51
|
Bergamo A, Dyson PJ, Sava G. The mechanism of tumour cell death by metal-based anticancer drugs is not only a matter of DNA interactions. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
52
|
Wang Z, Wang C, Zhou Z, Sun M, Zhou C, Chen J, Yin F, Wang H, Lin B, Zuo D, Li S, Feng L, Duan Z, Cai Z, Hua Y. CD151-mediated adhesion is crucial to osteosarcoma pulmonary metastasis. Oncotarget 2018; 7:60623-60638. [PMID: 27556355 PMCID: PMC5312406 DOI: 10.18632/oncotarget.11380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 07/26/2016] [Indexed: 01/28/2023] Open
Abstract
CD151, a tetraspanin family protein involved in cell-cell and cell-extracellular matrix interaction, is differentially expressed in osteosarcoma cell membranes. Thus, this study aimed to investigate the role of CD151 in osteosarcoma metastasis. We analyzed CD151 expression in patient tissue samples using immunohistochemistry. CD151 expression was also silenced with shRNA in osteosarcoma cells of high metastatic potential, and cell adhesion, migration and invasion were evaluated in vitro and pulmonary metastasis was investigated in vivo. Mediators of cell signaling pathways were also examined following suppression of CD151 expression. Overall survival for patients with low versus high CD151 expression level was 94 vs. 41 months (p=0.0451). CD151 expression in osteosarcoma cells with high metastatic potential was significantly higher than in those with low metastatic potential (p<0.001). shRNA-mediated silencing of CD151 did not influence cell viability or proliferation; however, cell adhesion, migration and invasion were all inhibited (all p<0.001). In mice inoculated with shRNA-transduced osteosarcoma cells, the number and size of lung metastatic lesions were reduced compared to the mice inoculated with control-shRNA transduced cells (p<0.001). In addition, CD151 knockdown significantly reduced Akt, p38, and p65 phosphorylation as well as focal adhesion kinase, integrin β1, p70s6, and p-mTOR levels. Taken together, CD151 induced osteosarcoma metastasis likely by regulating cell function through adhesion signaling. Further studies are necessary to fully explore the diagnostic and prognostic value of determining CD151 expression in osteosarcoma patients.
Collapse
Affiliation(s)
- Zhuoying Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chongren Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Mengxiong Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chenghao Zhou
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Jian Chen
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Fei Yin
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Hongsheng Wang
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Binhui Lin
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Dongqing Zuo
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Suoyuan Li
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Lijin Feng
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.,Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.,Shanghai Bone Tumor Institution, Shanghai, 201620, China
| |
Collapse
|
53
|
Fang Y, Wang D, Xu X, Dava G, Liu J, Li X, Xue Q, Wang H, Zhang J, Zhang H. Preparation, in vitro and in vivo evaluation, and molecular dynamics (MD) simulation studies of novel F-18 labeled tumor imaging agents targeting focal adhesion kinase (FAK). RSC Adv 2018; 8:10333-10345. [PMID: 35540451 PMCID: PMC9078890 DOI: 10.1039/c8ra00652k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/06/2018] [Indexed: 11/21/2022] Open
Abstract
Coronal micro-PET images of mice bearing S180 tumor at 30 min post-injection of [18F]2.
Collapse
|
54
|
Lv PC, Jiang AQ, Zhang WM, Zhu HL. FAK inhibitors in Cancer, a patent review. Expert Opin Ther Pat 2017; 28:139-145. [DOI: 10.1080/13543776.2018.1414183] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Peng-Cheng Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing P. R. China
- Nanjing Institute for the Comprehensive Utilization of Wild Plant, Nanjing, P. R. China
| | - Ai-Qin Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing P. R. China
- Nanjing Institute for the Comprehensive Utilization of Wild Plant, Nanjing, P. R. China
| | - Wei-Ming Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing P. R. China
- Nanjing Institute for the Comprehensive Utilization of Wild Plant, Nanjing, P. R. China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing P. R. China
- Nanjing Institute for the Comprehensive Utilization of Wild Plant, Nanjing, P. R. China
| |
Collapse
|
55
|
Genistein inhibits the growth and regulates the migration and invasion abilities of melanoma cells via the FAK/paxillin and MAPK pathways. Oncotarget 2017; 8:21674-21691. [PMID: 28423510 PMCID: PMC5400615 DOI: 10.18632/oncotarget.15535] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/27/2017] [Indexed: 01/10/2023] Open
Abstract
Genistein is one of the main components of soy-based foods, which are widely known for their many benefits, including anti-cancer, anti-inflammatory, and antioxidant effects. In this study, we investigated the anti-metastasis effects of genistein on B16F10 melanoma cells. Our results showed that genistein strongly inhibited B16F10 cell proliferation and induced apoptosis in time- and concentration-dependent manners. Genistein altered the morphology of B16F10 cells to an elongated shape with slim pseudopodia-like protrusions. Moreover, genistein inhibited the invasion and migration abilities of B16F10 cells in a dose-dependent manner. On one hand, a high concentration of genistein (100 μM) significantly inhibited cell adhesion and migration, as shown by wound healing assays and transwell-migration and invasion assays. Furthermore, the expression levels of p-FAK, p-paxillin, tensin-2, vinculin, and α-actinin were decreased by genistein. As a result, genistein is believed to strongly downregulate the migration and invasion abilities of B16F10 cells via the FAK/paxillin pathway. Moreover, p-p38, p-ERK, and p-JNK levels were also dramatically decreased by treatment with genistein. Finally, genistein significantly decreased the gene expression of FAK, paxillin, vimentin, and epithelial-to-mesenchymal transition-related transcription factor Snail, as shown by real-time PCR (qPCR) analysis. On the other hand, a lower concentration of genistein (12.5 μM) significantly promoted both invasion and migration by activating the FAK/paxillin and MAPK signaling cascades. Taken together, this study showed for the first time that genistein exerts dual functional effects on melanoma cells. Our findings suggest that genistein regulates the FAK/paxillin and MAPK signaling pathways in a highly concentration-dependent manner. Patients with melanoma should therefore be cautious of consuming soy-based foods in their diets.
