51
|
Mechanisms Underlying the Differences in the Pharmacokinetics of Six Active Constituents of Huangqi Liuyi Decoction between Normal and Diabetic Nephropathy Mouse Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2481654. [PMID: 36285162 PMCID: PMC9588345 DOI: 10.1155/2022/2481654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/11/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
The aim of this study was to explore the mechanisms underlying the differences in the pharmacokinetics of Huangqi Liuyi decoction extract (HQD) under physiological and pathological conditions. The roles of liver cytochrome P450 metabolic enzymes (Cyp450) and small intestinal transporters were also investigated. The cocktail probe drug method was used to investigate the effects of diabetic nephropathy (DN) and HQD on metabolic enzyme activity. The expression levels of liver Cyp450 metabolic enzymes (Cyp1A2, Cyp2C37, Cyp3A11, Cyp2E1, and Cyp2C11) and small intestinal transporters (breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), organic cation transporters (OCTs), and multidrug resistance-associated protein (MRPs) were determined using western blot. Compared to normal mice, the expression of OCT1, OCT2, MRP1, and MRP2 was increased in DN mice, while that of P-gp and BCRP (P < 0.05 and P < 0.001) was inhibited. HQD inhibited expression of Cyp1A2 and Cyp3A11 and increased the expression of P-gp and BCRP in normal mice. In DN mice, HQD induced expression of BCRP and inhibited expression of Cyp2C37, Cyp3A11, OCT2, MRP1, and MRP2. The activity of each Cyp450 enzyme was consistent with changes in expression. The changes in pharmacokinetic parameters of HQD in DN might, in part, be secondary to decreased expression of P-gp and BCRP. HQD varied in regulating transporter activities between health and disease. These findings support careful application of HQD-based treatment in DN, especially in combination with other drugs.
Collapse
|
52
|
Steroid Resistance Associated with High MIF and P-gp Serum Levels in SLE Patients. Molecules 2022; 27:molecules27196741. [PMID: 36235275 PMCID: PMC9573564 DOI: 10.3390/molecules27196741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Approximately 30% of patients with systemic lupus erythematosus (SLE) present steroid resistance (SR). Macrophage migration inhibition factor (MIF) and P-glycoprotein (P-gp) could be related to SR. This work aims to evaluate the relationship between MIF and P-pg serum levels in SR in SLE. Methods: Case−control study including 188 SLE patients who were divided into two groups (90 in the steroid-resistant group and 98 in the steroid-sensitive (SS) group) and 35 healthy controls. MIF and P-gp serum levels were determined by ELISA. Multivariable logistic regression and chi-squared automatic interaction detection (CHAID) were used to explore risk factors for SR. Results: The steroid-resistant group presented higher MIF and P-gp serum levels in comparison with the SS (p < 0.001) and reference (p < 0.001) groups. MIF correlated positively with P-gp (rho = 0.41, p < 0.001). MIF (≥15.75 ng/mL) and P-gp (≥15.22 ng/mL) were a risk factor for SR (OR = 2.29, OR = 5.27). CHAID identified high P-gp as the main risk factor for SR and high MIF as the second risk factor in those patients with low P-gp. Conclusions: An association between MIF and P-gp serum levels was observed in SR. CHAID identified P-gp ≥ 15.22 ng/mL as the main risk factor for SR. More studies are needed to validate these results.
Collapse
|
53
|
Assessment of potential drug–drug interactions among outpatients in a tertiary care hospital: focusing on the role of P-glycoprotein and CYP3a4 (retrospective observational study). Heliyon 2022; 8:e11278. [PMID: 36387483 PMCID: PMC9641194 DOI: 10.1016/j.heliyon.2022.e11278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/26/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Background Selecting a medicine has a significant impact on the quality of therapy including efficacy and safety. P-glycoprotein and CYP3A4 share several common substrates known as bi-substrates. Both play major role in the pharmacokinetics and pharmacodynamics when over or under expressed. Objective The study aimed to assess the Drug–Drug Interaction (DDI) related to P-glycoprotein (P-gp) and Cytochrome P450-3A4 (CYP3A4), to predict their clinical outcomes and also to discover prospective predictors of pDDIs. Methods The subjects in this retrospective study ranged in age from 18 to 95 years with polypharmacy prescriptions. Information was gathered through patient medical records. Based on Micromedex and previous literature studies, medications prescribed to the patients were observed for pDDIs according to risk rating scale for drug interactions. Results A total of 504 patients (160 males and 344 females) were included in the study. The mean of pDDI seen in the patients was 1.66 ± 1.48 and total 825 pDDIs were discovered. The factors significantly associated with having ≥1 pDDIs included: taking ≥5 medicines (OR 1.747), increased age (OR 1.026) increased comorbidities (OR 1.73). Conclusion In prescriptions, a considerable number of probable DDI were discovered. Therefore, careful selection of drugs and identification of mechanisms for DDI is needed to lower the frequency of pDDI.
Collapse
|
54
|
Peng H, Qiao L, Shan G, Gao M, Zhang R, Yi X, He X. Stepwise responsive carboxymethyl chitosan-based nanoplatform for effective drug-resistant breast cancer suppression. Carbohydr Polym 2022; 291:119554. [DOI: 10.1016/j.carbpol.2022.119554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022]
|
55
|
da Costa KM, Valente RDC, da Fonseca LM, Freire-de-Lima L, Previato JO, Mendonça-Previato L. The History of the ABC Proteins in Human Trypanosomiasis Pathogens. Pathogens 2022; 11:pathogens11090988. [PMID: 36145420 PMCID: PMC9505544 DOI: 10.3390/pathogens11090988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Human trypanosomiasis affects nearly eight million people worldwide, causing great economic and social impact, mainly in endemic areas. T. cruzi and T. brucei are protozoan parasites that present efficient mechanisms of immune system evasion, leading to disease chronification. Currently, there is no vaccine, and chemotherapy is effective only in the absence of severe clinical manifestations. Nevertheless, resistant phenotypes to chemotherapy have been described in protozoan parasites, associated with cross-resistance to other chemically unrelated drugs. Multidrug resistance is multifactorial, involving: (i) drug entry, (ii) activation, (iii) metabolism and (iv) efflux pathways. In this context, ABC transporters, initially discovered in resistant tumor cells, have drawn attention in protozoan parasites, owing to their ability to decrease drug accumulation, thus mitigating their toxic effects. The discovery of these transporters in the Trypanosomatidae family started in the 1990s; however, few members were described and functionally characterized. This review contains a brief history of the main ABC transporters involved in resistance that propelled their investigation in Trypanosoma species, the main efflux modulators, as well as ABC genes described in T. cruzi and T. brucei according to the nomenclature HUGO. We hope to convey the importance that ABC transporters play in parasite physiology and chemotherapy resistance.
Collapse
Affiliation(s)
- Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (K.M.C.); (L.M.P.)
| | - Raphael do Carmo Valente
- Núcleo de Pesquisa Multidisciplinar em Biologia, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25250-470, Brazil
| | - Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jose Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (K.M.C.); (L.M.P.)
| |
Collapse
|
56
|
Microbial Metabolites Orchestrate a Distinct Multi-Tiered Regulatory Network in the Intestinal Epithelium That Directs P-Glycoprotein Expression. mBio 2022; 13:e0199322. [PMID: 35968955 PMCID: PMC9426490 DOI: 10.1128/mbio.01993-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
P-glycoprotein (P-gp) is a key component of the intestinal epithelium playing a pivotal role in removal of toxins and efflux of endocannabinoids to prevent excessive inflammation and sustain homeostasis. Recent studies revealed butyrate and secondary bile acids, produced by the intestinal microbiome, potentiate the induction of functional P-gp expression. We now aim to determine the molecular mechanism by which this functional microbiome output regulates P-gp. RNA sequencing of intestinal epithelial cells responding to butyrate and secondary bile acids in combination discovered a unique transcriptional program involving multiple pathways that converge on P-gp induction. Using shRNA knockdown and CRISPR/Cas9 knockout cell lines, as well as mouse models, we confirmed the RNA sequencing findings and discovered a role for intestinal HNF4α in P-gp regulation. These findings shed light on a sophisticated signaling network directed by intestinal microbial metabolites that orchestrate P-gp expression and highlight unappreciated connections between multiple pathways linked to colonic health. IMPORTANCE Preventing aberrant inflammation is essential to maintaining homeostasis in the mammalian intestine. Although P-glycoprotein (P-gp) expression in the intestine is critical for protecting the intestinal epithelium from toxins and damage due to neutrophil infiltration, its regulation in the intestine is poorly understood. Findings presented in our current study have now uncovered a sophisticated and heretofore unappreciated intracellular signaling network or "reactome" directed by intestinal microbial metabolites that orchestrate regulation of P-gp. Not only do we confirm the role of histone deacetylases (HDAC) inhibition and nuclear receptor activation in P-gp induction by butyrate and bile acids, but we also discovered new signaling pathways and transcription factors that are uniquely activated in response to the combination of microbial metabolites. Such findings shed new light into a multi-tiered network that maintains P-gp expression in the intestine in the context of the fluctuating commensal microbiome, to sustain a homeostatic tone in the absence of infection or insult.
Collapse
|
57
|
Liu Q, Wang Y, Tan D, Liu Y, Zhang P, Ma L, Liang M, Chen Y. The Prevention and Reversal of a Phenytoin-Resistant Model by N-acetylcysteine Therapy Involves the Nrf2/P-Glycoprotein Pathway at the Blood-Brain Barrier. J Mol Neurosci 2022; 72:2125-2135. [PMID: 36028602 DOI: 10.1007/s12031-022-02056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
The transporter hypothesis is one of the most popular hypotheses of drug-resistant epilepsy (DRE). P-glycoprotein (P-gp), a channel protein at the blood-brain barrier (BBB), plays an important role in the transport of some anti-seizure drugs from brain tissue into vessels, which reduces drug concentrations and diminishes the effects of drug treatment. We performed this study to test whether P-gp is overexpressed in DRE and identify ways to prevent and reverse DRE. In this study, we established a phenytoin (PHT)-resistant mouse model and revealed that P-gp was overexpressed at the BBB in PHT-resistant mice. The P-gp inhibitor nimodipine decreased the resistance of phenytoin. Antioxidative preventive treatment with N-acetylcysteine (NAC) prevented the mice from entering a PHT-resistant state, and NAC therapy tended to reverse PHT resistance into sensitivity. We were also able to induce PHT resistance by activating the Nrf2/P-gp pathway, which indicates that oxidative stress plays an important role in drug resistance. Taken together, these findings suggest that antioxidative therapy may be a promising strategy for overcoming DRE.
