51
|
Targeting CSC-related transcription factors by E3 ubiquitin ligases for cancer therapy. Semin Cancer Biol 2022; 87:84-97. [PMID: 36371028 DOI: 10.1016/j.semcancer.2022.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Evidence has revealed that transcription factors play essential roles in regulation of multiple cellular processes, including cell proliferation, metastasis, EMT, cancer stem cells and chemoresistance. Dysregulated expression levels of transcription factors contribute to tumorigenesis and malignant progression. The expression of transcription factors is tightly governed by several signaling pathways, noncoding RNAs and E3 ubiquitin ligases. Cancer stem cells (CSCs) have been validated in regulation of tumor metastasis, reoccurrence and chemoresistance in human cancer. Transcription factors have been verified to participate in regulation of CSC formation, including Oct4, SOX2, KLF4, c-Myc, Nanog, GATA, SALL4, Bmi-1, OLIG2, POU3F2 and FOX proteins. In this review article, we will describe the critical role of CSC-related transcription factors. We will further discuss which E3 ligases regulate the degradation of these CSC-related transcription factors and their underlying mechanisms. We also mentioned the functions and mechanisms of EMT-associated transcription factors such as ZEB1, ZEB2, Snail, Slug, Twist1 and Twist2. Furthermore, we highlight the therapeutic potential via targeting E3 ubiquitin ligases for modulation of these transcription factors.
Collapse
|
52
|
Xian F, Yang X, Xu G. Prognostic significance of CDC20 expression in malignancy patients: A meta-analysis. Front Oncol 2022; 12:1017864. [PMID: 36479068 PMCID: PMC9720739 DOI: 10.3389/fonc.2022.1017864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/26/2022] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Cell Division Cycle Protein 20(CDC20) is reported to promote cancer initiation, progression and drug resistance in many preclinical models and is demonstrated in human cancer tissues. However, the correlation between CDC20 and cancer patients' prognosis has not yet been systematically evaluated. Therefore, this present meta-analysis was performed to determine the prognostic value of CDC20 expression in various malignancy tumors. METHODS A thorough database search was performed in EMBASE, PubMed, Cochrane Library and Web of Science from inception to May 2022. Stata14.0 Software was used for the statistical analysis. The pooled hazard ratios(HRs) and their 95% confidence intervals (95% CIs) were used to analysis of overall survival (OS), recurrence-free survival (RFS), distant-metastasis free survival (DMFS). Qualities of the included literature were assessed by JBI Critical appraisal checklist. Egger's test was used to assess publication bias in the included studies. RESULTS Ten articles were selected, and 2342 cancer patients were enrolled. The cancer types include breast, colorectal, lung, gastric, oral, prostate, urothelial bladder cancer, and hepatocellular carcinoma. The result showed strong significant associations between high expression of CDC20 and endpoints: OS (HR 2.52, 95%CI 2.13-2.99; HR 2.05, 95% CI 1.50-2.82, respectively) in the multivariate analysis and in the univariate analysis. Also, high expression of CDC20 was significantly connected with poor RFS (HR 2.08, 95%CI 1.46-2.98) and poor DMFS (HR 4.49, 95%CI 1.57-12.85). The subgroup analysis was also performed, which revealed that CDC20 upregulated expression was related to poor OS in non-small cell lung cancer (HR 2.40, 95% CI 1.91-3.02). CONCLUSIONS This meta-analysis demonstrated that highly expressing CDC20 was associated with poor survival in human malignancy tumors. CDC20 may be a valuable prognostic predictive biomarker and a potential therapeutic target in various cancer parents.
Collapse
Affiliation(s)
- Feng Xian
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Oncology Department, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
| | - Xuegang Yang
- Department of Interventional Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guohui Xu
- Department of Interventional Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
53
|
Sagkrioti E, Biz GM, Takan I, Asfa S, Nikitaki Z, Zanni V, Kars RH, Hellweg CE, Azzam EI, Logotheti S, Pavlopoulou A, Georgakilas AG. Radiation Type- and Dose-Specific Transcriptional Responses across Healthy and Diseased Mammalian Tissues. Antioxidants (Basel) 2022; 11:2286. [PMID: 36421472 PMCID: PMC9687520 DOI: 10.3390/antiox11112286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 08/30/2023] Open
Abstract
Ionizing radiation (IR) is a genuine genotoxic agent and a major modality in cancer treatment. IR disrupts DNA sequences and exerts mutagenic and/or cytotoxic properties that not only alter critical cellular functions but also impact tissues proximal and distal to the irradiated site. Unveiling the molecular events governing the diverse effects of IR at the cellular and organismal levels is relevant for both radiotherapy and radiation protection. Herein, we address changes in the expression of mammalian genes induced after the exposure of a wide range of tissues to various radiation types with distinct biophysical characteristics. First, we constructed a publicly available database, termed RadBioBase, which will be updated at regular intervals. RadBioBase includes comprehensive transcriptomes of mammalian cells across healthy and diseased tissues that respond to a range of radiation types and doses. Pertinent information was derived from a hybrid analysis based on stringent literature mining and transcriptomic studies. An integrative bioinformatics methodology, including functional enrichment analysis and machine learning techniques, was employed to unveil the characteristic biological pathways related to specific radiation types and their association with various diseases. We found that the effects of high linear energy transfer (LET) radiation on cell transcriptomes significantly differ from those caused by low LET and are consistent with immunomodulation, inflammation, oxidative stress responses and cell death. The transcriptome changes also depend on the dose since low doses up to 0.5 Gy are related with cytokine cascades, while higher doses with ROS metabolism. We additionally identified distinct gene signatures for different types of radiation. Overall, our data suggest that different radiation types and doses can trigger distinct trajectories of cell-intrinsic and cell-extrinsic pathways that hold promise to be manipulated toward improving radiotherapy efficiency and reducing systemic radiotoxicities.
Collapse
Affiliation(s)
- Eftychia Sagkrioti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
- Biology Department, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Gökay Mehmet Biz
- Department of Technical Programs, Izmir Vocational School, Dokuz Eylül University, Buca, Izmir 35380, Turkey
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Seyedehsadaf Asfa
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vassiliki Zanni
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Rumeysa Hanife Kars
- Department of Biomedical Engineering, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Christine E. Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology, Linder Höhe, D-51147 Köln, Germany
| | | | - Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| |
Collapse
|
54
|
Zhang X, Liu X, Xiong R, An HX. Identification and validation of ubiquitin-proteasome system related genes as a prognostic signature for papillary renal cell carcinoma. Aging (Albany NY) 2022; 14:9599-9616. [PMID: 36385010 PMCID: PMC9792205 DOI: 10.18632/aging.204383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Dysregulation of the ubiquitin-proteasome system (UPS) pathway greatly affects uncontrolled proliferation, genomic instability, and carcinogenesis, particularly in those with renal papillary cell carcinoma (PRCC). However, there is little information at the molecular level about the full link between changes in the genes involved in ubiquitin-mediated proteolysis and PRCC. METHODS The Cancer Genome Atlas (TCGA) and GeneCards databases were utilized to find the clinical data and gene expression patterns of patients with PRCC. Univariate Cox regression analysis and absolute shrinkage and selection operator (LASSO) analyses identified a risk signature formed by ten optimal UPS genes. The predictive value of the risk signature in TCGA-PRCC cohorts was evaluated using Kaplan-Meier analysis and receiver operating characteristic (ROC) curves. By utilizing GO enrichment and the KEGG pathway, the interactions of differentially expressed genes connected to ubiquitin-mediated proteolysis were functionally examined. The protein expression of the hub genes was affirmed using the Human Protein Atlas (HPA) database. The effectiveness of particular CDC20 and UBE2C in vitro was confirmed by experimental research. RESULTS Ten of the best ubiquitin-mediated proteolysis genes (UBE2C, DDB2, CBLC, BIRC3, PRKN, UBE2O, SIAH1, SKP2, UBC, and CDC20) were detected to create a risk signature. The high-risk score group stratified was associated with advanced tumor status and poor survival of PRCC patients. 10 genes were also found to be associated with the cell cycle pathway and ubiquitin-mediated proteolysis to GO and KEGG analysis. Of these 10 genes, CDC20 and UBE2C are highly expressed in tumor tissue and correlated with cancer immunity founded on the analyses of the expression of human protein atlas and TISIDB. The downregulation of UBE2C facilitated tumor inhibition and the anti-immune effect was confirmed by in vitro experiments. CONCLUSION Our results indicate that the risk model created from the ubiquitin-mediated proteolysis genes can be reliably and accurately predict the prognosis of PRCC patients, highlighting its targeted value for PRCC treatment. Particularly, the expression of UBE2C may be crucial for the prognosis and immunological treatment of renal cancer.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Fujian 361005, China,Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Fujian 361102, China
| | - Xinli Liu
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Fujian 361005, China
| | - Renhua Xiong
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Fujian 361005, China,Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Fujian 361102, China
| | - Han-Xiang An
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Fujian 361005, China,Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Fujian 361102, China
| |
Collapse
|
55
|
Zhang B, Liu P, Li Y, Hu Q, Li H, Pang X, Wu H. Multi-omics analysis of kinesin family member 2C in human tumors: novel prognostic biomarker and tumor microenvironment regulator. Am J Cancer Res 2022; 12:4954-4976. [PMID: 36504885 PMCID: PMC9729912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Kinesin family member 2C (KIF2C) is the best-characterized member of the kinesin-13 family and is involved in accurately fine-tuned dynamics of mitotic spindles. As KIF2C is involved in both spindle formation and regulation of DNA double-strand breaks, precise regulation of KIF2C is essential to prevent malignant transformation associated with gains and losses of DNA content. In the present study, we initially reviewed The Cancer Genome Atlas database and observed that KIF2C is abundantly expressed in most tumor types. We then analyzed the gene alteration profile, protein expression, prognosis, and immune reactivities of KIF2C in more than 10,000 samples from several well-established databases. In addition, we conducted a gene enrichment set analysis to investigate the potential mechanisms underlying the role of KIF2C in tumorigenesis. Multi-omics analysis of KIF2C demonstrated significant statistical correlations between KIF2C expression and clinical prognosis, oncogenic signature gene sets, myeloid-derived suppressor cell infiltration, ImmunoScore, immune checkpoints, microsatellite instability, and tumor mutational burden across multiple tumors. Single-cell data showed that KIF2C is abundantly expressed in malignant cells. The experimental validation demonstrated that KIF2C is highly expressed in gastric cancer cell lines, gastric adenocarcinoma, and hepatocelluar carcinoma. The findings of this study provide important insight for understanding the role and mechanisms of KIF2C in tumorigenesis and immunotherapy in a variety of cancers.
Collapse
Affiliation(s)
- Bixi Zhang
- Department of Pathology, Hunan Provincial People’s Hospital, Hunan Normal UniversityChangsha, Hunan, China
| | - Peng Liu
- Department of Gastroenterology, Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Yanchun Li
- Department of Pathology, Hunan Provincial People’s Hospital, Hunan Normal UniversityChangsha, Hunan, China
| | - Qing Hu
- Department of Pathology, Hunan Provincial People’s Hospital, Hunan Normal UniversityChangsha, Hunan, China
| | - Huan Li
- Department of Gastroenterology, Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Xiaoyang Pang
- Department of Orthopaedics, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Hao Wu
- Department of Gastroenterology, Third Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Center for Precision Medicine, University of Missouri School of MedicineColumbia, MO, USA
| |
Collapse
|
56
|
Jeong SM, Bui QT, Kwak M, Lee JY, Lee PCW. Targeting Cdc20 for cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188824. [DOI: 10.1016/j.bbcan.2022.188824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
|
57
|
Zhai F, Wang J, Yang W, Ye M, Jin X. The E3 Ligases in Cervical Cancer and Endometrial Cancer. Cancers (Basel) 2022; 14:5354. [PMID: 36358773 PMCID: PMC9658772 DOI: 10.3390/cancers14215354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 07/28/2023] Open
Abstract
Endometrial (EC) and cervical (CC) cancers are the most prevalent malignancies of the female reproductive system. There is a global trend towards increasing incidence and mortality, with a decreasing age trend. E3 ligases label substrates with ubiquitin to regulate their activity and stability and are involved in various cellular functions. Studies have confirmed abnormal expression or mutations of E3 ligases in EC and CC, indicating their vital roles in the occurrence and progression of EC and CC. This paper provides an overview of the E3 ligases implicated in EC and CC and discusses their underlying mechanism. In addition, this review provides research advances in the target of ubiquitination processes in EC and CC.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Weili Yang
- Department of Gynecology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| |
Collapse
|
58
|
Ramarao KDR, Somasundram C, Razali Z, Kunasekaran W, Jin TL, Musa S, Achari VM. Antiproliferative effects of dried Moringa oleifera leaf extract on human Wharton's Jelly mesenchymal stem cells. PLoS One 2022; 17:e0274814. [PMID: 36197921 PMCID: PMC9534417 DOI: 10.1371/journal.pone.0274814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have seen an elevated use in clinical works like regenerative medicine. Its potential therapeutic properties increases when used in tandem with complementary agents like bio-based materials. Therefore, the present study is the first to investigate the cytotoxicity of a highly valued medicinal plant, Moringa oleifera, on human Wharton's Jelly mesenchymal stem cells (hWJMSCs) and its effects on the cells' gene expression when used as a pre-treatment agent in vitro. M. oleifera leaves (MOL) were dried and subjected to UHPLC-QTOF/MS analysis, revealing several major compounds like apigenin, kaempferol, and quercetin in the MOL, with various biological activities like antioxidant and anti-cancer properties. We then treated the hWJMSCs with MOL and noticed a dose-dependant inhibition on the cells' proliferation. RNA-sequencing was performed to explain the possible mechanism of action and revealed genes like PPP1R1C, SULT2B1, CDKN1A, mir-154 and CCNB1, whose expression patterns were closely associated with the negative cell cycle regulation and cell cycle arrest process. This is also evident from gene set enrichment analysis where the GO and KEGG terms for down-regulated pathways were closely related to the cell cycle regulation. The Ingenuity pathway analysis (IPA) software further predicted the significant activation of (p < 0.05, z-score > 2) of the G2/M DNA damage checkpoint regulation pathway. The present study suggests that MOL exhibits an antiproliferative effect on hWJMSCs via cell cycle arrest and apoptotic pathways. We believe that this study provides an important baseline reference for future works involving MOL's potential to accompany MSCs for clinical works. Future works can take advantage of the cell's strong anti-cancer gene expression found in this study, and evaluate our MOL treatment on various cancer cell lines.
