51
|
Kumar S, Yadav N, Pandey S, Thelma BK. Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders: contemporary approaches, success, challenges and prospects. J Genet 2018. [DOI: 10.1007/s12041-018-0953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
52
|
Roe MS, Wahab B, Török Z, Horváth I, Vigh L, Prodromou C. Dihydropyridines Allosterically Modulate Hsp90 Providing a Novel Mechanism for Heat Shock Protein Co-induction and Neuroprotection. Front Mol Biosci 2018; 5:51. [PMID: 29930942 PMCID: PMC6000670 DOI: 10.3389/fmolb.2018.00051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Chaperones play a pivotal role in protein homeostasis, but with age their ability to clear aggregated and damaged protein from cells declines. Tau pathology is a driver of a variety of neurodegenerative disease and in Alzheimer's disease (AD) it appears to be precipitated by the formation of amyloid-β (Aβ) aggregates. Aβ-peptide appears to trigger Tau hyperphosphorylation, formation of neurofibrillary tangles and neurotoxicity. Recently, dihydropyridine derivatives were shown to upregulate the heat shock response (HSR) and provide a neuroprotective effect in an APPxPS1 AD mouse model. The HSR response was only seen in diseased cells and consequently these compounds were defined as co-inducers since they upregulate chaperones and co-chaperones only when a pathological state is present. We show for compounds tested herein, that they target predominantly the C-terminal domain of Hsp90, but show some requirement for its middle-domain, and that binding stimulates the chaperones ATPase activity. We identify the site for LA1011 binding and confirm its identification by mutagenesis. We conclude, that binding compromises Hsp90's ability to chaperone, by modulating its ATPase activity, which consequently induces the HSR in diseased cells. Collectively, this represents the mechanism by which the normalization of neurofibrillary tangles, preservation of neurons, reduced tau pathology, reduced amyloid plaque, and increased dendritic spine density in the APPxPS1 Alzheimer's mouse model is initiated. Such dihydropyridine derivatives therefore represent potential pharmaceutical candidates for the therapy of neurodegenerative disease, such as AD.
Collapse
Affiliation(s)
- Mark S Roe
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Ben Wahab
- Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences (HAS), Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences (HAS), Szeged, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences (HAS), Szeged, Hungary
| | | |
Collapse
|
53
|
Ekimova IV, Plaksina DV, Pastukhov YF, Lapshina KV, Lazarev VF, Mikhaylova ER, Polonik SG, Pani B, Margulis BA, Guzhova IV, Nudler E. New HSF1 inducer as a therapeutic agent in a rodent model of Parkinson's disease. Exp Neurol 2018; 306:199-208. [PMID: 29704482 DOI: 10.1016/j.expneurol.2018.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/17/2018] [Accepted: 04/24/2018] [Indexed: 01/03/2023]
Abstract
Molecular chaperone HSP70 (HSPA1A) has therapeutic potential in conformational neurological diseases. Here we evaluate the neuroprotective function of the chaperone in a rat model of Parkinson's disease (PD). We show that the knock-down of HSP70 (HSPA1A) in dopaminergic neurons of the Substantia nigra causes an almost 2-fold increase in neuronal death and multiple motor disturbances in animals. Conversely, pharmacological activation of HSF1 transcription factor and enhanced expression of inducible HSP70 with the echinochrome derivative, U-133, reverses the process of neurodegeneration, as evidenced by а increase in the number of tyrosine hydroxylase-containing neurons, and prevents the motor disturbances that are typical of the clinical stage of the disease. The neuroprotective effect caused by the elevation of HSP70 in nigral neurons is due to the ability of the chaperone to prevent α-synuclein aggregation and microglia activation. Our findings support the therapeutic relevance of HSP70 induction for the prevention and/or deceleration of PD-like neurodegeneration.
Collapse
Affiliation(s)
- Irina V Ekimova
- Laboratory of Comparative Thermophysiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, pr. Maurice Thorez, 44, St. Petersburg 194223, Russia.
| | - Daria V Plaksina
- Laboratory of Comparative Thermophysiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, pr. Maurice Thorez, 44, St. Petersburg 194223, Russia
| | - Yuri F Pastukhov
- Laboratory of Comparative Thermophysiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, pr. Maurice Thorez, 44, St. Petersburg 194223, Russia
| | - Ksenia V Lapshina
- Laboratory of Comparative Thermophysiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, pr. Maurice Thorez, 44, St. Petersburg 194223, Russia
| | - Vladimir F Lazarev
- Cell Protection Mechanisms Laboratory, Institute of Cytology Russian of Academy of Sciences, Tikhoretsky pr., 4, St. Petersburg 194064, Russia
| | - Elena R Mikhaylova
- Cell Protection Mechanisms Laboratory, Institute of Cytology Russian of Academy of Sciences, Tikhoretsky pr., 4, St. Petersburg 194064, Russia
| | - Sergey G Polonik
- G.B.Elyakov Pacific Institute of Bioorganic Chemistry of Far East Branch of Russian Academy of Sciences, pr. 100 let Vladivostoku 159, Vladivostok 690022, Russia
| | - Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine NY, NY 10016, USA
| | - Boris A Margulis
- Cell Protection Mechanisms Laboratory, Institute of Cytology Russian of Academy of Sciences, Tikhoretsky pr., 4, St. Petersburg 194064, Russia
| | - Irina V Guzhova
- Cell Protection Mechanisms Laboratory, Institute of Cytology Russian of Academy of Sciences, Tikhoretsky pr., 4, St. Petersburg 194064, Russia.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine NY, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine NY, NY 10016, USA.
| |
Collapse
|
54
|
Medinas DB, Valenzuela V, Hetz C. Proteostasis disturbance in amyotrophic lateral sclerosis. Hum Mol Genet 2018; 26:R91-R104. [PMID: 28977445 DOI: 10.1093/hmg/ddx274] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motoneurons in the brain and spinal cord leading to paralysis and death. Although the etiology of ALS remains poorly understood, abnormal protein aggregation and altered proteostasis are common features of sporadic and familial ALS forms. The proteostasis network is decomposed into different modules highly conserved across species and comprehends a collection of mechanisms related to protein synthesis, folding, trafficking, secretion and degradation that is distributed in different compartments inside the cell. Functional studies in various ALS models are revealing a complex scenario where distinct and even opposite effects in disease progression are observed depending on the targeted component of the proteostasis network. Importantly, alteration of the folding capacity of the endoplasmic reticulum (ER) is becoming a common pathological alteration in ALS, representing one of the earliest defects observed in disease models, contributing to denervation and motoneuron dysfunction. Strategies to target-specific components of the proteostasis network using small molecules and gene therapy are under development, and promise interesting avenues for future interventions to delay or stop ALS progression.
Collapse
Affiliation(s)
- Danilo B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Vicente Valenzuela
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, USA.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
55
|
Seminary ER, Sison SL, Ebert AD. Modeling Protein Aggregation and the Heat Shock Response in ALS iPSC-Derived Motor Neurons. Front Neurosci 2018. [PMID: 29515358 PMCID: PMC5826239 DOI: 10.3389/fnins.2018.00086] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder caused by the selective loss of the upper and lower motor neurons. Only 10% of all cases are caused by a mutation in one of the two dozen different identified genes, while the remaining 90% are likely caused by a combination of as yet unidentified genetic and environmental factors. Mutations in C9orf72, SOD1, or TDP-43 are the most common causes of familial ALS, together responsible for at least 60% of these cases. Remarkably, despite the large degree of heterogeneity, all cases of ALS have protein aggregates in the brain and spinal cord that are immunopositive for SOD1, TDP-43, OPTN, and/or p62. These inclusions are normally prevented and cleared by heat shock proteins (Hsps), suggesting that ALS motor neurons have an impaired ability to induce the heat shock response (HSR). Accordingly, there is evidence of decreased induction of Hsps in ALS mouse models and in human post-mortem samples compared to unaffected controls. However, the role of Hsps in protein accumulation in human motor neurons has not been fully elucidated. Here, we generated motor neuron cultures from human induced pluripotent stem cell (iPSC) lines carrying mutations in SOD1, TDP-43, or C9orf72. In this study, we provide evidence that despite a lack of overt motor neuron loss, there is an accumulation of insoluble, aggregation-prone proteins in iPSC-derived motor neuron cultures but that content and levels vary with genetic background. Additionally, although iPSC-derived motor neurons are generally capable of inducing the HSR when exposed to a heat stress, protein aggregation itself is not sufficient to induce the HSR or stress granule formation. We therefore conclude that ALS iPSC-derived motor neurons recapitulate key early pathological features of the disease and fail to endogenously upregulate the HSR in response to increased protein burden.
Collapse
Affiliation(s)
- Emily R Seminary
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Samantha L Sison
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
56
|
Vats A, Gourie-Devi M, Ahuja K, Sharma A, Wajid S, Ganguly NK, Taneja V. Expression analysis of protein homeostasis pathways in the peripheral blood mononuclear cells of sporadic amyotrophic lateral sclerosis patients. J Neurol Sci 2018; 387:85-91. [PMID: 29571878 DOI: 10.1016/j.jns.2018.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 01/05/2023]
Abstract
Misfolded protein aggregates are the hallmark of Amyotrophic Lateral Sclerosis (ALS) which suggests involvement of protein homeostasis pathways in etiology of ALS. However, status of protein homeostasis in peripheral blood of ALS is not well established. We analyzed expression levels of key genes of proteostasis pathways in peripheral blood mononuclear cells (PBMCs) of sporadic ALS (sALS) patients and healthy controls. Increased protein carbonylation was observed in patients reflecting oxidative damage in PBMCs. We observed increased transcript and protein levels of GRP78 suggesting Endoplasmic reticulum (ER) insult to cells. Further, significant upregulation of spliced XBP1 and two stress sensors: IRE1α/ERN1 and ATF6 indicated induction of unfolded protein response (UPR). Genes involved in autophagosome initiation (ULK1, ULK2, ATG13); nucleation and elongation (BECLIN1, ATG7, ATG16L1, ATG5, ATG10) and vesicular trafficking genes were significantly increased in patients. Increased lipidation of LC3 validated induction of autophagy. Accumulation of low molecular weight ubiquitinated proteins in patients suggested deregulation of proteasome (UPS) pathway. In addition, cytosolic chaperones (HSP70 and HSP27) and HSF1 were elevated in patients. Increased TDP43 indicated role of TDP43 in disease pathology. Our findings suggest that there is oxidative insult and upregulation of UPR, vesicular trafficking and autophagy in PBMCs of sALS patients.
