51
|
Dey P, Rathod M, De A. Targeting stem cells in the realm of drug-resistant breast cancer. BREAST CANCER-TARGETS AND THERAPY 2019; 11:115-135. [PMID: 30881110 PMCID: PMC6410754 DOI: 10.2147/bctt.s189224] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since its first documentation, breast cancer (BC) has been a conundrum that ails millions of women every year. This cancer has been well studied by researchers all over the world, which has improved the patient outcome significantly. There are many diagnostic markers to identify the disease, but early detection and then subclassification of this cancer remain dubious. Even after the correct diagnosis, more than half the patients come back with a more aggressive and metastatic tumor. The underpinning mechanism that governs the resistance includes over-amplification of receptors, mutations in key gene targets, and activation of different signaling. A plethora of drugs have been devised that have shown promising results in clinical settings. However, in recent times, the role played by cancer stem cells in disease progression and their interaction in mediating the resistance to cellular insults have come into the limelight. As breast cancer stem cells (BCSCs) are dormant in nature, it is highly likely that they fail to directly respond to the cytotoxic drugs which are meant for ablating rapidly proliferating cells. Furthermore, the absence of well-characterized, drug-able surface markers to date, has limited the application of targeted therapies in complete eradication of the disease. In this review, our intent is to discuss versatile therapeutics in practice followed by discussing the upcoming therapy strategies in the pipeline for BC. Furthermore, we focus on the roles played by BCSCs in mediating the resistance, and therefore, the aspects of new therapeutics against BCSCs under development that may ease the burden in future has also been discussed.
Collapse
Affiliation(s)
- Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| | - Maitreyi Rathod
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| |
Collapse
|
52
|
Makhlouf A, Hajdu I, Hartimath SV, Alizadeh E, Wharton K, Wasan KM, Badea I, Fonge H. 111In-Labeled Glycoprotein Nonmetastatic b (GPNMB) Targeted Gemini Surfactant-Based Nanoparticles against Melanoma: In Vitro Characterization and in Vivo Evaluation in Melanoma Mouse Xenograft Model. Mol Pharm 2019; 16:542-551. [DOI: 10.1021/acs.molpharmaceut.8b00831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Amal Makhlouf
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, 12411 Cairo, Egypt
| | - Istvan Hajdu
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Siddesh V. Hartimath
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, 103 University Drive, Saskatoon, Saskatchewan S7N 0W8, Canada
- Saskatchewan Centre for Cyclotron Sciences (SCCS), The Fedoruk Centre, 120 Maintenance Road, Saskatoon, Saskatchewan S7N 5C4, Canada
| | - Elahe Alizadeh
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, 103 University Drive, Saskatoon, Saskatchewan S7N 0W8, Canada
- Saskatchewan Centre for Cyclotron Sciences (SCCS), The Fedoruk Centre, 120 Maintenance Road, Saskatoon, Saskatchewan S7N 5C4, Canada
| | - Kayla Wharton
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kishor M. Wasan
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ildiko Badea
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, 103 University Drive, Saskatoon, Saskatchewan S7N 0W8, Canada
- Saskatchewan Centre for Cyclotron Sciences (SCCS), The Fedoruk Centre, 120 Maintenance Road, Saskatoon, Saskatchewan S7N 5C4, Canada
- Department of Medical Imaging, Royal University Hospital Saskatoon, 103 University Drive, Saskatoon, Saskatchewan S7N 0W8, Canada
| |
Collapse
|
53
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
54
|
Chen C, Okita Y, Watanabe Y, Abe F, Fikry MA, Ichikawa Y, Suzuki H, Shibuya A, Kato M. Glycoprotein nmb Is Exposed on the Surface of Dormant Breast Cancer Cells and Induces Stem Cell-like Properties. Cancer Res 2018; 78:6424-6435. [PMID: 30224376 DOI: 10.1158/0008-5472.can-18-0599] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/31/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022]
Abstract
Glycoprotein nmb (GPNMB) is a type I transmembrane protein that contributes to the initiation and malignant progression of breast cancer through induction of epithelial-mesenchymal transition (EMT). Although it is known that EMT is associated with not only cancer invasion but also acquisition of cancer stem cell (CSC) properties, the function of GPNMB in this acquisition of CSC properties has yet to be elucidated. To address this issue, we utilized a three-dimensional (3D) sphere culture method to examine the correlation between GPNMB and CSC properties in breast cancer cells. Three-dimensional sphere cultures induced higher expression of CSC genes and EMT-inducing transcription factor (EMT-TF) genes than the 2D monolayer cultures. Three-dimensional culture also induced cell surface expression of GPNMB on limited numbers of cells in the spheres, whereas the 2D cultures did not. Therefore, we isolated cell surface-GPNMBhigh and -GPNMBlow cells from the spheres. Cell surface-GPNMBhigh cells expressed high levels of CSC genes and EMT-TF genes, had significantly higher sphere-forming frequencies than the cell surface-GPNMBlow cells, and showed no detectable levels of proliferation marker genes. Similar results were obtained from transplanted breast tumors. Furthermore, wild-type GPNMB, but not mutant GPNMB (YF), which lacks tumorigenic activity, induced CSC-like properties in breast epithelial cells. These findings suggest that GPNMB is exposed on the surface of dormant breast cancer cells and its activity contributes to the acquisition of stem cell-like properties.Significance: These findings suggest that cell surface expression of GPNMB could serve as a marker and promising therapeutic target of breast cancer cells with stem cell-like properties. Cancer Res; 78(22); 6424-35. ©2018 AACR.
