52
|
Zhang R, Qin X, Zhang T, Li Q, Zhang J, Zhao J. Astragalus Polysaccharide Improves Insulin Sensitivity via AMPK Activation in 3T3-L1 Adipocytes. Molecules 2018; 23:E2711. [PMID: 30347867 PMCID: PMC6222405 DOI: 10.3390/molecules23102711] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/23/2022] Open
Abstract
Astragalus polysaccharide (APS) is an important bioactive component of Astragalus membranaceus which is used as an anti-diabetes herb in traditional Chinese medicine. The objective of this study was to investigate the effects and mechanisms of APS on insulin-sensitizing of adipocytes. Mouse 3T3-L1 preadipocytes were used as a model. The results showed that APS increased preadipocytes proliferation in a dose dependent manner, and 0.1 μg/mL APS sufficiently increased Proliferating Cell Nuclear Antigen (PCNA) content (p < 0.01). Moreover, APS enhanced intracellular lipid accumulation and mRNA expression of proliferator-activated receptor γ (PPARγ, p < 0.01), CCAAT/enhancer binding protein α (C/EBPα, p < 0.01) and fatty acid binding protein (aP2, p < 0.01). As expected, corresponding protein contents were elevated. Importantly, APS increased 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG) uptake (p < 0.01). Meanwhile, both mRNA and protein content of glucose transporter 4 (Glut4) were elevated by APS (p < 0.01). The APS treatment enhanced tyrosine phosphorylation of insulin receptor substrate 1 (IRS1, p < 0.05) and phosphor-Akt content (p < 0.01). Besides, phosphorylated AMP-activated protein kinase (AMPK) content was increased in the APS treated cells (p < 0.01). Taken together, APS improved insulin sensitivity by enhancing glucose uptake, possibly through AMPK activation. These results suggested that APS might be a therapeutic candidate for insulin resistance.
Collapse
Affiliation(s)
- Ruixin Zhang
- Department of Animal Sciences and Veterinary medicine, Shanxi Agricultural University, Taigu 030801, China.
| | - Xuze Qin
- Department of Animal Sciences and Veterinary medicine, Shanxi Agricultural University, Taigu 030801, China.
| | - Ting Zhang
- Department of Animal Sciences and Veterinary medicine, Shanxi Agricultural University, Taigu 030801, China.
| | - Qian Li
- Department of Animal Sciences and Veterinary medicine, Shanxi Agricultural University, Taigu 030801, China.
| | - Jianxin Zhang
- Department of Animal Sciences and Veterinary medicine, Shanxi Agricultural University, Taigu 030801, China.
| | - Junxing Zhao
- Department of Animal Sciences and Veterinary medicine, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
53
|
Moghadam FH, Mesbah-Ardakani M, Nasr-Esfahani MH. Ferulic Acid exerts concentration-dependent anti-apoptotic and neuronal differentiation-inducing effects in PC12 and mouse neural stem cells. Eur J Pharmacol 2018; 841:104-112. [PMID: 30332611 DOI: 10.1016/j.ejphar.2018.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022]
Abstract
Ferulic Acid (FA) is a phenolic compound with anti-apoptotic and anti-oxidative properties. There are reports regarding its neuro-protective, neuro-proliferative and neuro-differentiative effects. However, effect of FA on neuronal differentiation and its effective neuro-protective and neuro-differentiative concentrations are unknown. Also the role of sirtuin molecules in neuroprotective effects of FA were not reported. We used PC12 and mouse neural stem cells (mNSCs) in our experiments. Intact and apoptotic (H2O2-exposed) cells were treated with different concentrations of FA, and then they were evaluated by MTT, quantitative real-time RT-PCR and immunostaining assays. FA treatment at low concentrations (50 µg/ml) significantly reduced apoptosis in H2O2-treated PC12 cells. Real-time RT-PCR and western blot assays confirmed that FA induced this effect through stabilization and degradation of P53 by increasing the expression rate of SIRT1, SIRT7 and MDM2 but down-regulation of USP7. Beside this anti-apoptotic effect, treatments of PC12 cells and mNSCs with higher concentrations of FA (250-800 µg/ml on PC12 cells and 100-500 µg/ml on mNSCs) increased the rate of neuronal differentiation. Immunocytochemical staining for β-tubulin III and Map2 verified the presence of mature neurons, and western blot assay showed that FA-treated PC12 cells had a stepwise rise of phosphorylated-ERK1/2 with increasing concentrations of FA. Our findings showed that FA at low concentrations has neuroprotective effect through up-regulation of SIRT1, SIRT7 and MDM2, and at higher concentrations can promote neural differentiation and neurite outgrowth.