Collapse
Affiliation(s)
- Abhishek Vats
- Department of Research, Sir Ganga Ram Hospital, Rajinder Nagar, Delhi 110060, India; Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Mandaville Gourie-Devi
- Department of Neurophysiology, Sir Ganga Ram Hospital, Rajinder Nagar, Delhi 110060, India; Department of Neurology, Institute of Human Behaviour and Allied Sciences, New Delhi 110095, India
| | - Kavita Ahuja
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Ankkita Sharma
- Department of Neurophysiology, Sir Ganga Ram Hospital, Rajinder Nagar, Delhi 110060, India
| | - Saima Wajid
- Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Nirmal Kumar Ganguly
- Department of Research, Sir Ganga Ram Hospital, Rajinder Nagar, Delhi 110060, India
| | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, Rajinder Nagar, Delhi 110060, India.
| |
Collapse
|
57
|
Kasza Á, Hunya Á, Frank Z, Fülöp F, Török Z, Balogh G, Sántha M, Bálind Á, Bernáth S, Blundell KLIM, Prodromou C, Horváth I, Zeiler HJ, Hooper PL, Vigh L, Penke B. Dihydropyridine Derivatives Modulate Heat Shock Responses and have a Neuroprotective Effect in a Transgenic Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2018; 53:557-71. [PMID: 27163800 PMCID: PMC4969717 DOI: 10.3233/jad-150860] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heat shock proteins (Hsps) have chaperone activity and play a pivotal role in the homeostasis of proteins by preventing misfolding, by clearing aggregated and damaged proteins from cells, and by maintaining proteins in an active state. Alzheimer’s disease (AD) is thought to be caused by amyloid-β peptide that triggers tau hyperphosphorylation, which is neurotoxic. Although proteostasis capacity declines with age and facilitates the manifestation of neurodegenerative diseases such as AD, the upregulation of chaperones improves prognosis. Our research goal is to identify potent Hsp co-inducers that enhance protein homeostasis for the treatment of AD, especially 1,4-dihydropyridine derivatives optimized for their ability to modulate cellular stress responses. Based on favorable toxicological data and Hsp co-inducing activity, LA1011 was selected for the in vivo analysis of its neuroprotective effect in the APPxPS1 mouse model of AD. Here, we report that 6 months of LA1011 administration effectively improved the spatial learning and memory functions in wild type mice and eliminated neurodegeneration in double mutant mice. Furthermore, Hsp co-inducer therapy preserves the number of neurons, increases dendritic spine density, and reduces tau pathology and amyloid plaque formation in transgenic AD mice. In conclusion, the Hsp co-inducer LA1011 is neuroprotective and therefore is a potential pharmaceutical candidate for the therapy of neurodegenerative diseases, particularly AD.
Collapse
Affiliation(s)
- Ágnes Kasza
- Department of Medical Chemistry, University of Szeged, Hungary
| | - Ákos Hunya
- LipidArt Research and Development Ltd., Szeged, Hungary
| | - Zsuzsa Frank
- Department of Medical Chemistry, University of Szeged, Hungary
| | - Ferenc Fülöp
- Department of Pharmaceutical Chemistry, University of Szeged, Hungary
| | - Zsolt Török
- LipidArt Research and Development Ltd., Szeged, Hungary.,Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Gábor Balogh
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Miklós Sántha
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Árpád Bálind
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | | | | | | | - Ibolya Horváth
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | | | - Philip L Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Medical School, Anschutz Medical Campus, Aurora, CO, USA
| | - László Vigh
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, Hungary
| |
Collapse
|
58
|
Maurel C, Dangoumau A, Marouillat S, Brulard C, Chami A, Hergesheimer R, Corcia P, Blasco H, Andres CR, Vourc'h P. Causative Genes in Amyotrophic Lateral Sclerosis and Protein Degradation Pathways: a Link to Neurodegeneration. Mol Neurobiol 2018; 55:6480-6499. [PMID: 29322304 DOI: 10.1007/s12035-017-0856-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease caused by the degeneration of motor neurons (MNs) leading to progressive muscle weakness and atrophy. Several molecular pathways have been implicated, such as glutamate-mediated excitotoxicity, defects in cytoskeletal dynamics and axonal transport, disruption of RNA metabolism, and impairments in proteostasis. ALS is associated with protein accumulation in the cytoplasm of cells undergoing neurodegeneration, which is a hallmark of the disease. In this review, we focus on mechanisms of proteostasis, particularly protein degradation, and discuss how they are related to the genetics of ALS. Indeed, the genetic bases of the disease with the implication of more than 30 genes associated with familial ALS to date, together with the important increase in understanding of endoplasmic reticulum (ER) stress, proteasomal degradation, and autophagy, allow researchers to better understand the mechanisms underlying the selective death of motor neurons in ALS. It is clear that defects in proteostasis are involved in this type of cellular degeneration, but whether or not these mechanisms are primary causes or merely consequential remains to be clearly demonstrated. Novel cellular and animal models allowing chronic expression of mutant proteins, for example, are required. Further studies linking genetic discoveries in ALS to mechanisms of protein clearance will certainly be crucial in order to accelerate translational and clinical research towards new therapeutic targets and strategies.
Collapse
Affiliation(s)
- C Maurel
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - A Dangoumau
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - S Marouillat
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - C Brulard
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - A Chami
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - R Hergesheimer
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - P Corcia
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Neurologie, CHRU de Tours, 37044, Tours, France
| | - H Blasco
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - C R Andres
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - P Vourc'h
- UMR INSERM U1253, Université de Tours, 37032, Tours, France.
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France.
| |
Collapse
|
59
|
Kirkegaard T, Gray J, Priestman DA, Wallom KL, Atkins J, Olsen OD, Klein A, Drndarski S, Petersen NHT, Ingemann L, Smith DA, Morris L, Bornæs C, Jørgensen SH, Williams I, Hinsby A, Arenz C, Begley D, Jäättelä M, Platt FM. Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses. Sci Transl Med 2017; 8:355ra118. [PMID: 27605553 DOI: 10.1126/scitranslmed.aad9823] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/18/2016] [Indexed: 12/17/2022]
Abstract
Lysosomal storage diseases (LSDs) often manifest with severe systemic and central nervous system (CNS) symptoms. The existing treatment options are limited and have no or only modest efficacy against neurological manifestations of disease. We demonstrate that recombinant human heat shock protein 70 (HSP70) improves the binding of several sphingolipid-degrading enzymes to their essential cofactor bis(monoacyl)glycerophosphate in vitro. HSP70 treatment reversed lysosomal pathology in primary fibroblasts from 14 patients with eight different LSDs. HSP70 penetrated effectively into murine tissues including the CNS and inhibited glycosphingolipid accumulation in murine models of Fabry disease (Gla(-/-)), Sandhoff disease (Hexb(-/-)), and Niemann-Pick disease type C (Npc1(-/-)) and attenuated a wide spectrum of disease-associated neurological symptoms in Hexb(-/-) and Npc1(-/-) mice. Oral administration of arimoclomol, a small-molecule coinducer of HSPs that is currently in clinical trials for Niemann-Pick disease type C (NPC), recapitulated the effects of recombinant human HSP70, suggesting that heat shock protein-based therapies merit clinical evaluation for treating LSDs.
Collapse
Affiliation(s)
| | - James Gray
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | | | - Jennifer Atkins
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | - Ole Dines Olsen
- Orphazyme ApS, Copenhagen, Denmark. Cell Death and Metabolism Unit, Center for Autophagy, Recycling, and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Alexander Klein
- Institut für Chemie der Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | - David A Smith
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | - Lauren Morris
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | | | - Ian Williams
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | - Christoph Arenz
- Institut für Chemie der Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Begley
- Institute of Pharmaceutical Science, King's College London, London, U.K
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling, and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, U.K
| |
Collapse
|
60
|
Braak H, Del Tredici K. Anterior Cingulate Cortex TDP-43 Pathology in Sporadic Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2017; 77:74-83. [DOI: 10.1093/jnen/nlx104] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/04/2017] [Indexed: 01/04/2023] Open
|
61
|
Platt FM. Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov 2017; 17:133-150. [PMID: 29147032 DOI: 10.1038/nrd.2017.214] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) - designated as 'orphan' diseases - are inborn errors of metabolism caused by defects in genes that encode proteins involved in various aspects of lysosomal homeostasis. For many years, LSDs were viewed as unattractive targets for the development of therapies owing to their low prevalence. However, the development and success of the first commercial biologic therapy for an LSD - enzyme replacement therapy for type 1 Gaucher disease - coupled with regulatory incentives rapidly catalysed commercial interest in therapeutically targeting LSDs. Despite ongoing challenges, various therapeutic strategies for LSDs now exist, with many agents approved, undergoing clinical trials or in preclinical development.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
62
|
Als and Ftd: Insights into the disease mechanisms and therapeutic targets. Eur J Pharmacol 2017; 817:2-6. [PMID: 29031901 DOI: 10.1016/j.ejphar.2017.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders, related by signs of deteriorating motor and cognitive functions, and short survival. The causes are still largely unknown and no effective treatment currently exists. It has been shown that FTLD may coexist with ALS. The overlap between ALS and frontotemporal dementia (FTD), the clinical syndrome associated with FTLD, occurs at clinical, genetic, and pathological levels. The hallmark proteins of the pathognomonic inclusions are SOD-1, TDP-43 or FUS, rarely the disease is caused by mutations in the respective genes. Frontotemporal lobar degenerations (FTLD) is genetically, neuropathologically and clinically heterogeneous and may present with behavioural, language and occasionally motor disorder, respectively. Almost all cases of ALS, as well as tau-negative FTLD share a common neuropathology, neuronal and glial inclusion bodies containing abnormal TDP-43 protein, collectively called TDP-43 proteinopathy. Recent discoveries in genetics (e.g. C9orf72 hexanucleotide expansion) and the subsequent neuropathological characterization have revealed remarkable overlap between ALS and FTLD-TDP indicating common pathways in pathogenesis. For ALS, an anti-glutamate agent riluzole may be offered to slow disease progression (Level A), and a promising molecule, arimoclomol, is currently in clinical trials. Other compounds, however, are being trailed and some have shown encouraging results. As new therapeutic approaches continue to emerge by targeting SOD1, TDP-43, or GRN, we present some advances that are being made in our understanding of the molecular mechanisms of these diseases, which together with gene and stem cell therapies may translate into new treatment options.