Collapse
Affiliation(s)
- Chen Chen
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Department of General Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yukari Okita
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan. .,Division of Cell Dynamics, Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Yukihide Watanabe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Fumie Abe
- Laboratory of Immunology, Life Science Center for Survival Dynamics of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Muhammad Ali Fikry
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yumu Ichikawa
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroyuki Suzuki
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akira Shibuya
- Laboratory of Immunology, Life Science Center for Survival Dynamics of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Division of Cell Dynamics, Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
55
|
Dankner M, Lajoie M, Moldoveanu D, Nguyen TT, Savage P, Rajkumar S, Huang X, Lvova M, Protopopov A, Vuzman D, Hogg D, Park M, Guiot MC, Petrecca K, Mihalcioiu C, Watson IR, Siegel PM, Rose AA. Dual MAPK Inhibition Is an Effective Therapeutic Strategy for a Subset of Class II BRAF Mutant Melanomas. Clin Cancer Res 2018; 24:6483-6494. [DOI: 10.1158/1078-0432.ccr-17-3384] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/28/2018] [Accepted: 06/06/2018] [Indexed: 11/16/2022]
|
56
|
Tong CWS, Wu M, Cho WCS, To KKW. Recent Advances in the Treatment of Breast Cancer. Front Oncol 2018; 8:227. [PMID: 29963498 PMCID: PMC6010518 DOI: 10.3389/fonc.2018.00227] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy in women. It is classified into a few major molecular subtypes according to hormone and growth factor receptor expression. Over the past few years, substantial advances have been made in the discovery of new drugs for treating BC. Improved understanding of the biologic heterogeneity of BC has allowed the development of more effective and individualized approach to treatment. In this review, we provide an update about the current treatment strategy and discuss the various emerging novel therapies for the major molecular subtypes of BC. A brief account of the clinical development of inhibitors of poly(ADP-ribose) polymerase, cyclin-dependent kinases 4 and 6, phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway, histone deacetylation, multi-targeting tyrosine kinases, and immune checkpoints for personalized treatment of BC is included. However, no targeted drug has been approved for the most aggressive subtype-triple negative breast cancer (TNBC). Thus, we discuss the heterogeneity of TNBC and how molecular subtyping of TNBC may help drug discovery for this deadly disease. The emergence of drug resistance also poses threat to the successful development of targeted therapy in various molecular subtypes of BC. New clinical trials should incorporate advanced methods to identify changes induced by drug treatment, which may be associated with the upregulation of compensatory signaling pathways in drug resistant cancer cells.
Collapse
Affiliation(s)
- Christy W. S. Tong
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Mingxia Wu
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Kenneth K. W. To
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
57
|
Ye X, Luke BT, Wei BR, Kaczmarczyk JA, Loncarek J, Dwyer JE, Johann DJ, Saul RG, Nissley DV, McCormick F, Whiteley GR, Blonder J. Direct molecular dissection of tumor parenchyma from tumor stroma in tumor xenograft using mass spectrometry-based glycoproteomics. Oncotarget 2018; 9:26431-26452. [PMID: 29899869 PMCID: PMC5995176 DOI: 10.18632/oncotarget.25449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
The most widely used cancer animal model is the human-murine tumor xenograft. Unbiased molecular dissection of tumor parenchyma versus stroma in human-murine xenografts is critical for elucidating dysregulated protein networks/pathways and developing therapeutics that may target these two functionally codependent compartments. Although antibody-reliant technologies (e.g., immunohistochemistry, imaging mass cytometry) are capable of distinguishing tumor-proper versus stromal proteins, the breadth or extent of targets is limited. Here, we report an antibody-free targeted cross-species glycoproteomic (TCSG) approach that enables direct dissection of human tumor parenchyma from murine tumor stroma at the molecular/protein level in tumor xenografts at a selectivity rate presently unattainable by other means. This approach was used to segment/dissect and obtain the protein complement phenotype of the tumor stroma and parenchyma of the metastatic human lung adenocarcinoma A549 xenograft, with no need for tissue microdissection prior to mass-spectrometry analysis. An extensive molecular map of the tumor proper and the associated microenvironment was generated along with the top functional N-glycosylated protein networks enriched in each compartment. Importantly, immunohistochemistry-based cross-validation of selected parenchymal and stromal targets applied on human tissue samples of lung adenocarcinoma and normal adjacent tissue is indicative of a noteworthy translational capacity for this unique approach that may facilitate identifications of novel targets for next generation antibody therapies and development of real time preclinical tumor models.
