse
Affiliation(s)
- Michael A Statnick
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Yanyun Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Michael Ansonoff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Jeffrey M Witkin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Linda Rorick-Kehn
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Todd M Suter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Min Song
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Charlie Hu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Celia Lafuente
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Alma Jiménez
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Ana Benito
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Nuria Diaz
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Maria Angeles Martínez-Grau
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - Miguel A Toledo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| | - John E Pintar
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (M.A.S., Y.C., J.M.W., L.R.K., T.M.S., M.S., C.H.); Eli Lilly and Company, Madrid, Spain (C.L., A.J., A.B., N.D., M.A.M.G., M.A.T.); and Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854 (M.A., J.E.P.)
| |
Collapse
|
67
|
Lutfy K, Zaveri NT. The Nociceptin Receptor as an Emerging Molecular Target for Cocaine Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:149-81. [PMID: 26810001 DOI: 10.1016/bs.pmbts.2015.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cocaine addiction is a global public health and socioeconomic issue that requires pharmacological and cognitive therapies. Currently there are no FDA-approved medications to treat cocaine addiction. However, in preclinical studies, interventions ranging from herbal medicine to deep-brain stimulation have shown promise for the therapy of cocaine addiction. Recent developments in molecular biology, pharmacology, and medicinal chemistry have enabled scientists to identify novel molecular targets along the pathways involved in drug addiction. In 1994, a receptor that showed a great deal of homology to the traditional opioid receptors was characterized. However, endogenous and exogenous opioids failed to bind to this receptor, which led scientists to name it opioid receptor-like receptor, now referred to as the nociceptin receptor. The endogenous ligand of NOPr was identified a year later and named orphanin FQ/nociceptin. Nociceptin and NOPr are widely distributed throughout the CNS and are involved in many physiological responses, such as food intake, nociceptive processing, neurotransmitter release, etc. Furthermore, exogenous nociceptin has been shown to regulate the activity of mesolimbic dopaminergic neurons, glutamate, and opioid systems, and the stress circuit. Importantly, exogenous nociceptin has been shown to reduce the rewarding and addictive actions of a number of drugs of abuse, such as psychostimulants, alcohol, and opioids. This paper reviews the existing literature on the role of endogenous nociceptin in the rewarding and addictive actions of cocaine. The effect of exogenous nociceptin on these processes is also reviewed. Furthermore, the effects of novel small-molecule NOPr ligands on these actions of cocaine are discussed. Overall, a review of the literature suggests that NOPr could be an emerging target for cocaine addiction pharmacotherapy.
Collapse
Affiliation(s)
- Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA.
| | | |
Collapse
|
68
|
Lutz PE, Zhou Y, Labbe A, Mechawar N, Turecki G. Decreased expression of nociceptin/orphanin FQ in the dorsal anterior cingulate cortex of suicides. Eur Neuropsychopharmacol 2015; 25:2008-14. [PMID: 26349406 PMCID: PMC4655195 DOI: 10.1016/j.euroneuro.2015.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 12/19/2022]
Abstract
The nociceptin/orphanin FQ (N/OFQ)-Nociceptin Opiod-like Peptide (NOP) receptor system is a critical mediator of physiological and pathological processes involved in emotional regulation and drug addiction. As such, this system may be an important biological substrate underlying psychiatric conditions that contribute to the risk of suicide. Thus, the goal of the present study was to characterize changes in human N/OFQ and NOP signaling as a function of depression, addiction and suicide. We quantified the expression of N/OFQ and NOP by RT-PCR in the anterior insula, the mediodorsal thalamus, and the dorsal anterior cingulate cortex (dACC) from a large sample of individuals who died by suicide and matched psychiatrically-healthy controls. Suicides displayed an 18% decrease in the expression of N/OFQ in the dACC that was not accounted for by current depressive or substance use disorders at the time of death. Therefore, our results suggest that dysregulation of the N/OFQ-NOP system may contribute to the neurobiology of suicide, a hypothesis that warrants further exploration.