Collapse
|
56
|
Liu X, Gao J, Sun Y, Zhang D, Liu T, Yan Q, Yang X. Mutation of N-linked glycosylation in EpCAM affected cell adhesion in breast cancer cells. Biol Chem 2017; 398:1119-1126. [DOI: 10.1515/hsz-2016-0232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 01/16/2017] [Indexed: 01/06/2023]
Abstract
Abstract
Epithelial cell adhesion molecule (EpCAM) expression is elevated in breast cancer tissue, and correlates with the cancer metastasis and cell adhesion. Although EpCAM glycosylation is supposed to be associated with its function, the contribution of N-glycosylation to its function remains unclear. Here we analyzed cell adhesion ability of EpCAM in breast cancer cells. The results showed that EpCAM expression was associated with cell adhesion and N-glycosylation mutation of EpCAM decreased adhesion capacity. N-glycosylation mutation of EpCAM was correlated with lower levels of integrin β1 and fibronectin. We also found that effect of N-glycosylation of EpCAM on cell adhesion was regulated via FAK/Akt/Gsk-3β/β-catenin signaling pathway, which further adjusted MMP2/9 expression and activities. Our studies identified the characteristics and function of EpCAM glycosylation sites on breast cancer cell adhesion. These data could potentially clarify molecular regulation of EpCAM by N-glycosylation and intensify our understanding of the utility of glycosylated EpCAM as a target for breast cancer therapy.
Collapse
|
57
|
Ali I, Lone MN, Aboul-Enein HY. Imidazoles as potential anticancer agents. MEDCHEMCOMM 2017; 8:1742-1773. [PMID: 30108886 PMCID: PMC6084102 DOI: 10.1039/c7md00067g] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 12/19/2022]
Abstract
Cancer is a black spot on the face of humanity in this era of science and technology. Presently, several classes of anticancer drugs are available in the market, but issues such as toxicity, low efficacy and solubility have decreased the overall therapeutic indices. Thus, the search for new promising anticancer agents continues, and the battle against cancer is far from over. Imidazole is an aromatic diazole and alkaloid with anticancer properties. There is considerable interest among scientists in developing imidazoles as safe alternatives to anticancer chemotherapy. The present article describes the structural, chemical, and biological features of imidazoles. Several classes of imidazoles as anticancer agents based on their mode of action have been critically discussed. A careful observation has been made into pharmacologically active imidazoles with better or equal therapeutic effects compared to well-known imidazole-based anticancer drugs, which are available on the market. A brief discussion of the toxicities of imidazoles has been made. Finally, the current challenges and future perspectives of imidazole based anticancer drug development are conferred.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi-110025 , India . ;
| | - Mohammad Nadeem Lone
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi-110025 , India . ;
| | - Haasan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department , Pharmaceutical and Drug Industries Research Division , National Research Centre , Dokki , Giza 12622 , Egypt
| |
Collapse
|
58
|
Abu El Maaty MA, Strassburger W, Qaiser T, Dabiri Y, Wölfl S. Differences in p53 status significantly influence the cellular response and cell survival to 1,25-dihydroxyvitamin D3-metformin cotreatment in colorectal cancer cells. Mol Carcinog 2017; 56:2486-2498. [PMID: 28618116 DOI: 10.1002/mc.22696] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022]
Abstract
Mutations in the tumor suppressor p53 are highly prevalent in cancers and are known to influence the sensitivity of cells to various chemotherapeutics including the anti-cancer candidates 1,25-dihydrovitamin D3 [1,25D3] and metformin. Previous studies have demonstrated additive/synergistic anti-cancer effects of the 1,25D3-metformin combination in different models, however, the influence of p53 status on the efficacy of this regimen has not been investigated. The CRC colorectal cancer (CRC) cell lines HCT116 wild-type (wt), HCT116 p53-/-, and HT-29 (mutant; R273H) were employed, covering three different p53 variations. Synergistic effects of the combination were confirmed in all cell lines using MTT assay. Detailed evaluation of the combination's effects was performed, including on-line measurements of cellular metabolism (glycolysis/respiration) using a biosensor chip system, analyses of mitochondrial activity (membrane potential and ATP/ROS production), mRNA expression analysis of WNT/β-catenin pathway players, and a comprehensive proteomic screen using immunoblotting and ELISA microarrays. AMPK signaling was found to be more strongly induced in response to all treatments in HCT116 wt cells compared to other cell lines, an observation that was coupled to a stronger accumulation of intracellular ROS in response to metformin/combination, and finally an induction in autophagy, depicted by an increase in LC3II:LC3I ratio in combination-treated cells compared to mono-treatments. An induction in apoptotic signaling was observed in the other cell lines in response to the combination, illustrated by a decrease in expression of pro-survival Bcl2 family members. P53 status impacts cellular responses to the combination but does not hamper its anti-proliferative synergy.