Collapse
Affiliation(s)
- Kivaandra Dayaa Rao Ramarao
- Institute of Biological Sciences, Faculty of Science and The Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Chandran Somasundram
- Institute of Biological Sciences, Faculty of Science and The Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Zuliana Razali
- Institute of Biological Sciences, Faculty of Science and The Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | | | - Tan Li Jin
- Cytonex Sdn. Bhd., Menara UOA Bangsar, Bangsar, Kuala Lumpur, Malaysia
| | - Sabri Musa
- Department of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vijayan Manickam Achari
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
59
|
Chen OJ, Castellsagué E, Moustafa-Kamal M, Nadaf J, Rivera B, Fahiminiya S, Wang Y, Gamache I, Pacifico C, Jiang L, Carrot-Zhang J, Witkowski L, Berghuis AM, Schönberger S, Schneider D, Hillmer M, Bens S, Siebert R, Stewart CJR, Zhang Z, Chao WCH, Greenwood CMT, Barford D, Tischkowitz M, Majewski J, Foulkes WD, Teodoro JG. Germline Missense Variants in CDC20 Result in Aberrant Mitotic Progression and Familial Cancer. Cancer Res 2022; 82:3499-3515. [PMID: 35913887 DOI: 10.1158/0008-5472.can-21-3956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/12/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
CDC20 is a coactivator of the anaphase promoting complex/cyclosome (APC/C) and is essential for mitotic progression. APC/CCDC20 is inhibited by the spindle assembly checkpoint (SAC), which prevents premature separation of sister chromatids and aneuploidy in daughter cells. Although overexpression of CDC20 is common in many cancers, oncogenic mutations have never been identified in humans. Using whole-exome sequencing, we identified heterozygous missense CDC20 variants (L151R and N331K) that segregate with ovarian germ cell tumors in two families. Functional characterization showed these mutants retain APC/C activation activity but have impaired binding to BUBR1, a component of the SAC. Expression of L151R and N331K variants promoted mitotic slippage in HeLa cells and primary skin fibroblasts derived from carriers. Generation of mice carrying the N331K variant using CRISPR-Cas9 showed that, although homozygous N331K mice were nonviable, heterozygotes displayed accelerated oncogenicity of Myc-driven cancers. These findings highlight an unappreciated role for CDC20 variants as tumor-promoting genes. SIGNIFICANCE Two germline CDC20 missense variants that segregate with cancer in two families compromise the spindle assembly checkpoint and lead to aberrant mitotic progression, which could predispose cells to transformation. See related commentary by Villarroya-Beltri and Malumbres, p. 3432.
Collapse
Affiliation(s)
- Owen J Chen
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Ester Castellsagué
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Division of Medical Genetics and Cancer Axis, Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, Québec, Canada
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mohamed Moustafa-Kamal
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Javad Nadaf
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
| | - Barbara Rivera
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Hereditary Cancer Programme, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Barcelona, Spain
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Somayyeh Fahiminiya
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yilin Wang
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Isabelle Gamache
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Caterina Pacifico
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Lai Jiang
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montréal, Québec, Canada
| | - Jian Carrot-Zhang
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Leora Witkowski
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Division of Medical Genetics and Cancer Axis, Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, Québec, Canada
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
- Department of Microbiology and Immunology, Montréal, Québec, Canada
| | - Stefan Schönberger
- Department of Pediatric Hematology and Oncology, Pediatrics III, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dominik Schneider
- Clinic of Pediatrics, Dortmund Municipal Hospital, Dortmund, Germany
| | - Morten Hillmer
- Institute of Human Genetics, University of Ulm & Ulm University Medical Center, Ulm, Germany
| | - Susanne Bens
- Institute of Human Genetics, University of Ulm & Ulm University Medical Center, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm & Ulm University Medical Center, Ulm, Germany
| | - Colin J R Stewart
- Department of Histopathology, King Edward Memorial Hospital, and School for Women's and Infants' Health, University of Western Australia, Perth, Australia
| | - Ziguo Zhang
- Institute of Cancer Research, London, United Kingdom
| | - William C H Chao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Celia M T Greenwood
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montréal, Québec, Canada
- Departments of Oncology and Human Genetics, McGill University, Montréal, Québec, Canada
| | - David Barford
- Institute of Cancer Research, London, United Kingdom
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Division of Medical Genetics and Cancer Axis, Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, Québec, Canada
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montréal, Québec, Canada
- Division of Medical Genetics and Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Jose G Teodoro
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Department of Microbiology and Immunology, Montréal, Québec, Canada
| |
Collapse
|
60
|
Mengyan X, Kun D, Xinming J, Yutian W, Yongqian S. Identification and verification of hub genes associated with the progression of non-small cell lung cancer by integrated analysis. Front Pharmacol 2022; 13:997842. [PMID: 36176446 PMCID: PMC9513139 DOI: 10.3389/fphar.2022.997842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: Lung cancer is one of the most common cancers worldwide and it is the leading cause of cancer-related mortality. Despite the treatment of patients with non-small cell lung carcinoma (NSCLC) have improved, the molecular mechanisms of NSCLC are still to be further explored. Materials and Methods: Microarray datasets from the Gene Expression Omnibus (GEO) database were selected to identify the candidate genes associated with tumorigenesis and progression of non-small cell lung carcinoma. The differentially expressed genes (DEGs) were identified by GEO2R. Protein-protein interaction network (PPI) were used to screen out hub genes. The expression levels of hub genes were verified by GEPIA, Oncomine and The Human Protein Atlas (HPA) databases. Survival analysis and receiver operating characteristic (ROC) curve analysis were performed to value the importance of hub genes in NSCLC diagnosis and prognosis. ENCODE and cBioPortal were used to explore the upstream regulatory mechanisms of hub genes. Analysis on CancerSEA Tool, CCK8 assay and colony formation assay revealed the functions of hub genes in NSCLC. Results: A total of 426 DEGs were identified, including 93 up-regulated genes and 333 down-regulated genes. And nine hub genes (CDC6, KIAA0101, CDC20, BUB1B, CCNA2, NCAPG, KIF11, BUB1 and CDK1) were found to increase with the tumorigenesis, progression and cisplatin resistance of NSCLC, especially EGFR- or KRAS-mutation driven NSCLC. Hub genes were valuable biomarkers for NSCLC, and the overexpression of hub genes led to poor survival of NSCLC patients. Function analysis showed that hub genes played roles in cell cycle and proliferation, and knockdown of hub genes significantly inhibited A549 and SPCA1 cell growth. Further exploration demonstrated that copy number alterations (CNAs) and transcription activation may account for the up-regulation of hub genes. Conclusion: Hub genes identified in this study provided better understanding of molecular mechanisms within tumorigenesis and progression of NSCLC, and provided potential targets for NSCLC treatment as well.
Collapse
Affiliation(s)
- Xie Mengyan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ding Kun
- Department of Molecular Cell Biology and Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Xinming
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Yutian
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu Yongqian
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Shu Yongqian,
| |
Collapse
|
61
|
Qiao Y, Yuan F, Wang X, Hu J, Mao Y, Zhao Z. Identification and validation of real hub genes in hepatocellular carcinoma based on weighted gene co-expression network analysis. Cancer Biomark 2022; 35:227-243. [PMID: 36120772 DOI: 10.3233/cbm-220151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is one of the most common liver malignancies in the world. With highly invasive biological characteristics and a lack of obvious clinical manifestations, hepatocellular Carcinoma usually has a poor prognosis and ranks fourth in cancer mortality. The etiology and exact molecular mechanism of primary hepatocellular carcinoma are still unclear. OBJECTIVE This work aims to help identify biomarkers of early HCC diagnosis or prognosis based on weighted gene co-expression network analysis (WGCNA). METHODS Expression data and clinical information of HTSEQ-Counts were downloaded from The Cancer Genome Atlas (TCGA) database, and Gene Expression map GSE121248 was downloaded from Gene Expression Omnibus (GEO). By differentially expressed genes (DEGs) and Weighted Gene co-expression Network Analysis (WGCNA) searched for modules in the two databases that had the same effect on the biological characteristics of HCC, and extracted the module genes with the highest positive correlation with HCC from two databases, and finally obtained overlapping genes. Then, we performed functional enrichment analysis on the overlapping genes to understand their potential biological functions. The top ten hub genes were screened according to MCC through the String database and Cytoscape software and then subjected to survival analysis. RESULTS High expression of CDK1, CCNA2, CDC20, KIF11, DLGAP5, KIF20A, ASPM, CEP55, and TPX2 was associated with poorer overall survival (OS) of HCC patients. The DFS curve was plotted using the online website GEPIA2. Finally, based on the enrichment of these genes in the KEGG pathway, real hub genes were screened out, which were CDK1, CCNA2, and CDC20 respectively. CONCLUSIONS High expression of these three genes was negatively correlated with survival time in HCC, and the expression of CDK1, CCNA2, and CDC20 were significantly higher in tumor tissues of HCC patients than in normal liver tissues as verified again by the HPA database. All in all, this provides a new feasible target for early and accurate diagnosis of HCC, clinical diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yu Qiao
- School of Medicine, Jianghan University, Wuhan Hubei, China
| | - Fahu Yuan
- School of Medicine, Jianghan University, Wuhan Hubei, China
| | - Xin Wang
- Department of Spine Surgery, Wuhan Fourth Hospital, Wuhan Hubei, China
| | - Jun Hu
- Department of Spine Surgery, Wuhan Fourth Hospital, Wuhan Hubei, China
| | - Yurong Mao
- School of Medicine, Jianghan University, Wuhan Hubei, China
| | - Zhigang Zhao
- Department of Spine Surgery, Wuhan Fourth Hospital, Wuhan Hubei, China
| |
Collapse
|
62
|
Arnason TG, MacDonald-Dickinson V, Gaunt MC, Davies GF, Lobanova L, Trost B, Gillespie ZE, Waldner M, Baldwin P, Borrowman D, Marwood H, Vizeacoumar FS, Vizeacoumar FJ, Eskiw CH, Kusalik A, Harkness TAA. Activation of the Anaphase Promoting Complex Reverses Multiple Drug Resistant Cancer in a Canine Model of Multiple Drug Resistant Lymphoma. Cancers (Basel) 2022; 14:cancers14174215. [PMID: 36077749 PMCID: PMC9454423 DOI: 10.3390/cancers14174215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Multiple drug resistant cancers develop all too soon in patients who received successful cancer treatment. A lack of treatment options often leaves palliative care as the last resort. We tested whether the insulin sensitizer, metformin, known to have anti-cancer activity, could impact canines with drug resistant lymphoma when added to chemotherapy. All canines in the study expressed protein markers of drug resistance and within weeks of receiving metformin, the markers were decreased. A microarray was performed, and from four canines assessed, a common set of 290 elevated genes were discovered in tumor cells compared to control cells. This cluster was enriched with genes that stall the cell cycle, with a large component representing substrates of the Anaphase Promoting Complex (APC), which degrades proteins. One canine entered partial remission. RNAs from this canine showed that APC substrates were decreased during remission and elevated again during relapse, suggesting that the APC was impaired in drug resistant canines and restored when remission occurred. We validated our results in cell lines using APC inhibitors and activators. We conclude that the APC may be a vital guardian of the genome and could delay the onset of multiple drug resistance when activated. Abstract Like humans, canine lymphomas are treated by chemotherapy cocktails and frequently develop multiple drug resistance (MDR). Their shortened clinical timelines and tumor accessibility make canines excellent models to study MDR mechanisms. Insulin-sensitizers have been shown to reduce the incidence of cancer in humans prescribed them, and we previously demonstrated that they also reverse and delay MDR development in vitro. Here, we treated canines with MDR lymphoma with metformin to assess clinical and tumoral responses, including changes in MDR biomarkers, and used mRNA microarrays to determine differential gene expression. Metformin reduced MDR protein markers in all canines in the study. Microarrays performed on mRNAs gathered through longitudinal tumor sampling identified a 290 gene set that was enriched in Anaphase Promoting Complex (APC) substrates and additional mRNAs associated with slowed mitotic progression in MDR samples compared to skin controls. mRNAs from a canine that went into remission showed that APC substrate mRNAs were decreased, indicating that the APC was activated during remission. In vitro validation using canine lymphoma cells selected for resistance to chemotherapeutic drugs confirmed that APC activation restored MDR chemosensitivity, and that APC activity was reduced in MDR cells. This supports the idea that rapidly pushing MDR cells that harbor high loads of chromosome instability through mitosis, by activating the APC, contributes to improved survival and disease-free duration.