Collapse
|
63
|
Zhou T, Ahmad TK, Gozda K, Truong J, Kong J, Namaka M. Implications of white matter damage in amyotrophic lateral sclerosis (Review). Mol Med Rep 2017; 16:4379-4392. [PMID: 28791401 PMCID: PMC5646997 DOI: 10.3892/mmr.2017.7186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which involves the progressive degeneration of motor neurons. ALS has long been considered a disease of the grey matter; however, pathological alterations of the white matter (WM), including axonal loss, axonal demyelination and oligodendrocyte death, have been reported in patients with ALS. The present review examined motor neuron death as the primary cause of ALS and evaluated the associated WM damage that is guided by neuronal‑glial interactions. Previous studies have suggested that WM damage may occur prior to the death of motor neurons, and thus may be considered an early indicator for the diagnosis and prognosis of ALS. However, the exact molecular mechanisms underlying early‑onset WM damage in ALS have yet to be elucidated. The present review explored the detailed anatomy of WM and identified several pathological mechanisms that may be implicated in WM damage in ALS. In addition, it associated the pathophysiological alterations of WM, which may contribute to motor neuron death in ALS, with similar mechanisms of WM damage that are involved in multiple sclerosis (MS). Furthermore, the early detection of WM damage in ALS, using neuroimaging techniques, may lead to earlier therapeutic intervention, using immunomodulatory treatment strategies similar to those used in relapsing‑remitting MS, aimed at delaying WM damage in ALS. Early therapeutic approaches may have the potential to delay motor neuron damage and thus prolong the survival of patients with ALS. The therapeutic interventions that are currently available for ALS are only marginally effective. However, early intervention with immunomodulatory drugs may slow the progression of WM damage in the early stages of ALS, thus delaying motor neuron death and increasing the life expectancy of patients with ALS.
Collapse
Affiliation(s)
- Ting Zhou
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Tina Khorshid Ahmad
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Kiana Gozda
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jessica Truong
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Michael Namaka
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
- Department of Medical Rehabilitation, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 1R9, Canada
| |
Collapse
|
64
|
San Gil R, Ooi L, Yerbury JJ, Ecroyd H. The heat shock response in neurons and astroglia and its role in neurodegenerative diseases. Mol Neurodegener 2017; 12:65. [PMID: 28923065 PMCID: PMC5604514 DOI: 10.1186/s13024-017-0208-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022] Open
Abstract
Protein inclusions are a predominant molecular pathology found in numerous neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington's disease. Protein inclusions form in discrete areas of the brain characteristic to the type of neurodegenerative disease, and coincide with the death of neurons in that region (e.g. spinal cord motor neurons in amyotrophic lateral sclerosis). This suggests that the process of protein misfolding leading to inclusion formation is neurotoxic, and that cell-autonomous and non-cell autonomous mechanisms that maintain protein homeostasis (proteostasis) can, at times, be insufficient to prevent protein inclusion formation in the central nervous system. The heat shock response is a pro-survival pathway induced under conditions of cellular stress that acts to maintain proteostasis through the up-regulation of heat shock proteins, a superfamily of molecular chaperones, other co-chaperones and mitotic regulators. The kinetics and magnitude of the heat shock response varies in a stress- and cell-type dependent manner. It remains to be determined if and/or how the heat shock response is activated in the different cell-types that comprise the central nervous system (e.g. neurons and astroglia) in response to protein misfolding events that precede cellular dysfunctions in neurodegenerative diseases. This is particularly relevant considering emerging evidence demonstrating the non-cell autonomous nature of amyotrophic lateral sclerosis and Huntington's disease (and other neurodegenerative diseases) and the destructive role of astroglia in disease progression. This review highlights the complexity of heat shock response activation and addresses whether neurons and glia sense and respond to protein misfolding and aggregation associated with neurodegenerative diseases, in particular Huntington's disease and amyotrophic lateral sclerosis, by inducing a pro-survival heat shock response.
Collapse
Affiliation(s)
- Rebecca San Gil
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| |
Collapse
|
65
|
Lange DJ, Shahbazi M, Silani V, Ludolph AC, Weishaupt JH, Ajroud-Driss S, Fields KG, Remanan R, Appel SH, Morelli C, Doretti A, Maderna L, Messina S, Weiland U, Marklund SL, Andersen PM. Pyrimethamine significantly lowers cerebrospinal fluid Cu/Zn superoxide dismutase in amyotrophic lateral sclerosis patients with SOD1 mutations. Ann Neurol 2017; 81:837-848. [PMID: 28480639 PMCID: PMC5518287 DOI: 10.1002/ana.24950] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022]
Abstract
Objective Cu/Zn superoxide dismutase (SOD1) reduction prolongs survival in SOD1‐transgenic animal models. Pyrimethamine produces dose‐dependent SOD1 reduction in cell culture systems. A previous phase 1 trial showed pyrimethamine lowers SOD1 levels in leukocytes in patients with SOD1 mutations. This study investigated whether pyrimethamine lowered SOD1 levels in the cerebrospinal fluid (CSF) in patients carrying SOD1 mutations linked to familial amyotrophic lateral sclerosis (fALS/SOD1). Methods A multicenter (5 sites), open‐label, 9‐month‐duration, dose‐ranging study was undertaken to determine the safety and efficacy of pyrimethamine to lower SOD1 levels in the CSF in fALS/SOD1. All participants underwent 3 lumbar punctures, blood draw, clinical assessment of strength, motor function, quality of life, and adverse effect assessments. SOD1 levels were measured in erythrocytes and CSF. Pyrimethamine was measured in plasma and CSF. Appel ALS score, ALS Functional Rating Scale–Revised, and McGill Quality of Life Single‐Item Scale were measured at screening, visit 6, and visit 9. Results We enrolled 32 patients; 24 completed 6 visits (18 weeks), and 21 completed all study visits. A linear mixed effects model showed a significant reduction in CSF SOD1 at visit 6 (p < 0.001) with a mean reduction of 13.5% (95% confidence interval [CI] = 8.4–18.5) and at visit 9 (p < 0.001) with a mean reduction of 10.5% (95% CI = 5.2–15.8). Interpretation Pyrimethamine is safe and well tolerated in ALS. Pyrimethamine is capable of producing a significant reduction in total CSF SOD1 protein content in patients with ALS caused by different SOD1 mutations. Further long‐term studies are warranted to assess clinical efficacy. Ann Neurol 2017;81:837–848
Collapse
Affiliation(s)
- Dale J Lange
- Department of Neurology, Hospital for Special Surgery/Weill Cornell Medicine, New York, NY
| | - Mona Shahbazi
- Department of Neurology, Hospital for Special Surgery/Weill Cornell Medicine, New York, NY
| | - Vincenzo Silani
- Department of Neurology and Laboratory Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Italian Auxological Institute, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | | | | | | | - Kara G Fields
- Hospital for Special Surgery Healthcare Research Institute, New York, NY
| | - Rahul Remanan
- Department of Neurology, Hospital for Special Surgery/Weill Cornell Medicine, New York, NY
| | | | - Claudia Morelli
- Department of Neurology and Laboratory Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Italian Auxological Institute, Milan, Italy
| | - Alberto Doretti
- Department of Neurology and Laboratory Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Italian Auxological Institute, Milan, Italy
| | - Luca Maderna
- Department of Neurology and Laboratory Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Italian Auxological Institute, Milan, Italy
| | - Stefano Messina
- Department of Neurology and Laboratory Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Italian Auxological Institute, Milan, Italy
| | | | | | - Peter M Andersen
- Department of Neurology, Ulm University, Ulm, Germany.,Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| |
Collapse
|
66
|
Using bicistronic constructs to evaluate the chaperone activities of heat shock proteins in cells. Sci Rep 2017; 7:2387. [PMID: 28539657 PMCID: PMC5443837 DOI: 10.1038/s41598-017-02459-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 04/12/2017] [Indexed: 01/03/2023] Open
Abstract
Heat shock proteins (Hsps) are molecular chaperones that prevent the aggregation of client proteins by facilitating their refolding, or trafficking them for degradation. The chaperone activities of Hsps are dependent on dynamic protein-protein interactions, including their oligomerisation into large multi-subunit complexes. Thus, tagging Hsps with fluorescent proteins can interfere with their chaperone activity. To overcome this limitation, we have exploited bicistronic constructs for the concurrent expression of a non-tagged Hsp and fluorescent reporter from a single mRNA in cells. We used the Hsp-encoding bicistronic constructs in a cell-based model of protein aggregation, using a destabilised (mutant) form of firefly luciferase (mFluc) that forms inclusion bodies in cells. Expression of Hsp40, Hsp70, or Hsp40 and Hsp70 in cells expressing mFluc decreased the formation of inclusion bodies by 25–46% compared to controls. Moreover, there was a concentration-dependent decrease in the proportion of cells with inclusions when Hsp70, or Hsp40 and Hsp70 were co-expressed with mFluc in cells. The Hsp-encoding bicistronic constructs enable transfection efficiencies and concentration-dependent effects of Hsp expression to be determined using fluorescence based techniques, without the need to tag the Hsp with a fluorescent protein.
Collapse
|
67
|
Shahheydari H, Ragagnin A, Walker AK, Toth RP, Vidal M, Jagaraj CJ, Perri ER, Konopka A, Sultana JM, Atkin JD. Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum. Front Mol Neurosci 2017; 10:119. [PMID: 28539871 PMCID: PMC5423993 DOI: 10.3389/fnmol.2017.00119] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials.
Collapse
Affiliation(s)
- Hamideh Shahheydari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Audrey Ragagnin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Adam K Walker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Reka P Toth
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Marta Vidal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Cyril J Jagaraj
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Emma R Perri
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Anna Konopka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Jessica M Sultana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
68
|
Zhong Y, Wang J, Henderson MJ, Yang P, Hagen BM, Siddique T, Vogel BE, Deng HX, Fang S. Nuclear export of misfolded SOD1 mediated by a normally buried NES-like sequence reduces proteotoxicity in the nucleus. eLife 2017; 6:e23759. [PMID: 28463106 PMCID: PMC5449186 DOI: 10.7554/elife.23759] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/30/2017] [Indexed: 12/14/2022] Open
Abstract
Over 170 different mutations in the gene encoding SOD1 all cause amyotrophic lateral sclerosis (ALS). Available studies have been primarily focused on the mechanisms underlying mutant SOD1 cytotoxicity. How cells defend against the cytotoxicity remains largely unknown. Here, we show that misfolding of ALS-linked SOD1 mutants and wild-type (wt) SOD1 exposes a normally buried nuclear export signal (NES)-like sequence. The nuclear export carrier protein CRM1 recognizes this NES-like sequence and exports misfolded SOD1 to the cytoplasm. Antibodies against the NES-like sequence recognize misfolded SOD1, but not native wt SOD1 both in vitro and in vivo. Disruption of the NES consensus sequence relocalizes mutant SOD1 to the nucleus, resulting in higher toxicity in cells, and severer impairments in locomotion, egg-laying, and survival in Caenorhabditis elegans. Our data suggest that SOD1 mutants are removed from the nucleus by CRM1 as a defense mechanism against proteotoxicity of misfolded SOD1 in the nucleus.