Collapse
Affiliation(s)
- Qiankun Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - You Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Dandan Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Yong Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Limin Ma
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Minxue Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China.
| |
Collapse
|
58
|
Mohi-Ud-Din R, Mir RH, Mir PA, Banday N, Shah AJ, Sawhney G, Bhat MM, Batiha GE, Pottoo FH, Pottoo FH. Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery. Curr Drug Metab 2022; 23:735-756. [PMID: 35980054 DOI: 10.2174/1389200223666220817115003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023]
Abstract
Epilepsy is a chronic neurological disorder affecting 70 million people globally. One of the fascinating attributes of brain microvasculature is the (BBB), which controls a chain of distinct features that securely regulate the molecules, ions, and cells movement between the blood and the parenchyma. The barrier's integrity is of paramount importance and essential for maintaining brain homeostasis, as it offers both physical and chemical barriers to counter pathogens and xenobiotics. Dysfunction of various transporters in the (BBB), mainly ATP binding cassette (ABC), is considered to play a vital role in hampering the availability of antiepileptic drugs into the brain. ABC (ATP-binding cassette) transporters constitute a most diverse protein superfamily, which plays an essential part in various biological processes, including cell homeostasis, cell signaling, uptake of nutrients, and drug metabolism. Moreover, it plays a crucial role in neuroprotection by out-flowing various internal and external toxic substances from the interior of a cell, thus decreasing their buildup inside the cell. In humans, forty-eight ABC transporters have been acknowledged and categorized into subfamilies A to G based on their phylogenetic analysis. ABC subfamilies B, C, and G, impart a vital role at the BBB in guarding the brain against the entrance of various xenobiotic and their buildup. The illnesses of the central nervous system have received a lot of attention lately Owing to the existence of the BBB, the penetration effectiveness of most CNS medicines into the brain parenchyma is very limited (BBB). In the development of neurological therapies, BBB crossing for medication delivery to the CNS continues to be a major barrier. Nanomaterials with BBB cross ability have indeed been extensively developed for the treatment of CNS diseases due to their advantageous properties. This review will focus on multiple possible factors like inflammation, oxidative stress, uncontrolled recurrent seizures, and genetic polymorphisms that result in the deregulation of ABC transporters in epilepsy and nanotechnology-enabled delivery across BBB in epilepsy.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu & Kashmir, 190011, India.,Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Landran, Punjab-140301, India.,Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Prince Ahad Mir
- Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Nazia Banday
- Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India
| | - Mudasir Maqbool Bhat
- Department of Pharmaceutical Sciences, Pharmacy Practice Division, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|
59
|
Cheng H, Liu J, Tan Y, Feng W, Peng C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal 2022; 12:541-555. [PMID: 36105164 PMCID: PMC9463479 DOI: 10.1016/j.jpha.2021.10.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, has been found in many plants, such as Coptis chinensis Franch and Phellodendron chinense Schneid. Although BBR has a wide spectrum of pharmacological effects, its oral bioavailability is extremely low. In recent years, gut microbiota has emerged as a cynosure to understand the mechanisms of action of herbal compounds. Numerous studies have demonstrated that due to its low bioavailability, BBR can interact with the gut microbiota, thereby exhibiting altered pharmacological effects. However, no systematic and comprehensive review has summarized these interactions and their corresponding influences on pharmacological effects. Here, we describe the direct interactive relationships between BBR and gut microbiota, including regulation of gut microbiota composition and metabolism by BBR and metabolization of BBR by gut microbiota. In addition, the complex interactions between gut microbiota and BBR as well as the side effects and personalized use of BBR are discussed. Furthermore, we provide our viewpoint on future research directions regarding BBR and gut microbiota. This review not only helps to explain the mechanisms underlying BBR activity but also provides support for the rational use of BBR in clinical practice.
Collapse
Affiliation(s)
| | | | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
60
|
Ketoconazole Reverses Imatinib Resistance in Human Chronic Myelogenous Leukemia K562 Cells. Int J Mol Sci 2022; 23:ijms23147715. [PMID: 35887063 PMCID: PMC9317189 DOI: 10.3390/ijms23147715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a hematologic disorder characterized by the oncogene BCR-ABL1, which encodes an oncoprotein with tyrosine kinase activity. Imatinib, a BCR-ABL1 tyrosine kinase inhibitor, performs exceptionally well with minimal toxicity in CML chemotherapy. According to clinical trials, however, 20–30% of CML patients develop resistance to imatinib. Although the best studied resistance mechanisms are BCR-ABL1-dependent, P-glycoprotein (P-gp, a drug efflux transporter) may also contribute significantly. This study aimed to establish an imatinib-resistant human CML cell line, evaluate the role of P-gp in drug resistance, and assess the capacity of ketoconazole to reverse resistance by inhibiting P-gp. The following parameters were determined in both cell lines: cell viability (as the IC50) after exposure to imatinib and imatinib + ketoconazole, P-gp expression (by Western blot and immunofluorescence), the intracellular accumulation of a P-gp substrate (doxorubicin) by flow cytometry, and the percentage of apoptosis (by the Annexin method). In the highly resistant CML cell line obtained, P-gp was overexpressed, and the level of intracellular doxorubicin was low, representing high P-gp activity. Imatinib plus a non-toxic concentration of ketoconazole (10 μM) overcame drug resistance, inhibited P-gp overexpression and its efflux function, increased the intracellular accumulation of doxorubicin, and favored greater apoptosis of CML cells. P-gp contributes substantially to imatinib resistance in CML cells. Ketoconazole reversed CML cell resistance to imatinib by targeting P-gp-related pathways. The repurposing of ketoconazole for CML treatment will likely help patients resistant to imatinib.
Collapse
|
61
|
Barreiro S, Silva B, Long S, Pinto M, Remião F, Sousa E, Silva R. Fiscalin Derivatives as Potential Neuroprotective Agents. Pharmaceutics 2022; 14:pharmaceutics14071456. [PMID: 35890350 PMCID: PMC9320635 DOI: 10.3390/pharmaceutics14071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (ND) share common molecular/cellular mechanisms that contribute to their progression and pathogenesis. In this sense, we are here proposing new neuroprotection strategies by using marine-derived compounds as fiscalins. This work aims to evaluate the protective effects of fiscalin derivatives towards 1-methyl-4-phenylpyridinium (MPP+)- and iron (III)-induced cytotoxicity in differentiated SH-SY5Y cells, an in vitro disease model to study ND; and on P-glycoprotein (P-gp) transport activity, an efflux pump of drugs and neurotoxins. SH-SY5Y cells were simultaneously exposed to MPP+ or iron (III), and noncytotoxic concentrations of 18 fiscalin derivatives (0–25 μM), being the cytotoxic effect of both MPP+ and iron (III) evaluated 24 and 48 h after exposure. Fiscalins 1a and 1b showed a significant protective effect against MPP+-induced cytotoxicity and fiscalins 1b, 2b, 4 and 5 showed a protective effect against iron (III)-induced cytotoxicity. Fiscalins 4 and 5 caused a significant P-gp inhibition, while fiscalins 1c, 2a, 2b, 6 and 11 caused a modest increase in P-gp transport activity, thus suggesting a promising source of new P-gp inhibitors and activators, respectively. The obtained results highlight fiscalins with promising neuroprotective effects and with relevance for the synthesis of new derivatives for the treatment/prevention of ND.
Collapse
Affiliation(s)
- Sandra Barreiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (B.S.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Requimte, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (S.B.); (R.S.)
| | - Bárbara Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (B.S.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Requimte, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Solida Long
- Department of Bioengineering, Royal University of Phnom Penh, Russian Confederation Blvd., Phnom Penh 12156, Cambodia;
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.P.); (E.S.)
| | - Madalena Pinto
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (B.S.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Requimte, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (B.S.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Requimte, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (S.B.); (R.S.)
| |
Collapse
|
62
|
Engle K, Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur J Med Chem 2022; 239:114542. [PMID: 35751979 DOI: 10.1016/j.ejmech.2022.114542] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022]
Abstract
Chemotherapy is one of the most common treatments for cancer that uses one or more anti-cancer drugs as a part of the standardized chemotherapy regimen. Cytotoxic chemicals delay and prevent cancer cells from multiplying, invading, and metastasizing. However, the significant drawbacks of cancer chemotherapy are the lack of selectivity of the cytotoxic drugs to tumour cells and normal cells and the development of resistance by cells for the particular drug or the combination of drugs. Multidrug resistance (MDR) is the low sensitivity of specific cells against drugs associated with cancer chemotherapy. The most common mechanisms of anticancer drug resistance are: (a) drug-dependent MDR (b) target-dependent MDR, and (c) drug target-independent MDR. In all the factors, the overexpression of multidrug efflux systems contributes significantly to the increased resistance in the cancer cells. Multidrug resistance due to efflux of anticancer drugs by membrane ABC transporters includes ABCB1, ABCC1, and ABCG2. ABCB1 inhibition can restore the sensitivity of the cancerous cells toward chemotherapeutic drugs. In this review, we discussed ABCB1 inhibitors under clinical studies with their mode of action, potency and selectivity. Also, we have highlighted the contribution of repurposing drugs, biologics and nano formulation strategies to combat multidrug resistance by modulating the ABCB1 activity.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
63
|
Pinto M, Silva V, Barreiro S, Silva R, Remião F, Borges F, Fernandes C. Brain drug delivery and neurodegenerative diseases: Polymeric PLGA-based nanoparticles as a forefront platform. Ageing Res Rev 2022; 79:101658. [PMID: 35660114 DOI: 10.1016/j.arr.2022.101658] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023]
Abstract
The discovery of effective drugs for the treatment of neurodegenerative disorders (NDs) is a deadlock. Due to their complex etiology and high heterogeneity, progresses in the development of novel NDs therapies have been slow, raising social/economic and medical concerns. Nanotechnology and nanomedicine evolved exponentially in recent years and presented a panoply of tools projected to improve diagnosis and treatment. Drug-loaded nanosystems, particularly nanoparticles (NPs), were successfully used to address numerous drug glitches, such as efficacy, bioavailability and safety. Polymeric nanoparticles (PNPs), mainly based on polylactic-co-glycolic acid (PLGA), have been already validated and approved for the treatment of cancer, neurologic dysfunctions and hormonal-related diseases. Despite promising no PNPs-based therapy for neurodegenerative disorders is available up to date. To stimulate the research in the area the studies performed so far with polylactic-co-glycolic acid (PLGA) nanoparticles as well as the techniques aimed to improve PNPs BBB permeability and drug targeting were revised. Bearing in mind NDs pharmacological therapy landscape huge efforts must be done in finding new therapeutic solutions along with the translation of the most promising results to the clinic, which hopefully will converge in the development of effective drugs in a foreseeable future.