Collapse
Affiliation(s)
- Terra G. Arnason
- Division of Endocrinology and Metabolism, Department of Medicine, Saskatoon, SK S7N 0W8, Canada
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (T.G.A.); (T.A.A.H.)
| | - Valerie MacDonald-Dickinson
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada
| | - Matthew Casey Gaunt
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada
| | - Gerald F. Davies
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
- Department of Biochemistry, Microbiology and Immunology, Saskatoon, SK S7N 5E5, Canada
| | - Liubov Lobanova
- Division of Endocrinology and Metabolism, Department of Medicine, Saskatoon, SK S7N 0W8, Canada
| | - Brett Trost
- Department of Computer Science, Saskatoon, SK S7N 5C9, Canada
| | - Zoe E. Gillespie
- Department of Food and Bioproduct Sciences, Saskatoon, SK S7N 5A8, Canada
| | - Matthew Waldner
- Department of Computer Science, Saskatoon, SK S7N 5C9, Canada
| | - Paige Baldwin
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
| | - Devon Borrowman
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
| | - Hailey Marwood
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Franco J. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | | | - Anthony Kusalik
- Department of Computer Science, Saskatoon, SK S7N 5C9, Canada
| | - Troy A. A. Harkness
- Department of Anatomy and Cell Biology, Saskatoon, SK S7N 5E5, Canada
- Department of Biochemistry, Microbiology and Immunology, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (T.G.A.); (T.A.A.H.)
| |
Collapse
|
63
|
Ingebriktsen LM, Finne K, Akslen LA, Wik E. A novel age-related gene expression signature associates with proliferation and disease progression in breast cancer. Br J Cancer 2022; 127:1865-1875. [PMID: 35995935 DOI: 10.1038/s41416-022-01953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Breast cancer (BC) diagnosed at ages <40 years presents with more aggressive tumour phenotypes and poorer clinical outcome compared to older BC patients. Here, we explored transcriptional BC alterations to gain a better understanding of age-related tumour biology, also subtype-stratified. METHODS We studied publicly available global BC mRNA expression (n = 3999) and proteomics data (n = 113), exploring differentially expressed genes, enriched gene sets, and gene networks in the young compared to older patients. RESULTS We identified transcriptional patterns reflecting increased proliferation and oncogenic signalling in BC of the young, also in subtype-stratified analyses. Six up-regulated hub genes built a novel age-related score, significantly associated with aggressive clinicopathologic features. A high 6 Gene Proliferation Score (6GPS) demonstrated independent prognostic value when adjusted for traditional clinicopathologic variables and the molecular subtypes. The 6GPS significantly associated also with disease-specific survival within the luminal, lymph node-negative and Oncotype Dx intermediate subset. CONCLUSIONS We here demonstrate evidence of higher tumour cell proliferation in young BC patients, also when adjusting for molecular subtypes, and identified a novel age-based six-gene signature pointing to aggressive tumour features, tumour proliferation, and reduced survival-also in patient subsets with expected good prognosis.
Collapse
Affiliation(s)
- L M Ingebriktsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway
| | - K Finne
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway
| | - L A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - E Wik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway. .,Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
64
|
Li XC, Luo SJ, Fan W, Zhou TL, Tan DQ, Tan RX, Xian QZ, Li J, Huang CM, Wang MS. Macrophage polarization regulates intervertebral disc degeneration by modulating cell proliferation, inflammation mediator secretion, and extracellular matrix metabolism. Front Immunol 2022; 13:922173. [PMID: 36059551 PMCID: PMC9433570 DOI: 10.3389/fimmu.2022.922173] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/29/2022] [Indexed: 01/17/2023] Open
Abstract
Macrophage infiltration and polarization have been increasingly observed in intervertebral disc (IVD) degeneration (IDD). However, their biological roles in IDD are still unrevealed. We harvested conditioned media (CM) derived from a spectrum of macrophages induced from THP-1 cells, and examined how they affect nucleus pulposus cells (NPCs) in vitro, by studying cell proliferation, extracellular matrix (ECM) synthesis, and pro-inflammation expression; and in vivo by injection CM in a rat IDD model. Then, high-throughput sequencing was used to detect differentially expressed genes (DEGs). Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) networks were used to further analysis. Higher CCR7+ (M1 marker) and CD206+ (M2 marker) cell counts were found in the degenerated human IVD tissues as compared with the control. Furthermore, the cell co-culture model showed M1CM attenuated NPC proliferation, downregulated the expression of ECM anabolic genes encoding aggrecan and collagen IIα1, upregulated the expression of ECM catabolic genes encoding MMP-13, and inflammation-related genes encoding IL-1β, IL-6, and IL-12, while M2CM showed contrasting trends. In IDD model, higher histological scores and lower disc height index were found following M1CM treatment, while M2CM exhibited opposite results. M1CM injection decreased ECM anabolic and increased ECM catabolic, as well as the upregulation of inflammation-related genes after 8 weeks treatment, while M2CM slowed down these trends. Finally, a total of 637 upregulated and 655 downregulated genes were detected in M1CM treated NPCs, and 975 upregulated genes and 930 downregulated genes in the M2CM groups. The top 30 GO terms were shown and the most significant KEGG pathway was cell cycle in both groups. Based on the PPI analysis, the five most significant hub genes were PLK1, KIF20A, RRM2, CDC20, and UBE2C in the M1CM groups and RRM2, CCNB1, CDC20, PLK1, and UBE2C in the M2CM groups. In conclusion, macrophage polarization exhibited diverse roles in IDD progression, with M1CM exacerbating cell proliferation suppression and IVD degeneration, while M2CM attenuated IDD development. These findings may facilitate the further elucidation of the role of macrophage polarization in IDD, and provide novel insights into the therapeutic potential of macrophages.
Collapse
Affiliation(s)
- Xiao-Chuan Li
- Postdoctoral Innovation Practice Base of Gaozhou People’s Hospital, Gaozhou, China
- Department of Orthopedic Surgery, Gaozhou People’s Hospital, Gaozhou, China
- Central Laboratory of Orthopedics, Gaozhou People’s Hospital, Gaozhou, China
| | - Shao-Jian Luo
- Department of Orthopedic Surgery, Gaozhou People’s Hospital, Gaozhou, China
- Central Laboratory of Orthopedics, Gaozhou People’s Hospital, Gaozhou, China
| | - Wu Fan
- Department of Orthopedic Surgery, Gaozhou People’s Hospital, Gaozhou, China
| | - Tian-Li Zhou
- Central Laboratory of Orthopedics, Gaozhou People’s Hospital, Gaozhou, China
| | - Dan-Qin Tan
- Central Laboratory of Orthopedics, Gaozhou People’s Hospital, Gaozhou, China
| | - Rong-Xiong Tan
- Department of Orthopedic Surgery, Gaozhou People’s Hospital, Gaozhou, China
- Central Laboratory of Orthopedics, Gaozhou People’s Hospital, Gaozhou, China
| | - Qun-Ze Xian
- Department of Orthopedic Surgery, Gaozhou People’s Hospital, Gaozhou, China
- Central Laboratory of Orthopedics, Gaozhou People’s Hospital, Gaozhou, China
| | - Jian Li
- Department of Orthopedic Surgery, Gaozhou People’s Hospital, Gaozhou, China
- Central Laboratory of Orthopedics, Gaozhou People’s Hospital, Gaozhou, China
| | - Chun-Ming Huang
- Postdoctoral Innovation Practice Base of Gaozhou People’s Hospital, Gaozhou, China
- Department of Orthopedic Surgery, Gaozhou People’s Hospital, Gaozhou, China
- Central Laboratory of Orthopedics, Gaozhou People’s Hospital, Gaozhou, China
| | - Mao-Sheng Wang
- Postdoctoral Innovation Practice Base of Gaozhou People’s Hospital, Gaozhou, China
- *Correspondence: Mao-Sheng Wang,
| |
Collapse
|
65
|
Wavelet-Vermuse C, Odnokoz O, Xue Y, Lu X, Cristofanilli M, Wan Y. CDC20-Mediated hnRNPU Ubiquitination Regulates Chromatin Condensation and Anti-Cancer Drug Response. Cancers (Basel) 2022; 14:3732. [PMID: 35954396 PMCID: PMC9367339 DOI: 10.3390/cancers14153732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cell division cycle 20 (CDC20) functions as a critical cell cycle regulator. It plays an important role in cancer development and drug resistance. However, the molecular mechanisms by which CDC20 regulates cellular drug response remain poorly understood. Chromatin-associated CDC20 interactome in breast cancer cells was analyzed by using affinity purification coupled with mass spectrometry. hnRNPU as a CDC20 binding partner was validated by co-immunoprecipitation and immunostaining. The molecular domain, comprising amino acid residues 461-653, on hnRNPU required for its interaction with CDC20 was identified by mapping of interactions. Co-immunoprecipitation showed that CDC20-mediated hnRNPU ubiquitination promotes its interaction with the CTCF and cohesin complex. The effects of CDC20-hnRNPU on nuclear size and chromatin condensation were investigated by analyzing DAPI and H2B-mCherry staining, respectively. The role of CDC20-hnRNPU in tumor progression and drug resistance was examined by CCK-8 cell survival and clonogenic assays. Our study indicates that CDC20-mediated ubiquitination of hnRNPU modulates chromatin condensation by regulating the interaction between hnRNPU and the CTCF-cohesin complex. Dysregulation of the CDC20-hnRNPU axis contributes to tumor progression and drug resistance.
Collapse
Affiliation(s)
- Cindy Wavelet-Vermuse
- Department of Pharmacology and Chemical Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; (C.W.-V.); (O.O.)
| | - Olena Odnokoz
- Department of Pharmacology and Chemical Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; (C.W.-V.); (O.O.)
| | - Yifan Xue
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA; (Y.X.); (X.L.)
| | - Xinghua Lu
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA; (Y.X.); (X.L.)
| | | | - Yong Wan
- Department of Pharmacology and Chemical Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; (C.W.-V.); (O.O.)
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
66
|
Xu C, Chen Z, Pan X, Liu M, Cheng G, Li J, Mei Y. Construction of a Prognostic Evaluation Model for Stomach Adenocarcinoma on the Basis of Immune-Related lncRNAs. Appl Biochem Biotechnol 2022; 194:6255-6269. [PMID: 35904674 DOI: 10.1007/s12010-022-04098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/29/2022]
Abstract
Progression, prognosis, and therapeutic strategy of stomach adenocarcinoma (STAD) have a close connection with tumor microenvironment (TME). Thus, it is pivotal to delve into the TME and immune-related genes, which may bring possibilities for improving patient's prognosis. TCGA-STAD dataset was analyzed to acquire differentially expressed lncRNAs in tumor samples, which were overlapped with the immune-related lncRNA datasets in the ImmLnc database. Twenty-six lncRNAs related to STAD immunity and patient's prognosis were acquired by univariate Cox analysis. Following lncRNA expression patterns, STAD samples could be classified into two clusters with completely different immune patterns. We performed multivariate Cox regression analysis on lncRNAs to identify 7-feature lncRNAs and constructed a corresponding prognostic model. The model validity was verified by survival analysis and ROC curve in validation and training sets. To explore connection between model and TME and tumor drug resistance, this study analyzed differences in immune cell infiltration between samples from high- and low-risk groups and then revealed immune cells follicular helper with significant differences in tumor tissue infiltration. Analysis of resistance to chemotherapeutic drugs revealed that samples in the high-risk group had resistance to cisplatin, doxorubicin, bleomycin, and gemcitabine. Through univariate and multivariate Cox analyses, we manifested that risk score could be an independent prognostic factor. Combining risk score and clinical factors, a nomogram was constructed to accurately predict patient's prognosis. This model can effectively predict prognosis, TME, and drug resistance of STAD patients, which may provide a reference for tumor development evaluation and precise treatment for clinical STAD.