Collapse
Affiliation(s)
- Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, United States
- Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - Peixin Yang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, United States
| | - Brian M Hagen
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Teepu Siddique
- Division of Neuromuscular Medicine, Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Bruce E Vogel
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Han-Xiang Deng
- Division of Neuromuscular Medicine, Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
69
|
Deane CAS, Brown IR. Differential Targeting of Hsp70 Heat Shock Proteins HSPA6 and HSPA1A with Components of a Protein Disaggregation/Refolding Machine in Differentiated Human Neuronal Cells following Thermal Stress. Front Neurosci 2017; 11:227. [PMID: 28484369 PMCID: PMC5401876 DOI: 10.3389/fnins.2017.00227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/04/2017] [Indexed: 01/19/2023] Open
Abstract
Heat shock proteins (Hsps) co-operate in multi-protein machines that counter protein misfolding and aggregation and involve DNAJ (Hsp40), HSPA (Hsp70), and HSPH (Hsp105α). The HSPA family is a multigene family composed of inducible and constitutively expressed members. Inducible HSPA6 (Hsp70B') is found in the human genome but not in the genomes of mouse and rat. To advance knowledge of this little studied HSPA member, the targeting of HSPA6 to stress-sensitive neuronal sites with components of a disaggregation/refolding machine was investigated following thermal stress. HSPA6 targeted the periphery of nuclear speckles (perispeckles) that have been characterized as sites of transcription. However, HSPA6 did not co-localize at perispeckles with DNAJB1 (Hsp40-1) or HSPH1 (Hsp105α). At 3 h after heat shock, HSPA6 co-localized with these members of the disaggregation/refolding machine at the granular component (GC) of the nucleolus. Inducible HSPA1A (Hsp70-1) and constitutively expressed HSPA8 (Hsc70) co-localized at nuclear speckles with components of the machine immediately after heat shock, and at the GC layer of the nucleolus at 1 h with DNAJA1 and BAG-1. These results suggest that HSPA6 exhibits targeting features that are not apparent for HSPA1A and HSPA8.
Collapse
Affiliation(s)
- Catherine A S Deane
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto ScarboroughToronto, ON, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto ScarboroughToronto, ON, Canada
| |
Collapse
|
70
|
Filareti M, Luotti S, Pasetto L, Pignataro M, Paolella K, Messina P, Pupillo E, Filosto M, Lunetta C, Mandrioli J, Fuda G, Calvo A, Chiò A, Corbo M, Bendotti C, Beghi E, Bonetto V. Decreased Levels of Foldase and Chaperone Proteins Are Associated with an Early-Onset Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:99. [PMID: 28428745 PMCID: PMC5382314 DOI: 10.3389/fnmol.2017.00099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive upper and lower motor neuron degeneration. One of the peculiar clinical characteristics of ALS is the wide distribution in age of onset, which is probably caused by different combinations of intrinsic and exogenous factors. We investigated whether these modifying factors are converging into common pathogenic pathways leading either to an early or a late disease onset. This would imply the identification of phenotypic biomarkers, that can distinguish the two populations of ALS patients, and of relevant pathways to consider in a therapeutic intervention. Toward this aim a differential proteomic analysis was performed in peripheral blood mononuclear cells (PBMC) from a group of 16 ALS patients with an age of onset ≤55 years and a group of 16 ALS patients with an age of onset ≥75 years, and matched healthy controls. We identified 43 differentially expressed proteins in the two groups of patients. Gene ontology analysis revealed that there was a significant enrichment in annotations associated with protein folding and response to stress. We next validated a selected number of proteins belonging to this functional group in 85 patients and 83 age- and sex-matched healthy controls using immunoassays. The results of the validation study confirmed that there was a decreased level of peptidyl-prolyl cis-trans isomerase A (also known as cyclophilin A), heat shock protein HSP 90-alpha, 78 kDa glucose-regulated protein (also known as BiP) and protein deglycase DJ-1 in PBMC of ALS patients with an early onset. Similar results were obtained in PBMC and spinal cord from two SOD1G93A mouse models with an early and late disease onset. This study suggests that a different ability to upregulate proteins involved in proteostasis, such as foldase and chaperone proteins, may be at the basis of a different susceptibility to ALS, putting forward the development of therapeutic approaches aiming at boosting the protein quality control system.
Collapse
Affiliation(s)
- Melania Filareti
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy.,Department of Neurorehabilitation Sciences, Casa Cura PoliclinicoMilan, Italy
| | - Silvia Luotti
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Laura Pasetto
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Mauro Pignataro
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Katia Paolella
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Paolo Messina
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Elisabetta Pupillo
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Massimiliano Filosto
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology, ASST Spedali Civili and University of BresciaBrescia, Italy
| | | | - Jessica Mandrioli
- Department of Neuroscience, Azienda Ospedaliero Universitaria di Modena, Ospedale Civile S. Agostino-EstenseModena, Italy
| | - Giuseppe Fuda
- ALS Center, Department of Neuroscience Rita Levi Montalcini, University of TorinoTorino, Italy
| | - Andrea Calvo
- ALS Center, Department of Neuroscience Rita Levi Montalcini, University of TorinoTorino, Italy
| | - Adriano Chiò
- ALS Center, Department of Neuroscience Rita Levi Montalcini, University of TorinoTorino, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura PoliclinicoMilan, Italy
| | - Caterina Bendotti
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Ettore Beghi
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Valentina Bonetto
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| |
Collapse
|
71
|
Ciechanover A, Kwon YT. Protein Quality Control by Molecular Chaperones in Neurodegeneration. Front Neurosci 2017; 11:185. [PMID: 28428740 PMCID: PMC5382173 DOI: 10.3389/fnins.2017.00185] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/20/2017] [Indexed: 12/14/2022] Open
Abstract
Protein homeostasis (proteostasis) requires the timely degradation of misfolded proteins and their aggregates by protein quality control (PQC), of which molecular chaperones are an essential component. Compared with other cell types, PQC in neurons is particularly challenging because they have a unique cellular structure with long extensions. Making it worse, neurons are postmitotic, i.e., cannot dilute toxic substances by division, and, thus, are highly sensitive to misfolded proteins, especially as they age. Failure in PQC is often associated with neurodegenerative diseases, such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), and prion disease. In fact, many neurodegenerative diseases are considered to be protein misfolding disorders. To prevent the accumulation of disease-causing aggregates, neurons utilize a repertoire of chaperones that recognize misfolded proteins through exposed hydrophobic surfaces and assist their refolding. If such an effort fails, chaperones can facilitate the degradation of terminally misfolded proteins through either the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome system (hereafter autophagy). If soluble, the substrates associated with chaperones, such as Hsp70, are ubiquitinated by Ub ligases and degraded through the proteasome complex. Some misfolded proteins carrying the KFERQ motif are recognized by the chaperone Hsc70 and delivered to the lysosomal lumen through a process called, chaperone-mediated autophagy (CMA). Aggregation-prone misfolded proteins that remain unprocessed are directed to macroautophagy in which cargoes are collected by adaptors, such as p62/SQSTM-1/Sequestosome-1, and delivered to the autophagosome for lysosomal degradation. The aggregates that have survived all these refolding/degradative processes can still be directly dissolved, i.e., disaggregated by chaperones. Studies have shown that molecular chaperones alleviate the pathogenic symptoms by neurodegeneration-causing protein aggregates. Chaperone-inducing drugs and anti-aggregation drugs are actively exploited for beneficial effects on symptoms of disease. Here, we discuss how chaperones protect misfolded proteins from aggregation and mediate the degradation of terminally misfolded proteins in collaboration with cellular degradative machinery. The topics also include therapeutic approaches to improve the expression and turnover of molecular chaperones and to develop anti-aggregation drugs.
Collapse
Affiliation(s)
- Aaron Ciechanover
- Department of Biomedical Sciences, Protein Metabolism Medical Research Center, College of Medicine, Seoul National UniversitySeoul, South Korea.,Technion Integrated Cancer Center, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of TechnologyHaifa, Israel
| | - Yong Tae Kwon
- Department of Biomedical Sciences, Protein Metabolism Medical Research Center, College of Medicine, Seoul National UniversitySeoul, South Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National UniversitySeoul, South Korea
| |
Collapse
|
72
|
Martinez A, Palomo Ruiz MDV, Perez DI, Gil C. Drugs in clinical development for the treatment of amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2017; 26:403-414. [PMID: 28277881 DOI: 10.1080/13543784.2017.1302426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a fatal motor neuron progressive disorder for which no treatment exists to date. However, there are other investigational drugs and therapies currently under clinical development may offer hope in the near future. Areas covered: We have reviewed all the ALS ongoing clinical trials (until November 2016) and collected in Clinicaltrials.gov or EudraCT. We have described them in a comprehensive way and have grouped them in the following sections: biomarkers, biological therapies, cell therapy, drug repurposing and new drugs. Expert opinion: Despite multiple obstacles that explain the absence of effective drugs for the treatment of ALS, joint efforts among patient's associations, public and private sectors have fueled innovative research in this field, resulting in several compounds that are in the late stages of clinical trials. Drug repositioning is also playing an important role, having achieved the approval of some orphan drug applications, in late phases of clinical development. Endaravone has been recently approved in Japan and is pending in USA.
Collapse
Affiliation(s)
- Ana Martinez
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| | | | - Daniel I Perez
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| | - Carmen Gil
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| |
Collapse
|
73
|
Li W, Reeb AN, Lin B, Subramanian P, Fey EE, Knoverek CR, French RL, Bigio EH, Ayala YM. Heat Shock-induced Phosphorylation of TAR DNA-binding Protein 43 (TDP-43) by MAPK/ERK Kinase Regulates TDP-43 Function. J Biol Chem 2017; 292:5089-5100. [PMID: 28167528 DOI: 10.1074/jbc.m116.753913] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/03/2017] [Indexed: 12/19/2022] Open
Abstract
TAR DNA-binding protein (TDP-43) is a highly conserved and essential DNA- and RNA-binding protein that controls gene expression through RNA processing, in particular, regulation of splicing. Intracellular aggregation of TDP-43 is a hallmark of amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. This TDP-43 pathology is also present in other types of neurodegeneration including Alzheimer's disease. We report here that TDP-43 is a substrate of MEK, a central kinase in the MAPK/ERK signaling pathway. TDP-43 dual phosphorylation by MEK, at threonine 153 and tyrosine 155 (p-T153/Y155), was dramatically increased by the heat shock response (HSR) in human cells. HSR promotes cell survival under proteotoxic conditions by maintaining protein homeostasis and preventing protein misfolding. MEK is activated by HSR and contributes to the regulation of proteome stability. Phosphorylated TDP-43 was not associated with TDP-43 aggregation, and p-T153/Y155 remained soluble under conditions that promote protein misfolding. We found that active MEK significantly alters TDP-43-regulated splicing and that phosphomimetic substitutions at these two residues reduce binding to GU-rich RNA. Cellular imaging using a phospho-specific p-T153/Y155 antibody showed that phosphorylated TDP-43 was specifically recruited to the nucleoli, suggesting that p-T153/Y155 regulates a previously unappreciated function of TDP-43 in the processing of nucleolar-associated RNA. These findings highlight a new mechanism that regulates TDP-43 function and homeostasis through phosphorylation and, therefore, may contribute to the development of strategies to prevent TDP-43 aggregation and to uncover previously unexplored roles of TDP-43 in cell metabolism.