Collapse
|
64
|
Lu R, Zhou Y, Ma J, Wang Y, Miao X. Strategies and Mechanism in Reversing Intestinal Drug Efflux in Oral Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14061131. [PMID: 35745704 PMCID: PMC9228857 DOI: 10.3390/pharmaceutics14061131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Efflux transporters distributed at the apical side of human intestinal epithelial cells actively transport drugs from the enterocytes to the intestinal lumen, which could lead to extremely poor absorption of drugs by oral administration. Typical intestinal efflux transporters involved in oral drug absorption process mainly include P-glycoprotein (P-gp), multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP). Drug efflux is one of the most important factors resulting in poor absorption of oral drugs. Caco-2 monolayer and everted gut sac are sued to accurately measure drug efflux in vitro. To reverse intestinal drug efflux and improve absorption of oral drugs, a great deal of functional amphiphilic excipients and inhibitors with the function of suppressing efflux transporters activity are generalized in this review. In addition, different strategies of reducing intestinal drugs efflux such as silencing transporters and the application of excipients and inhibitors are introduced. Ultimately, various nano-formulations of improving oral drug absorption by inhibiting intestinal drug efflux are discussed. In conclusion, this review has significant reference for overcoming intestinal drug efflux and improving oral drug absorption.
Collapse
Affiliation(s)
- Rong Lu
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yun Zhou
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
| | - Jinqian Ma
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
| | - Yuchen Wang
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China; (R.L.); (Y.Z.); (J.M.); (Y.W.)
- Correspondence:
| |
Collapse
|
65
|
Combination of Elacridar with Imatinib Modulates Resistance Associated with Drug Efflux Transporters in Chronic Myeloid Leukemia. Biomedicines 2022; 10:biomedicines10051158. [PMID: 35625893 PMCID: PMC9138473 DOI: 10.3390/biomedicines10051158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Multidrug resistance (MDR) development has emerged as a complication that compromises the success of several chemotherapeutic agents. In chronic myeloid leukemia (CML), imatinib resistance has been associated with changes in BCR-ABL1 and intracellular drug concentration, controlled by SLC and ABC transporters. We evaluate the therapeutic potential of a P-glycoprotein and BCRP inhibitor, elacridar, in sensitive (K562 and LAMA-84) and imatinib-resistant (K562-RC and K562-RD) CML cell lines as monotherapy and combined with imatinib. Cell viability was analyzed by resazurin assay. Drug transporter activity, cell death, cell proliferation rate, and cell cycle distribution were analyzed by flow cytometry. Both resistant models presented an increased activity of BCRP and P-gP compared to K562 cells. Elacridar as monotherapy did not reach IC50 in any CML models but activated apoptosis without cytostatic effect. Nevertheless, the association of elacridar (250 nM) with imatinib overcomes resistance, re-sensitizing K562-RC and K562-RD cells with five and ten times lower imatinib concentrations, respectively. Drug combination induced apoptosis with increased cleaved-caspases-3, cleaved-PARP and DNA damage, reduced cell proliferation rate, and arrested CML cells in the S phase. These data suggest that elacridar combined with imatinib might represent a new therapeutic option for overcoming TKI resistance involving efflux transporters.
Collapse
|
66
|
Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Res 2022; 1788:147937. [PMID: 35568085 DOI: 10.1016/j.brainres.2022.147937] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that protects the brain from harmful blood-borne, endogenous and exogenous substances and maintains the homeostatic microenvironment. All constituent cell types play indispensable roles in the BBB's integrity, and other structural BBB components, such as tight junction proteins, adherens junctions, and junctional proteins, can control the barrier permeability. Regarding the need to exchange nutrients and toxic materials, solute carriers, ATP-binding case families, and ion transporter, as well as transcytosis regulate the influx and efflux transport, while the difference in localisation and expression can contribute to functional differences in transport properties. Numerous chemical mediators and other factors such as non-physicochemical factors have been identified to alter BBB permeability by mediating the structural components and barrier function, because of the close relationship with inflammation. In this review, we highlight recently gained mechanistic insights into the maintenance and disruption of the BBB. A better understanding of the factors influencing BBB permeability could contribute to supporting promising potential therapeutic targets for protecting the BBB and the delivery of central nervous system drugs via BBB permeability interventions under pathological conditions.
Collapse
Affiliation(s)
- Yibin Zhao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Gan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Ren
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yubo Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Congcong Ma
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
67
|
Pacheco PA, Louvandini H, Giglioti R, Wedy BCR, Ribeiro JC, Verissimo CJ, Ferreira JFDS, Amarante AFT, Katiki LM. Phytochemicals modulation of P-Glycoprotein and its gene expression in an ivermectin resistant Haemonchus contortus isolate in vitro. Vet Parasitol 2022; 305:109713. [DOI: 10.1016/j.vetpar.2022.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
|
68
|
Hong GL, Tang YH, Li WW, Cao KQ, Tan JP, Hu LF, Chen LW, Zhao GJ, Lu ZQ. Vesicle transport related protein Synaptotagmin-1 mediates paraquat transport to antagonize paraquat toxicity. Toxicology 2022; 472:153180. [PMID: 35430322 DOI: 10.1016/j.tox.2022.153180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 11/28/2022]
Abstract
In this study, A549/PQ cells with moderate resistance to paraquat (PQ) were obtained by treating A549 cells with PQ, their growth rate was slowed down, the accumulation concentration of PQ and the levels of growth inhibition, injury and early apoptosis induced by PQ were significantly lower than those of parental A549 cells. Microarray screening and RT-qPCR detection found that Synaptotagmin-1 (SYT1) expression in drug-resistant cells was significantly increased, and PQ further enhanced its expression. After inhibiting SYT1 expression in A549/PQ cells, cell viability, intracellular PQ concentration and the expression of Bcl-2, SNAP25 and RAB26 were significantly reduced, while the mortality, early apoptosis rate and Bax expression were significantly increased. In vivo experiments also further showed that PQ promoted the expression of SYT1, SNAP25 and RAB26 in PQ-poisoned mice; when inhibiting SYT1 expression, PQ concentration in lung tissues was significantly increased, and the levels of lung injury and apoptosis were also significantly enhanced, while the expression of SNAP25 and RAB26 was significantly reduced. This indicates that PQ poisoning leads to compensatory up-regulation of vesicle transport related proteins such as SYT1 in vivo, thereby promoting PQ transmembrane transport, and then reducing the pulmonary accumulation of PQ and PQ-caused lung injury.
Collapse
Affiliation(s)
- Guang-Liang Hong
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Ya-Hui Tang
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Wen-Wen Li
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Kai-Qiang Cao
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Jia-Ping Tan
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Lu-Feng Hu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Long-Wang Chen
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Guang-Ju Zhao
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Zhong-Qiu Lu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China.
| |
Collapse
|
69
|
Preclinical studies of the triazolo[1,5-a]pyrimidine derivative WS-716 as a highly potent, specific and orally active P-glycoprotein (P-gp) inhibitor. Acta Pharm Sin B 2022; 12:3263-3280. [PMID: 35967279 PMCID: PMC9366537 DOI: 10.1016/j.apsb.2022.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
Multidrug resistance (MDR) is the main cause of clinical treatment failure and poor prognosis in cancer. Targeting P-glycoprotein (P-gp) has been regarded as an effective strategy to overcome MDR. In this work, we reported our preclinical studies of the triazolo[1,5-a]pyrimidine-based compound WS-716 as a highly potent, specific, and orally active P-gp inhibitor. Through direct binding to P-gp, WS-716 inhibited efflux function of P-gp and specifically reversed P-gp-mediated MDR to paclitaxel (PTX) in multiple resistant cell lines, without changing its expression or subcellular localization. WS-716 and PTX synergistically inhibited formation of colony and 3D spheroid, induced apoptosis and cell cycle arrest at G2/M phase in resistant SW620/Ad300 cells. In addition, WS-716 displayed minimal effect on the drug-metabolizing enzyme cytochrome P4503A4 (CYP3A4). Importantly, WS-716 increased sensitivity of both pre-clinically and clinically derived MDR tumors to PTX in vivo with the T/C value of 29.7% in patient-derived xenograft (PDX) models. Relative to PTX treatment alone, combination of WS-716 and PTX caused no obvious adverse reactions. Taken together, our preclinical studies revealed therapeutic promise of WS-716 against MDR cancer, the promising data warrant its further development for cancer therapy.
Collapse
|
70
|
Boichuk S, Dunaev P, Mustafin I, Mani S, Syuzov K, Valeeva E, Bikinieva F, Galembikova A. Infigratinib (BGJ 398), a Pan-FGFR Inhibitor, Targets P-Glycoprotein and Increases Chemotherapeutic-Induced Mortality of Multidrug-Resistant Tumor Cells. Biomedicines 2022; 10:biomedicines10030601. [PMID: 35327403 PMCID: PMC8945560 DOI: 10.3390/biomedicines10030601] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
The microtubule-targeting agents (MTAs) are well-known chemotherapeutic agents commonly used for therapy of a broad spectrum of human malignancies, exhibiting epithelial origin, including breast, lung, and prostate cancer. Despite the impressive response rates shortly after initiation of MTA-based therapy, the vast majority of human malignancies develop resistance to MTAs due to the different mechanisms. Here, we report that infigratinib (BGJ 398), a potent FGFR1-4 inhibitor, restores sensitivity of a broad spectrum of ABCB1-overexpressing cancer cells to certain chemotherapeutic agents, including paclitaxel (PTX) and doxorubicin (Dox). This was evidenced for the triple-negative breast cancer (TNBC), and gastrointestinal stromal tumor (GIST) cell lines, as well. Indeed, when MDR-overexpressing cancer cells were treated with a combination of BGJ 398 and PTX (or Dox), we observed a significant increase of apoptosis which was evidenced by an increased expression of cleaved forms of PARP, caspase-3, and increased numbers of Annexin V-positive cells, as well. Moreover, BGJ 398 used in combination with PTX significantly decreased the viability and proliferation of the resistant cancer cells. As expected, no apoptosis was found in ABCB1-overexpressing cancer cells treated with PTX, Dox, or BGJ 398 alone. Inhibition of FGFR-signaling by BGJ 398 was evidenced by the decreased expression of phosphorylated (i.e., activated) forms of FGFR and FRS-2, a well-known adaptor protein of FGFR signaling, and downstream signaling molecules (e.g., STAT-1, -3, and S6). In contrast, expression of MDR-related ABC-transporters did not change after BGJ 398 treatment, thereby suggesting an impaired function of MDR-related ABC-transporters. By using the fluorescent-labeled chemotherapeutic agent PTX-Alexa488 (Flutax-2) and doxorubicin, exhibiting an intrinsic fluorescence, we found that BGJ 398 substantially impairs their efflux from MDR-overexpressing TNBC cells. Moreover, the efflux of Calcein AM, a well-known substrate for ABCB1, was also significantly impaired in BGJ 398-treated cancer cells, thereby suggesting the ABCB1 as a novel molecular target for BGJ 398. Of note, PD 173074, a potent FGFR1 and VEGFR2 inhibitor failed to retain chemotherapeutic agents inside ABCB1-overexpressing cells. This was consistent with the inability of PD 173074 to sensitize Tx-R cancer cells to PTX and Dox. Collectively, we show here for the first time that BGJ 398 reverses the sensitivity of MDR-overexpressing cancer cells to certain chemotherapeutic agents due to inhibition of their efflux from cancer cells via ABCB1-mediated mechanism.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
- Сentral Research Laboratory, Kazan State Medical University, 420012 Kazan, Russia;
- Department of Radiotherapy and Radiology, Faculty of Surgery, Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
- Correspondence: ; Tel.: +7-917-397-80-93; Fax: +7-843-236-06-52
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Ilshat Mustafin
- Department of Biochemistry, Kazan State Medical University, 420012 Kazan, Russia;
| | - Shinjit Mani
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Kirill Syuzov
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Elena Valeeva
- Сentral Research Laboratory, Kazan State Medical University, 420012 Kazan, Russia;
| | - Firuza Bikinieva
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| |
Collapse
|
71
|
Exploration of novel phthalazinone derivatives as potential efflux transporter inhibitors for reversing multidrug resistance and improving the oral absorption of paclitaxel. Eur J Med Chem 2022; 233:114231. [PMID: 35247755 DOI: 10.1016/j.ejmech.2022.114231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022]
Abstract
Chemotherapy is an important means of cancer treatment. However, overexpression of efflux transporters (including but not limited to P-gp and BCRP) can lead to resistance to cancer chemotherapy. Multiple-target inhibitors of efflux transporter can be overcome the resistance and improve the oral bioavailability of chemotherapy drugs. Therefore, we designed and synthesized a series of phthalazinone ring derivatives (1-20) with different aromatic heterocycles substituents on the amide bond for dual inhibition of P-gp and BCRP. Most target compounds significantly increased the accumulation of P-gp substrates in the chemo-resistant cancer cell lines by inhibiting the efflux of transporters. Compound 19 in particular showed stronger MDR reversal compared to Gefitinib and Verapamil, and comparable to that of the BCRP inhibitor Ko143. In addition, compound 19 improved intestinal absorption of paclitaxel (PTX) and enhanced the bioavailability of the orally administered drug in vivo.