Collapse
Affiliation(s)
- Chaobo Xu
- Department of Gastrointestinal Surgery, Lishui City People's Hospital, 15# Dazhong Street Zhejiang Province, 323000, Lishui, China
| | - Zhengwei Chen
- Department of Gastrointestinal Surgery, Lishui City People's Hospital, 15# Dazhong Street Zhejiang Province, 323000, Lishui, China
| | - Xiaoming Pan
- Department of Gastrointestinal Surgery, Lishui City People's Hospital, 15# Dazhong Street Zhejiang Province, 323000, Lishui, China
| | - Ming Liu
- Department of Gastrointestinal Surgery, Lishui City People's Hospital, 15# Dazhong Street Zhejiang Province, 323000, Lishui, China
| | - Guoxiong Cheng
- Department of Gastrointestinal Surgery, Lishui City People's Hospital, 15# Dazhong Street Zhejiang Province, 323000, Lishui, China
| | - Jiaxin Li
- Department of Gastrointestinal Surgery, Lishui City People's Hospital, 15# Dazhong Street Zhejiang Province, 323000, Lishui, China
| | - Yijun Mei
- Department of Gastrointestinal Surgery, Lishui City People's Hospital, 15# Dazhong Street Zhejiang Province, 323000, Lishui, China.
| |
Collapse
|
67
|
Xi X, Cao T, Qian Y, Wang H, Ju S, Chen Y, Chen T, Yang J, Liang B, Hou S. CDC20 is a novel biomarker for improved clinical predictions in epithelial ovarian cancer. Am J Cancer Res 2022; 12:3303-3317. [PMID: 35968331 PMCID: PMC9360218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC), a common tumor of the female reproductive system, ranks first in fatalities among gynecological malignancies. Most patients find tumors at late stage and have extremely poor prognoses, which necessitates improvements in early detection. This study applied bioinformatic methods to identify potential biomarkers of EOC. First, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on differentially expressed genes (DEGs) and hub genes, and a protein-protein interaction (PPI) network was constructed. The network of hub genes was analyzed using GeneMANIA, and an analysis of biological processes was constructed with BINGO. Lastly, hub genes were analyzed for EOC-related oncology using the Oncomine and TCGA databases, and the cBioPortal online platform. Overall, cell division cycle 20 (CDC20) was identified as a key gene in EOC. Short hairpin RNA (shRNA) was used to silence CDC20 to explore its effects on EOC cell proliferation, apoptosis and SRY-related HMG-box 2 (SOX2) expression. DEGs were enriched in pathways related to cell cycle signaling, cancer, progesterone-mediated oocyte maturation, Wnt signaling and P53 signaling. Analysis revealed high expression of CDC20 in EOC tissues and a correlation with histology and tumor grade. CDC20 levels are highest in serous adenocarcinoma, when compared to ovarian clear cell carcinoma, ovarian endometrioid carcinoma and mucinous adenocarcinoma. High CDC20 expression within the tumor is associated with poor EOC prognosis. After silencing CDC20, EOC cell proliferation and migration decreased, apoptosis increased, and SOX2 expression decreased. In conclusion, CDC20 is likely a key biomarker of EOC and may act as an upstream regulator of SOX2 to mediate the SOX2 signaling in the progression of EOC. Future application of CDC20 analysis to early detection may improve prognosis, and it has the potential to be a therapeutic target.
Collapse
Affiliation(s)
- Xiaoxue Xi
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Tianyue Cao
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Yonghong Qian
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Huiling Wang
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Songwen Ju
- Central Laboratory, Nanjing Medica University Affiliated Suzhou HospitalSuzhou 215128, Jiangsu, China
| | - Youguo Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Ting Chen
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Jian Yang
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Biaoquan Liang
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Shunyu Hou
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| |
Collapse
|
68
|
Screening of Prognostic Markers for Hepatocellular Carcinoma Patients Based on Multichip Combined Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6881600. [PMID: 35872941 PMCID: PMC9303125 DOI: 10.1155/2022/6881600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Methods GSE (14520, 36376, 57957, 76427) datasets were accessed from GEO database. 55 differential mRNAs (DEGs) were obtained by differential analysis based on the datasets. GO and KEGG analysis results indicated that the DEGs were enriched in xenobiotic metabolic process and other pathways. Expression profiles and clinical data of TCGA-LIHC mRNAs were from TCGA database. We established a prognostic model of HCC through univariate and multivariate Cox risk regression analyses. ROC curve analysis was used to examine the prognostic model performance. GSEA analysis was performed between the high- and low-risk score sample groups. Results A 4-gene HCC prognostic model was constructed, in which the gene expressions correlated to HCC patients' survival. The AUC value presented 0.734 in the ROC analysis for the prognostic model. Conclusion The four-gene model could be introduced as an independent prognostic factors to assess HCC patients' survival status.
Collapse
|
69
|
Zhang Y, Wu L, Wang Z, Wang J, Roychoudhury S, Tomasik B, Wu G, Wang G, Rao X, Zhou R. Replication Stress: A Review of Novel Targets to Enhance Radiosensitivity-From Bench to Clinic. Front Oncol 2022; 12:838637. [PMID: 35875060 PMCID: PMC9305609 DOI: 10.3389/fonc.2022.838637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
DNA replication is a process fundamental in all living organisms in which deregulation, known as replication stress, often leads to genomic instability, a hallmark of cancer. Most malignant tumors sustain persistent proliferation and tolerate replication stress via increasing reliance to the replication stress response. So whilst replication stress induces genomic instability and tumorigenesis, the replication stress response exhibits a unique cancer-specific vulnerability that can be targeted to induce catastrophic cell proliferation. Radiation therapy, most used in cancer treatment, induces a plethora of DNA lesions that affect DNA integrity and, in-turn, DNA replication. Owing to radiation dose limitations for specific organs and tumor tissue resistance, the therapeutic window is narrow. Thus, a means to eliminate or reduce tumor radioresistance is urgently needed. Current research trends have highlighted the potential of combining replication stress regulators with radiation therapy to capitalize on the high replication stress of tumors. Here, we review the current body of evidence regarding the role of replication stress in tumor progression and discuss potential means of enhancing tumor radiosensitivity by targeting the replication stress response. We offer new insights into the possibility of combining radiation therapy with replication stress drugs for clinical use.
Collapse
Affiliation(s)
- Yuewen Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinpeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Bartlomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
70
|
Zhu J, Han T, Zhao S, Zhu Y, Ma S, Xu F, Bai T, Tang Y, Xu Y, Liu L. Computational Characterizing Necroptosis Reveals Implications for Immune Infiltration and Immunotherapy of Hepatocellular Carcinoma. Front Oncol 2022; 12:933210. [PMID: 35875102 PMCID: PMC9301124 DOI: 10.3389/fonc.2022.933210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Necroptosis is a programmed form of necrotic cell death in regulating cancer ontogenesis, progression, and tumor microenvironment (TME) and could drive tumor-infiltrating cells to release pro-inflammatory cytokines, incurring strong immune responses. Nowadays, there are few identified biomarkers applied in clinical immunotherapy, and it is increasingly recognized that high levels of tumor necroptosis could enhance the response to immunotherapy. However, comprehensive characterization of necroptosis associated with TME and immunotherapy in Hepatocellular carcinoma (HCC) remains unexplored. Here, we computationally characterized necroptosis landscape in HCC samples from TCGA and ICGA cohorts and stratified them into two necroptosis clusters (A or B) with significantly different characteristics in clinical prognosis, immune cell function, and TME-landscapes. Additionally, to further evaluate the necroptosis levels of each sample, we established a novel necroptosis-related gene score (NRGscore). We further investigated the TME, tumor mutational burden (TMB), clinical response to immunotherapy, and chemotherapeutic drug sensitivity of HCC subgroups stratified by the necroptosis landscapes. The NRGscore is robust and highly predictive of HCC clinical outcomes. Further analysis indicated that the high NRGscore group resembles the immune-inflamed phenotype while the low score group is analogous to the immune-exclusion or metabolism phenotype. Additionally, the high NRGscore group is more sensitive to immune checkpoint blockade-based immunotherapy, which was further validated using an external HCC cohort, metastatic melanoma cohort, and advanced urothelial cancer cohort. Besides, the NRGscore was demonstrated as a potential biomarker for chemotherapy, wherein the high NRGscore patients with more tumor stem cell composition could be more sensitive to Cisplatin, Doxorubicin, Paclitaxel-based chemotherapy, and Sorafenib therapy. Collectively, a comprehensive characterization of the necroptosis in HCC suggested its implications for predicting immune infiltration and response to immunotherapy of HCC, providing promising strategies for treatment.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
- Department of General Surgery, The Southern Theater Air Force Hospital, Guangzhou, China
| | - Tenghui Han
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shoujie Zhao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Yejing Zhu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Shouzheng Ma
- Department of Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Fenghua Xu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Tingting Bai
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuxin Tang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Centre for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Centre at Houston, Houston, TX, United States
| | - Lei Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
71
|
Azzarito G, Visentin M, Leeners B, Dubey RK. Transcriptomic and Functional Evidence for Differential Effects of MCF-7 Breast Cancer Cell-Secretome on Vascular and Lymphatic Endothelial Cell Growth. Int J Mol Sci 2022; 23:ijms23137192. [PMID: 35806196 PMCID: PMC9266834 DOI: 10.3390/ijms23137192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023] Open
Abstract
Vascular and lymphatic vessels drive breast cancer (BC) growth and metastasis. We assessed the cell growth (proliferation, migration, and capillary formation), gene-, and protein-expression profiles of Vascular Endothelial Cells (VECs) and Lymphatic Endothelial Cells (LECs) exposed to a conditioned medium (CM) from estrogen receptor-positive BC cells (MCF-7) in the presence or absence of Estradiol. We demonstrated that MCF-7-CM stimulated growth and capillary formation in VECs but inhibited LEC growth. Consistently, MCF-7-CM induced ERK1/2 and Akt phosphorylation in VECs and inhibited them in LECs. Gene expression analysis revealed that the LECs were overall (≈10-fold) more sensitive to MCF-7-CM exposure than VECs. Growth/angiogenesis and cell cycle pathways were upregulated in VECs but downregulated in LECs. An angiogenesis proteome array confirmed the upregulation of 23 pro-angiogenesis proteins in VECs. In LECs, the expression of genes related to ATP synthesis and the ATP content were reduced by MCF-7-CM, whereas MTHFD2 gene, involved in folate metabolism and immune evasion, was upregulated. The contrasting effect of MCF-7-CM on the growth of VECs and LECs was reversed by inhibiting the TGF-β signaling pathway. The effect of MCF-7-CM on VEC growth was also reversed by inhibiting the VEGF signaling pathway. In conclusion, BC secretome may facilitate cancer cell survival and tumor growth by simultaneously promoting vascular angiogenesis and inhibiting lymphatic growth. The differential effects of BC secretome on LECs and VECs may be of pathophysiological relevance in BC.
Collapse
Affiliation(s)
- Giovanna Azzarito
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (G.A.); (B.L.)
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (G.A.); (B.L.)
| | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (G.A.); (B.L.)
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
72
|
Greil C, Engelhardt M, Wäsch R. The Role of the APC/C and Its Coactivators Cdh1 and Cdc20 in Cancer Development and Therapy. Front Genet 2022; 13:941565. [PMID: 35832196 PMCID: PMC9273091 DOI: 10.3389/fgene.2022.941565] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
To sustain genomic stability by correct DNA replication and mitosis, cell cycle progression is tightly controlled by the cyclic activity of cyclin-dependent kinases, their binding to cyclins in the respective phase and the regulation of cyclin levels by ubiquitin-dependent proteolysis. The spindle assembly checkpoint plays an important role at the metaphase-anaphase transition to ensure a correct separation of sister chromatids before cytokinesis and to initiate mitotic exit, as an incorrect chromosome distribution may lead to genetically unstable cells and tumorigenesis. The ubiquitin ligase anaphase-promoting complex or cyclosome (APC/C) is essential for these processes by mediating the proteasomal destruction of cyclins and other important cell cycle regulators. To this end, it interacts with the two regulatory subunits Cdh1 and Cdc20. Both play a role in tumorigenesis with Cdh1 being a tumor suppressor and Cdc20 an oncogene. In this review, we summarize the current knowledge about the APC/C-regulators Cdh1 and Cdc20 in tumorigenesis and potential targeted therapeutic approaches.