Collapse
Affiliation(s)
- Xiaoying Ye
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Brian T. Luke
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jan A. Kaczmarczyk
- Cancer Research Technology Program, Antibody Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jennifer E. Dwyer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Donald J. Johann
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72209, USA
| | - Richard G. Saul
- Cancer Research Technology Program, Antibody Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Dwight V. Nissley
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Frank McCormick
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Gordon R. Whiteley
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Josip Blonder
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| |
Collapse
|
58
|
Taya M, Hammes SR. Glycoprotein Non-Metastatic Melanoma Protein B (GPNMB) and Cancer: A Novel Potential Therapeutic Target. Steroids 2018; 133:102-107. [PMID: 29097143 PMCID: PMC6166407 DOI: 10.1016/j.steroids.2017.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is a transmembrane protein enriched on the cell surface of cancer cells, including melanoma, glioblastoma, and triple-negative breast cancer. There is growing evidence identifying GPNMB as a tumor-promoter; however, despite its biological and clinical significance, the molecular mechanisms engaged by GPNMB to promote tumorigenesis are not well understood. GPNMB promotes aggressive behaviors such as tumor cell proliferation, migration, and invasion. The extracellular domain of GPNMB shed from the cell surface interacts with integrins to facilitate in the recruitment of immune-suppressive and pro-angiogenic cells to the tumor microenvironment, thereby enhancing tumor migration and invasion. GPNMB also modulates receptor tyrosine kinases and integrin signaling in a cell autonomous fashion, leading to downstream kinase signaling that in turn triggers the expression and secretion of tumorigenic factors such as matrix metalloproteinases (MMPs) and cytokines. Therefore, GPNMB exerts its pro-tumorigenic role both intracellularly and in a paracrine fashion through shedding its extracellular domain. This review highlights the importance of GPNMB in cancer progression and discusses molecular mediators of GPNMB-induced tumor growth and invasion.
Collapse
Affiliation(s)
- Manisha Taya
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Stephen R Hammes
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
59
|
Hanemaaijer SH, van Gijn SE, Oosting SF, Plaat BEC, Moek KL, Schuuring EM, van der Laan BFAM, Roodenburg JLN, van Vugt MATM, van der Vegt B, Fehrmann RSN. Data-Driven prioritisation of antibody-drug conjugate targets in head and neck squamous cell carcinoma. Oral Oncol 2018; 80:33-39. [PMID: 29706186 DOI: 10.1016/j.oraloncology.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/11/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND For patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) palliative treatment options that improve overall survival are limited. The prognosis in this group remains poor and there is an unmet need for new therapeutic options. An emerging class of therapeutics, targeting tumor-specific antigens, are antibodies bound to a cytotoxic agent, known as antibody-drug conjugates (ADCs). The aim of this study was to prioritize ADC targets in HNSCC. METHODS With a systematic search, we identified 55 different ADC targets currently targeted by registered ADCs and ADCs under clinical evaluation. For these 55 ADC targets, protein overexpression was predicted in a dataset containing 344 HNSCC mRNA expression profiles by using a method called functional genomic mRNA profiling. The ADC target with the highest predicted overexpression was validated by performing immunohistochemistry (IHC) on an independent tissue microarray containing 414 HNSCC tumors. RESULTS The predicted top 5 overexpressed ADC targets in HNSCC were: glycoprotein nmb (GPNMB), SLIT and NTRK-like family member 6, epidermal growth factor receptor, CD74 and CD44. IHC validation showed combined cytoplasmic and membranous GPNMB protein expression in 92.0% of the cases. Strong expression was seen in 65.9% of the cases. In addition, 86.5% and 67.7% of cases showed ≥5% and >25% GPNMB positive tumor cells, respectively. CONCLUSIONS This study provides a data-driven prioritization of ADCs targets that will facilitate clinicians and drug developers in deciding which ADC should be taken for further clinical evaluation in HNSCC. This might help to improve disease outcome of HNSCC patients.