Collapse
|
72
|
Nagano H, Ogata S, Ito S, Masuda T, Ohtsuki S. Knockdown of podocalyxin post-transcriptionally induces the expression and activity of ABCB1/MDR1 in human brain microvascular endothelial cells. J Pharm Sci 2022; 111:1812-1819. [PMID: 35182544 DOI: 10.1016/j.xphs.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
Abstract
Podocalyxin (PODXL) is a highly sialylated transmembrane protein that is expressed on the luminal membrane of brain microvascular endothelial cells. To clarify the role of PODXL in the blood-brain barrier (BBB), the present study aimed to investigate the effect of PODXL-knockdown on protein expression, especially the expression of ABCB1/MDR1, in human microvascular endothelial cells (hCMEC/D3). By quantitative proteomics, gene ontology enrichment with differentially expressed proteins showed that PODXL-knockdown influenced the immune response and intracellular trafficking. Among transporters, the protein expression of ABCB1/MDR1 and ABCG2/BCRP was significantly elevated by approximately 2-fold in the PODXL-knockdown cells. In the knockdown cells, the efflux activity of ABCB1/MDR1 was significantly increased, while its mRNA expression was not significantly different from that of the control cells. As receptors and tight junction proteins, levels of low-density lipoprotein receptor-related protein 1 and occludin were significantly increased, while those of transferrin receptor and claudin-11 were significantly decreased in the knockdown cells. The present results suggest that PODXL functions as a modulator of BBB function, including transport, tight junctions, and immune responses. Furthermore, PODXL post-transcriptionally regulates the protein expression and efflux activity of ABCB1/MDR1 at the BBB, which may affect drug distribution in the brain.
Collapse
Key Words
- Blood-brain barrier, brain microvascular endothelial cells, ABCB1, MDR1, podocalyxin, proteomics, regulation, List of Abbreviations, BMECs
- Bood-brain barrier, HFD
- Brain microvascular endothelial cells, BBB
- Control hCMEC/D3 cells, shPODXL
- High-fat diet, LRP1
- Low-density lipoprotein receptor-related protein 1, MS
- Mass spectrometry, PODXL
- PODXL-knockdown hCMEC/D3 cells, SEM
- Podocalyxin, shNT
- Standard error of the mean, TFRC
- Transferrin receptor
Collapse
Affiliation(s)
- Hinako Nagano
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
73
|
Jiang Q. Metabolism of natural forms of vitamin E and biological actions of vitamin E metabolites. Free Radic Biol Med 2022; 179:375-387. [PMID: 34785321 PMCID: PMC9018116 DOI: 10.1016/j.freeradbiomed.2021.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Natural forms of vitamin E comprise four tocopherols and four tocotrienols. During the last twenty years, there have been breakthroughs in our understanding of vitamin E metabolism and biological activities of vitamin E metabolites. Research has established that tocopherols and tocotrienols are metabolized via ω-hydroxylase (CYP4F2)-initiated side chain oxidation to form 13'-hydroxychromanol and 13'-carobyxychromanol (13'-COOH). 13'-COOHs are further metabolized via β-oxidation and sulfation to intermediate carboxychromanols, terminal metabolite carboxyethyl-hydroxychroman (CEHC), and sulfated analogs. Animal and human studies show that γ-, δ-tocopherol and tocotrienols are more extensively metabolized than α-tocopherol (αT), as indicated by higher formation of CEHCs and 13'-COOHs from non-αT forms than those from αT. 13'-COOHs are shown to be inhibitors of cyclooxygenase-1/-2 and 5-lipoxygenase and much stronger than CEHCs for these activities. 13'-COOHs inhibit cancer cell growth, modulate cellular lipids and activate peroxisome proliferator-activated receptor-γ and pregnane X receptor. Consistent with mechanistic findings, αT-13'-COOH or δTE-13'-COOH, respective metabolites of αT or δ-tocotrienol, show anti-inflammatory and cancer-preventive effects, modulates the gut microbiota and prevents β-amyloid formation in mice. Therefore, 13'-COOHs are a new class of bioactive compounds with anti-inflammatory and anti-cancer activities and potentially capable of modulating lipid and drug metabolism. Based on the existing evidence, this author proposes that metabolites may contribute to disease-preventing effects of γ-, δ-tocopherol and tocotrienols. The role of metabolites in αT's actions may be somewhat limited considering controlled metabolism of αT because of its association with tocopherol-transport protein and less catabolism by CYP4F2 than other vitamin E forms.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, IN, 47907, West Lafayette, USA.
| |
Collapse
|
74
|
Wang M, Zhan F, Cheng H, Li Q. Gambogenic Acid Inhibits Basal Autophagy of Drug-Resistant Hepatoma Cells and Improves Its Sensitivity to Adriamycin. Biol Pharm Bull 2022; 45:63-70. [PMID: 34980780 DOI: 10.1248/bpb.b21-00511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gambogenic acid (GNA) is extracted from plant Gamboge, has a wide range of anti-tumor effects. In this paper, we study the inhibitory effect of GNA on the BEL-7402/ADM of hepatoma resistant cell lines and further study the mechanism of action. Cell viability test represented that GNA could improve the sensitivity of hepatoma drug-resistant cell line BEL-7402/ADM to Adriamycin (ADM), and further study by 4',6-diamidino-2-phenylindole (DAPI) staining and flow cytometry found that GNA could improve the effect of ADM on promoting apoptosis in BEL-7402/ADM cells, and the activation of apoptosis-related protein was significantly increased, and the ratio of Bax to Bcl-2 was significantly increased. Monodansylcadaverine staining and transmission electron microscopy showed that the basal autophagy level of BEL-7402/ADM cells was higher than that of BEL-7402 cells. Further detection of protein expression found that the intracellular LC3-II to LC3-I ratio and Beclin 1 protein expression increased in the combination of GNA and ADM, but the protein level of p62 increased significantly. GNA inhibit protective autophagy in BEL-7402/ADM cells and promote the role of ADM in inducing apoptosis, thereby increasing ADM sensitivity to BEL-7402/ADM cells, and the effect of GNA inhibition of autophagy may be achieved by inhibiting the degradation of autophagosomes.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine
| | - Fan Zhan
- Huaibei Maternity & Child Healthcare Hospital
| | - Hui Cheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine
| |
Collapse
|
75
|
Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102494. [PMID: 34775061 DOI: 10.1016/j.nano.2021.102494] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
Multidrug resistance (MDR) in cancer chemotherapy is a growing concern for medical practitioners. P-glycoprotein (P-gp) overexpression is one of the major reasons for multidrug resistance in cancer chemotherapy. The P-gp overexpression in cancer cells depends on several factors like adenosine triphosphate (ATP) hydrolysis, hypoxia-inducible factor 1 alpha (HIF-1α), and drug physicochemical properties such as lipophilicity, molecular weight, and molecular size. Further multiple exposures of anticancer drugs to the P-gp efflux protein cause acquired P-gp overexpression. Unique structural and functional characteristics of nanotechnology-based drug delivery systems provide opportunities to circumvent P-gp mediated MDR. The primary mechanism behind the nanocarrier systems in P-gp inhibition includes: bypassing or inhibiting the P-gp efflux pump to combat MDR. In this review, we discuss the role of P-gp in MDR and highlight the recent progress in different nanocarriers to overcome P-gp mediated MDR in terms of their limitations and potentials.