Collapse
Affiliation(s)
- Mohamed A Abu El Maaty
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Wendy Strassburger
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Tooba Qaiser
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Yasamin Dabiri
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
59
|
Bi YL, Mi PY, Zhao SJ, Pan HM, Li HJ, Liu F, Shao LR, Zhang HF, Zhang P, Jiang SL. Salinomycin exhibits anti-angiogenic activity against human glioma in vitro and in vivo by suppressing the VEGF-VEGFR2-AKT/FAK signaling axis. Int J Mol Med 2017; 39:1255-1261. [PMID: 28358414 PMCID: PMC5403467 DOI: 10.3892/ijmm.2017.2940] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
Tumor angiogenesis plays a crucial role in tumor growth, progression and metastasis, and suppression of tumor angiogenesis has been considered as a promising anticancer strategy. Salinomycin (SAL), an antibiotic, displays novel anticancer potential against several human cancer cells in vitro and in vivo. However, little information concerning its anti-angiogenic properties is available. Therefore, the anti‑angiogenic effect of SAL and the underlying mechanism in human glioma were evaluated in the present study. The results indicated that SAL treatment significantly inhibited human umbilical vein endothelial cell (HUVEC) proliferation, migration, invasion and capillary-like tube formation. Further investigation on intracellular mechanisms showed that SAL markedly suppressed FAK and AKT phosphorylation, and downregulated vascular endothelial growth factor (VEGF) expression in HUVECs. Pretreatment of cells with a PI3K inhibitor (LY294002) and FAK inhibitor (PF562271) markedly enhanced SAL-induced inhibition of HUVEC proliferation and migration, respectively. Moreover, U251 human glioma xenograft growth was also effectively blocked by SAL treatment in vivo via inhibition of angiogenesis involving FAK and AKT depho-sphorylation. Taken together, our findings validated that SAL inhibits angiogenesis and human glioma growth through suppression of the VEGF-VEGFR2-AKT/FAK signaling axis, indicating the potential application of SAL for the treatment of human glioma.
Collapse
Affiliation(s)
- Yan-Ling Bi
- Department of Cardiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Pei-Yan Mi
- Department of Cardiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Shi-Jun Zhao
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Heng-Ming Pan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hui-Juan Li
- Department of Cardiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Fei Liu
- Department of Breast Surgery, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Lu-Rong Shao
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Hui-Fang Zhang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Pu Zhang
- Department of Cardiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Shi-Liang Jiang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
60
|
Ma K, Fu W, Tang M, Zhang C, Hou T, Li R, Lu X, Wang Y, Zhou J, Li X, Zhang L, Wang L, Zhao Y, Zhu WG. PTK2-mediated degradation of ATG3 impedes cancer cells susceptible to DNA damage treatment. Autophagy 2017; 13:579-591. [PMID: 28103122 PMCID: PMC5361600 DOI: 10.1080/15548627.2016.1272742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/03/2016] [Accepted: 12/08/2016] [Indexed: 12/29/2022] Open
Abstract
ATG3 (autophagy-related 3) is an E2-like enzyme essential for autophagy; however, it is unknown whether it has an autophagy-independent function. Here, we report that ATG3 is a relatively stable protein in unstressed cells, but it is degraded in response to DNA-damaging agents such as etoposide or cisplatin. With mass spectrometry and a mutagenesis assay, phosphorylation of tyrosine 203 of ATG3 was identified to be a critical modification for its degradation, which was further confirmed by manipulating ATG3Y203E (phosphorylation mimic) or ATG3Y203F (phosphorylation-incompetent) in Atg3 knockout MEFs. In addition, by using a generated phospho-specific antibody we showed that phosphorylation of Y203 significantly increased upon etoposide treatment. With a specific inhibitor or siRNA, PTK2 (protein tyrosine kinase 2) was confirmed to catalyze the phosphorylation of ATG3 at Y203. Furthermore, a newly identified function of ATG3 was recognized to be associated with the promotion of DNA damage-induced mitotic catastrophe, in which ATG3 interferes with the function of BAG3, a crucial protein in the mitotic process, by binding. Finally, PTK2 inhibition-induced sustained levels of ATG3 were able to sensitize cancer cells to DNA-damaging agents. Our findings strengthen the notion that targeting PTK2 in combination with DNA-damaging agents is a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Ke Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wan Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ming Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chaohua Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianyun Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ran Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaopeng Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jingyi Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xue Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Luyao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lina Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- School of Medicine, Shenzhen University, Shenzhen, China
- Peking-Tsinghua University Center for Life Science, Peking University, Beijing, China
| |
Collapse
|
61
|
Dao P, Lietha D, Etheve-Quelquejeu M, Garbay C, Chen H. Synthesis of novel 1,2,4-triazine scaffold as FAK inhibitors with antitumor activity. Bioorg Med Chem Lett 2017; 27:1727-1730. [PMID: 28284808 DOI: 10.1016/j.bmcl.2017.02.072] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
A series of 1,3,5-triazinic inhibitors of focal adhesion kinase (FAK) has recently been shown to exert antiangiogenic activity against HUVEC cells and anticancer efficacy against several cancer cell lines. In this report, we designed and synthesized a series of new compounds containing a 1,2,4-triazine core as novel scaffold for FAK inhibitors. These compounds displayed 10-7M IC50 values, and the best one showed IC50 value of 0.23μM against FAK enzymatic activity. Among them, several inhibitors potently inhibited the proliferation of glioblastoma (U-87MG) and colon (HCT-116) cancer cell lines. Docking of compound 10 into the active site of the FAK kinase was performed to explore its potential binding mode.