Collapse
|
73
|
Mao DD, Cleary RT, Gujar A, Mahlokozera T, Kim AH. CDC20 regulates sensitivity to chemotherapy and radiation in glioblastoma stem cells. PLoS One 2022; 17:e0270251. [PMID: 35737702 PMCID: PMC9223386 DOI: 10.1371/journal.pone.0270251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma stem cells (GSCs) are an important subpopulation in glioblastoma, implicated in tumor growth, tumor recurrence, and radiation resistance. Understanding the cellular mechanisms for chemo- and radiation resistance could lead to the development of new therapeutic strategies. Here, we demonstrate that CDC20 promotes resistance to chemotherapy and radiation therapy. CDC20 knockdown does not increase TMZ- and radiation-induced DNA damage, or alter DNA damage repair, but rather promotes cell death through accumulation of the pro-apoptotic protein, Bim. Our results identify a CDC20 signaling pathway that regulates chemo- and radiosensitivity in GSCs, with the potential for CDC20-targeted therapeutic strategies in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Diane D. Mao
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ryan T. Cleary
- Department of Neurological Surgery, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Amit Gujar
- The Jackson Laboratory in Genomic Medicine, Farmington, Connecticut, United States of America
| | - Tatenda Mahlokozera
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
74
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
75
|
Wang X, Li F, Zhu J, Feng D, Shi Y, Qu L, Li Y, Guo K, Zhang Y, Wang Q, Wang N, Wang X, Ge S. Upregulation of Cell Division Cycle 20 Expression Alters the Morphology of Neuronal Dendritic Spines in the Nucleus Accumbens by Promoting FMRP Ubiquitination. J Neurochem 2022; 162:166-189. [PMID: 35621027 DOI: 10.1111/jnc.15649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
Abstract
The nucleus accumbens (NAc) is the key area of the reward circuit, but its heterogeneity has been poorly studied. Using single-cell RNA sequencing, we revealed a subcluster of GABAergic neurons characterized by cell division cycle 20 (Cdc20) mRNA expression in the NAc of adult rats. We studied the coexpression of Cdc20 and Gad1 mRNA in the NAc neurons of adult rats and assessed Cdc20 protein expression in the NAc during rat development. Moreover, we microinjected AAV2/9-hSyn-Cdc20 with or without the dual-AAV system into the bilateral NAc for sparse labelling to observe changes in the synaptic morphology of mature neurons and assessed rat behaviours in open field and elevated plus maze tests. Furthermore, we performed the experiments with a Cdc20 inhibitor, Cdc20 overexpression AAV vector, and Cdc20 conditional knockout primary striatal neurons to understand the ubiquitination-dependent degradation of fragile X mental retardation protein (FMRP) in vitro and in vivo. We confirmed the mRNA expression of Cdc20 in the NAc GABAergic neurons of adult rats, and its protein level was decreased significantly 3 weeks post-birth. Upregulated Cdc20 expression in the bilateral NAc decreased the dendritic spine density in mature neurons and induced anxiety-like behaviour in rats. Cdc20-APC triggered FMRP degradation through K48-linked polyubiquitination in Neuro-2a cells and primary striatal neurons and downregulated FMRP expression in the NAc of adult rats. These data revealed that upregulation of Cdc20 in the bilateral NAc reduced dendritic spine density and led to anxiety-like behaviours, possibly by enhancing FMRP degradation via K48-linked polyubiquitination.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fei Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jun Zhu
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yingwu Shi
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liang Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yang Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kang Guo
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yue Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Naigeng Wang
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xuelian Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
76
|
Bruno S, Ghelli Luserna di Rorà A, Napolitano R, Soverini S, Martinelli G, Simonetti G. CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. J Exp Clin Cancer Res 2022; 41:159. [PMID: 35490245 PMCID: PMC9055704 DOI: 10.1186/s13046-022-02363-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Cell division cycle 20 homologue (CDC20) is a well-known regulator of cell cycle, as it controls the correct segregation of chromosomes during mitosis. Many studies have focused on the biological role of CDC20 in cancer development, as alterations of its functionality have been linked to genomic instability and evidence demonstrated that high CDC20 expression levels are associated with poor overall survival in solid cancers. More recently, novel CDC20 functions have been demonstrated or suggested, including the regulation of apoptosis and stemness properties and a correlation with immune cell infiltration. Here, we here summarize and discuss the role of CDC20 inside and outside mitosis, starting from its network of interacting proteins. In the last years, CDC20 has also attracted more interest in the blood cancer field, being overexpressed and showing an association with prognosis both in myeloid and lymphoid malignancies. Preclinical findings showed that selective CDC20 and APC/CCDC20/APC/CCDH1 inhibitors, namely Apcin and proTAME, are effective against lymphoma and multiple myeloma cells, resulting in mitotic arrest and apoptosis and synergizing with clinically-relevant drugs. The evidence and hypothesis presented in this review provide the input for further biological and chemical studies aiming to dissect novel potential CDC20 roles and targeting strategies in hematological malignancies.
Collapse
Affiliation(s)
- Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
77
|
Xu Z, Wang S, Ren Z, Gao X, Xu L, Zhang S, Ren B. An integrated analysis of prognostic and immune infiltrates for hub genes as potential survival indicators in patients with lung adenocarcinoma. World J Surg Oncol 2022; 20:99. [PMID: 35354488 PMCID: PMC8966338 DOI: 10.1186/s12957-022-02543-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/27/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
Objective
Lung adenocarcinoma (LUAD) is one of the major subtypes of lung cancer that is associated with poor prognosis. The aim of this study was to identify useful biomarkers to enhance the treatment and diagnosis of LUAD.
Methods
GEO2R was used to identify common up-regulated differentially expressed genes (DEGs) in the GSE32863, GSE40791, and GSE75037 datasets. The DEGs were submitted to Metascape for gene ontology and pathway enrichment analysis as well as construction of the protein-protein interaction (PPI) network, while the molecular complex detection (MCODE) plug-in was employed to filter important subnetworks. The expression levels of the hub genes and their prognostic values were evaluated using the UALCAN, GEPIA2, and Kaplan-Meier plotter databases. The timer algorithm was utilized to determine the correlation between immune cell infiltration and the expression levels of hub genes in LUAD tissues. In addition, the hub gene mutation landscape and the correlation analysis with tumor mutational burden (TMB) score were evaluated using maftools package and ggstatsplot package in R software, respectively.
Results
We identified 156 common up-regulated DEGs, with gene ontology and pathway enrichment analysis indicating that they were mostly enriched in mitotic cell cycle process and cell cycle pathway. DEGs in the subnetwork with the largest number of genes were AURKB, CCNB2, CDC20, CDCA5, CDCA8, CENPF, and KNTC1. The seven hub genes were highly expressed in LUAD tissues and were associated with poor prognosis. These hub genes were negatively correlated with most immune cells. The somatic mutation landscape showed that AURKB, CDC20, CENPF, and KNTC1 had mutations and were positively correlated with TMB scores.
Conclusions
Our findings demonstrate that increased expression of seven hub genes is associated with poor prognosis for LUAD patients. Additionally, the TMB score indicates that the high expression of hub gene increases immune cell infiltration in patients with lung adenocarcinoma which may significantly improve response to immunotherapy.
Collapse
|
78
|
Zhang Y, Liu X, Li A, Tang X. A pan-cancer analysis on the carcinogenic effect of human adenomatous polyposis coli. PLoS One 2022; 17:e0265655. [PMID: 35303016 PMCID: PMC8932560 DOI: 10.1371/journal.pone.0265655] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
Abstract
Adenomatous polyposis coli (APC) is the most commonly mutated gene in colon cancer and can cause familial adenomatous polyposis (FAP). Hypermethylation of the APC promoter can also promote the development of breast cancer, indicating that APC is not limited to association with colorectal neoplasms. However, no pan-cancer analysis has been conducted. We studied the location and structure of APC and the expression and potential role of APC in a variety of tumors by using The Cancer Genome Atlas and Gene Expression Omnibus databases and online bioinformatics analysis tools. The APC is located at 5q22.2, and its protein structure is conserved among H. sapiens, M. musculus with C. elaphus hippelaphus. The APC identity similarity between homo sapiens and mus musculus reaches 90.1%. Moreover, APC is highly specifically expressed in brain tissues and bipolar cells but has low expression in most cancers. APC is mainly expressed on the cell membrane and is not detected in plasma by mass spectrometry. APC is low expressed in most tumor tissues, and there is a significant correlation between the expressed level of APC and the main pathological stages as well as the survival and prognosis of tumor patients. In most tumors, APC gene has mutation and methylation and an enhanced phosphorylation level of some phosphorylation sites, such as T1438 and S2260. The expressed level of APC is also involved in the level of CD8+ T-cell infiltration, Tregs infiltration, and cancer-associated fibroblast infiltration. We conducted a gene correlation study, but the findings seemed to contradict the previous analysis results of the low expression of the APC gene in most cancers. Our research provides a comparative wholesale understanding of the carcinogenic effects of APC in various cancers, which will help anti-cancer research.
Collapse
Affiliation(s)
- Yinci Zhang
- Medical School, Anhui University of Science and Technology, Huainan, China
- Institute of Environment-Friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu, China
| | - Xinkuang Liu
- Medical School, Anhui University of Science and Technology, Huainan, China
| | - Amin Li
- Medical School, Anhui University of Science and Technology, Huainan, China
- Institute of Environment-Friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu, China
| | - Xiaolong Tang
- Medical School, Anhui University of Science and Technology, Huainan, China
- Institute of Environment-Friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu, China
| |
Collapse
|
79
|
Mao Y, Wen C, Yang Z. Construction of a Co-Expression Network for lncRNAs and mRNAs Related to Urothelial Carcinoma of the Bladder Progression. Front Oncol 2022; 12:835074. [PMID: 35280820 PMCID: PMC8913900 DOI: 10.3389/fonc.2022.835074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Carcinoma of urinary bladder is the most familiar cancer of the urinary tract, with the highest incidence in men. However, its prognosis and treatment have not improved significantly in the last 30 years. The main reason for this may be related to the alteration and regulation of genes. These alterations in genes that play a crucial role in cell cycle regulation may result in high-grade tumors and may alter drug sensitivity. Notably, the role of lncRNA in bladder cancer, especially the lncRNA-mRNA regulatory network, has not been fully elucidated. In this manuscript, we compared RNA sequencing (RNA-seq) data from 19 normal bladder tissues and 411 primary bladder tumor tissues using The Cancer Genome Atlas (TCGA) data bank, subjected differentially expressed mRNAs and lncRNAs to weighted gene co-expression network analysis, and screened out modules highly correlated with tumor progression. Subsequently, a lncRNA-mRNA co-expression network was built, and two key mRNAs were identified via COX regression analysis. Kaplan-Meier curve analysis revealed that the overall survival of sick people in the high-risk section was significantly shorter than those in the low-risk section. Therefore, this lncRNA-mRNA-based co-expression pattern may be used clinically to predict the prognosis of carcinoma of urinary bladder people. Our study not only provides a genetic target for carcinoma of urinary bladder therapy but also provides new ideas for people in the medical profession to discover the treatment of various tumors.
Collapse
Affiliation(s)
- Yeqing Mao
- Urology Department, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Yeqing Mao,
| | - Chao Wen
- Medical College, Zhejiang University, Hangzhou, China
| | - Zitong Yang
- Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|
80
|
Abstract
Cancer is a group of diseases in which cells divide continuously and excessively. Cell division is tightly regulated by multiple evolutionarily conserved cell cycle control mechanisms, to ensure the production of two genetically identical cells. Cell cycle checkpoints operate as DNA surveillance mechanisms that prevent the accumulation and propagation of genetic errors during cell division. Checkpoints can delay cell cycle progression or, in response to irreparable DNA damage, induce cell cycle exit or cell death. Cancer-associated mutations that perturb cell cycle control allow continuous cell division chiefly by compromising the ability of cells to exit the cell cycle. Continuous rounds of division, however, create increased reliance on other cell cycle control mechanisms to prevent catastrophic levels of damage and maintain cell viability. New detailed insights into cell cycle control mechanisms and their role in cancer reveal how these dependencies can be best exploited in cancer treatment.