Collapse
|
76
|
Wang S, Wang SQ, Teng QX, Lei ZN, Chen ZS, Chen XB, Liu HM, Yu B. Discovery of the Triazolo[1,5- a]Pyrimidine-Based Derivative WS-898 as a Highly Efficacious and Orally Bioavailable ABCB1 Inhibitor Capable of Overcoming Multidrug Resistance. J Med Chem 2021; 64:16187-16204. [PMID: 34723530 DOI: 10.1021/acs.jmedchem.1c01498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Targeting P-glycoprotein (ABCB1 or P-gp) has been recognized as a promising strategy to overcome multidrug resistance. Here, we reported our medicinal chemistry efforts that led to the discovery of the triazolo[1,5-a]pyrimidine derivative WS-898 as a highly effective ABCB1 inhibitor capable of reversing paclitaxel (PTX) resistance in drug-resistant SW620/Ad300, KB-C2, and HEK293/ABCB1 cells (IC50 = 5.0, 3.67, and 3.68 nM, respectively), more potent than verapamil and zosuquidar. WS-898 inhibited the efflux function of ABCB1, thus leading to decreased efflux and increased intracellular PTX concentration in SW620/Ad300 cells. The cellular thermal shift assay indicated direct engagement of WS-898 to ABCB1. Furthermore, WS-898 stimulated the ATPase activity of ABCB1 but had minimal effects on cytochrome P450 3A4 (CYP3A4). Importantly, WS-898 increased PTX sensitization in vivo without obvious toxicity. The results suggest that WS-898 is a highly effective triazolo[1,5-a]pyrimidine-based ABCB1 inhibitor and shows promise in reversing ABCB1-mediated PTX resistance.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, Zhengzhou 450008, China
| | - Qiu-Xu Teng
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, Zhengzhou 450008, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
77
|
Weng HJ, Tsai TF. ABCB1 in dermatology: roles in skin diseases and their treatment. J Mol Med (Berl) 2021; 99:1527-1538. [PMID: 34370042 PMCID: PMC8350552 DOI: 10.1007/s00109-021-02105-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Adenosine triphosphate-binding cassette subfamily B member 1 (ABCB1), also known as permeability glycoprotein, multidrug-resistant protein 1, or cluster of differentiation 243 (CD243), is a crucial protein for purging foreign substances from cells. The functions of ABCB1 have been investigated extensively for their roles in cancer, stem cells, and drug resistance. Abundant pharmacogenetic studies have been conducted on ABCB1 and its association with treatment responsiveness to various agents, particularly chemotherapeutic and immunomodulatory agents. However, its functions in the skin and implications on dermatotherapeutics are far less reported. In this article, we reviewed the roles of ABCB1 in dermatology. ABCB1 is expressed in the skin and its appendages during drug delivery and transport. It is associated with treatment responsiveness to various agents, including topical steroids, methotrexate, cyclosporine, azathioprine, antihistamines, antifungal agents, colchicine, tacrolimus, ivermectin, tetracycline, retinoid acids, and biologic agents. Moreover, genetic variation in ABCB1 is associated with the pathogenesis of several dermatoses, including psoriasis, atopic dermatitis, melanoma, bullous pemphigoid, Behçet disease, and lichen planus. Further investigation is warranted to elucidate the roles of ABCB1 in dermatology and the possibility of enhancing therapeutic efficacy through ABCB1 manipulation.
Collapse
Affiliation(s)
- H J Weng
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Dermatology, National Taiwan University Hospital, 7 Chung Shan S Rd, Taipei, 10048, Taiwan
| | - T F Tsai
- Department of Dermatology, National Taiwan University Hospital, 7 Chung Shan S Rd, Taipei, 10048, Taiwan.
| |
Collapse
|
78
|
Yang B, Wang D, Liu M, Wu X, Yin J, Zhu G. Host cells with transient overexpression of MDR1 as a novel in vitro model for evaluating on-target effect for activity against the epicellular Cryptosporidium parasite. J Antimicrob Chemother 2021; 77:124-134. [PMID: 34648615 DOI: 10.1093/jac/dkab369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/08/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To rapidly generate host cells with resistance to multiple compounds for differentiating drug action on parasite target or the host cell target (i.e. on-target or off-target effect) against the zoonotic enteric parasite Cryptosporidium parvum. METHODS Transient overexpression of a multidrug resistance protein 1 (MDR1) gene in host cells (HCT-8 cell line) was explored to increase drug tolerance of the host cells to selected anti-cryptosporidial leads. In vitro cytotoxicity and anti-cryptosporidial efficacy of selected compounds were evaluated on the parasite grown in WT parental and transiently transfected HCT-8 cells. The approach was based on the theory that, for an epicellular parasite receiving consistent exposure to compounds in culture medium, overexpressing MDR1 in HCT-8 cells would increase drug tolerance of host cells to selected compounds but would not affect the anti-cryptosporidial efficacy if the compounds acted solely on the parasite target and the drug action on host cell target played no role on the antiparasitic efficacy. RESULTS Six known anti-cryptosporidial leads were tested. Transient overexpression of MDR1 increased drug tolerance of HCT-8 cells on paclitaxel, doxorubicin HCl and vincristine sulphate (2.11- to 2.27-fold increase), but not on cyclosporin A, daunorubicin HCl and nitazoxanide. Increased drug tolerance in host cells had no effect on antiparasitic efficacy of paclitaxel, but affected that of doxorubicin HCl. CONCLUSIONS Data confirmed that, at efficacious concentrations, paclitaxel acted mainly on the parasite target, while doxorubicin might act on both parasite and host cell targets. This model can be employed for studying the action of additional anti-cryptosporidial leads, and adapted to studying drug action in other epicellular pathogens. The limitation of the model is that the anti-cryptosporidial leads/hits need to be MDR1 substrates.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dongqiang Wang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Mingxiao Liu
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaodong Wu
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jigang Yin
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guan Zhu
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
79
|
Yuan S, Wang B, Dai QQ, Zhang XN, Zhang JY, Zuo JH, Liu H, Chen ZS, Li GB, Wang S, Liu HM, Yu B. Discovery of New 4-Indolyl Quinazoline Derivatives as Highly Potent and Orally Bioavailable P-Glycoprotein Inhibitors. J Med Chem 2021; 64:14895-14911. [PMID: 34546748 DOI: 10.1021/acs.jmedchem.1c01452] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The major drawbacks of P-glycoprotein (P-gp) inhibitors at the clinical stage make the development of new P-gp inhibitors challenging and desirable. In this study, we reported our structure-activity relationship studies of 4-indolyl quinazoline, which led to the discovery of a highly effective and orally active P-gp inhibitor, YS-370. YS-370 effectively reversed multidrug resistance (MDR) to paclitaxel and colchicine in SW620/AD300 and HEK293T-ABCB1 cells. YS-370 bound directly to P-gp, did not alter expression or subcellular localization of P-gp in SW620/AD300 cells, but increased the intracellular accumulation of paclitaxel. Furthermore, YS-370 stimulated the P-gp ATPase activity and had moderate inhibition against CYP3A4. Significantly, oral administration of YS-370 in combination with paclitaxel achieved much stronger antitumor activity in a xenograft model bearing SW620/Ad300 cells than either drug alone. Taken together, our data demonstrate that YS-370 is a promising P-gp inhibitor capable of overcoming MDR and represents a unique scaffold for the development of new P-gp inhibitors.
Collapse
Affiliation(s)
- Shuo Yuan
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bo Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Qing-Qing Dai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao-Nan Zhang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jing-Ya Zhang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Hui Zuo
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shaomeng Wang
- Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
80
|
Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov Today 2021; 27:436-455. [PMID: 34624510 DOI: 10.1016/j.drudis.2021.09.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
P-glycoprotein (P-gp) is a drug efflux transporter that triggers doxorubicin (DOX) resistance. In this review, we highlight the molecular avenues regulating P-gp, such as Nrf2, HIF-1α, miRNAs, and long noncoding (lnc)RNAs, to reveal their participation in DOX resistance. These antitumor compounds and genetic tools synergistically reduce P-gp expression. Furthermore, ATP depletion impairs P-gp activity to enhance the antitumor activity of DOX. Nanoarchitectures, including liposomes, micelles, polymeric nanoparticles (NPs), and solid lipid nanocarriers, have been developed for the co-delivery of DOX with anticancer compounds and genes enhancing DOX cytotoxicity. Surface modification of nanocarriers, for instance with hyaluronic acid (HA), can promote selectivity toward cancer cells. We discuss these aspects with a focus on P-gp expression and activity.
Collapse
|
81
|
Rybalkina EY, Moiseeva NI, Karamysheva AF, Eroshenko DV, Konysheva AV, Nazarov AV, Grishko VV. Triterpenoids with modified A-ring as modulators of P-gp-dependent drug-resistance in cancer cells. Chem Biol Interact 2021; 348:109645. [PMID: 34516973 DOI: 10.1016/j.cbi.2021.109645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
Semi-synthetic A-cycle modified triterpenic derivatives with A-cycle condensed with a heterocyclic fragment (compound 1) and fragmented A-ring (compound 2) were tested for cytotoxicity against several tumor cell cultures and doxorubicin (Dox)-resistant cell lines. The equal cytotoxicity of the tested compounds to the parental tumor cell lines (HBL-100, K562) and their resistant subclones (HBL-100/Dox, K562/i-S9) was revealed. The overexpression of ABCB1 (MDR1) gene and P-glycoprotein (P-gp) was confirmed for both resistant subclones of tumor cells. Compounds 1 and 2 were shown to inhibit the ABC-transporter gene expression (MDR1, MRP, MVP, and BCRP) and the transport of well-known P-gp substrate Rhodamine 123 from resistant cells. The docking of triterpenoids 1 and 2 into the drug binding site of P-gp revealed a similarity between the conformation of the tested triterpenoids and that of classical inhibitor verapamil, thus assuming these compounds to be more likely the inhibitors than the substrates of P-gp. Any tested triterpenic derivatives, when combined at non-toxic concentrations with doxorubicin, improved cytotoxic effect of the therapeutic drug against resistant subclones of tumor cells.
Collapse
Affiliation(s)
- Ekaterina Yu Rybalkina
- "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoye shosse 24, 115478, Moscow, Russia
| | - Natalia I Moiseeva
- "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoye shosse 24, 115478, Moscow, Russia
| | - Aida F Karamysheva
- "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoye shosse 24, 115478, Moscow, Russia
| | - Daria V Eroshenko
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia
| | - Anastasia V Konysheva
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia
| | - Alexei V Nazarov
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia
| | - Victoria V Grishko
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia.