Collapse
Affiliation(s)
- Pascal Dao
- CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Daniel Lietha
- Cell Signalling and Adhesion Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Mélanie Etheve-Quelquejeu
- CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Christiane Garbay
- CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Huixiong Chen
- CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France.
| |
Collapse
|
62
|
Cryptomphalus aspersa Mollusc Egg Extract Promotes Regenerative Effects in Human Dermal Papilla Stem Cells. Int J Mol Sci 2017; 18:ijms18020463. [PMID: 28230777 PMCID: PMC5343996 DOI: 10.3390/ijms18020463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to test, by an in vitro approach, whether a natural extract derived from eggs of the mollusc Cryptomphalus aspersa (e-CAF) that seems to present regenerative properties, can enhance the mobilization of human hair dermal papilla cells (HHDPCs) and play a role on tissue repair and regeneration. We have tested HHDPCs proliferation by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium-bromide (MTT) assay; cell migration by using a wound healing assay, as well as the modulation of the expression of cytoskeletal (F-actin and vimentin) and cell adhesion to the extracellular matrix (ECM) (vinculin and P-FAK) proteins. We also explored whether e-CAF could lead HHDPCs to keratinocytes and/or fibroblasts by evaluating the expression of specific markers. We have compared these e-CAF effects with those induced by TGFβ1, implicated in regulation of cell proliferation and migration. e-CAF promotes proliferation and migration of HHDPCs cells in a time- and dose-dependent manner; it also increases the migratory behavior and the expression of adhesion molecules. These results support the fact that e-CAF could play a role on skin regeneration and be used for the prevention or repair of damaged tissue, either due to external causes or as a result of cutaneous aging.
Collapse
|
63
|
Wang D, Fang Y, Wang H, Xu X, Liu J, Zhang H. Synthesis and evaluation of novel F-18-labeled pyrimidine derivatives: potential FAK inhibitors and PET imaging agents for cancer detection. RSC Adv 2017. [DOI: 10.1039/c6ra28851k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Compound [18F]-8a exhibited good in vivo biodistribution data in mice bearing S180 tumor. And the microPET imaging study of [18F]-8a in S180 tumor-bearing mice was also preformed, which illustrated that the uptake in S180 tumor at 60 min post-injection of [18F]-8a was obvious.
Collapse
Affiliation(s)
- Dawei Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- People's Republic of China
| | - Yu Fang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- People's Republic of China
| | - Hang Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- People's Republic of China
| | - Xingyu Xu
- Key Laboratory of Radiopharmaceuticals of Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- People's Republic of China
| | - Jianping Liu
- Key Laboratory of Radiopharmaceuticals of Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- People's Republic of China
| | - Huabei Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- People's Republic of China
| |
Collapse
|
64
|
Oudart JB, Doué M, Vautrin A, Brassart B, Sellier C, Dupont-Deshorgue A, Monboisse JC, Maquart FX, Brassart-Pasco S, Ramont L. The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through αvβ3 integrin interaction. Oncotarget 2016; 7:1516-28. [PMID: 26621838 PMCID: PMC4811477 DOI: 10.18632/oncotarget.6399] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/14/2015] [Indexed: 11/25/2022] Open
Abstract
Type XIX collagen is a minor collagen associated with basement membranes. It was isolated for the first time in a human cDNA library from rhabdomyosarcoma and belongs to the FACITs family (Fibril Associated Collagens with Interrupted Triple Helices). Previously, we demonstrated that the NC1 domain of collagen XIX (NC1(XIX)) exerts anti-tumor properties on melanoma cells by inhibiting their migration and invasion. In the present work, we identified for the first time the integrin αvβ3 as a receptor of NC1(XIX). Moreover, we demonstrated that NC1(XIX) inhibits the FAK/PI3K/Akt/mTOR pathway, by decreasing the phosphorylation and activity of the major proteins involved in this pathway. On the other hand, NC1(XIX) induced an increase of GSK3β activity by decreasing its degree of phosphorylation. Treatments targeting this central signaling pathway in the development of melanoma are promising and new molecules should be developed. NC1(XIX) seems to have the potential for the design of new anti-cancer drugs.