Collapse
Affiliation(s)
- Helen K Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
- UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
81
|
Deng Z, Huang K, Liu D, Luo N, Liu T, Han L, Du D, Lian D, Zhong Z, Peng J. Key Candidate Prognostic Biomarkers Correlated with Immune Infiltration in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1607-1622. [PMID: 34956967 PMCID: PMC8694277 DOI: 10.2147/jhc.s337067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/18/2021] [Indexed: 12/29/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer, which causes ~800,000 deaths annually world-wide. Immune checkpoint inhibitor (ICI) has reformed cancer therapy and achieved unprecedented results in various malignancies, including HCC. However, the response rate of immunotherapy is very low in HCC. Considereing the complicated and unique immune status in liver, we hypothesize that critical molecules will affect prognosis and correlate with immune context in the tumor microenvironment of HCC. Methods Using Kaplan–Meier plotter, GEPIA2 and Integrative Molecular Database of Hepatocellular Carcinoma (HCCDB), survival genes and their prognostic value were estimated in HCC. Based on Tumor Immune Estimation Resource (TIMER), association between survival genes and immune infiltration was examined in HCC. FunRich and STRING were used to analyze gene ontology and protein–protein interaction (PPI) Network, qRT-PCR was used to measure mRNA level of candidates; and a Cell Counting Kit-8 was used to measure proliferation of HCC cell line. Results Using multiple databases, we identified 36 key prognostic genes highly expressed in HCC and associated with poor survival of patients. Meanwhile, the 36 gene signatures correlated with immune infiltration in HCC. Moreover, these genes were significantly associated with exhausted T cells and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in HCC. Among the 36 key genes, SKA3, SGOL2, SPINDOC, TEDC2, TMCO3 and NUP205 were highly expressed in tumor samples compared with adjacent normal tissues in our HCC cohort (n=22). Additionally, proliferation of SMMC7721 cell line was inhibited when it interfered with SiRNA of each gene. Conclusion The 36 genes may serve as potential prognostic biomarkers and molecular targets to ameliorate tumor immune microenvironment (TIME) in HCC and therefore represent a novel avenue for individualized immunotherapy in HCC.
Collapse
Affiliation(s)
- Zenghua Deng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Ninth School of Clinical Medicine, Peking University, Beijing, 100038, People's Republic of China
| | - Kanghua Huang
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Dongfang Liu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Nan Luo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Ninth School of Clinical Medicine, Peking University, Beijing, 100038, People's Republic of China
| | - Tingting Liu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Long Han
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Dexiao Du
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Dongbo Lian
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Ninth School of Clinical Medicine, Peking University, Beijing, 100038, People's Republic of China
| | - Zhaohui Zhong
- Department of General Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Ninth School of Clinical Medicine, Peking University, Beijing, 100038, People's Republic of China
| |
Collapse
|
82
|
Jung Y, Kraikivski P, Shafiekhani S, Terhune SS, Dash RK. Crosstalk between Plk1, p53, cell cycle, and G2/M DNA damage checkpoint regulation in cancer: computational modeling and analysis. NPJ Syst Biol Appl 2021; 7:46. [PMID: 34887439 PMCID: PMC8660825 DOI: 10.1038/s41540-021-00203-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/03/2021] [Indexed: 12/21/2022] Open
Abstract
Different cancer cell lines can have varying responses to the same perturbations or stressful conditions. Cancer cells that have DNA damage checkpoint-related mutations are often more sensitive to gene perturbations including altered Plk1 and p53 activities than cancer cells without these mutations. The perturbations often induce a cell cycle arrest in the former cancer, whereas they only delay the cell cycle progression in the latter cancer. To study crosstalk between Plk1, p53, and G2/M DNA damage checkpoint leading to differential cell cycle regulations, we developed a computational model by extending our recently developed model of mitotic cell cycle and including these key interactions. We have used the model to analyze the cancer cell cycle progression under various gene perturbations including Plk1-depletion conditions. We also analyzed mutations and perturbations in approximately 1800 different cell lines available in the Cancer Dependency Map and grouped lines by genes that are represented in our model. Our model successfully explained phenotypes of various cancer cell lines under different gene perturbations. Several sensitivity analysis approaches were used to identify the range of key parameter values that lead to the cell cycle arrest in cancer cells. Our resulting model can be used to predict the effect of potential treatments targeting key mitotic and DNA damage checkpoint regulators on cell cycle progression of different types of cancer cells.
Collapse
Affiliation(s)
- Yongwoon Jung
- grid.30760.320000 0001 2111 8460Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Pavel Kraikivski
- Academy of Integrated Science, Division of Systems Biology, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Sajad Shafiekhani
- grid.411705.60000 0001 0166 0922Department of Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Scott S. Terhune
- grid.30760.320000 0001 2111 8460Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226 USA ,grid.30760.320000 0001 2111 8460Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Ranjan K. Dash
- grid.30760.320000 0001 2111 8460Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226 USA ,grid.30760.320000 0001 2111 8460Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226 USA ,grid.30760.320000 0001 2111 8460Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| |
Collapse
|
83
|
Ye P, Chi X, Cha JH, Luo S, Yang G, Yan X, Yang WH. Potential of E3 Ubiquitin Ligases in Cancer Immunity: Opportunities and Challenges. Cells 2021; 10:cells10123309. [PMID: 34943817 PMCID: PMC8699390 DOI: 10.3390/cells10123309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer immunotherapies, including immune checkpoint inhibitors and immune pathway–targeted therapies, are promising clinical strategies for treating cancer. However, drug resistance and adverse reactions remain the main challenges for immunotherapy management. The future direction of immunotherapy is mainly to reduce side effects and improve the treatment response rate by finding new targets and new methods of combination therapy. Ubiquitination plays a crucial role in regulating the degradation of immune checkpoints and the activation of immune-related pathways. Some drugs that target E3 ubiquitin ligases have exhibited beneficial effects in preclinical and clinical antitumor treatments. In this review, we discuss mechanisms through which E3 ligases regulate tumor immune checkpoints and immune-related pathways as well as the opportunities and challenges for integrating E3 ligases targeting drugs into cancer immunotherapy.
Collapse
Affiliation(s)
- Peng Ye
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Xiaoxia Chi
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Korea;
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Shahang Luo
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Guanghui Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Xiuwen Yan
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
- Correspondence: (X.Y.); (W.-H.Y.)
| | - Wen-Hao Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Correspondence: (X.Y.); (W.-H.Y.)
| |
Collapse
|
84
|
Screening Hub Genes of Hepatocellular Carcinoma Based on Public Databases. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7029130. [PMID: 34737790 PMCID: PMC8563136 DOI: 10.1155/2021/7029130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022]
Abstract
Tumor recurrence and metastasis often occur in HCC patients after surgery, and the prognosis is not optimistic. Hence, searching effective biomarkers for prognosis of is of great importance. Firstly, HCC-related data was acquired from the TCGA and GEO databases. Based on GEO data, 256 differentially expressed genes (DEGs) were obtained firstly. Subsequently, to clarify function of DEGs, clusterProfiler package was used to conduct functional enrichment analyses on DEGs. Protein-protein interaction (PPI) network analysis screened 20 key genes. The key genes were filtered via GEPIA database, by which 11 hub genes (F9, CYP3A4, ASPM, AURKA, CDC20, CDCA5, NCAP, PRC1, PTTG1, TOP2A, and KIFC1) were screened out. Then, univariate Cox analysis was applied to construct a prognostic model, followed by a prediction performance validation. With the risk score calculated by the model and common clinical features, univariate and multivariate analyses were carried out to assess whether the prognostic model could be used independently for prognostic prediction. In conclusion, the current study screened HCC prognostic gene signature based on public databases.
Collapse
|
85
|
Anuraga G, Wang WJ, Phan NN, An Ton NT, Ta HDK, Berenice Prayugo F, Minh Xuan DT, Ku SC, Wu YF, Andriani V, Athoillah M, Lee KH, Wang CY. Potential Prognostic Biomarkers of NIMA (Never in Mitosis, Gene A)-Related Kinase (NEK) Family Members in Breast Cancer. J Pers Med 2021; 11:1089. [PMID: 34834441 PMCID: PMC8625415 DOI: 10.3390/jpm11111089] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer remains the most common malignant cancer in women, with a staggering incidence of two million cases annually worldwide; therefore, it is crucial to explore novel biomarkers to assess the diagnosis and prognosis of breast cancer patients. NIMA-related kinase (NEK) protein kinase contains 11 family members named NEK1-NEK11, which were discovered from Aspergillus Nidulans; however, the role of NEK family genes for tumor development remains unclear and requires additional study. In the present study, we investigate the prognosis relationships of NEK family genes for breast cancer development, as well as the gene expression signature via the bioinformatics approach. The results of several integrative analyses revealed that most of the NEK family genes are overexpressed in breast cancer. Among these family genes, NEK2/6/8 overexpression had poor prognostic significance in distant metastasis-free survival (DMFS) in breast cancer patients. Meanwhile, NEK2/6 had the highest level of DNA methylation, and the functional enrichment analysis from MetaCore and Gene Set Enrichment Analysis (GSEA) suggested that NEK2 was associated with the cell cycle, G2M checkpoint, DNA repair, E2F, MYC, MTORC1, and interferon-related signaling. Moreover, Tumor Immune Estimation Resource (TIMER) results showed that the transcriptional levels of NEK2 were positively correlated with immune infiltration of B cells and CD4+ T Cell. Collectively, the current study indicated that NEK family genes, especially NEK2 which is involved in immune infiltration, and may serve as prognosis biomarkers for breast cancer progression.
Collapse
Affiliation(s)
- Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Wei-Jan Wang
- Research Center for Cancer Biology, Department of Biological Science and Technology, China Medical University, Taichung 40604, Taiwan;
| | - Nam Nhut Phan
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Nu Thuy An Ton
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Fidelia Berenice Prayugo
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Su-Chi Ku
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Vivin Andriani
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Muhammad Athoillah
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Kuen-Haur Lee
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| |
Collapse
|
86
|
Liu N, Wang X, Zhu Z, Li D, Lv X, Chen Y, Xie H, Guo Z, Song D. Selected ideal natural ligand against TNBC by inhibiting CDC20, using bioinformatics and molecular biology. Aging (Albany NY) 2021; 13:23702-23725. [PMID: 34686627 PMCID: PMC8580355 DOI: 10.18632/aging.203642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/29/2021] [Indexed: 01/14/2023]
Abstract
Object: Find potential therapeutic targets of triple-negative breast cancer (TNBC) patients by bioinformatics. Screen ideal natural ligand that can bind with the potential target and inhibit it by using molecular biology. Methods: Bioinformatics and molecular biology were combined to analyze potential therapeutic targets. Differential expression analysis identified the differentially expressed genes (DEGs) between TNBC tissues and non-TNBC tissues. The functional enrichment analyses of DEGs shown the important gene ontology (GO) terms and pathways of TNBC. Protein-protein interaction (PPI) network construction screened 20 hub genes, while Kaplan website was used to analyze the relationship between the survival curve and expression of hub genes. Then Discovery Studio 4.5 screened ideal natural inhibitors of the potential therapeutic target by LibDock, ADME, toxicity prediction, CDOCKER and molecular dynamic simulation. Results: 1,212 and 353 DEGs were respectively found between TNBC tissues and non-TNBC tissues, including 88 up-regulated and 141 down-regulated DEGs in both databases. 20 hub genes were screened, and the higher expression of CDC20 was associated with a poor prognosis. Therefore, we chose CDC20 as the potential therapeutic target. 7,416 natural ligands were conducted to bind firmly with CDC20, and among these ligands, ZINC000004098930 was regarded as the potential ideal ligand, owing to its non-hepatotoxicity, more solubility level and less carcinogenicity than the reference drug, apcin. The ZINC000004098930-CDC20 could exist stably in natural environment. Conclusion: 20 genes were regarded as hub genes of TNBC and most of them were relevant to the survival curve of breast cancer patients, especially CDC20. ZINC000004098930 was chosen as the ideal natural ligand that can targeted and inhibited CDC20, which may give great contribution to TNBC targeted treatment.