Collapse
Affiliation(s)
- Pierre-Eric Lutz
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Verdun, Quebec, Canada H4H 1R3
| | - Yi Zhou
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Verdun, Quebec, Canada H4H 1R3
| | - Aurélie Labbe
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Verdun, Quebec, Canada H4H 1R3; Department of Psychiatry, McGill University, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Verdun, Quebec, Canada H4H 1R3; Department of Psychiatry, McGill University, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Verdun, Quebec, Canada H4H 1R3; Department of Psychiatry, McGill University, Canada.
| |
Collapse
|
69
|
The Importance of Ligand-Receptor Conformational Pairs in Stabilization: Spotlight on the N/OFQ G Protein-Coupled Receptor. Structure 2015; 23:2291-2299. [PMID: 26526853 DOI: 10.1016/j.str.2015.07.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 06/15/2015] [Accepted: 07/31/2015] [Indexed: 11/24/2022]
Abstract
Understanding the mechanism by which ligands affect receptor conformational equilibria is key in accelerating membrane protein structural biology. In the case of G protein-coupled receptors (GPCRs), we currently pursue a brute-force approach for identifying ligands that stabilize receptors and facilitate crystallogenesis. The nociceptin/orphanin FQ peptide receptor (NOP) is a member of the opioid receptor subfamily of GPCRs for which many structurally diverse ligands are available for screening. We observed that antagonist potency is correlated with a ligand's ability to induce receptor stability (Tm) and crystallogenesis. Using this screening strategy, we solved two structures of NOP in complex with top candidate ligands SB-612111 and C-35. Docking studies indicate that while potent, stabilizing antagonists strongly favor a single binding orientation, less potent ligands can adopt multiple binding modes, contributing to their low Tm values. These results suggest a mechanism for ligand-aided crystallogenesis whereby potent antagonists stabilize a single ligand-receptor conformational pair.
Collapse
|
70
|
Andero R. Nociceptin and the nociceptin receptor in learning and memory. Prog Neuropsychopharmacol Biol Psychiatry 2015; 62:45-50. [PMID: 25724763 PMCID: PMC4458422 DOI: 10.1016/j.pnpbp.2015.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/21/2022]
Abstract
There are many processes in which the neuropeptide nociceptin/orphanin FQ (N/OFQ or nociceptin) is involved in the brain. The role of nociceptin in learning and memory holds promise in modulating these processes in health and disease in the human brain. This review summarizes the body of research focused on N/OFQ and its specific receptor, the nociceptin receptor (NOP receptor), in learning and memory, and its potential mechanisms of action, in which acetylcholine, NMDA receptor, and noradrenaline may be critical. Finally, the association between NOP receptor and posttraumatic stress disorder (PTSD), a psychiatric disorder with altered fear learning, is examined as one of the potential outcomes resulting from pathological consequences of dysregulation of N/OFQ-NOP receptor in the brain.
Collapse
Affiliation(s)
- Raül Andero
- Department of Psychiatry and Behavioral Sciences, Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
71
|
Medeiros IU, Ruzza C, Asth L, Guerrini R, Romão PRT, Gavioli EC, Calo G. Blockade of nociceptin/orphanin FQ receptor signaling reverses LPS-induced depressive-like behavior in mice. Peptides 2015; 72:95-103. [PMID: 26028163 DOI: 10.1016/j.peptides.2015.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 11/25/2022]
Abstract
Nociceptin/orphanin FQ is the natural ligand of a Gi-protein coupled receptor named NOP. This peptidergic system is involved in the regulation of mood states and inflammatory responses. The present study aimed to investigate the consequences of blocking NOP signaling in lipopolysaccharide (LPS)-induced sickness and depressive-like behaviors in mice. LPS 0.8mg/kg, ip, significantly induced sickness signs such as weight loss, decrease of water and food intake and depressive-like behavior in the tail suspension test. Nortriptyline (ip, 60min prior the test) reversed the LPS-induced depressive states. The NOP receptor antagonist SB-612111, 30min prior LPS, did not modify LPS-induced sickness signs and depressive-like behavior. However, when injected 24h after LPS, NOP antagonists (UFP-101, icv, and SB-612111, ip) significantly reversed the mood effects of LPS. LPS evoked similar sickness signs and significantly increased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) plasma levels 6h post-injection in wild-type ((NOP(+/+)) and NOP knockout ((NOP(-/-)) mice. However, LPS treatment elicited depressive-like effects in NOP(+/+) but not in NOP(-/-) mice. In conclusion, the pharmacological and genetic blockade of NOP signaling does not affect LPS evoked sickness signs while reversing depressive-like behavior.