Collapse
Affiliation(s)
- Jean-Baptiste Oudart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - Manon Doué
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Alexia Vautrin
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Bertrand Brassart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Christèle Sellier
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Aurelie Dupont-Deshorgue
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Jean-Claude Monboisse
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - François-Xavier Maquart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - Sylvie Brassart-Pasco
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| |
Collapse
|
65
|
Wang G, Wang X, Huang X, Yang H, Pang S, Xie X, Zeng S, Lin J, Diao Y. Inhibition of integrin β3, a binding partner of kallistatin, leads to reduced viability, invasion and proliferation in NCI-H446 cells. Cancer Cell Int 2016; 16:90. [PMID: 27980455 PMCID: PMC5134261 DOI: 10.1186/s12935-016-0365-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Kallistatin is a serine proteinase inhibitor and heparin-binding protein. It is considered an endogenous angiogenic inhibitor. In addition, multiple studies demonstrated that kallistatin directly inhibits cancer cell growth. However, the molecular mechanisms underlying these effects remain unclear. METHODS Pull-down, immunoprecipitation, and immunoblotting were used for binding experiments. To elucidate the mechanisms, integrin β3 knockdown (siRNA) or blockage (antibody treatment) on the cell surface of small the cell lung cancer NCI-H446 cell line was used. RESULTS Interestingly, kallistatin was capable of binding integrin β3 on the cell surface of NCI-H446 cells. Meanwhile, integrin β3 knockdown or blockage resulted in loss of antitumor activities induced by kallistatin. Furthermore, kallistatin suppressed tyrosine phosphorylation of integrin β3 and its downstream signaling pathways, including FAK/-Src, AKT and Erk/MAPK. Viability, proliferation and migration of NCI-H446 cells were inhibited by kallistatin, with Bcl-2 and Grb2 downregulation, and Bax, cleaved caspase-9 and caspase 3 upregulation. CONCLUSIONS These findings reveal a novel role for kallistatin in preventing small cell lung cancer growth and mobility, by direct interaction with integrin β3, leading to blockade of the related signaling pathway.
Collapse
Affiliation(s)
- Guoquan Wang
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021 China
| | - Xiao Wang
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021 China
| | - Xiaoping Huang
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021 China.,College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, 326000 China.,School of Chemistry and Chemical Engineering of Guangxi Normal University, Guilin, 541004 China
| | - Huiyong Yang
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021 China
| | - Suqiu Pang
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021 China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, 326000 China
| | - Shulan Zeng
- School of Chemistry and Chemical Engineering of Guangxi Normal University, Guilin, 541004 China
| | - Junsheng Lin
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021 China
| | - Yong Diao
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021 China
| |
Collapse
|
66
|
Jeon H, Kim JH, Lee E, Jang YJ, Son JE, Kwon JY, Lim TG, Kim S, Park JHY, Kim JE, Lee KW. Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo. Oncotarget 2016; 7:67223-67234. [PMID: 27579534 PMCID: PMC5341870 DOI: 10.18632/oncotarget.11615] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022] Open
Abstract
Nutrient deprivation strategies have been proposed as an adjuvant therapy for cancer cells due to their increased metabolic demand. We examined the specific inhibitory effects of amino acid deprivation on the metastatic phenotypes of the human triple-negative breast cancer (TNBC) cell lines MDA-MB-231 and Hs 578T, as well as the orthotopic 4T1 mouse TNBC tumor model. Among the 10 essential amino acids tested, methionine deprivation elicited the strongest inhibitory effects on the migration and invasion of these cancer cells. Methionine deprivation reduced the phosphorylation of focal adhesion kinase, as well as the activity and mRNA expression of matrix metalloproteinases MMP-2 and MMP-9, two major markers of metastasis, while increasing the mRNA expression of tissue inhibitor of metalloproteinase 1 in MDA-MB-231 cells. Furthermore, methionine restriction downregulated the metastasis-related factor urokinase plasminogen activatior and upregulated plasminogen activator inhibitor 1 mRNA expression. Animals on the methionine-deprived diet showed lower lung metastasis rates compared to mice on the control diet. Taken together, these results suggest that methionine restriction could provide a potential nutritional strategy for more effective cancer therapy.