| |
Collapse
|
82
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
83
|
Famta P, Shah S, Chatterjee E, Singh H, Dey B, Guru SK, Singh SB, Srivastava S. Exploring new Horizons in overcoming P-glycoprotein-mediated multidrug-resistant breast cancer via nanoscale drug delivery platforms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100054. [PMID: 34909680 PMCID: PMC8663938 DOI: 10.1016/j.crphar.2021.100054] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The high probability (13%) of women developing breast cancer in their lifetimes in America is exacerbated by the emergence of multidrug resistance after exposure to first-line chemotherapeutic agents. Permeation glycoprotein (P-gp)-mediated drug efflux is widely recognized as the major driver of this resistance. Initial in vitro and in vivo investigations of the co-delivery of chemotherapeutic agents and P-gp inhibitors have yielded satisfactory results; however, these results have not translated to clinical settings. The systemic delivery of multiple agents causes adverse effects and drug-drug interactions, and diminishes patient compliance. Nanocarrier-based site-specific delivery has recently gained substantial attention among researchers for its promise in circumventing the pitfalls associated with conventional therapy. In this review article, we focus on nanocarrier-based co-delivery approaches encompassing a wide range of P-gp inhibitors along with chemotherapeutic agents. We discuss the contributions of active targeting and stimuli responsive systems in imparting site-specific cytotoxicity and reducing both the dose and adverse effects.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Essha Chatterjee
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hoshiyar Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Biswajit Dey
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
84
|
Morris G, Gamage E, Travica N, Berk M, Jacka FN, O'Neil A, Puri BK, Carvalho AF, Bortolasci CC, Walder K, Marx W. Polyphenols as adjunctive treatments in psychiatric and neurodegenerative disorders: Efficacy, mechanisms of action, and factors influencing inter-individual response. Free Radic Biol Med 2021; 172:101-122. [PMID: 34062263 DOI: 10.1016/j.freeradbiomed.2021.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiology of psychiatric and neurodegenerative disorders is complex and multifactorial. Polyphenols possess a range of potentially beneficial mechanisms of action that relate to the implicated pathways in psychiatric and neurodegenerative disorders. The aim of this review is to highlight the emerging clinical trial and preclinical efficacy data regarding the role of polyphenols in mental and brain health, elucidate novel mechanisms of action including the gut microbiome and gene expression, and discuss the factors that may be responsible for the mixed clinical results; namely, the role of interindividual differences in treatment response and the potentially pro-oxidant effects of some polyphenols. Further clarification as part of larger, well conducted randomized controlled trials that incorporate precision medicine methods are required to inform clinical efficacy and optimal dosing regimens.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Elizabeth Gamage
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
85
|
García-Varela L, Rodríguez-Pérez M, Custodia A, Moraga-Amaro R, Colabufo NA, Aguiar P, Sobrino T, Dierckx RA, van Waarde A, Elsinga PH, Luurtsema G. In Vivo Induction of P-Glycoprotein Function can be Measured with [ 18F]MC225 and PET. Mol Pharm 2021; 18:3073-3085. [PMID: 34228458 PMCID: PMC8383301 DOI: 10.1021/acs.molpharmaceut.1c00302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
P-Glycoprotein (P-gp) is an efflux pump located at the blood-brain barrier (BBB) that contributes to the protection of the central nervous system by transporting neurotoxic compounds out of the brain. A decline in P-gp function has been related to the pathogenesis of neurodegenerative diseases. P-gp inducers can increase the P-gp function and are considered as potential candidates for the treatment of such disorders. The P-gp inducer MC111 increased P-gp expression and function in SW480 human colon adenocarcinoma and colo-320 cells, respectively. Our study aims to evaluate the P-gp inducing effect of MC111 in the whole brain in vivo, using the P-gp tracer [18F]MC225 and positron emission tomography (PET). Eighteen Wistar rats were treated with either vehicle solution, 4.5 mg/kg of MC111 (low-dose group), or 6 mg/kg of MC111 (high-dose group). Animals underwent a 60 min dynamic PET scan with arterial-blood sampling, 24 h after treatment with the inducer. Data were analyzed using the 1-tissue-compartment model and metabolite-corrected plasma as the input function. Model parameters such as the influx constant (K1) and volume of distribution (VT) were calculated, which reflect the in vivo P-gp function. P-gp and pregnane xenobiotic receptor (PXR) expression levels of the whole brain were assessed using western blot. The administration of MC111 decreased K1 and VT of [18F]MC225 in the whole brain and all of the selected brain regions. In the high-dose group, whole-brain K1 was decreased by 34% (K1-high-dose = 0.20 ± 0.02 vs K1-control = 0.30 ± 0.02; p < 0.001) and in the low-dose group by 7% (K1-low-dose = 0.28 ± 0.02 vs K1-control = 0.30 ± 0.02; p = 0.42) compared to controls. Whole-brain VT was decreased by 25% in the high-dose group (VT-high-dose = 5.92 ± 0.41 vs VT-control = 7.82 ± 0.38; p < 0.001) and by 6% in the low-dose group (VT-low-dose = 7.35 ± 0.38 vs VT-control = 7.82 ± 0.37; p = 0.38) compared to controls. k2 values did not vary after treatment. The treatment did not affect the metabolism of [18F]MC225. Western blot studies using the whole-brain tissue did not detect changes in the P-gp expression, however, preliminary results using isolated brain capillaries found an increasing trend up to 37% in treated rats. The decrease in K1 and VT values after treatment with the inducer indicates an increase in the P-gp functionality at the BBB of treated rats. Moreover, preliminary results using brain endothelial cells also sustained the increase in the P-gp expression. In conclusion, the results verify that MC111 induces P-gp expression and function at the BBB in rats. An increasing trend regarding the P-gp expression levels is found using western blot and an increased P-gp function is confirmed with [18F]MC225 and PET.
Collapse
Affiliation(s)
- Lara García-Varela
- Department
of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Manuel Rodríguez-Pérez
- Clinical
Neurosciences Research Laboratory, Health
Research Institute of Santiago de Compostela (IDIS), 15706 Santiago
de Compostela, Spain
| | - Antía Custodia
- Clinical
Neurosciences Research Laboratory, Health
Research Institute of Santiago de Compostela (IDIS), 15706 Santiago
de Compostela, Spain
| | - Rodrigo Moraga-Amaro
- Department
of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Nicola A. Colabufo
- Dipartimento
di Farmacia-Scienze del Farmaco, Università
degli Studi di Bari, I-70125 Bari, Italy
| | - Pablo Aguiar
- Department
of Nuclear Medicine and Molecular Imaging Group, Clinical University
Hospital, IDIS Health Research Institute, 15706 Santiago
de Compostela, Spain
| | - Tomás Sobrino
- Clinical
Neurosciences Research Laboratory, Health
Research Institute of Santiago de Compostela (IDIS), 15706 Santiago
de Compostela, Spain
| | - Rudi A.J.O. Dierckx
- Department
of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Aren van Waarde
- Department
of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Philip H. Elsinga
- Department
of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Gert Luurtsema
- Department
of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
86
|
Wang F, Huang J, Xin H, Lei J. Triple-Layered Metal-Organic Framework Hybrid for Tandem Response-Driven Enhanced Chemotherapy. Chem Asian J 2021; 16:2068-2074. [PMID: 34114330 DOI: 10.1002/asia.202100505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 12/18/2022]
Abstract
The precise release of drugs is essential to improve cancer therapeutic efficacy. In this work, a tandem responsive strategy was developed based on a triple-layered metal-organic framework (MOF) hybrid. The MOF nanoprobe was stepwise fabricated with a telomerase-responsive inner, a pH-sensitive MOF filling and H2 O2 -responsive coordination complex shell of Fe3+ and eigallocatechin gallate (EGCG). In the tumor microenvironment, the shell was dissociated by endogenous H2 O2 and simultaneously produced highly reactive hydroxyl radicals by a Fenton reaction. Meanwhile, the released EGCG could downregulate the expression of P-glycoprotein responsible for drug resistance. After the dissociation of the framework by protons, telomerase could trigger the release of the drug from the DNA duplex on the exposed inner shell. By integrating confined drug release, inhibited efflux pump and chemodynamic therapy, the all-in-one chemotherapy strategy was identified with enhanced therapeutic efficacy in drug-resistant cancer cells.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hao Xin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
87
|
MAPK-Activated Transcription Factor PxJun Suppresses PxABCB1 Expression and Confers Resistance to Bacillus thuringiensis Cry1Ac Toxin in Plutella xylostella (L.). Appl Environ Microbiol 2021; 87:e0046621. [PMID: 33893113 DOI: 10.1128/aem.00466-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Deciphering the molecular mechanisms underlying insect resistance to Cry toxins produced by Bacillus thuringiensis (Bt) is pivotal for the sustainable utilization of Bt biopesticides and transgenic Bt crops. Previously, we identified that mitogen-activated protein kinase (MAPK)-mediated reduced expression of the PxABCB1 gene is associated with Bt Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). However, the underlying transcriptional regulation mechanism remains enigmatic. Here, the PxABCB1 promoter in Cry1Ac-susceptible and Cry1Ac-resistant P. xylostella strains was cloned and analyzed and found to contain a putative Jun binding site (JBS). A dual-luciferase reporter assay and yeast one-hybrid assay demonstrated that the transcription factor PxJun repressed PxABCB1 expression by interacting with this JBS. The expression levels of PxJun were increased in the midguts of all resistant strains compared to the susceptible strain. Silencing of PxJun expression significantly elevated PxABCB1 expression and Cry1Ac susceptibility in the resistant NIL-R strain, and silencing of PxMAP4K4 expression decreased PxJun expression and also increased PxABCB1 expression. These results indicate that MAPK-activated PxJun suppresses PxABCB1 expression to confer Cry1Ac resistance in P. xylostella, deepening our understanding of the transcriptional regulation of midgut Cry receptor genes and the molecular basis of insect resistance to Bt Cry toxins. IMPORTANCE The transcriptional regulation mechanisms underlying reduced expression of Bt toxin receptor genes in Bt-resistant insects remain elusive. This study unveils that a transcription factor PxJun activated by the MAPK signaling pathway represses PxABCB1 expression and confers Cry1Ac resistance in P. xylostella. Our results provide new insights into the transcriptional regulation mechanisms of midgut Cry receptor genes and deepen our understanding of the molecular basis of insect resistance to Bt Cry toxins. To our knowledge, this study identified the first transcription factor that can be involved in the transcriptional regulation mechanisms of midgut Cry receptor genes in Bt-resistant insects.
Collapse
|
88
|
Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance. Colloids Surf B Biointerfaces 2021; 205:111914. [PMID: 34130211 DOI: 10.1016/j.colsurfb.2021.111914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022]
Abstract
Currently, multidrug resistance (MDR) is one of the major reasons for failure in clinical cancer chemotherapy. Overexpression of the ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which significantly increases the efflux of anticancer drugs from tumor cells, enhances MDR. In the past few decades, four generations of P-gp inhibitors have appeared. However, they are limited in clinical application due to their severe toxic side effects. As a P-gp inhibitor and carrier for loading chemotherapy agents, TPGS has received increasing attention due to its advantages and unique properties of reversing MDR. TPGS is an amphipathic agent that increases the solubility of most chemotherapy drugs and decreases severe side effects. In addition, TPGS is an excellent carrier with P-gp-inhibiting ability. In this review, we summarize the latest articles on TPGS-based nanodelivery systems to prevent MDR.