Collapse
Affiliation(s)
- Iris U Medeiros
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Chiara Ruzza
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Laila Asth
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Pedro R T Romão
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Girolamo Calo
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| |
Collapse
|
72
|
Sałat K, Jakubowska A, Kulig K. Cebranopadol: a first-in-class potent analgesic agent with agonistic activity at nociceptin/orphanin FQ and opioid receptors. Expert Opin Investig Drugs 2015; 24:837-44. [DOI: 10.1517/13543784.2015.1036985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
73
|
Ding Z, Zajac JM. Neuropeptide FF receptors exhibit direct and anti-opioid effects on mice dorsal raphe nucleus neurons. Eur J Pharmacol 2014; 740:271-6. [PMID: 25046840 DOI: 10.1016/j.ejphar.2014.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 11/25/2022]
Abstract
By using acutely dissociated dorsal raphe nucleus neurons (DRN) from young mice, direct and anti-opioid effects of Neuropeptide FF (NPFF) receptors were measured. The NPFF analog 1 DMe (10 µM) had no effect on resting Ca2+ channels but reduced the magnitude of Ca2+ transients induced by depolarization in 83.3% neurons tested, of which the inhibition rate is 45.4±2.9%. Pertussis toxin treatment reduced to 18.9% the number of responding neurons and attenuated by 47% the response of 1 DMe. In contrast, cholera toxin treatment had no significant effect. Eighteen minute perfusion with 1 DMe at a very low 10 nM concentration, that did not directly inhibit Ca2+ transients triggered by depolarization in every neuron, attenuated by 78% the inhibitory effect of Nociceptin/orphanin FQ (N/OFQ) on Ca2+ transients, but not that of by serotonin. These results demonstrated for the first time that NPFF receptors on mice DRN inhibit Ca2+ transients induced by depolarization via Gi/o protein and also exhibit a specific anti-opioid activity on nociceptin receptors, and that their specific anti-opioid activity is not a direct consequence of their activity on Ca2+ transients.
Collapse
Affiliation(s)
- Zhong Ding
- Institut de Pharmacologie et de Biologie Structurale, CNRS / Université de Toulouse, UMR 5089, 205 route de Narbonne, 31077 Toulouse Cedex, France
| | - Jean-Marie Zajac
- Institut de Pharmacologie et de Biologie Structurale, CNRS / Université de Toulouse, UMR 5089, 205 route de Narbonne, 31077 Toulouse Cedex, France.
| |
Collapse
|
74
|
Palotai M, Adamik A, Telegdy G. Involvement of neurotransmitters in the action of the nociceptin/orphanin FQ peptide-receptor system on passive avoidance learning in rats. Neurochem Res 2014; 39:1477-83. [PMID: 24893797 DOI: 10.1007/s11064-014-1337-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
Abstract
The nociceptin/orphanin FQ peptide (NOP) receptor and its endogenous ligand plays role in several physiologic functions of the central nervous system, including pain, locomotion, anxiety and depression, reward and drug addiction, learning and memory. Previous studies demonstrated that the NOP-receptor system induces impairment in memory and learning. However, we have little evidence about the underlying neuromodulation. The aim of the present study was to investigate the involvement of distinct neurotransmitters in the action of the selective NOP receptor agonist orphan G protein-coupled receptor (GPCR) SP9155 P550 on memory consolidation in a passive avoidance learning test in rats. Accordingly, rats were pretreated with a nonselective muscarinic acetylcholine receptor antagonist, atropine, a γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline, a D2, D3, D4 dopamine receptor antagonist, haloperidol, a nonselective opioid receptor antagonist, naloxone, a non-specific nitric oxide synthase inhibitor, nitro-L-arginine, a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a β-adrenergic receptor antagonist, propranolol. Atropine, bicuculline, naloxone and phenoxybenzamine reversed the orphan GPCR SP9155 P550-induced memory impairment, whereas propranolol, haloperidol and nitro-L-arginine were ineffective. Our results suggest that the NOP system-induced impairment of memory consolidation is mediated through muscarinic cholinergic, GABA-A-ergic, opioid and α-adrenergic receptors, whereas β-adrenergic, D2, D3, D4-dopaminergic and nitrergic mechanisms are not be implicated.