Collapse
Affiliation(s)
- Hyein Jeon
- Major in Biomodulation, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Jae Hwan Kim
- Major in Biomodulation, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Eunjung Lee
- Major in Biomodulation, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
- Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Young Jin Jang
- Major in Biomodulation, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
- Metabolic Mechanism Research Group, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Joe Eun Son
- Major in Biomodulation, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Jung Yeon Kwon
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tae-gyu Lim
- Major in Biomodulation, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
- Division of Strategic Food Research, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jung Han Yoon Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Jong-Eun Kim
- Major in Biomodulation, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Ki Won Lee
- Major in Biomodulation, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| |
Collapse
|
67
|
Ren K, Lu X, Yao N, Chen Y, Yang A, Chen H, Zhang J, Wu S, Shi X, Wang C, Sun X. Focal adhesion kinase overexpression and its impact on human osteosarcoma. Oncotarget 2016; 6:31085-103. [PMID: 26393679 PMCID: PMC4741590 DOI: 10.18632/oncotarget.5044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 08/24/2015] [Indexed: 11/25/2022] Open
Abstract
Focal adhesion kinase (FAK) has been implicated in tumorigenesis in various malignancies. We sought to examine the expression patterns of FAK and the activated form, phosphorylated FAK (pFAK), in human osteosarcoma and to investigate the correlation of FAK expression with clinicopathologic parameters and prognosis. In addition, the functional consequence of manipulating the FAK protein level was investigated in human osteosarcoma cell lines. Immunohistochemical staining was used to detect FAK and pFAK in pathologic archived materials from 113 patients with primary osteosarcoma. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognoses. The role of FAK in the cytological behavior of MG63 and 143B human osteosarcoma cell lines was studied via FAK protein knock down with siRNA. Cell proliferation, migration, invasiveness and apoptosis were assessed using the CCK8, Transwell and Annexin V/PI staining methods. Both FAK and pFAK were overexpressed in osteosarcoma. There were significant differences in overall survival between the FAK-/pFAK- and FAK+/pFAK- groups (P = 0.016), the FAK+/pFAK- and FAK+/pFAK+ groups (P = 0.012) and the FAK-/pFAK- and FAK+/pFAK+ groups (P < 0.001). There were similar differences in metastasis-free survival between groups. The Cox proportional hazards analysis showed that the FAK expression profile was an independent indicator of both overall and metastasis-free survival. SiRNA-based knockdown of FAK not only dramatically reduced the migration and invasion of MG63 and 143B cells, but also had a distinct effect on osteosarcoma cell proliferation and apoptosis. These results collectively suggest that FAK overexpression and phosphorylation might predict more aggressive biologic behavior in osteosarcoma and may be an independent predictor of poor prognosis.
Collapse
Affiliation(s)
- Ke Ren
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, Jiangsu Province, P.R.China.,Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Xiao Lu
- Center Laboratory of Cancer Center, The Jingdu Hospital of Nanjing, Nanjing 210002, Jiangsu Province, P.R.China
| | - Nan Yao
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Yong Chen
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Aizhen Yang
- Center Laboratory of Cancer Center, The Jingdu Hospital of Nanjing, Nanjing 210002, Jiangsu Province, P.R.China
| | - Hui Chen
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Sujia Wu
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Xin Shi
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Chen Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Xiaoliang Sun
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, Jiangsu Province, P.R.China
| |
Collapse
|
68
|
Lunasin suppresses the migration and invasion of breast cancer cells by inhibiting matrix metalloproteinase-2/-9 via the FAK/Akt/ERK and NF-κB signaling pathways. Oncol Rep 2016; 36:253-62. [PMID: 27175819 DOI: 10.3892/or.2016.4798] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/01/2016] [Indexed: 11/05/2022] Open
Abstract
Lunasin is a naturally existing bioactive peptide with an Arg-Gly-Asp (RGD) motif, which competes with integrins to bind with the extracellular matrix (ECM) consequently suppressing the integrin-mediated signaling pathway. Owing to the RGD motif, lunasin has been proven as an effective anti-inflammatory, antitumor and antimetastatic agent in many types of cancer. However, knowledge of its inhibitory effect on metastasis and the related mechanism of action in breast cancer cells is limited. In this study, the inhibitory effect of lunasin on the proliferation, migration and invasion of two typical breast cancer cell lines, ER-negative MDA-MB-231 with αVβ3 expression and ER-positive MCF-7 with αVβ5/α5β1 expression, were examined in vitro as well the related mechanisms. The results demonstrated that lunasin (10-20 µM) effectively inhibited the migration and invasion activity and expression of matrix metalloproteinase (MMP)‑2/-9 in both breast cancer cell lines. Meanwhile, we also found that lunasin inhibited the phosphorylation of focal adhesion kinase (FAK), Src, Akt, ERK and nucleus translocation of NF-κB, which indicates that, possibly via competing with αVβ3 or αVβ5/α5β1 integrin, lunasin suppresses the metastasis of breast cancer cells through integrin-mediated FAK/Akt/ERK and NF-κB signaling pathways followed by downregulation of the activity and expression of MMP-2/-9.
Collapse
|
69
|
An EGFR/Src-dependent β4 integrin/FAK complex contributes to malignancy of breast cancer. Sci Rep 2015; 5:16408. [PMID: 26549523 PMCID: PMC4637903 DOI: 10.1038/srep16408] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/14/2015] [Indexed: 01/24/2023] Open
Abstract
β4 integrin and focal adhesion kinase (FAK) are often associated with a poor prognosis in cancer patients, and their signaling events have recently been linked to malignant outcomes. Here, we demonstrate, for the first time, physical and functional interactions between β4 integrin and FAK that influence breast cancer malignancy. An amino-terminal linker within FAK is essential for its binding with the cytodomain of β4 integrin. Moreover, EGFR/Src-signaling triggers the tyrosine phosphorylation of β4 integrin, which, in turn, recruits FAK to β4 integrin and leads to FAK activation and signaling. Upon disruption of the β4 integrin/FAK complex, tumorigenesis and metastasis in triple-negative breast cancer were markedly reduced. Importantly, the concomitant overexpression of β4 integrin and FAK significantly correlates with malignant potential in patients with triple-negative breast cancer. This study describes a pro-metastatic EGFR/Src-dependent β4 integrin/FAK complex that is involved in breast cancer malignancy and is a novel therapeutic target for triple-negative breast cancer.