Collapse
|
89
|
Li YS, Mao S, Zhao DS, Wang CC, Zu D, Yang X, Liu GJ, Wang SJ, Zhang B, Bao XZ, Ye XY, Wei B, Cui ZN, Chen JW, Wang H. Rational design of phenyl thiophene (pyridine) derivatives that overcome P-glycoprotein mediated MDR in MCF-7/ADR cell. Bioorg Chem 2021; 114:105075. [PMID: 34217975 DOI: 10.1016/j.bioorg.2021.105075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 01/04/2023]
Affiliation(s)
- Ya-Sheng Li
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shen Mao
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dong-Sheng Zhao
- Department of Pharmacy, Quanzhou Medical College, Quanzhou 362100, China
| | - Can-Can Wang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dan Zu
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xi Yang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gui-Jun Liu
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Si-Jia Wang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China; Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Bo Zhang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiao-Ze Bao
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xin-Yi Ye
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Jian-Wei Chen
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Wang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
90
|
Damanhuri NS, Kumolosasi E, Omar MS, Razak AFA, Mansor AH. The influence of P-glycoprotein expression in the standard treatment of Helicobacter pylori infection in Sprague Dawley rats. Daru 2021; 29:13-22. [PMID: 33405191 PMCID: PMC8149563 DOI: 10.1007/s40199-020-00377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND P-glycoprotein (P-gp) is an Adenosine triphosphate (ATP) dependent drug-efflux pump which is located abundantly in the stomach and protects the gut mucosa from xenobiotic. OBJECTIVE The purpose of this study was to investigate the influence of P-gp modulation on the efficacy of treatment regimen. METHOD P-gp modulation in rats was performed by using P-gp inducer (150 mg/kg rifampicin) and P-gp inhibitor (10 mg/kg cyclosporine A) for 14 days prior to be infected with Helicobacter pylori (H. pylori). The rats were further divided into groups, which were normal control, vehicle control, antibiotics and omeprazole, antibiotics only and omeprazole only for another 2 weeks of treatment. The ulcer formation and P-gp expression were determined by using macroscopic evaluation and western blot analysis, respectively. RESULTS The highest P-gp expression was shown in the induced P-gp rats (2.00 ± 0.68) while the lowest P-gp expression was shown in the inhibited P-gp rats (0.45 ± 0.36) compared to the normal P-gp rats. In all groups, the rats which were infected with H. pylori, had a significant increase (p < 0.05) in P-gp expression level and a more severe ulcer formation compared to the healthy rats. The ulcer developed at different levels in the rats with inhibited, induced, or normal P-gp expression. After receiving the standard therapy for H. pylori, it was observed that the healing rate for ulcer was increased to 91% (rats with inhibited P-gp expression), 82% (rats with induced P-gp expression) and 75% in rats with normal P-gp. The use of rifampicin to induce P-gp level was also shown to be effective in eradicating the H. pylori infection. CONCLUSION The synergism in the standard therapy by using two antibiotics (clarithromycin and amoxicillin) and proton pump inhibitor (omeprazole) have shown to effectively eradicate the H. pylori infection. Thus, P-gp expression influenced the effectiveness of the treatment.
Collapse
Affiliation(s)
- Noor Safwah Damanhuri
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Endang Kumolosasi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Marhanis Salihah Omar
- Quality Use of Medicine Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirul Faiz Abd Razak
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Hasnan Mansor
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
91
|
Wen W, Luo J, Li P, Huang W, Wang P, Xu S. Benzaldehyde, A New Absorption Promoter, Accelerating Absorption on Low Bioavailability Drugs Through Membrane Permeability. Front Pharmacol 2021; 12:663743. [PMID: 34122083 PMCID: PMC8194254 DOI: 10.3389/fphar.2021.663743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/29/2021] [Indexed: 11/23/2022] Open
Abstract
Styrax, one of the most famous folk medicines, is a necessary medicine in formulas to help other drugs reach the focal zone and maximize the effectiveness, the mechanism that promotes absorption is not clear yet. This study was carried out to investigate the absorption-promoting effects and the mechanism of benzaldehyde, a key active compound of styrax, on the diffusion rates of drugs with different oral bioavailability. Caco-2 transport experiments were used to investigate the transport rate. Molecular Dynamics Simulation analysis and fluorescence-anisotropy measurements were used to explore the underlying mechanism of absorption-promoting. Validation test in vivo was carried out to reveal the absorption-promoting effects of benzaldehyde on high hydrophilicity drugs. Our data indicated that benzaldehyde(50 μM) elevated the cumulative quantity of passively diffusion drugs with high hydrophilicity such as acyclovir and hydrochlorothiazide. MD and membrane fluidity data explained that benzaldehyde can loosen the structure of the lipid bilayer. The validation tests showed that benzaldehyde (140 mg/kg) remarkably increased the Cmax and AUC0-6 of acyclovir and hydrochlorothiazide in vivo. These present studies suggested that benzaldehyde can promote the absorption of drugs with a lower oral bioavailability through disturbing the integrity of lipid bilayer enhanced membrane permeability.
Collapse
Affiliation(s)
- Wen Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenge Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
92
|
Coelho MM, Fernandes C, Remião F, Tiritan ME. Enantioselectivity in Drug Pharmacokinetics and Toxicity: Pharmacological Relevance and Analytical Methods. Molecules 2021; 26:molecules26113113. [PMID: 34070985 PMCID: PMC8197169 DOI: 10.3390/molecules26113113] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/14/2023] Open
Abstract
Enzymes, receptors, and other binding molecules in biological processes can recognize enantiomers as different molecular entities, due to their different dissociation constants, leading to diverse responses in biological processes. Enantioselectivity can be observed in drugs pharmacodynamics and in pharmacokinetic (absorption, distribution, metabolism, and excretion), especially in metabolic profile and in toxicity mechanisms. The stereoisomers of a drug can undergo to different metabolic pathways due to different enzyme systems, resulting in different types and/or number of metabolites. The configuration of enantiomers can cause unexpected effects, related to changes as unidirectional or bidirectional inversion that can occur during pharmacokinetic processes. The choice of models for pharmacokinetic studies as well as the subsequent data interpretation must also be aware of genetic factors (such as polymorphic metabolic enzymes), sex, patient age, hepatic diseases, and drug interactions. Therefore, the pharmacokinetics and toxicity of a racemate or an enantiomerically pure drug are not equal and need to be studied. Enantioselective analytical methods are crucial to monitor pharmacokinetic events and for acquisition of accurate data to better understand the role of the stereochemistry in pharmacokinetics and toxicity. The complexity of merging the best enantioseparation conditions with the selected sample matrix and the intended goal of the analysis is a challenge task. The data gathered in this review intend to reinforce the importance of the enantioselectivity in pharmacokinetic processes and reunite innovative enantioselective analytical methods applied in pharmacokinetic studies. An assorted variety of methods are herein briefly discussed.
Collapse
Affiliation(s)
- Maria Miguel Coelho
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.M.C.); (C.F.)
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.M.C.); (C.F.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Fernando Remião
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO)-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Maria Elizabeth Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.M.C.); (C.F.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
- Correspondence:
| |
Collapse
|
93
|
Xu C, Wang M, Guo W, Sun W, Liu Y. Curcumin in Osteosarcoma Therapy: Combining With Immunotherapy, Chemotherapeutics, Bone Tissue Engineering Materials and Potential Synergism With Photodynamic Therapy. Front Oncol 2021; 11:672490. [PMID: 34094974 PMCID: PMC8172965 DOI: 10.3389/fonc.2021.672490] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma is a dominating malignant bone tumor with high mortality due to pulmonary metastases. Furthermore, because of the cancer cell erosion and surgery resection, osteosarcoma always causes bone defects, which means dysfunction and disfigurement are seldom inevitable. Although various advanced treatments (e.g. chemotherapy, immunotherapy, radiotherapy) are coming up, the 5-year survival rate for osteosarcoma with metastases is still dismal. In line with this, the more potent treatments for osteosarcoma are in high demand. Curcumin, a perennial herb, has been reportedly applied in the therapy of various types of tumors via different mechanisms. In vitro, it has also been reported that curcumin can inhibit the proliferation of osteosarcoma cell lines and can be used to repair bone defects. This seems curcumin is a promising candidate in osteosarcoma treatment. However, due to its congenital property like hydrophobicity, and low bioavailability, affecting its anticancer effect, clinical applications of curcumin are highly limited. To enhance its performance in cancer therapies, some synergist approaches with curcumin have emerged. The present review presents some prospective ones (i.e. combinations with immunotherapy, chemotherapeutics, bone tissue engineering, and biomaterials) applied in osteosarcoma treatment. Additionally, with the advancements of photodynamic therapy in cancer therapy, this review also prospects the combination of curcumin with photodynamic therapy in osteosarcoma treatment.
Collapse
Affiliation(s)
- Chunfeng Xu
- Section of Restorative and Reconstructive Oral Care, Department of Oral Health Sciences, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mingjie Wang
- Section of Restorative and Reconstructive Oral Care, Department of Oral Health Sciences, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wei Guo
- Department of Oral-Maxillofacial and Head-Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Sun
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, United States.,Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yuelian Liu
- Section of Restorative and Reconstructive Oral Care, Department of Oral Health Sciences, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
94
|
Teng YN, Lin KI, Lin YC, Thang TD, Lan YH, Hung CC. A novel flavonoid from Fissistigma cupreonitens, 5‑hydroxy‑7,8‑dimethoxyflavanone, competitively inhibited the efflux function of human P-glycoprotein and reversed cancer multi-drug resistance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153528. [PMID: 33735724 DOI: 10.1016/j.phymed.2021.153528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND P-glycoprotein (P-gp) over-expression plays a vital role in not only systemic drug bioavailability but also cancer multi-drug resistance (MDR). Develop functional inhibitors of P-gp can conquer both problems. PURPOSE AND STUDY DESIGN The aim of the present study was to research the P-gp modulating effects and MDR reversing ability of a novel flavonoid from Fissistigma cupreonitens, the underlying inhibitory mechanisms were further elucidated as well. METHODS Calcein-AM, rhodamine 123, and doxorubicin were fluorescent substrates for the evaluation of P-gp inhibitory function and detailed drug binding modes. Docking simulation was performed to reveal the in silico molecular bonding. ATPase assay and MDR1 shift assay were adopted to reveal the ATP consumption and conformational change of P-gp. The MDR reversing effects were demonstrated through cytotoxicity, cell cycle, and apoptosis analyses. RESULTS 5‑hydroxy‑7,8‑dimethoxyflavanone inhibited the efflux of rhodamine 123 and doxorubicin in a competitive manner, and increased the intracellular fluorescence of calcein at a concentration as low as 2.5 μg/ml. 5‑hydroxy‑7,8‑dimethoxyflavanone slightly changed P-gp's conformation and only stimulated ATPase at very high concentration (100 μg/ml). The docking results showed that 5‑hydroxy‑7,8‑dimethoxyflavanone and verapamil exhibited similar binding affinity to P-gp. The MDR reversing effects were prominent in the vincristine group, the reversal folds were 23.01 and 13.03 when combined with 10 μg/ml 5‑hydroxy‑7,8‑dimethoxyflavanone in the P-gp over-expressing cell line (ABCB1/Flp-In™-293) and MDR cancer cell line (KB/VIN), respectively. CONCLUSION The present study demonstrated that 5‑hydroxy‑7,8‑dimethoxyflavanone was a novel effective flavonoid in the P-gp efflux inhibition and in vitro cancer MDR reversion.