Collapse
Affiliation(s)
- Wen Li
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Ashley N Reeb
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Binyan Lin
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Praveen Subramanian
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Erin E Fey
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Catherine R Knoverek
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Rachel L French
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Eileen H Bigio
- the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Yuna M Ayala
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| |
Collapse
|
74
|
Abstract
Multiple sclerosis (MS) is an immune-mediated and neurodegenerative central nervous system disease, mostly affect myelin sheaths. The MS pathogenesis is still under debate. It is influenced by genetic, environment factors. Heat shock proteins (HSPs) are highly conserved proteins seen in all organisms. Not only heat stress but also under many stress conditions they are overexpressed. Their roles in MS pathogenesis are highly correlated with their location (intracellular or extracellular). In this chapter, we will discuss the role of HSP in MS pathogenesis.
Collapse
|
75
|
Puentes F, Malaspina A, van Noort JM, Amor S. Non-neuronal Cells in ALS: Role of Glial, Immune cells and Blood-CNS Barriers. Brain Pathol 2016; 26:248-57. [PMID: 26780491 DOI: 10.1111/bpa.12352] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
Neurological dysfunction and motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is strongly associated with neuroinflammation reflected by activated microglia and astrocytes in the CNS. In ALS endogenous triggers in the CNS such as aggregated protein and misfolded proteins activate a pathogenic response by innate immune cells. However, there is also strong evidence for a neuroprotective immune response in ALS. Emerging evidence also reveals changes in the peripheral adaptive immune responses as well as alterations in the blood brain barrier that may aid traffic of lymphocytes and antibodies into the CNS. Understanding the triggers of neuroinflammation is key to controlling neuronal loss. Here, we review the current knowledge regarding the roles of non-neuronal cells as well as the innate and adaptive immune responses in ALS. Existing ALS animal models, in particular genetic rodent models, are very useful to study the underlying pathogenic mechanisms of motor neuron degeneration. We also discuss the approaches used to target the pathogenic immune responses and boost the neuroprotective immune pathways as novel immunotherapies for ALS.
Collapse
Affiliation(s)
- Fabiola Puentes
- Neuroimmunology Unit, Queen Mary University of London, Neuroscience Centre, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK
| | - Andrea Malaspina
- Neuroimmunology Unit, Queen Mary University of London, Neuroscience Centre, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK
| | | | - Sandra Amor
- Neuroimmunology Unit, Queen Mary University of London, Neuroscience Centre, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK.,Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
76
|
Rossi S, Cozzolino M, Carrì MT. Old versus New Mechanisms in the Pathogenesis of ALS. Brain Pathol 2016; 26:276-86. [PMID: 26779612 DOI: 10.1111/bpa.12355] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is recognized as a very complex disease. As we have learned in the past 20 years from studies in patients and in models based on the expression of mutant SOD1, ALS is not a purely motor neuron disease as previously thought. While undoubtedly motor neurons are lost in patients, a number of alterations in those cell-types that interact functionally with motor neurons (astrocytes, microglia, muscle fibers, oligodendrocytes) take place even long before onset of symptoms. At the same time, disturbance of several, only partly inter-related physiological functions play some role in the onset and progression of the disease. Traditionally, mitochondrial damage and oxidative stress, excitotoxicity, neuroinflammation, altered axonal transport, ER stress, protein aggregation and defective removal of toxic proteins have been considered as key factors in the pathogenesis of ALS, with the relatively recent addition of disturbances in RNA metabolism. This complexity makes the search for an effective treatment extremely difficult and prompts further studies to reveal other possible, previously unappreciated aspects of the pathogenesis of ALS. In this review, we focus on previous knowledge on ALS mechanisms as well as new facets emerging from studies on genetic ALS patients and models that may both provide precious information for a novel therapeutic approach.
Collapse
Affiliation(s)
- Simona Rossi
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy.,Lab of Neurochemistry, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Maria Teresa Carrì
- Lab of Neurochemistry, Fondazione Santa Lucia IRCCS, Rome, Italy.,Department of Biology, University of Rome Tor Vergata
| |
Collapse
|
77
|
Mathis S, Couratier P, Julian A, Vallat JM, Corcia P, Le Masson G. Management and therapeutic perspectives in amyotrophic lateral sclerosis. Expert Rev Neurother 2016; 17:263-276. [DOI: 10.1080/14737175.2016.1227705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stéphane Mathis
- Department of Neurology, Neuro-Muscular Unit and ALS Center, CHU de Bordeaux, groupe hospitalier Pellegrin, Bordeaux, France
| | - Philippe Couratier
- Department of Neurology, ALS center, Centre de compétence SLA-fédération Tours-Limoges, CHU de Limoges, Limoges, France
| | - Adrien Julian
- Department of Neurology, CHU Poitiers, University of Poitiers, Poitiers, France
| | - Jean-Michel Vallat
- Department and Laboratory of Neurology, Centre de Référence ‘neuropathies périphériques rares’, University Hospital of Limoges, Limoges, France
| | - Philippe Corcia
- Department of Neurology, ALS center, Centre de compétence SLA-fédération Tours-Limoges, CHU de Tours, Tours, France
| | - Gwendal Le Masson
- Department of Neurology, Neuro-Muscular Unit and ALS Center, CHU de Bordeaux, groupe hospitalier Pellegrin, Bordeaux, France
| |
Collapse
|
78
|
Deane CAS, Brown IR. Induction of heat shock proteins in differentiated human neuronal cells following co-application of celastrol and arimoclomol. Cell Stress Chaperones 2016; 21:837-48. [PMID: 27273088 PMCID: PMC5003800 DOI: 10.1007/s12192-016-0708-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 01/19/2023] Open
Abstract
Few effective therapies exist for the treatment of neurodegenerative diseases that have been characterized as protein misfolding disorders. Upregulation of heat shock proteins (Hsps) mitigates against the accumulation of misfolded, aggregation-prone proteins and synaptic dysfunction, which is recognized as an early event in neurodegenerative diseases. Enhanced induction of a set of Hsps in differentiated human SH-SY5Y neuronal cells was observed following co-application of celastrol and arimoclomol, compared to their individual application. The dosages employed did not affect cell viability or neuronal process morphology. The induced Hsps included the little studied HSPA6 (Hsp70B'), a potentially neuroprotective protein that is present in the human genome but not in rat and mouse and hence is missing in current animal models of neurodegenerative disease. Enhanced induction of HSPA1A (Hsp70-1), DNAJB1 (Hsp40), HO-1 (Hsp32), and HSPB1 (Hsp27) was also observed. Celastrol activates heat shock transcription factor 1 (HSF1), the master regulator of Hsp gene transcription, and also exhibits potent anti-inflammatory and anti-oxidant activities. Arimoclomol is a co-activator that prolongs the binding of activated HSF1 to heat shock elements (HSEs) in the promoter regions of inducible Hsp genes. Elevated Hsp levels peaked at 10 to 12 h for HSPA6, HSPA1A, DNAJB1, and HO-1 and at 24 h for HSPB1. Co-application of celastrol and arimoclomol induced higher Hsp levels compared to heat shock paired with arimoclomol. The co-application strategy of celastrol and arimoclomol targets multiple neurodegenerative disease-associated pathologies including protein misfolding and protein aggregation, inflammatory and oxidative stress, and synaptic dysfunction.
Collapse
Affiliation(s)
- Catherine A S Deane
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
79
|
Capponi S, Geuens T, Geroldi A, Origone P, Verdiani S, Cichero E, Adriaenssens E, De Winter V, Bandettini di Poggio M, Barberis M, Chiò A, Fossa P, Mandich P, Bellone E, Timmerman V. Molecular Chaperones in the Pathogenesis of Amyotrophic Lateral Sclerosis: The Role of HSPB1. Hum Mutat 2016; 37:1202-1208. [PMID: 27492805 PMCID: PMC5108433 DOI: 10.1002/humu.23062] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/16/2022]
Abstract
Genetic discoveries in amyotrophic lateral sclerosis (ALS) have a significant impact on deciphering molecular mechanisms of motor neuron degeneration but, despite recent advances, the etiology of most sporadic cases remains elusive. Several cellular mechanisms contribute to the motor neuron degeneration in ALS, including RNA metabolism, cellular interactions between neurons and nonneuronal cells, and seeding of misfolded protein with prion‐like propagation. In this scenario, the importance of protein turnover and degradation in motor neuron homeostasis gained increased recognition. In this study, we evaluated the role of the candidate gene HSPB1, a molecular chaperone involved in several proteome‐maintenance functions. In a cohort of 247 unrelated Italian ALS patients, we identified two variants (c.570G>C, p.Gln190His and c.610dupG, p.Ala204Glyfs*6). Functional characterization of the p.Ala204Glyfs*6 demonstrated that the mutant protein alters HSPB1 dynamic equilibrium, sequestering the wild‐type protein in a stable dimer and resulting in a loss of chaperone‐like activity. Our results underline the relevance of identifying rare but pathogenic variations in sporadic neurodegenerative diseases, suggesting a possible correlation between specific pathomechanisms linked to HSPB1 mutations and the associated neurological phenotype. Our study provides additional lines of evidence to support the involvement of HSPB1 in the pathogenesis of sporadic ALS.