Collapse
Affiliation(s)
- Saskia H Hanemaaijer
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck surgery, Groningen, The Netherlands
| | - Stephanie E van Gijn
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands
| | - Sjoukje F Oosting
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands
| | - Boudewijn E C Plaat
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck surgery, Groningen, The Netherlands
| | - Kirsten L Moek
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands
| | - Ed M Schuuring
- University of Groningen, University Medical Center Groningen, Department of Pathology, Groningen, The Netherlands
| | - Bernard F A M van der Laan
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck surgery, Groningen, The Netherlands
| | - Jan L N Roodenburg
- University of Groningen, University Medical Center Groningen, Department of Oral and Maxillofacial Surgery, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands
| | - Bert van der Vegt
- University of Groningen, University Medical Center Groningen, Department of Pathology, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands.
| |
Collapse
|
60
|
Dankner M, Rose AAN, Rajkumar S, Siegel PM, Watson IR. Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Oncogene 2018. [DOI: 10.1038/s41388-018-0171-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
61
|
Norouzi M. Recent advances in brain tumor therapy: application of electrospun nanofibers. Drug Discov Today 2018; 23:912-919. [PMID: 29499377 DOI: 10.1016/j.drudis.2018.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/11/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Despite much effort to treat glioblastoma multiforme (GBM), the median survival of patients has not significantly improved. The high rate of tumor recurrence after tumor resection and the blood-brain barrier (BBB) decrease the treatment efficacy. Local drug delivery at the surgical resection site via implantable electrospun nanofibers not only circumvents the BBB, but can also reduce the rate of tumor recurrence. Nanofibers can provide a sustained release and a high concentration of chemotherapeutics at the tumor vicinity, while decreasing their systemic exposure and toxicity. In another scenario, aligned nanofibers can mimic the topographical features of the brain extracellular matrix (ECM), which can be utilized for in vitro studies on GBM cell migration. This strategy is beneficial to investigate the interactions of tumor cells with the microenvironment which has a dominant role in regulating tumor formation, progression, and metastasis.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada; Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB, Canada.
| |
Collapse
|
62
|
Marin-Acevedo JA, Soyano AE, Dholaria B, Knutson KL, Lou Y. Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol 2018; 11:8. [PMID: 29329556 PMCID: PMC5767051 DOI: 10.1186/s13045-017-0552-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/28/2017] [Indexed: 12/17/2022] Open
Abstract
Malignant cells have the capacity to rapidly grow exponentially and spread in part by suppressing, evading, and exploiting the host immune system. Immunotherapy is a form of oncologic treatment directed towards enhancing the host immune system against cancer. In recent years, manipulation of immune checkpoints or pathways has emerged as an important and effective form of immunotherapy. Agents that target cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), programmed cell death receptor-1 (PD-1), and programmed cell death ligand-1 (PD-L1) are the most widely studied and recognized. Immunotherapy, however, extends beyond immune checkpoint therapy by using new molecules such as chimeric monoclonal antibodies and antibody drug conjugates that target malignant cells and promote their destruction. Genetically modified T cells expressing chimeric antigen receptors are able to recognize specific antigens on cancer cells and subsequently activate the immune system. Native or genetically modified viruses with oncolytic activity are of great interest as, besides destroying malignant cells, they can increase anti-tumor activity in response to the release of new antigens and danger signals as a result of infection and tumor cell lysis. Vaccines are also being explored, either in the form of autologous or allogenic tumor peptide antigens, genetically modified dendritic cells that express tumor peptides, or even in the use of RNA, DNA, bacteria, or virus as vectors of specific tumor markers. Most of these agents are yet under development, but they promise to be important options to boost the host immune system to control and eliminate malignancy. In this review, we have provided detailed discussion of different forms of immunotherapy agents other than checkpoint-modifying drugs. The specific focus of this manuscript is to include first-in-human phase I and phase I/II clinical trials intended to allow the identification of those drugs that most likely will continue to develop and possibly join the immunotherapeutic arsenal in a near future.
Collapse
Affiliation(s)
| | - Aixa E Soyano
- Department of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Bhagirathbhai Dholaria
- Department of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Current address: Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Jacksonville, FL, USA
| | - Yanyan Lou
- Department of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
63
|
Guffroy M, Falahatpisheh H, Finkelstein M. Improving the Safety Profile of ADCs. CANCER DRUG DISCOVERY AND DEVELOPMENT 2018. [DOI: 10.1007/978-3-319-78154-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|