Collapse
Affiliation(s)
- Naimeng Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xinhui Wang
- Department of Oncology, First People's Hospital of Xinxiang, Xinxiang, China
| | - Zhu Zhu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Duo Li
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaye Lv
- Department of Hematology, The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Yichang Chen
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Haoqun Xie
- Clinical College, Jilin University, Changchun, China
| | - Zhen Guo
- Clinical College, Jilin University, Changchun, China
| | - Dong Song
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
87
|
Liu H, Li T, Ye X, Lyu J. Identification of Key Biomarkers and Pathways in Small-Cell Lung Cancer Using Biological Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5953386. [PMID: 34712733 PMCID: PMC8548101 DOI: 10.1155/2021/5953386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Small-cell lung cancer (SCLC) is a major cause of carcinoma-related deaths worldwide. The aim of this study was to identify the key biomarkers and pathways in SCLC using biological analysis. METHODS Key genes involved in the development of SCLC were identified by downloading three datasets from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened using the GEO2R online analyzer; for the functional annotation and pathway enrichment analysis of genes, Funrich software was used. Construction of protein-to-protein interaction (PPI) networks was accomplished using the Search Tool for the Retrieval of Interacting Genes (STRING), and network visualization and module identification were performed using Cytoscape. RESULTS A total of 268 DEGs were ultimately obtained. The enriched functions and pathways of the upregulated DEGs included cell cycle, mitotic, and DNA replication, and the downregulated DEGs were enriched in epithelial-to-mesenchymal transition, serotonin degradation, and noradrenaline. Analysis of significant modules demonstrated that the upregulated genes are primarily concentrated in functions related to cell cycle and DNA replication. Kaplan-Meier analysis of hub genes revealed that they may promote the carcinogenesis and progression of SCLC. The result of ONCOMINE demonstrated that these 10 hub genes were significantly overexpressed in SCLC compared with normal samples. CONCLUSION Identification of the molecular functions and signaling pathways of participating DEGs can deepen the current understanding of the molecular mechanisms of SCLC. The knowledge gained from this work may contribute to the development of treatment options and improve the prognosis of SCLC in the future.
Collapse
Affiliation(s)
- Huanqing Liu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Tingting Li
- Department of Pharmacy, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Xunda Ye
- Clinical Medicine Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
88
|
Regularized Weighted Nonparametric Likelihood Approach for High-Dimension Sparse Subdistribution Hazards Model for Competing Risk Data. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5169052. [PMID: 34589136 PMCID: PMC8476266 DOI: 10.1155/2021/5169052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022]
Abstract
Variable selection and penalized regression models in high-dimension settings have become an increasingly important topic in many disciplines. For instance, omics data are generated in biomedical researches that may be associated with survival of patients and suggest insights into disease dynamics to identify patients with worse prognosis and to improve the therapy. Analysis of high-dimensional time-to-event data in the presence of competing risks requires special modeling techniques. So far, some attempts have been made to variable selection in low- and high-dimension competing risk setting using partial likelihood-based procedures. In this paper, a weighted likelihood-based penalized approach is extended for direct variable selection under the subdistribution hazards model for high-dimensional competing risk data. The proposed method which considers a larger class of semiparametric regression models for the subdistribution allows for taking into account time-varying effects and is of particular importance, because the proportional hazards assumption may not be valid in general, especially in the high-dimension setting. Also, this model relaxes from the constraint of the ability to simultaneously model multiple cumulative incidence functions using the Fine and Gray approach. The performance/effectiveness of several penalties including minimax concave penalty (MCP); adaptive LASSO and smoothly clipped absolute deviation (SCAD) as well as their L2 counterparts were investigated through simulation studies in terms of sensitivity/specificity. The results revealed that sensitivity of all penalties were comparable, but the MCP and MCP-L2 penalties outperformed the other methods in term of selecting less noninformative variables. The practical use of the model was investigated through the analysis of genomic competing risk data obtained from patients with bladder cancer and six genes of CDC20, NCF2, SMARCAD1, RTN4, ETFDH, and SON were identified using all the methods and were significantly correlated with the subdistribution.
Collapse
|
89
|
Wu F, Sun Y, Chen J, Li H, Yao K, Liu Y, Liu Q, Lu J. The Oncogenic Role of APC/C Activator Protein Cdc20 by an Integrated Pan-Cancer Analysis in Human Tumors. Front Oncol 2021; 11:721797. [PMID: 34527589 PMCID: PMC8435897 DOI: 10.3389/fonc.2021.721797] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 01/17/2023] Open
Abstract
The landscape of CDC20 gene expression and its biological impacts across different types of cancers remains largely unknown. Here, a pan-cancer analysis was performed to analyze the role of Cdc20 in various human cancers. Our results indicated that the expression levels of the CDC20 gene were significantly elevated in bladder cancer, breast cancer, colon cancer, rectum cancer, stomach cancer, esophageal cancer, head and neck cancer, kidney cancer, liver cancer, lung cancer, prostate cancer, pancreatic cancer, and uterine cancer. In addition, the expression of CDC20 was significantly and positively correlated with the increase of clinical stages in multiple cancer types, including breast cancer, kidney cancer, and lung cancer, et al. Among 33 cancer subtypes in the TCGA dataset, the high expression of CDC20 was correlated with poor prognosis in 10 cancer types. Furthermore, the abundance of phosphorylated Cdc20 in the primary tumor was elevated and correlated with increased tumor grade. Next, we sought to elucidate the oncogenic role by analyzing its association with immune infiltration. For most cancer types, the CDC20 expression was positively correlated with the infiltration of cancer-associated fibroblasts and myeloid-derived suppressor cells. To further understand its functional activity, we explored the classic Cdc20 downstream substrates, which were found to be mutually exclusive with the expression of Cdc20. Moreover, the pan-cancer analysis of the molecular function of Cdc20 indicated that BUB1, CCNA2, CCNB1, CDK1, MAD2L1, and PLK1 might play a critical role in interaction with Cdc20. The abundance of Cdc20 was further validated at transcriptional and translational levels with a publicly available dataset and clinical tumor tissues. The knockdown of Cdc20 dramatically inhibited tumor growth both in vivo and in vitro. Therefore, our studies delineated the oncogenic role of CDC20 and its prognostic significance at the pan-cancer level and proved its functional activity in Cdc20 high expression cancer types. Our studies will merits further molecular assays to understand the potential role of Cdc20 in tumorigenesis and provide the rationale for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Fei Wu
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yang Sun
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Chen
- Department of Urology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongyun Li
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Kang Yao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yongjun Liu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Qingyong Liu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
| |
Collapse
|
90
|
Zoi V, Galani V, Lianos GD, Voulgaris S, Kyritsis AP, Alexiou GA. The Role of Curcumin in Cancer Treatment. Biomedicines 2021; 9:1086. [PMID: 34572272 PMCID: PMC8464730 DOI: 10.3390/biomedicines9091086] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Curcumin is a polyphenol extracted from the rhizomes of the turmeric plant, Curcuma longa which has anti-inflammatory, and anticancer properties. Chronic inflammation is associated with the development of cancer. Curcumin acts on the regulation of various immune modulators, including cytokines, cyclooxygenase-2 (COX-2), and reactive oxygen species (ROS), which partly explains its anticancer effects. It also takes part in the downregulation of growth factors, protein kinases, oncogenic molecules and various signaling pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), c-Jun N-terminal kinase (JNK) and signal transducer and activator of transcription 3 (STAT3) signaling. Clinical trials of curcumin have been completed or are ongoing for various types of cancer. This review presents the molecular mechanisms of curcumin in different types of cancer and the evidence from the most recent clinical trials.
Collapse
Affiliation(s)
- Vasiliki Zoi
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45500 Ioannina, Greece;
| | - Vasiliki Galani
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45500 Ioannina, Greece;
| | - Georgios D. Lianos
- Department of Surgery, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Spyridon Voulgaris
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
- Department of Neurosurgery, School of Medicine Ioannina, University of Ioannina, 45500 Ioannina, Greece
| | - Athanasios P. Kyritsis
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
| | - George A. Alexiou
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
- Department of Neurosurgery, School of Medicine Ioannina, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
91
|
Shi Q, Tang B, Li Y, Li Y, Lin T, He D, Wei G. Identification of CDC20 as a Novel Biomarker in Diagnosis and Treatment of Wilms Tumor. Front Pediatr 2021; 9:663054. [PMID: 34513754 PMCID: PMC8428148 DOI: 10.3389/fped.2021.663054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Objective: Wilms tumor (WT) is a common malignant solid tumor in children. Many tumor biomarkers have been reported; however, there are poorly targetable molecular mechanisms which have been defined in WT. This study aimed to identify the oncogene in WT and explore the potential mechanisms. Methods: Differentially expressed genes (DEGs) in three independent RNA-seq datasets were downloaded from The Cancer Genome Atlas data portal and the Gene Expression Omnibus database (GSE66405 and GSE73209). The common DEGs were then subjected to Gene Ontology enrichment analysis, protein-protein interaction (PPI) network analysis, and gene set enrichment analysis. The protein expression levels of the hub gene were analyzed by immunohistochemical analysis and Western blotting in a 60 WT sample. The univariate Kaplan-Meier analysis for overall survival was performed, and the log-rank test was utilized. A small interfering RNA targeting cell division cycle 20 (CDC20) was transfected into G401 and SK-NEP-1 cell lines. The Cell Counting Kit-8 assay and wound healing assay were used to observe the changes in cell proliferation and migration after transfection. Flow cytometry was used to detect the effect on the cell cycle. Western blot was conducted to study the changes of related functional proteins. Results: We commonly identified 44 upregulation and 272 downregulation differentially expressed genes in three independent RNA-seq datasets. Gene and pathway enrichment analyses of the regulatory networks involving hub genes suggested that cell cycle changes are crucial in WT. The top 15 highly connected genes were found by PPI network analysis. Furthermore, we demonstrated that one candidate biomarker, CDC20, for the diagnosis of WT was detected, and its high expression predicted poor prognosis of WT patients. Moreover, the area under the curve value obtained by receiver operating characteristic curve analysis from paired WT samples was 0.9181. Finally, we found that the suppression of CDC20 inhibited proliferation and migration and resulted in G2/M phase arrest in WT cells. The mechanism may be involved in increasing the protein level of securin, cyclin B1, and cyclin A Conclusion: Our results suggest that CDC20 could serve as a candidate diagnostic and prognostic biomarker for WT, and suppression of CDC20 may be a potential approach for the prevention and treatment of WT.
Collapse
Affiliation(s)
- Qinlin Shi
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Tang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yonglin Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Lin
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei He
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Guanghui Wei
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
92
|
Chen ZX, Li GS, Yang LH, Liu HC, Qin GM, Shen L, He WY, Gan TQ, Li JJ. Upregulation of BIRC5 plays essential role in esophageal squamous cell carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6941-6960. [PMID: 34517565 DOI: 10.3934/mbe.2021345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in the world, the detection and prognosis of which are still unsatisfactory. Thus, it is essential to explore the factors that may identify ESCC and evaluate the prognosis of ESCC patients. RESULTS Both protein and mRNA expression levels of BIRC5 are upregulated in ESCC group rather than non-ESCC group (standardized mean difference > 0). BIRC5 mRNA expression is related to the age, tumor location, lymph node stage and clinical stage of ESCC patients (p < 0.05). BIRC5 expression makes it feasible to distinguish ESCC from non-ESCC (area under the curve > 0.9), and its high expression is related to poor prognosis of ESCC patients (restrictive survival time difference = -0.036, p < 0.05). BIRC5 may play an important role in ESCC by influencing the cell cycle pathway, and CDK1, MAD2L and CDC20 may be the hub genes of this pathway. The transcription factors-MAZ and TFPD1 -are likely to regulate the transcription of BIRC5, which may be one of the factors for the high expression of BIRC5 in ESCC. CONCLUSIONS The current study shows that upregulation of BIRC5 may have essential clinical value in ESCC, and contributes to the understanding of the pathogenesis of ESCC.
Collapse
Affiliation(s)
- Zu-Xuan Chen
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, 166 DaxueXi Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, P. R. China
| | - Guo-Sheng Li
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, 166 DaxueXi Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, P. R. China
| | - Li-Hua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, P. R. China
| | - He-Chuan Liu
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, 166 DaxueXi Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, P. R. China
| | - Guang-Mei Qin
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, 166 DaxueXi Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, P. R. China
| | - Lang Shen
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, 166 DaxueXi Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, P. R. China
| | - Wei-Ying He
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, 166 DaxueXi Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, P. R. China
| | - Ting-Qing Gan
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, 166 DaxueXi Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, P. R. China
| | - Jian-Jun Li
- Department of General Surgery, Second Affiliated Hospital of Guangxi Medical University, 166 DaxueXi Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, P. R. China
| |
Collapse
|
93
|
Li Y, Lin H, Chen L, Chen Z, Li W. Novel Therapies for Tongue Squamous Cell Carcinoma Patients with High-Grade Tumors. Life (Basel) 2021; 11:813. [PMID: 34440557 PMCID: PMC8398384 DOI: 10.3390/life11080813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) patients with high-grade tumors usually suffer from high occurrence and poor prognosis. The current study aimed at finding the biomarkers related to tumor grades and proposing potential therapies by these biomarkers. METHODS The mRNA expression matrix of TSCC samples from The Cancer Genome Atlas (TCGA) database was analyzed to identify hub proteins related to tumor grades. The mRNA expression patterns of these hub proteins between TSCC and adjacent control samples were validated in three independent TSCC data sets (i.e., GSE9844, GSE30784, and GSE13601). The correlation between cell cycle index and immunotherapy efficacy was tested on the IMvigor210 data set. Based on the structure of hub proteins, virtual screening was applied to compounds to find the potential inhibitors. RESULTS A total of six cell cycle biomarkers (i.e., BUB1, CCNB2, CDC6, CDC20, CDK1, and MCM2) were selected as hub proteins by protein-protein interaction (PPI) analysis. In the validation data sets, the mRNA expression levels of these hub proteins were higher in tumor samples versus normal controls. The cell cycle index was constructed by the mRNA expression levels of these hub proteins, and patients with a high cell cycle index demonstrated favorable drug response to the immunotherapy. Three small molecules (i.e., ZINC100052685, ZINC8214703, and ZINC85537014) were found to bind with hub proteins and selected as drug candidates. CONCLUSION The cell cycle index might provide a novel reference for selecting appropriate cancer patient candidates for immunotherapy. The current research might contribute to the development of precision medicine and improve the prognosis of TSCC.