Collapse
Affiliation(s)
- Simona Capponi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Medical Genetics, University of Genoa, Genoa, Italy.,VIB Department of Molecular Genetics, Peripheral Neuropathy Group, Born Bunge Foundation, University of Antwerp, Antwerp, Belgium
| | - Thomas Geuens
- VIB Department of Molecular Genetics, Peripheral Neuropathy Group, Born Bunge Foundation, University of Antwerp, Antwerp, Belgium
| | - Alessandro Geroldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Medical Genetics, University of Genoa, Genoa, Italy
| | - Paola Origone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Medical Genetics, University of Genoa, Genoa, Italy.,COU Medical Genetics, IRCCS AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | - Elena Cichero
- Section of Medicinal Chemistry, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Elias Adriaenssens
- VIB Department of Molecular Genetics, Peripheral Neuropathy Group, Born Bunge Foundation, University of Antwerp, Antwerp, Belgium
| | - Vicky De Winter
- VIB Department of Molecular Genetics, Peripheral Neuropathy Group, Born Bunge Foundation, University of Antwerp, Antwerp, Belgium
| | - Monica Bandettini di Poggio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, University of Genova, Genoa, Italy
| | - Marco Barberis
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy.,Laboratory of Molecular Genetics, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy.,Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Paola Fossa
- Section of Medicinal Chemistry, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Medical Genetics, University of Genoa, Genoa, Italy.,COU Medical Genetics, IRCCS AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Emilia Bellone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Medical Genetics, University of Genoa, Genoa, Italy.,COU Medical Genetics, IRCCS AOU San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Vincent Timmerman
- VIB Department of Molecular Genetics, Peripheral Neuropathy Group, Born Bunge Foundation, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
80
|
Mangione MR, Vilasi S, Marino C, Librizzi F, Canale C, Spigolon D, Bucchieri F, Fucarino A, Passantino R, Cappello F, Bulone D, San Biagio PL. Hsp60, amateur chaperone in amyloid-beta fibrillogenesis. Biochim Biophys Acta Gen Subj 2016; 1860:2474-2483. [PMID: 27474204 DOI: 10.1016/j.bbagen.2016.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/14/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Molecular chaperones are a very special class of proteins that play essential roles in many cellular processes like folding, targeting and transport of proteins. Moreover, recent evidence indicates that chaperones can act as potentially strong suppressor agents in Alzheimer's disease (AD). Indeed, in vitro experiments demonstrate that several chaperones are able to significantly slow down or suppress aggregation of Aβ peptide and in vivo studies reveal that treatment with specific chaperones or their overexpression can ameliorate some distinct pathological signs characterizing AD. METHODS Here we investigate using a biophysical approach (fluorescence, circular dichroism (CD), transmission electron (TEM) and atomic force (AFM) microscopy, size exclusion chromatography (SEC)) the effect of the human chaperonin Hsp60 on Aβ fibrillogenesis. RESULTS We found that Hsp60 powerfully inhibits Aβ amyloid aggregation, by closing molecular pathways leading to peptide fibrillogenesis. CONCLUSIONS We observe that Hsp60 inhibits Aβ aggregation through a more complex mechanism than a simple folding chaperone action. The action is specifically directed toward the early oligomeric species behaving as aggregation seeds for on-pathway amyloid fibrillogenesis. GENERAL SIGNIFICANCE Understanding the specificity of the molecular interactions of Hsp60 with amyloid Aβ peptide allowed us to emphasize the important aspects to be taken into consideration when considering the recent promising therapeutic strategies for neurodegeneration.
Collapse
Affiliation(s)
| | - Silvia Vilasi
- Institute of Biophysics, National Research Council, Palermo, Italy.
| | - Claudia Marino
- Institute of Biophysics, National Research Council, Palermo, Italy; Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA; Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy
| | - Fabio Librizzi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Claudio Canale
- Nanophysics Department, Istituto Italiano di Tecnologia, Italy
| | - Dario Spigolon
- Institute of Biophysics, National Research Council, Palermo, Italy; Department of Physics and Chemistry, University of Palermo, Palermo, Italy
| | - Fabio Bucchieri
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy; Institute of Biomedicine and Molecular Immunology, National Research Council, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Alberto Fucarino
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Rosa Passantino
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Francesco Cappello
- Institute of Biophysics, National Research Council, Palermo, Italy; Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Donatella Bulone
- Institute of Biophysics, National Research Council, Palermo, Italy
| | | |
Collapse
|
81
|
Alsultan AA, Waller R, Heath PR, Kirby J. The genetics of amyotrophic lateral sclerosis: current insights. Degener Neurol Neuromuscul Dis 2016; 6:49-64. [PMID: 30050368 PMCID: PMC6053097 DOI: 10.2147/dnnd.s84956] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that results in loss of the upper and lower motor neurons from motor cortex, brainstem, and spinal cord. While the majority of cases are sporadic, approximately 10% show familial inheritance. ALS is usually inherited in an autosomal dominant manner, although autosomal recessive and X-linked inheritance do occur. To date, 24 of the genes at 26 loci have been identified; these include loci linked to ALS and to frontotemporal dementia-ALS, where family pedigrees contain individuals with frontotemporal dementia with/without ALS. The most commonly established genetic causes of familial ALS (FALS) to date are the presence of a hexanucleotide repeat expansion in the C9ORF72 gene (39.3% FALS) and mutation of SOD1, TARDBP, and FUS, with frequencies of 12%-23.5%, 5%, and 4.1%, respectively. However, with the increasing use of next-generation sequencing of small family pedigrees, this has led to an increasing number of genes being associated with ALS. This review provides a comprehensive review on the genetics of ALS and an update of the pathogenic mechanisms associated with these genes. Commonly implicated pathways have been established, including RNA processing, the protein degradation pathways of autophagy and ubiquitin-proteasome system, as well as protein trafficking and cytoskeletal function. Elucidating the role genetics plays in both FALS and sporadic ALS is essential for understanding the subsequent cellular dysregulation that leads to motor neuron loss, in order to develop future effective therapeutic strategies.
Collapse
Affiliation(s)
- Afnan A Alsultan
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| |
Collapse
|
82
|
Joshi AU, Kornfeld OS, Mochly-Rosen D. The entangled ER-mitochondrial axis as a potential therapeutic strategy in neurodegeneration: A tangled duo unchained. Cell Calcium 2016; 60:218-34. [PMID: 27212603 DOI: 10.1016/j.ceca.2016.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) and mitochondrial function have both been shown to be critical events in neurodegenerative diseases. The ER mediates protein folding, maturation, sorting as well acts as calcium storage. The unfolded protein response (UPR) is a stress response of the ER that is activated by the accumulation of misfolded proteins within the ER lumen. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Similarly, calcium-mediated mitochondrial function and dynamics not only contribute to ATP generation and calcium buffering but are also a linchpin in mediating cell fate. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintaining cellular homeostasis and determining cell fate under various pathophysiological conditions. Regulated Ca(2+) transfer from the ER to the mitochondria is important in maintaining control of pro-survival/pro-death pathways. In this review, we summarize the latest therapeutic strategies that target these essential organelles in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA
| | - Opher S Kornfeld
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA.
| |
Collapse
|
83
|
Miyazaki D, Nakamura A, Hineno A, Kobayashi C, Kinoshita T, Yoshida K, Ikeda SI. Elevation of serum heat-shock protein levels in amyotrophic lateral sclerosis. Neurol Sci 2016; 37:1277-81. [PMID: 27112486 DOI: 10.1007/s10072-016-2582-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/13/2016] [Indexed: 01/08/2023]
Abstract
Heat-shock proteins (HSPs) have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). In this study, we aimed to examine whether the serum levels of HSPs (HSP27, HSP70, and HSP90) are altered in patients with ALS. We included 58 patients diagnosed with ALS and 85 control individuals. Serum HSP levels of patients and controls were determined using enzyme-linked immunosorbent assay. The serum levels of HSP70 and HSP90 were significantly higher in patients than in controls. In contrast, serum levels of HSP27 did not differ significantly between the patient and control groups. Moreover, serum levels of HSP70 and HSP90 in patients remained high throughout the duration of the disease. Taken together, our findings suggest that HSPs might have a role in ALS progression throughout the course of the disease. Further studies are needed to clarify the role of HSPs in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Daigo Miyazaki
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan.,Intractable Disease Care Center, Shinshu University Hospital, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Akinori Nakamura
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan. .,Intractable Disease Care Center, Shinshu University Hospital, Asahi 3-1-1, Matsumoto, 390-8621, Japan.
| | - Akiyo Hineno
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Chinatsu Kobayashi
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Tomomi Kinoshita
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Kunihiro Yoshida
- Division of Neurogenetics, Department of Brain Disease Research, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Shu-Ichi Ikeda
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| |
Collapse
|
84
|
Kampinga HH, Bergink S. Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurol 2016; 15:748-759. [PMID: 27106072 DOI: 10.1016/s1474-4422(16)00099-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/09/2016] [Accepted: 02/24/2016] [Indexed: 01/08/2023]
Abstract
Protein aggregates are hallmarks of nearly all age-related neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and several polyglutamine diseases such as Huntington's disease and different forms of spinocerebellar ataxias (SCA; SCA1-3, SCA6, and SCA7). The collapse of cellular protein homoeostasis can be both a cause and a consequence of this protein aggregation. Boosting components of the cellular protein quality control system has been widely investigated as a strategy to counteract protein aggregates or their toxic consequences. Heat shock proteins (HSPs) play a central part in regulating protein quality control and contribute to protein aggregation and disaggregation. Therefore, HSPs are viable targets for the development of drugs aimed at reducing pathogenic protein aggregates that are thought to contribute to the development of so many neurodegenerative disorders.
Collapse
Affiliation(s)
- Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, Rijksuniversiteit Groningen, Groningen, Netherlands.
| | - Steven Bergink
- Department of Cell Biology, University Medical Center Groningen, Rijksuniversiteit Groningen, Groningen, Netherlands
| |
Collapse
|
85
|
Emery SM, Dobrowsky RT. Promoting Neuronal Tolerance of Diabetic Stress: Modulating Molecular Chaperones. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 127:181-210. [PMID: 27133150 DOI: 10.1016/bs.irn.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The etiology of diabetic peripheral neuropathy (DPN) involves an interrelated series of metabolic and vascular insults that ultimately contribute to sensory neuron degeneration. In the quest to pharmacologically manage DPN, small-molecule inhibitors have targeted proteins and pathways regarded as "diabetes specific" as well as others whose activity are altered in numerous disease states. These efforts have not yielded any significant therapies, due in part to the complicating issue that the biochemical contribution of these targets/pathways to the progression of DPN does not occur with temporal and/or biochemical uniformity between individuals. In a complex, chronic neurodegenerative disease such as DPN, it is increasingly appreciated that effective disease management may not necessarily require targeting a pathway or protein considered to contribute to disease progression. Alternatively, it may prove sufficiently beneficial to pharmacologically enhance the activity of endogenous cytoprotective pathways to aid neuronal tolerance to and recovery from glucotoxic stress. In pursuing this paradigm shift, we have shown that modulating the activity and expression of molecular chaperones such as heat shock protein 70 (Hsp70) may provide translational potential for the effective medical management of insensate DPN. Considerable evidence supports that modulating Hsp70 has beneficial effects in improving inflammation, oxidative stress, and glucose sensitivity. Given the emerging potential of modulating Hsp70 to manage DPN, the current review discusses efforts to characterize the cytoprotective effects of this protein and the benefits and limitations that may arise in drug development efforts that exploit its cytoprotective activity.