Collapse
Affiliation(s)
- Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung 82445, Taiwan, R.O.C..
| | - Kun-I Lin
- Department of Obstetrics and Gynecology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C.; Department of Cosmetic Science, Providence University, Taichung, Taiwan, R.O.C..
| | - Yu-Chao Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, R.O.C.; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C.
| | - Tran-Dinh Thang
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| | - Yu-Hsuan Lan
- Department of Pharmacy, College of Pharmacy, China Medical University, 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan, R.O.C..
| | - Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan, R.O.C.; Department of Pharmacy, China Medical University Hospital, 2 Yude Road, Taichung 40447, Taiwan, R.O.C.; Department of Healthcare Administration, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, 41354, Taiwan.
| |
Collapse
|
95
|
Ortíz R, Quiñonero F, García-Pinel B, Fuel M, Mesas C, Cabeza L, Melguizo C, Prados J. Nanomedicine to Overcome Multidrug Resistance Mechanisms in Colon and Pancreatic Cancer: Recent Progress. Cancers (Basel) 2021; 13:2058. [PMID: 33923200 PMCID: PMC8123136 DOI: 10.3390/cancers13092058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
The development of drug resistance is one of the main causes of cancer treatment failure. This phenomenon occurs very frequently in different types of cancer, including colon and pancreatic cancers. However, the underlying molecular mechanisms are not fully understood. In recent years, nanomedicine has improved the delivery and efficacy of drugs, and has decreased their side effects. In addition, it has allowed to design drugs capable of avoiding certain resistance mechanisms of tumors. In this article, we review the main resistance mechanisms in colon and pancreatic cancers, along with the most relevant strategies offered by nanodrugs to overcome this obstacle. These strategies include the inhibition of efflux pumps, the use of specific targets, the development of nanomedicines affecting the environment of cancer-specific tissues, the modulation of DNA repair mechanisms or RNA (miRNA), and specific approaches to damage cancer stem cells, among others. This review aims to illustrate how advanced nanoformulations, including polymeric conjugates, micelles, dendrimers, liposomes, metallic and carbon-based nanoparticles, are allowing to overcome one of the main limitations in the treatment of colon and pancreatic cancers. The future development of nanomedicine opens new horizons for cancer treatment.
Collapse
Affiliation(s)
- Raúl Ortíz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Beatriz García-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Marco Fuel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
96
|
Silva V, Gil-Martins E, Silva B, Rocha-Pereira C, Sousa ME, Remião F, Silva R. Xanthones as P-glycoprotein modulators and their impact on drug bioavailability. Expert Opin Drug Metab Toxicol 2021; 17:441-482. [PMID: 33283552 DOI: 10.1080/17425255.2021.1861247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: P-glycoprotein (P-gp) is an important efflux pump responsible for the extruding of many endogenous and exogenous substances out of the cells. P-gp can be modulated by different molecules - including xanthone derivatives - to surpass the multidrug resistance (MDR) phenomenon through P-gp inhibition, or to serve as an antidotal strategy in intoxication scenarios through P-gp induction/activation.Areas covered: This review provides a perspective on P-gp modulators, with particular focus on xanthonic derivatives, highlighting their ability to modulate P-gp expression and/or activity, and the potential impact of these effects on the pharmacokinetics, pharmacodynamics and toxicity of P-gp substrates.Expert opinion: Xanthones, of natural or synthetic origin, are able to modulate P-gp, interfering with its protein synthesis or with its mechanism of action, by decreasing or increasing its efflux capacity. These modulatory effects make the xanthonic scaffold a promising source of new derivatives with therapeutic potential. However, the mechanisms beyond the xanthones-mediated P-gp modulation and the chemical characteristics that make them more potent P-gp inhibitors or inducers/activators are still understudied. Furthermore, a new window of opportunity exists in the neuropathologies field, where xanthonic derivatives with potential to modulate P-gp should be further explored to optimize the prevention/treatment of brain pathologies.
Collapse
Affiliation(s)
- Vera Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Eva Gil-Martins
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bárbara Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carolina Rocha-Pereira
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria Emília Sousa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
97
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
98
|
Cao S, Tang J, Huang Y, Li G, Li Z, Cai W, Yuan Y, Liu J, Huang X, Zhang H. The Road of Solid Tumor Survival: From Drug-Induced Endoplasmic Reticulum Stress to Drug Resistance. Front Mol Biosci 2021; 8:620514. [PMID: 33928116 PMCID: PMC8076597 DOI: 10.3389/fmolb.2021.620514] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Endoplasmic reticulum stress (ERS), which refers to a series of adaptive responses to the disruption of endoplasmic reticulum (ER) homeostasis, occurs when cells are treated by drugs or undergo microenvironmental changes that cause the accumulation of unfolded/misfolded proteins. ERS is one of the key responses during the drug treatment of solid tumors. Drugs induce ERS by reactive oxygen species (ROS) accumulation and Ca2+ overload. The unfolded protein response (UPR) is one of ERS. Studies have indicated that the mechanism of ERS-mediated drug resistance is primarily associated with UPR, which has three main sensors (PERK, IRE1α, and ATF6). ERS-mediated drug resistance in solid tumor cells is both intrinsic and extrinsic. Intrinsic ERS in the solid tumor cells, the signal pathway of UPR-mediated drug resistance, includes apoptosis inhibition signal pathway, protective autophagy signal pathway, ABC transporter signal pathway, Wnt/β-Catenin signal pathway, and noncoding RNA. Among them, apoptosis inhibition is one of the major causes of drug resistance. Drugs activate ERS and its downstream antiapoptotic proteins, which leads to drug resistance. Protective autophagy promotes the survival of solid tumor cells by devouring the damaged organelles and other materials and providing new energy for the cells. ERS induces protective autophagy by promoting the expression of autophagy-related genes, such as Beclin-1 and ATG5–ATG12. ABC transporters pump drugs out of the cell, which reduces the drug-induced apoptosis effect and leads to drug resistance. In addition, the Wnt/β-catenin signal pathway is also involved in the drug resistance of solid tumor cells. Furthermore, noncoding RNA regulates the ERS-mediated survival and death of solid tumor cells. Extrinsic ERS in the solid tumor cells, such as ERS in immune cells of the tumor microenvironment (TME), also plays a crucial role in drug resistance by triggering immunosuppression. In immune system cells, ERS in dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) influences the antitumor function of normal T cells, which results in immunosuppression. Meanwhile, ERS in T cells can also cause impaired functioning and apoptosis, leading to immunosuppression. In this review, we highlight the core molecular mechanism of drug-induced ERS involved in drug resistance, thereby providing a new strategy for solid tumor treatment.
Collapse
Affiliation(s)
- Shulong Cao
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jingyi Tang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yichun Huang
- Clinical Medical College, Hubei University of Science and Technology, Xianning, China
| | - Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhuoya Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wenqi Cai
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yuning Yuan
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Junlong Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xuqun Huang
- Edong Healthcare Group, Department of Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| |
Collapse
|
99
|
Wu MD, Ye JT, Zhu BL, Ye FM, Wang WY. Effect and mechanisms of LINC00152 knockdown on chemotherapy resistance in mitomycin-resistant gastric cancer NCI-N87/MMC cells. Shijie Huaren Xiaohua Zazhi 2021; 29:332-339. [DOI: 10.11569/wcjd.v29.i7.332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long intergenic noncoding RNA 152 (LINC00152) is highly expressed in gastric cancer tissues, and it can promote the proliferation, migration, and invasion of gastric cancer cells. However, the effects and mechanisms of LINC00152 on chemotherapy resistance in gastric cancer are not clear.
AIM To explore the effects and related mechanisms of LINC00152 on chemotherapy resistance in human gastric cancer cell line NCI-N87.
METHODS The expression of LINC00152 in human gastric cancer cell line NCI-N87 and mitomycin (MMC) resistant cell line NCI-N87/MMC was detected by real-time PCR. After the expression of LINC00152 in NCI-N87/MMC cells was knocked down by RNA interference method, the sensitivity of cells to MMC and cisplatin was measured by MTT assay, cell apoptosis was detected by flow cytometry, and the protein expression levels of Bcl-2, Bax, Caspase 3, and cleaved Caspase 3 were determined by Western Blot. Furthermore, the expression levels of MDR1/P-gp, Mgr1-Ag, and MRP were evaluated by real-time PCR and Western Blot.
RESULTS The expression level of INC00152 in NCI-N87/MMC cells was significantly higher than that in maternal NCI-N87 cells. LINC00152 knockdown induced apoptosis and increased sensitivity to MMC and cisplatin in NCI-N87/MMC cells. LINC00152 knockdown inhibited the expression of Bcl-2 protein in NCI-N87/MMC cells, but promoted the expression of Bax protein and the activation of Caspase 3. Furthermore, LINC00152 knockdown down-regulated the mRNA and protein expression of MDR1, Mgr1-Ag, and MRP in NCI-N87/MMC cells.
CONCLUSION Down-regulation of LINC00152 in NCI-N87/MMC cells can increase the sensitivity of cells to MMC and cisplatin, and the mechanisms may be related to the promotion of cell apoptosis by regulating apoptotic-related factors, and down-regulation of MDR1, Mgr1-Ag, and MRP.
Collapse
Affiliation(s)
- Ming-Dong Wu
- Department of Pharmacy, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Jie-Tong Ye
- Department of Pharmacy, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Bei-Lei Zhu
- Department of Pharmacy, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Fang-Min Ye
- Department of Pharmacy, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Wang-Yue Wang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
100
|
Gabr MT, Barbault F. First dual binder of microRNA-146a and monomeric tau: a novel approach for multitargeted therapeutics for neurodegenerative diseases. Chem Commun (Camb) 2021; 56:9695-9698. [PMID: 32699863 DOI: 10.1039/d0cc04249h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a new approach for the development of multitargeted therapeutics for Alzheimer's disease (AD) based on dual targeting of monomeric tau and biogenesis of microRNA-146a. Compound MG-1102 displayed a superior neuroprotective activity, in comparison to mono-targeted therapeutics, which validates the likelihood of the success of this approach in AD drug development.
Collapse
Affiliation(s)
- Moustafa T Gabr
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Florent Barbault
- Universite de Paris, ITODYS, CNRS, UMR 7086, 15 Rue J-A de Baïf, F-75013, Paris, France
| |
Collapse
|