Collapse
Affiliation(s)
- Miklós Palotai
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Semmelweis Str. 1, Szeged, 6701, Hungary
| | | | | |
Collapse
|
75
|
Filaferro M, Ruggieri V, Novi C, Calò G, Cifani C, Micioni Di Bonaventura MV, Sandrini M, Vitale G. Functional antagonism between nociceptin/orphanin FQ and corticotropin-releasing factor in rat anxiety-related behaviors: involvement of the serotonergic system. Neuropeptides 2014; 48:189-97. [PMID: 24894718 DOI: 10.1016/j.npep.2014.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 01/30/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) acts as an anxiolytic-like agent in the rat and behaves as a functional antagonist of corticotropin-releasing factor (CRF) due to its ability to oppose CRF biological actions. In response to stress, CRF triggers changes in neurotransmitter systems including serotonin (5-HT). The role of 5-HT1A receptor in anxiety has been supported by preclinical and clinical studies. The present study investigated the possible functional antagonism between N/OFQ (1nmol/rat) and CRF (0.2nmol/rat) in anxiety-related conditions in rats, using elevated plus maze and defensive burying tests, in order to confirm previous literature results. Moreover, possible changes in the serotonergic system were studied in areas rich of serotonergic neurons: frontal cortex and pons. In both tests N/OFQ showed anxiolytic-like effects while CRF displayed anxiogenic-like effects. N/OFQ before CRF treatment counteracted the anxiogenic-like effects evoked by CRF. In frontal cortex, N/OFQ significantly decreased 5-HT levels but did not modify the hydroxyindoleacetic acid (5-HIAA) ones; CRF modified neither 5-HT nor 5-HIAA content but counteracted changes induced by N/OFQ alone. In pons, N/OFQ induced no change in serotonergic activity while CRF significantly decreased 5-HT levels and increased 5-HIAA content. The two peptides' combination reinstated serotonergic parameters to controls. In frontal cortex, N/OFQ increased the 5HT1A receptor density but reduced its affinity, while CRF alone did not induce any change. In pons, CRF decreased 5HT1ABmax and KD whereas N/OFQ was ineffective. All biochemical modifications were reverted by N/OFQ plus CRF treatment. The present study confirms that N/OFQ counteracts CRF anxiogenic-like effects in the behavioral tests evaluated. These effects may involve central serotonergic mechanisms since N/OFQ plus CRF induces a reversion of serotonergic changes provoked by single peptide. Our data support the hypothesis that N/OFQ may behave as functional CRF antagonist, this action being of interest for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- M Filaferro
- Department of Biomedical, Metabolic Sciences and Neurosciences, Section of Pharmacology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - V Ruggieri
- Department of Life Sciences, Section of Pharmacology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - C Novi
- Department of Life Sciences, Section of Pharmacology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - G Calò
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Via Fossato di Mortara 19, 44121 Ferrara, Italy
| | - C Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Macerata, Italy
| | - M V Micioni Di Bonaventura
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Macerata, Italy
| | - M Sandrini
- Department of Biomedical, Metabolic Sciences and Neurosciences, Section of Pharmacology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - G Vitale
- Department of Life Sciences, Section of Pharmacology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy.