Collapse
Affiliation(s)
- S M Emery
- The University of Kansas, Lawrence, KS, United States
| | - R T Dobrowsky
- The University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
86
|
Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM, Beart PM, Cashman NR, Wilson MR, Ecroyd H. Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem 2016; 137:489-505. [DOI: 10.1111/jnc.13575] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Justin J. Yerbury
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Lezanne Ooi
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Andrew Dillin
- Department of Molecular and Cell Biology; Li Ka Shing Center for Biomedical and Health Sciences; The University of California; California USA
- Howard Hughes Medical Institute; The University of California; Berkeley California USA
| | - Darren N. Saunders
- School of Medical Sciences; Faculty of Medicine; University of New South Wales; Randwick New South Wales Australia
- The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Darlinghurst New South Wales Australia
| | - Danny M. Hatters
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
| | - Philip M. Beart
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Parkville Victoria Australia
| | - Neil R. Cashman
- Department of Medicine (Neurology); University of British Columbia and Vancouver Coastal Health Research Institute; Brain Research Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Mark R. Wilson
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Heath Ecroyd
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| |
Collapse
|
87
|
Papandreou A, Gissen P. Diagnostic workup and management of patients with suspected Niemann-Pick type C disease. Ther Adv Neurol Disord 2016; 9:216-29. [PMID: 27134677 DOI: 10.1177/1756285616635964] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Niemann-Pick type C (NP-C) disease is a neurovisceral disorder caused by mutations in the NPC1 and NPC2 genes. It is characterized by lysosomal storage of a broad range of lipids as a result of abnormal intracellular lipid trafficking. Typically patients develop neurodegeneration; however, the speed of disease progression is variable. The exact functions of NPC1 and NPC2 proteins have not been determined and therefore the molecular pathophysiology of NP-C is still not clearly understood. Due to the disease's rarity and clinical heterogeneity, delays from symptom onset to diagnosis and treatment initiation are common. Current therapeutic approaches focus on multidisciplinary symptom control and deceleration (rather than reversal) of disease progression. Thus identification of cases at early stages of disease is particularly important. Recent advances in genetic and biochemical testing have resulted in the generation of relatively non-invasive, quick and cost-effective laboratory assays that are highly sensitive and specific and have the capacity to enhance the clinicians' ability to reach a diagnosis earlier. Miglustat is a compound recently licensed in many countries for the treatment of NP-C that has been shown to decelerate neurological regression, whereas many other promising drugs are currently being trialled in preclinical models or human studies. This review summarizes key clinical, genetic and biochemical features of NP-C, suggests a simple diagnostic investigation strategy and gives an overview of available therapeutic options as well as potential novel treatments currently under development.
Collapse
Affiliation(s)
- Apostolos Papandreou
- Genetics and Genomics Medicine Unit, UCL-Institute of Child Health and UCL-MRC Laboratory of Molecular Cell Biology, Gower Street, London WC1E 6BT, UK
| | - Paul Gissen
- Genetics and Genomics Medicine Unit, UCL-Institute of Child Health and UCL-MRC Laboratory of Molecular Cell Biology, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
88
|
Yang R, Tang Q, Miao F, An Y, Li M, Han Y, Wang X, Wang J, Liu P, Chen R. Inhibition of heat-shock protein 90 sensitizes liver cancer stem-like cells to magnetic hyperthermia and enhances anti-tumor effect on hepatocellular carcinoma-burdened nude mice. Int J Nanomedicine 2015; 10:7345-58. [PMID: 26677324 PMCID: PMC4677660 DOI: 10.2147/ijn.s93758] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To explore the thermoresistance and expression of heat-shock protein 90 (HSP90) in magnetic hyperthermia-treated human liver cancer stem-like cells (LCSCs) and the effects of a heat-shock protein HSP90 inhibitor 17-allylamino-17-demethoxgeldanamycin (17-AAG) on hepatocellular carcinoma-burdened nude mice. METHODS CD90(+) LCSCs were isolated by magnetic-activated cell sorting from BEL-7404. Spheroid formation, proliferation, differentiation, drug resistance, and tumor formation assays were performed to identify stem cell characteristics. CD90-targeted thermosensitive magnetoliposomes (TMs)-encapsulated 17-AAG (CD90@17-AAG/TMs) was prepared by reverse-phase evaporation and its characteristics were studied. Heat tolerance in CD90(+) LCSCs and the effect of CD90@17-AAG/TMs-mediated heat sensitivity were examined in vitro and in vivo. RESULTS CD90(+) LCSCs showed significant stem cell-like properties. The 17-AAG/TMs were successfully prepared and were spherical in shape with an average size of 128.9±7.7 nm. When exposed to magnetic hyperthermia, HSP90 was up-regulated in CD90(+) LCSCs. CD90@17-AAG/TMs inhibited the activity of HSP90 and increased the sensitivity of CD90(+) LCSCs to magnetic hyperthermia. CONCLUSION The inhibition of HSP90 could sensitize CD90(+) LCSCs to magnetic hyperthermia and enhance its anti-tumor effects in vitro and in vivo.
Collapse
Affiliation(s)
- Rui Yang
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Qiusha Tang
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Fengqin Miao
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Yanli An
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Nanjing, People’s Republic of China
| | - Mengfei Li
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Yong Han
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Xihui Wang
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Juan Wang
- Department of Infectious Disease, The Third People’s Hospital of Nantong, Nangtong, People’s Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Rong Chen
- Department of Oncology, Zhongda Hospital, Nangjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
89
|
Abstract
Genes linked to amyotrophic lateral sclerosis (ALS) susceptibility are being identified at an increasing rate owing to advances in molecular genetic technology. Genetic mechanisms in ALS pathogenesis seem to exert major effects in about 10% of patients, but genetic factors at some level may be important components of disease risk in most patients with ALS. Identification of gene variants associated with ALS has informed concepts of the pathogenesis of ALS, aided the identification of therapeutic targets, facilitated research to develop new ALS biomarkers, and supported the establishment of clinical diagnostic tests for ALS-linked genes.
Collapse
Affiliation(s)
- Kevin Boylan
- Department of Neurology, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
90
|
Karademir B, Corek C, Ozer NK. Endoplasmic reticulum stress and proteasomal system in amyotrophic lateral sclerosis. Free Radic Biol Med 2015; 88:42-50. [PMID: 26073124 DOI: 10.1016/j.freeradbiomed.2015.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022]
Abstract
Protein processing including folding, unfolding and degradation is involved in the mechanisms of many diseases. Unfolded protein response and/or endoplasmic reticulum stress are accepted to be the first steps which should be completed via protein degradation. In this direction, proteasomal system and autophagy play important role as the degradation pathways and controlled via complex mechanisms. Amyotrophic lateral sclerosis is a multifactorial neurodegenerative disease which is also known as the most catastrophic one. Mutation of many different genes are involved in the pathogenesis such as superoxide dismutase 1, chromosome 9 open reading frame 72 and ubiquilin 2. These genes are mainly related to the antioxidant defense systems, endoplasmic reticulum stress related proteins and also protein aggregation, degradation pathways and therefore mutation of these genes cause related disorders.This review focused on the role of protein processing via endoplasmic reticulum and proteasomal system in amyotrophic lateral sclerosis which are the main players in the pathology. In this direction, dysfunction of endoplasmic reticulum associated degradation and related cell death mechanisms that are autophagy/apoptosis have been detailed.
Collapse
Affiliation(s)
- Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ceyda Corek
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
91
|
DeLoach A, Cozart M, Kiaei A, Kiaei M. A retrospective review of the progress in amyotrophic lateral sclerosis drug discovery over the last decade and a look at the latest strategies. Expert Opin Drug Discov 2015; 10:1099-118. [PMID: 26307158 DOI: 10.1517/17460441.2015.1067197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Drug discovery for amyotrophic lateral sclerosis (ALS) has experienced a surge in clinical studies and remarkable preclinical milestones utilizing a variety of mutant superoxide dismutase 1 model systems. Of the drugs that were tested and showed positive preclinical effects, none demonstrated therapeutic benefits to ALS patients in clinical settings. AREAS COVERED This review discusses the advances made in drug discovery for ALS and highlights why drug development is proving to be so difficult. It also discusses how a closer look at both preclinical and clinical studies could uncover the reasons why these preclinical successes have yet to result in the availability of an effective drug for clinical use. EXPERT OPINION Valuable lessons from the numerous preclinical and clinical studies supply the biggest advantage in the monumental task of finding a cure for ALS. Obviously, a single design type for ALS clinical trials has not yielded success. The authors suggest a two-pronged approach that may prove essential to achieve clinical efficacy in the identification of novel targets and preclinical testing in multiple models to identify biomarkers that can function in diagnostic, predictive and prognostic roles, and changes to clinical trial design and patient recruitment criteria. The advancement of technology and invention of more powerful tools will further enhance the above. This will give rise to more sophisticated clinical trials with consideration of a range of criteria from: optimum dose, route of delivery, specific biomarkers, pharmacokinetics, pharmacodynamics and toxicology to biomarkers, timing for trial and patients' clinical status.