Collapse
|
70
|
Zhang J, He DH, Zajac-Kaye M, Hochwald SN. A small molecule FAK kinase inhibitor, GSK2256098, inhibits growth and survival of pancreatic ductal adenocarcinoma cells. Cell Cycle 2015; 13:3143-9. [PMID: 25486573 DOI: 10.4161/15384101.2014.949550] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Focal adhesion kinase (FAK) hyperactivation is common in pancreatic ductal adenocarcinoma (PDAC). A small molecule, GSK2256098 (GlaxoSmithKline), has been developed to inhibit FAK activity through targeting the phosphorylation site of FAK, tyrosine (Y) 397. We sought to determine whether GSK2256098 inhibition of FAK Y397 phosphorylation attenuates PDAC-associated cell proliferation, motility and survival. Cultured PDAC cells were used as cellular models of GSK2256098-impaired abnormal growth. Western blot analysis, cell viability analysis, clonogenic survival, soft-agar and wound healing assays were performed. The responses of 6 PDAC cell lines in regards to FAK Y397 phosphorylation or activity to GSK2256098 treatments (0.1-10 μM) ranged from low (less than 20% inhibition) to high (more than 90% inhibition). The least and most sensitive cell lines (PANC-1 and L3.6P1) were selected for further analysis. GSK2256098 inhibition of FAK Y397 phosphorylation correlated with decreased levels of phosphorylated Akt and ERK in L3.6P1 cells. GSK2256098 decreased cell viability, anchorage-independent growth, and motility in a dose dependent manner. Current studies demonstrate that small molecule kinase inhibitors targeting FAK Y397 phosphorylation can inhibit PDAC cell growth. Assessments of FAK Y397 phosphorylation in biopsies may be used as a biomarker to select the subgroup of responsive patients and/or monitor the effects of GSK2256098 on FAK-modulated tumor growth during treatment.
Collapse
Affiliation(s)
- Jianliang Zhang
- a Department of Surgical Oncology ; Roswell Park Cancer Institute ; Elm and Carlton Streets ; Buffalo , NY USA
| | | | | | | |
Collapse
|
71
|
Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis. Oncogene 2015; 35:1926-42. [PMID: 26119934 PMCID: PMC4486081 DOI: 10.1038/onc.2015.256] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/10/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022]
Abstract
Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors, including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions, including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins, including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC.
Collapse
|
72
|
Walkiewicz KW, Girault JA, Arold ST. How to awaken your nanomachines: Site-specific activation of focal adhesion kinases through ligand interactions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:60-71. [PMID: 26093249 DOI: 10.1016/j.pbiomolbio.2015.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/07/2015] [Accepted: 06/14/2015] [Indexed: 01/12/2023]
Abstract
The focal adhesion kinase (FAK) and the related protein-tyrosine kinase 2-beta (Pyk2) are highly versatile multidomain scaffolds central to cell adhesion, migration, and survival. Due to their key role in cancer metastasis, understanding and inhibiting their functions are important for the development of targeted therapy. Because FAK and Pyk2 are involved in many different cellular functions, designing drugs with partial and function-specific inhibitory effects would be desirable. Here, we summarise recent progress in understanding the structural mechanism of how the tug-of-war between intramolecular and intermolecular interactions allows these protein 'nanomachines' to become activated in a site-specific manner.
Collapse
Affiliation(s)
- Katarzyna W Walkiewicz
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Jean-Antoine Girault
- Inserm, UMR-S 839, F-75005 Paris, France; Université Pierre & Marie Curie (UPMC), Sorbonne Universités, F-75005 Paris, France; Institut du Fer à Moulin, F-75005 Paris, France
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia.
| |
Collapse
|
73
|
1,3,4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. Eur J Med Chem 2015; 97:124-41. [DOI: 10.1016/j.ejmech.2015.04.051] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 12/13/2022]
|
74
|
Ruthenium polypyridyl complex inhibits growth and metastasis of breast cancer cells by suppressing FAK signaling with enhancement of TRAIL-induced apoptosis. Sci Rep 2015; 5:9157. [PMID: 25778692 PMCID: PMC4361883 DOI: 10.1038/srep09157] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
Ruthenium-based complexes have emerged as promising antitumor and antimetastatic agents during the past decades. However, the limited understanding of the antimetastatic mechanisms of these agents is a roadblock to their clinical application. Herein, we reported that, RuPOP, a ruthenium polypyridyl complex with potent antitumor activity, was able to effectively inhibit growth and metastasis of MDA-MB-231 cells and synergistically enhance TRAIL-induced apoptosis. The selective intracellular uptake and cytotoxic effect of RuPOP was found associated with transferring receptor (TfR)-mediated endocytosis. Further investigation on intracellular mechanisms reveled that RuPOP notably suppressed FAK-mediated ERK and Akt activation. Pretreatment of cells with ERK inhibitor (U0126) and PI3K inhibitor (LY294002) significantly potentiated the inhibitory effect of RuPOP on cell growth, migration and invasion. Moreover, the alternation in the expression levels of metastatic regulatory proteins, including uPA, MMP-2/-9, and inhibition of VEGF secretion were also observed after RuPOP treatment. These results demonstrate the inhibitory effect of RuPOP on the growth and metastasis of cancer cells and the enhancement of TRAIL-induced apoptosis though suppression of FAK-mediated signaling. Furthermore, RuPOP exhibits the potential to be developed as a metal-based antimetastatic agent and chemosensitizer of TRAIL for the treatment of human metastatic cancers.