| |
Collapse
|
76
|
Toledo MA, Pedregal C, Lafuente C, Diaz N, Martinez-Grau MA, Jiménez A, Benito A, Torrado A, Mateos C, Joshi EM, Kahl SD, Rash KS, Mudra DR, Barth VN, Shaw DB, McKinzie D, Witkin JM, Statnick MA. Discovery of a novel series of orally active nociceptin/orphanin FQ (NOP) receptor antagonists based on a dihydrospiro(piperidine-4,7'-thieno[2,3-c]pyran) scaffold. J Med Chem 2014; 57:3418-29. [PMID: 24678969 DOI: 10.1021/jm500117r] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nociceptin/OFQ (N/OFQ) is a 17 amino acid peptide that is the endogenous ligand for the ORL1/NOP receptor. Nociceptin appears to regulate a host of physiological functions such as biological reactions to stress, anxiety, mood, and drug abuse, in addition to feeding behaviors. To develop tools to study the function of nociceptin and NOP receptor, our research effort sought to identify orally available NOP antagonists. Our effort led to the discovery of a novel chemical series based on the dihydrospiro(piperidine-4,7'-thieno[2,3-c]pyran) scaffold. Herein we show that dihydrospiro(piperidine-4,7'-thieno[2,3-c]pyran)-derived compounds are potent NOP antagonists with high selectivity versus classical opioid receptors (μ, δ, and κ). Moreover, these compounds exhibit sufficient bioavailability to produce a high level of NOP receptor occupancy in the brain following oral administration in rats.
Collapse
Affiliation(s)
- Miguel A Toledo
- Centro de Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Witkin JM, Statnick MA, Rorick-Kehn LM, Pintar JE, Ansonoff M, Chen Y, Tucker RC, Ciccocioppo R. The biology of Nociceptin/Orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. Pharmacol Ther 2014; 141:283-99. [PMID: 24189487 PMCID: PMC5098338 DOI: 10.1016/j.pharmthera.2013.10.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/10/2013] [Indexed: 01/16/2023]
Abstract
Nociceptin/Orphanin FQ (N/OFQ) is a 17 amino acid peptide that was deorphanized in 1995. The generation of specific agonists, antagonists and receptor deficient mice and rats has enabled progress in elucidating the biological functions of N/OFQ. Additionally, radio-imaging technologies have been advanced for investigation of this system in animals and humans. Together with traditional neurobehavioral techniques, these tools have been utilized to identify the biological significance of the N/OFQ system and its interacting partners. The present review focuses on the role of N/OFQ in the regulation of feeding, body weight homeostasis, stress, the stress-related psychiatric disorders of depression and anxiety, and in drug and alcohol dependence. Critical evaluation of the current scientific preclinical literature suggests that small molecule modulators of nociceptin opioid peptide receptors (NOP) might be useful in the treatment of diseases related to these biological functions. In particular, the literature data suggest that antagonism of NOP receptors will produce anti-obesity and antidepressant activities in humans. However, there are also contradictory data discussed. The current literature on the role of N/OFQ in anxiety and addiction, on the other hand points primarily to a role of agonist modulation being potentially therapeutic. Some drug-like molecules that function either as agonists or antagonists of NOP receptors have been optimized for human clinical study to test some of these hypotheses. The discovery of PET ligands for NOP receptors, combined with the pharmacological tools and burgeoning preclinical data set discussed here bodes well for a rapid advancement of clinical understanding and potential therapeutic benefit.
Collapse
Key Words
- (1S,3aS)-8- (2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one, a NOP receptor agonist
- (±)trans-1-[1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one, a NOP receptor antagonist
- 2-{3-[1-((1R)-acenaphthen-1-yl)piperidin-4-yl]-2,3-dihydro-2-oxo-benzimidazol-1-yl}-N-methylacetamide, a NOP receptor agonist
- 5-HT
- 5-hydroxytryptamine or serotonin
- 8-[bis(2-methylphenyl)-methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol
- ACTH
- Alcohol-preferring rats
- Anxiety
- BED
- BNST
- CGRP
- CPP
- CRF
- CTA
- Calcitonin gene related peptide
- CeA
- DA
- Depression
- Drug dependence
- EPSC
- FST
- G-protein activated, inwardly rectifying K(+) channel
- G-protein-coupled receptor
- GIRK
- GPCR
- HPA
- J-113397
- JTC-801
- KO
- MDD
- Marchigian Sardinian Alcohol-Preferring
- N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl)benzamide hydrochloride, a NOP receptor antagonist
- N/OFQ
- NAcc
- NE
- NOP
- NPY
- Nociceptin opioid peptide or Nociceptin opioid peptide receptor
- Nociceptin/Orphanin FQ
- Nociceptin/Orphanin FQ (F: phenylalanine, Q: glutamine, the amino acids that begin and end the peptide sequence)
- ORL
- Obesity
- P rats
- POMC
- Pro-opiomelanocortin
- Ro 64-6198
- SB-612111
- SCH 221510
- SCH 655842
- Stress
- TST
- UFP-101
- VTA
- W212393
- [(–)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol, a NOP receptor antagonist
- [Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2), a NOP receptor antagonist
- adrenocorticotropic hormone
- bed nucleus of stria terminalis
- binge eating disorder
- central nucleus of the amygdala
- conditioned place preference
- conditioned taste aversion
- corticotrophin-releasing factor
- dopamine
- endo-8-[bis(2-chlorophenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octane-3-carboxamide, a NOP receptor agonist
- excitatory post-synaptic current
- forced-swim test
- hypothalamic–pituitary axis
- knockout
- mPFC
- major depressive disorder
- medial prefrontal cortex
- msP
- neuropeptide Y
- norepinephrine
- nucleus accumbens
- opioid-receptor-like
- tail-suspension test
- ventral tegmental area
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA.