Collapse
Affiliation(s)
- Abigail DeLoach
- a 1 University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences , Little Rock, AR 72205, USA
| | - Michael Cozart
- b 2 University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology , Little Rock, AR 72205, USA
| | - Arianna Kiaei
- a 1 University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences , Little Rock, AR 72205, USA
| | - Mahmoud Kiaei
- a 1 University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences , Little Rock, AR 72205, USA.,b 2 University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology , Little Rock, AR 72205, USA.,c 3 University of Arkansas for Medical Sciences, Department of Neurology , 4301 W. Markham St, 846, Little Rock, AR 72205 7199, USA
| |
Collapse
|
92
|
Lenzi J, De Santis R, de Turris V, Morlando M, Laneve P, Calvo A, Caliendo V, Chiò A, Rosa A, Bozzoni I. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech 2015; 8:755-66. [PMID: 26035390 PMCID: PMC4486861 DOI: 10.1242/dmm.020099] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/20/2015] [Indexed: 12/13/2022] Open
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) provide an opportunity to study human diseases mainly in those cases for which no suitable model systems are available. Here, we have taken advantage of in vitro iPSCs derived from patients affected by amyotrophic lateral sclerosis (ALS) and carrying mutations in the RNA-binding protein FUS to study the cellular behavior of the mutant proteins in the appropriate genetic background. Moreover, the ability to differentiate iPSCs into spinal cord neural cells provides an in vitro model mimicking the physiological conditions. iPSCs were derived from FUSR514S and FUSR521C patient fibroblasts, whereas in the case of the severe FUSP525L mutation, in which fibroblasts were not available, a heterozygous and a homozygous iPSC line were raised by TALEN-directed mutagenesis. We show that aberrant localization and recruitment of FUS into stress granules (SGs) is a prerogative of the FUS mutant proteins and occurs only upon induction of stress in both undifferentiated iPSCs and spinal cord neural cells. Moreover, we show that the incorporation into SGs is proportional to the amount of cytoplasmic FUS, strongly correlating with the cytoplasmic delocalization phenotype of the different mutants. Therefore, the available iPSCs represent a very powerful system for understanding the correlation between FUS mutations, the molecular mechanisms of SG formation and ALS ethiopathogenesis. Summary: Mutated FUS protein is aberrantly delocalized and recruited into stress granules in iPSC-derived motoneurons, which provide a new model system for amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Jessica Lenzi
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Riccardo De Santis
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Valeria de Turris
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Mariangela Morlando
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Pietro Laneve
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Andrea Calvo
- Amyotrophic Lateral Sclerosis Center, Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Virginia Caliendo
- Dermatologia Chirurgica AOU Città della Salute e della Scienza, 10126 Turin, Italy
| | - Adriano Chiò
- Amyotrophic Lateral Sclerosis Center, Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Alessandro Rosa
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Irene Bozzoni
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| |
Collapse
|
93
|
Smith HL, Li W, Cheetham ME. Molecular chaperones and neuronal proteostasis. Semin Cell Dev Biol 2015; 40:142-52. [PMID: 25770416 PMCID: PMC4471145 DOI: 10.1016/j.semcdb.2015.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022]
Abstract
Protein homeostasis (proteostasis) is essential for maintaining the functionality of the proteome. The disruption of proteostasis, due to genetic mutations or an age-related decline, leads to aberrantly folded proteins that typically lose their function. The accumulation of misfolded and aggregated protein is also cytotoxic and has been implicated in the pathogenesis of neurodegenerative diseases. Neurons have developed an intrinsic protein quality control network, of which molecular chaperones are an essential component. Molecular chaperones function to promote efficient folding and target misfolded proteins for refolding or degradation. Increasing molecular chaperone expression can suppress protein aggregation and toxicity in numerous models of neurodegenerative disease; therefore, molecular chaperones are considered exciting therapeutic targets. Furthermore, mutations in several chaperones cause inherited neurodegenerative diseases. In this review, we focus on the importance of molecular chaperones in neurodegenerative diseases, and discuss the advances in understanding their protective mechanisms.
Collapse
Affiliation(s)
- Heather L Smith
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|
94
|
Zhu Y, Fotinos A, Mao LL, Atassi N, Zhou EW, Ahmad S, Guan Y, Berry JD, Cudkowicz ME, Wang X. Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today 2015; 20:65-75. [DOI: 10.1016/j.drudis.2014.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/02/2014] [Accepted: 08/31/2014] [Indexed: 12/14/2022]
|
95
|
Galbiati M, Crippa V, Rusmini P, Cristofani R, Cicardi ME, Giorgetti E, Onesto E, Messi E, Poletti A. ALS-related misfolded protein management in motor neurons and muscle cells. Neurochem Int 2014; 79:70-8. [PMID: 25451799 DOI: 10.1016/j.neuint.2014.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common form of adult-onset motor neuron disease. It is now considered a multi-factorial and multi-systemic disorder in which alterations of the crosstalk between neuronal and non-neuronal cell types might influence the course of the disease. In this review, we will provide evidence that dysfunctions of affected muscle cells are not only a marginal consequence of denervation associated to motor neurons loss, but a direct consequence of cell muscle toxicity of mutant SOD1. In muscle, the misfolded state of mutant SOD1 protein, unlike in motor neurons, does not appear to have direct effects on protein aggregation and mitochondrial functionality. Muscle cells are, in fact, more capable than motor neurons to handle misfolded proteins, suggesting that mutant SOD1 toxicity in muscle is not mediated by classical mechanisms of intracellular misfolded proteins accumulation. Several recent works indicate that a higher activation of molecular chaperones and degradative systems is present in muscle cells, which for this reason are possibly able to better manage misfolded mutant SOD1. However, several alterations in gene expression and regenerative potential of skeletal muscles have also been reported as a consequence of the expression of mutant SOD1 in muscle. Whether these changes in muscle cells are causative of ALS or a consequence of motor neuron alterations is not yet clear, but their elucidation is very important, since the understanding of the mechanisms involved in mutant SOD1 toxicity in muscle may facilitate the design of treatments directed toward this specific tissue to treat ALS or at least to delay disease progression.
Collapse
Affiliation(s)
- Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy
| | - Elisa Giorgetti
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Elisa Onesto
- Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy.
| |
Collapse
|
96
|
Goyal NA, Mozaffar T. Experimental trials in amyotrophic lateral sclerosis: a review of recently completed, ongoing and planned trials using existing and novel drugs. Expert Opin Investig Drugs 2014; 23:1541-51. [DOI: 10.1517/13543784.2014.933807] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
97
|
Tadic V, Prell T, Lautenschlaeger J, Grosskreutz J. The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8:147. [PMID: 24910594 PMCID: PMC4039088 DOI: 10.3389/fncel.2014.00147] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. Although the etiology remains unclear, disturbances in calcium homoeostasis and protein folding are essential features of neurodegeneration in this disorder. Here, we review recent research findings on the interaction between endoplasmic reticulum (ER) and mitochondria, and its effect on calcium signaling and oxidative stress. We further provide insights into studies, providing evidence that structures of the ER mitochondria calcium cycle serve as a promising targets for therapeutic approaches for treatment of ALS.
Collapse
Affiliation(s)
- Vedrana Tadic
- Hans Berger Department of Neurology, Jena University HospitalJena, Germany
| | | | | | | |
Collapse
|
98
|
Ingemann L, Kirkegaard T. Lysosomal storage diseases and the heat shock response: convergences and therapeutic opportunities. J Lipid Res 2014; 55:2198-210. [PMID: 24837749 DOI: 10.1194/jlr.r048090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lysosomes play a vital role in the maintenance of cellular homeostasis through the recycling of cell constituents, a key metabolic function which is highly dependent on the correct function of the lysosomal hydrolases and membrane proteins, as well as correct membrane lipid stoichiometry and composition. The critical role of lysosomal functionality is evident from the severity of the diseases in which the primary lesion is a genetically defined loss-of-function of lysosomal hydrolases or membrane proteins. This group of diseases, known as lysosomal storage diseases (LSDs), number more than 50 and are associated with severe neurodegeneration, systemic disease, and early death, with only a handful of the diseases having a therapeutic option. Another key homeostatic system is the metabolic stress response or heat shock response (HSR), which is induced in response to a number of physiological and pathological stresses, such as protein misfolding and aggregation, endoplasmic reticulum stress, oxidative stress, nutrient deprivation, elevated temperature, viral infections, and various acute traumas. Importantly, the HSR and its cardinal members of the heat shock protein 70 family has been shown to protect against a number of degenerative diseases, including severe diseases of the nervous system. The cytoprotective actions of the HSR also include processes involving the lysosomal system, such as cell death, autophagy, and protection against lysosomal membrane permeabilization, and have shown promise in a number of LSDs. This review seeks to describe the emerging understanding of the interplay between these two essential metabolic systems, the lysosomes and the HSR, with a particular focus on their potential as a therapeutic target for LSDs.
Collapse
|
99
|
Soong BW, Lin KP, Guo YC, Lin CCK, Tsai PC, Liao YC, Lu YC, Wang SJ, Tsai CP, Lee YC. Extensive molecular genetic survey of Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol Aging 2014; 35:2423.e1-6. [PMID: 24908169 DOI: 10.1016/j.neurobiolaging.2014.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/05/2014] [Indexed: 01/30/2023]
Abstract
Identification of genetic mutations has been of burgeoning importance in amyotrophic lateral sclerosis (ALS) in recent years. The aim of this study was to determine the frequency and spectrum of mutations in major ALS-causing genes in a Taiwanese ALS cohort of Han Chinese origin. Mutational analyses of the SOD1, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, PFN1, HNRNPA1, and HNRNPA2B1 genes were carried out by direct sequencing in 161 unrelated patients with ALS, including 30 with familial ALS (FALS) and 131 with sporadic ALS (SALS). The CAG repeat size in ATXN2 and the GGGGCC repeat expansion in C9ORF72 of the patients were also investigated. Mutations were identified in 33 patients (20.5%, 33/161), including 22 with FALS and 11 with SALS. Mutations were identified most frequently in SOD1 (7.5%). Three mutations are novel, including SOD1 p.G10A, SOD1 p.D83N, and OPTN p.L494W. These findings broaden the spectrum of ALS-causing mutations and are indispensable for designing optimal strategies of mutational analysis and genetic counseling of ALS for patients of Chinese origin.
Collapse
Affiliation(s)
- Bing-Wen Soong
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Kon-Ping Lin
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yuh-Cherng Guo
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chou-Ching K Lin
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chien Tsai
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yi-Chun Lu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Ching-Piao Tsai
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
100
|
Van Damme P, Robberecht W. Developments in treatments for amyotrophic lateral sclerosis via intracerebroventricular or intrathecal delivery. Expert Opin Investig Drugs 2014; 23:955-63. [PMID: 24816247 DOI: 10.1517/13543784.2014.912275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Amyotrophic lateral scleroses (ALS) are neurodegenerative disorders primarily affecting the motor system. These incurable disorders are relentlessly progressive and typically limit survival to 2 - 5 years after disease onset. An improved knowledge about disease-causing genes, disease proteins and pathways has revealed considerable heterogeneity in ALS. Novel targeted therapies are being developed, but getting these beyond the BBB remains a challenge. AREAS COVERED The authors review the intracerebroventricular and intrathecal delivery of drugs for the treatment of ALS in preclinical and clinical studies. EXPERT OPINION Lack of BBB permeability should not hold back the development of promising treatments for ALS, as the available evidence suggest that direct intrathecal or intracerebroventricular administration of drug is a feasible delivery route in patients with ALS.
Collapse
Affiliation(s)
- Philip Van Damme
- KU Leuven (University of Leuven), Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) , Leuven , Belgium
| | | |
Collapse
|