Collapse
|
75
|
Abstract
The extracellular matrix regulates tissue development and homeostasis, and its dysregulation contributes to neoplastic progression. The extracellular matrix serves not only as the scaffold upon which tissues are organized but provides critical biochemical and biomechanical cues that direct cell growth, survival, migration and differentiation and modulate vascular development and immune function. Thus, while genetic modifications in tumor cells undoubtedly initiate and drive malignancy, cancer progresses within a dynamically evolving extracellular matrix that modulates virtually every behavioral facet of the tumor cells and cancer-associated stromal cells. Hanahan and Weinberg defined the hallmarks of cancer to encompass key biological capabilities that are acquired and essential for the development, growth and dissemination of all human cancers. These capabilities include sustained proliferation, evasion of growth suppression, death resistance, replicative immortality, induced angiogenesis, initiation of invasion, dysregulation of cellular energetics, avoidance of immune destruction and chronic inflammation. Here, we argue that biophysical and biochemical cues from the tumor-associated extracellular matrix influence each of these cancer hallmarks and are therefore critical for malignancy. We suggest that the success of cancer prevention and therapy programs requires an intimate understanding of the reciprocal feedback between the evolving extracellular matrix, the tumor cells and its cancer-associated cellular stroma.
Collapse
Affiliation(s)
- Michael W Pickup
- Department of Surgery, Center for Bioengineering and Tissue Regeneration UCSF, San Francisco, CA, USA
| | - Janna K Mouw
- Department of Surgery, Center for Bioengineering and Tissue Regeneration UCSF, San Francisco, CA, USA
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration UCSF, San Francisco, CA, USA Departments of Anatomy, Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research UCSF, San Francisco, CA, USA UCSF Helen Diller Comprehensive Cancer Center UCSF, San Francisco, CA, USA
| |
Collapse
|
76
|
Dao P, Smith N, Tomkiewicz-Raulet C, Yen-Pon E, Camacho-Artacho M, Lietha D, Herbeuval JP, Coumoul X, Garbay C, Chen H. Design, synthesis, and evaluation of novel imidazo[1,2-a][1,3,5]triazines and their derivatives as focal adhesion kinase inhibitors with antitumor activity. J Med Chem 2014; 58:237-51. [PMID: 25180654 DOI: 10.1021/jm500784e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A series of triazinic inhibitors of focal adhesion kinase (FAK) have been recently shown to exert antiangiogenic activity against HUVEC cells and anticancer efficacy against several cancer cell lines. We report herein that we further explored the heterocyclic core of these inhibitors by a fused imidazole ring with the triazine to provide imidazo[1,2-a][1,3,5]triazines. Importantly, these new compounds displayed 10(-7)-10(-8) M IC50 values, and the best inhibitor showed IC50 value of 50 nM against FAK enzymatic activity. Several inhibitors potently inhibited the proliferation of a panel of cancer cell lines expressing high levels of FAK. Apoptosis analysis in U87-MG and HCT-116 cell lines suggested that these compounds delayed cell cycle progression by arresting cells in the G2/M phase of the cell cycle, retarding cell growth. Further investigation demonstrated that these compounds strongly inhibited cell-matrix adhesion, migration, and invasion of U87-MG cells.
Collapse
Affiliation(s)
- Pascal Dao
- Chemistry & Biology, Nucleo(s)tides & Immunology for Therapy (CBNIT), CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale , 45 rue des Saints-Pères, 75270 Cedex 06 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Williams JJL, Munro KMA, Palmer TM. Role of Ubiquitylation in Controlling Suppressor of Cytokine Signalling 3 (SOCS3) Function and Expression. Cells 2014; 3:546-62. [PMID: 24886706 PMCID: PMC4092859 DOI: 10.3390/cells3020546] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/01/2014] [Accepted: 05/04/2014] [Indexed: 02/06/2023] Open
Abstract
The realisation that unregulated activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is a key driver of a wide range of diseases has identified its components as targets for therapeutic intervention by small molecule inhibitors and biologicals. In this review, we discuss JAK-STAT signalling pathway inhibition by the inducible inhibitor "suppressor of cytokine signaling 3 (SOCS3), its role in diseases such as myeloproliferative disorders, and its function as part of a multi-subunit E3 ubiquitin ligase complex. In addition, we highlight potential applications of these insights into SOCS3-based therapeutic strategies for management of conditions such as vascular re-stenosis associated with acute vascular injury, where there is strong evidence that multiple processes involved in disease progression could be attenuated by localized potentiation of SOCS3 expression levels.
Collapse
Affiliation(s)
- Jamie J L Williams
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Kirsten M A Munro
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Timothy M Palmer
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|