| | | | | | - John E Pintar
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Michael Ansonoff
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Yanyun Chen
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - R Craig Tucker
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | | |
Collapse
|
78
|
Kallupi M, Oleata CS, Luu G, Teshima K, Ciccocioppo R, Roberto M. MT-7716, a novel selective nonpeptidergic NOP receptor agonist, effectively blocks ethanol-induced increase in GABAergic transmission in the rat central amygdala. Front Integr Neurosci 2014; 8:18. [PMID: 24600360 PMCID: PMC3927450 DOI: 10.3389/fnint.2014.00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/01/2014] [Indexed: 11/13/2022] Open
Abstract
The GABAergic system in the central amygdala (CeA) plays a major role in ethanol dependence and the anxiogenic-like response to ethanol withdrawal. A large body of evidence shows that Nociceptin/Orphanin FQ (N/OFQ) regulates ethanol intake and anxiety-like behavior. In the rat, ethanol significantly augments CeA GABA release, whereas N/OFQ diminishes it. Using electrophysiological techniques in an in vitro slice preparation, in this study we investigated the effects of a nonpeptidergic NOP receptor agonist, MT-7716 [(R)-2-3-[1-(Acenaphthen-1-yl)piperidin-4-yl]-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl-N-methylacetamide hydrochloride hydrate], and its interaction with ethanol on GABAergic transmission in CeA slices of naïve rats. We found that MT-7716 dose-dependently (100-1000 nM) diminished evoked GABAA receptor-mediated inhibitory postsynaptic potentials (IPSPs) and increased paired-pulse facilitation (PPF) ratio of these evoked IPSPs, suggesting a presynaptic site of action of the MT-7716 by decreasing GABA release at CeA synapses. The presynaptic action of MT-7716 was also supported by the significant decrease in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) induced by the nociceptin receptor (NOP) agonist. Interestingly, MT-7716 prevented the ethanol-induced augmentation of evoked IPSPs. A putative selective NOP antagonist, [Nphe1]Nociceptin(1-13)NH2, totally prevented the MT-7716-induced inhibition of IPSP amplitudes indicating that MT-7716 exerts its effect through NOPs. These data provide support for an interaction between the nociceptin and GABAergic systems in the CeA and for the anti-alcohol properties of the NOP activation. The development of a synthetic nonpeptidergic NOP receptor agonist such as MT-7716 may represent a useful therapeutic target for alcoholism.
Collapse
Affiliation(s)
- Marsida Kallupi
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La JollaCA, USA
- Pharmacology Unit, School of Pharmacy, University of CamerinoCamerino, Italy
| | - Christopher S. Oleata
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La JollaCA, USA
| | - George Luu
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La JollaCA, USA
| | - Koji Teshima
- Department II (CNS), Pharmacology Research Laboratories I, Research Division, Mitsubishi Tanabe Pharma CorporationYokohama, Japan
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of CamerinoCamerino, Italy
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La JollaCA, USA
| |
Collapse
|
79
|
Battisti UM, Corrado S, Sorbi C, Cornia A, Tait A, Malfacini D, Cerlesi MC, Calò G, Brasili L. Synthesis, enantiomeric separation and docking studies of spiropiperidine analogues as ligands of the nociceptin/orphanin FQ receptor. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00082j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|