Collapse
Affiliation(s)
- Yinghua Li
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Hao Lin
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Lu Chen
- School of Clinical Medicine, Baotou Medical College, Baotou 014040, China;
| | - Zihao Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Weizhong Li
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| |
Collapse
|
94
|
Yamashita N, Yoshizuka A, Kase A, Ozawa M, Taga C, Sanada N, Kanno Y, Nemoto K, Kizu R. Activation of the aryl hydrocarbon receptor by 3-methylcholanthrene, but not by indirubin, suppresses mammosphere formation via downregulation of CDC20 expression in breast cancer cells. Biochem Biophys Res Commun 2021; 570:131-136. [PMID: 34280616 DOI: 10.1016/j.bbrc.2021.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates various toxicological and biological functions. We reported previously that 3-methylcholanthrene (3MC), an exogenous AhR agonist, inhibited tumorsphere (mammosphere) formation from breast cancer cell lines, while the endogenous AhR agonist, indirubin, very weakly inhibited this process. However, the difference in inhibition mechanism of mammosphere formation by 3MC or indirubin is still unknown. In this study, we established AhR-re-expressing (KOTR-AhR) cells from AhR knockout MCF-7 cells using the tetracycline (Tet)-inducible gene expression systems. To identify any difference in inhibition of mammosphere formation by 3MC or indirubin, RNA-sequencing (RNA-seq) experiments were performed using KOTR-AhR cells. RNA-seq experiments revealed that cell division cycle 20 (CDC20), which regulates the cell cycle and mitosis, was decreased by 3MC, but not by indirubin, in the presence of AhR expression. Furthermore, the mRNA and protein levels of CDC20 were decreased by 3MC in MCF-7 cells via the AhR. In addition, mammosphere formation was suppressed by small interfering RNA-mediated CDC20 knockdown compared to the negative control in MCF-7 cells. These results suggest that AhR activation by 3MC suppresses mammosphere formation via downregulation of CDC20 expression in breast cancer cells. This study provides useful information for the development of AhR-targeted anti-cancer drugs.
Collapse
Affiliation(s)
- Naoya Yamashita
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan.
| | - Arika Yoshizuka
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Arisa Kase
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Moeno Ozawa
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Chiharu Taga
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Noriko Sanada
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Yuichiro Kanno
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Kiyomitsu Nemoto
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Ryoichi Kizu
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| |
Collapse
|
95
|
Sharma P, LaRosa C, Antwi J, Govindarajan R, Werbovetz KA. Imidazoles as Potential Anticancer Agents: An Update on Recent Studies. Molecules 2021; 26:molecules26144213. [PMID: 34299488 PMCID: PMC8307698 DOI: 10.3390/molecules26144213] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Nitrogen-containing heterocyclic rings are common structural components of marketed drugs. Among these heterocycles, imidazole/fused imidazole rings are present in a wide range of bioactive compounds. The unique properties of such structures, including high polarity and the ability to participate in hydrogen bonding and coordination chemistry, allow them to interact with a wide range of biomolecules, and imidazole-/fused imidazole-containing compounds are reported to have a broad spectrum of biological activities. This review summarizes recent reports of imidazole/fused imidazole derivatives as anticancer agents appearing in the peer-reviewed literature from 2018 through 2020. Such molecules have been shown to modulate various targets, including microtubules, tyrosine and serine-threonine kinases, histone deacetylases, p53-Murine Double Minute 2 (MDM2) protein, poly (ADP-ribose) polymerase (PARP), G-quadraplexes, and other targets. Imidazole-containing compounds that display anticancer activity by unknown/undefined mechanisms are also described, as well as key features of structure-activity relationships. This review is intended to provide an overview of recent advances in imidazole-based anticancer drug discovery and development, as well as inspire the design and synthesis of new anticancer molecules.
Collapse
Affiliation(s)
- Pankaj Sharma
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
| | - Chris LaRosa
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
| | - Janet Antwi
- Division of Mathematics, Computer & Natural Sciences Division, Ohio Dominican University, Columbus, OH 43219, USA;
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Karl A. Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
- Correspondence:
| |
Collapse
|
96
|
Wang Y, Nie H, Liao Z, He X, Xu Z, Zhou J, Ou C. Expression and Clinical Significance of Lactate Dehydrogenase A in Colon Adenocarcinoma. Front Oncol 2021; 11:700795. [PMID: 34307169 PMCID: PMC8300199 DOI: 10.3389/fonc.2021.700795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Lactate dehydrogenase A (LDHA) is an important glycolytic enzyme that promotes glycolysis and plays a crucial role in cancer cell invasion and immune infiltration. However, the relevance of LDHA in colon adenocarcinoma (COAD) remains unclear. In this study, we analyzed the correlation between the expression of LDHA and clinicopathological characteristics in COAD using immunohistochemistry analysis, and then used integrative bioinformatics analyses to further study the function and role of LDHA in COAD. We found that LDHA was highly expressed in COAD tissues compared with adjacent normal tissues, and that COAD patients with high LDHA expression levels showed poor survival. In addition, LDHA expression was closely associated with the immune infiltrating levels of CD8+ T cells, neutrophils, and dendritic cells. Our findings highlight the potential role of LDHA in the tumorigenesis and prognosis of COAD. Furthermore, our results indicate that COAD is a novel immune checkpoint in the diagnosis and treatment of COAD.
Collapse
Affiliation(s)
- Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
97
|
The RAS GTPase RIT1 compromises mitotic fidelity through spindle assembly checkpoint suppression. Curr Biol 2021; 31:3915-3924.e9. [PMID: 34237269 DOI: 10.1016/j.cub.2021.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/14/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
The spindle assembly checkpoint (SAC) functions as a sensor of unattached kinetochores that delays mitotic progression into anaphase until proper chromosome segregation is guaranteed.1,2 Disruptions to this safety mechanism lead to genomic instability and aneuploidy, which serve as the genetic cause of embryonic demise, congenital birth defects, intellectual disability, and cancer.3,4 However, despite the understanding of the fundamental mechanisms that control the SAC, it remains unknown how signaling pathways directly interact with and regulate the mitotic checkpoint activity. In response to extracellular stimuli, a diverse network of signaling pathways involved in cell growth, survival, and differentiation are activated, and this process is prominently regulated by the Ras family of small guanosine triphosphatases (GTPases).5 Here we show that RIT1, a Ras-related GTPase that regulates cell survival and stress response,6 is essential for timely progression through mitosis and proper chromosome segregation. RIT1 dissociates from the plasma membrane (PM) during mitosis and interacts directly with SAC proteins MAD2 and p31comet in a process that is regulated by cyclin-dependent kinase 1 (CDK1) activity. Furthermore, pathogenic levels of RIT1 silence the SAC and accelerate transit through mitosis by sequestering MAD2 from the mitotic checkpoint complex (MCC). Moreover, SAC suppression by pathogenic RIT1 promotes chromosome segregation errors and aneuploidy. Our results highlight a unique function of RIT1 compared to other Ras GTPases and elucidate a direct link between a signaling pathway and the SAC through a novel regulatory mechanism.
Collapse
|
98
|
Lambrou GI, Zaravinos A, Braoudaki M. Co-Deregulated miRNA Signatures in Childhood Central Nervous System Tumors: In Search for Common Tumor miRNA-Related Mechanics. Cancers (Basel) 2021; 13:3028. [PMID: 34204289 PMCID: PMC8235499 DOI: 10.3390/cancers13123028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Despite extensive experimentation on pediatric tumors of the central nervous system (CNS), related to both prognosis, diagnosis and treatment, the understanding of pathogenesis and etiology of the disease remains scarce. MicroRNAs are known to be involved in CNS tumor oncogenesis. We hypothesized that CNS tumors possess commonly deregulated miRNAs across different CNS tumor types. AIM The current study aims to reveal the co-deregulated miRNAs across different types of pediatric CNS tumors. MATERIALS A total of 439 CNS tumor samples were collected from both in-house microarray experiments as well as data available in public databases. Diagnoses included medulloblastoma, astrocytoma, ependydoma, cortical dysplasia, glioblastoma, ATRT, germinoma, teratoma, yoc sac tumors, ocular tumors and retinoblastoma. RESULTS We found miRNAs that were globally up- or down-regulated in the majority of the CNS tumor samples. MiR-376B and miR-372 were co-upregulated, whereas miR-149, miR-214, miR-574, miR-595 and miR-765 among others, were co-downregulated across all CNS tumors. Receiver-operator curve analysis showed that miR-149, miR-214, miR-574, miR-595 and miR765 could distinguish between CNS tumors and normal brain tissue. CONCLUSIONS Our approach could prove significant in the search for global miRNA targets for tumor diagnosis and therapy. To the best of our knowledge, there are no previous reports concerning the present approach.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, Hertfordshire, UK
| |
Collapse
|
99
|
Serrano-Del Valle A, Reina-Ortiz C, Benedi A, Anel A, Naval J, Marzo I. Future prospects for mitosis-targeted antitumor therapies. Biochem Pharmacol 2021; 190:114655. [PMID: 34129859 DOI: 10.1016/j.bcp.2021.114655] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
Dysregulation of cell cycle progression is a hallmark of cancer cells. In recent years, efforts have been devoted to the development of new therapies that target proteins involved in cell cycle regulation and mitosis. Novel targeted antimitotic drugs include inhibitors of aurora kinase family, polo-like kinase 1, Mps1, Eg5, CENP-5 and the APC/cyclosome complex. While certain new inhibitors reached the clinical trial stage, most were discontinued due to negative results. However, these therapies should not be readily dismissed. Based on recent advances concerning their mechanisms of action, new strategies could be devised to increase their efficacy and promote further clinical trials. Here we discuss three main lines of action to empower these therapeutic approaches: increasing cell death signals during mitotic arrest, targeting senescent cells and facilitating antitumor immune response through immunogenic cell death (ICD).
Collapse
Affiliation(s)
| | - Chantal Reina-Ortiz
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Andrea Benedi
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Alberto Anel
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Javier Naval
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Isabel Marzo
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain.
| |
Collapse
|
100
|
Huo Q, Chen S, Li Z, Wang J, Li J, Xie N. Inhibiting of TACC3 Promotes Cell Proliferation, Cell Invasion and the EMT Pathway in Breast Cancer. Front Genet 2021; 12:640078. [PMID: 34149795 PMCID: PMC8209498 DOI: 10.3389/fgene.2021.640078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/06/2021] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidences indicate that transforming acidic coiled-coil 3 (TACC3) is a tumor-related gene, was highly expressed in a variety of human cancers, which is involved in cancer development. However, the potential role of TACC3 in breast cancer remains largely unknown. In the present study, we found that TACC3 was highly-expressed in breast cancer tissues, and its level was positively correlated with the clinical features of breast cancer patients. Specifically, TACC3 expression was significantly associated with the estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) status, nodal status, the scarff-bloom-richardson (SBR) grade, nottingham prognostic index (NPI), age, subtypes, and triple-negative and basal-like status, suggesting that TACC3 may be a potential diagnostic indicator of breast cancer. Furthermore, functional studies have shown that inhibition of TACC3 can significantly promote the cell proliferation and viability of breast cancer cells. Moreover, TACC3 knockdown suppressed the expression of E-cadherin, but increased the expression of N-cadherin, Snail, ZEB1, and TWIST, which indicate that TACC3 may impact the migration of breast cancer cells in vitro. Taken together, these findings indicate that TACC3 may serve as a prognostic and therapeutic indicator of breast cancer.
Collapse
Affiliation(s)
- Qin Huo
- Biobank, Institute of Translational medicine, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, China
| | - Siqi Chen
- Biobank, Institute of Translational medicine, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, China
| | - Zhenwei Li
- Biobank, Institute of Translational medicine, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, China
| | - Juan Wang
- Department of Clinical Medicine, University of South China, Hengyang, China
| | - Jiaying Li
- Department of Clinical Medicine, University of South China, Hengyang, China
| | - Ni Xie
- Biobank, Institute of Translational medicine, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, China
| |
Collapse
|