Collapse
Affiliation(s)
- Farshad Homayouni Moghadam
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | | | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
55
|
Liu Y, Clement J, Grant R, Sachdev P, Braidy N. Quantitation of NAD+: Why do we need to measure it? Biochim Biophys Acta Gen Subj 2018; 1862:2527-2532. [PMID: 30048742 DOI: 10.1016/j.bbagen.2018.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that is currently investigated as an important target to extend lifespan and health span. Age-related NAD+ depletion due to the accumulation of oxidative stress is associated with reduced energy production, impaired DNA repair and genomic instability. SCOPE OF REVIEW NAD+ levels can be elevated therapeutically using NAD+ precursors or through lifestyle modifications including exercise and caloric restriction. However, high amounts of NAD+ may be detrimental in cancer progression and may have deleterious immunogenic roles. MAJOR CONCLUSIONS Standardized quantitation of NAD+ and related metabolites may therefore represent an important component of NAD+ therapy. GENERAL SIGNIFICANCE Quantitation of NAD+ may serve dual roles not only as an ageing biomarker, but also as a diagnostic tool for the prevention of malignant disorders.
Collapse
Affiliation(s)
- Yue Liu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | | | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia; School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia.
| |
Collapse
|
56
|
Zhang J, Su G, Tang Z, Wang L, Fu W, Zhao S, Ba Y, Bai B, Yue P, Lin Y, Bai Z, Hu J, Meng W, Qiao L, Li X, Xie X. Curcumol Exerts Anticancer Effect in Cholangiocarcinoma Cells via Down-Regulating CDKL3. Front Physiol 2018; 9:234. [PMID: 29615928 PMCID: PMC5870041 DOI: 10.3389/fphys.2018.00234] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/02/2018] [Indexed: 01/03/2023] Open
Abstract
Curcumol is the major component extracted from root of Rhizoma Curcumae. Recent studies have shown that curcumol exerts therapeutic effects against multiple conditions, particularly cancers. However, the therapeutic role and mechanism of curcumol against cholangiocarcinoma cells are still unclear. In our current research, we tested the effect of curcumol in cholangiocarcinoma cells, and using two-dimensional electrophoresis, proteomics and bioinformatics, we identified cyclin-dependent kinase like 3 (CDKL3) as a potential target for curcumol. We have demonstrated that curcumol can evidently suppress growth and migration of cholangiocarcinoma cells. Furthermore, curcumol could significantly block the cell cycle progression of the cholangiocarcinoma cells. These effects could be largely attributed to the inhibition of CDKL3 by curcumol. Further studies have recapitulated the oncogenic role of CDKL3 in that knockdown of CDKL3 by lentiviral mediated transfection of shRNA against CDKL3 also led to a significant inhibition on cell proliferation, migration, invasion, and cell cycle progression. Given the high level of CDKL3 expression in human cholangiocarcinoma tissues and cell lines, we speculated that CDKL3 may constitute a potential biological target for curcumol in cholangiocarcinoma.
Collapse
Affiliation(s)
- Jinduo Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Gang Su
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou, China
| | - Zengwei Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Li Wang
- School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou, China.,School of Stomatology, Lanzhou University, Lanzhou, China
| | - Wenkang Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Sheng Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou, China
| | - Yongjiang Ba
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Bing Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Ping Yue
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Yanyan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Zhongtian Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China.,The Second Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jinjing Hu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Wenbo Meng
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China.,The Second Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xie
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou, China
| |
Collapse
|
57
|
Trovato Salinaro A, Pennisi M, Di Paola R, Scuto M, Crupi R, Cambria MT, Ontario ML, Tomasello M, Uva M, Maiolino L, Calabrese EJ, Cuzzocrea S, Calabrese V. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer's disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. IMMUNITY & AGEING 2018; 15:8. [PMID: 29456585 PMCID: PMC5813410 DOI: 10.1186/s12979-017-0108-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/28/2017] [Indexed: 02/08/2023]
Abstract
Human life develops and expands not only in time and space, but also in the retrograde permanent recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered or lost under pathological conditions such as Alzheimer’s disease, including recently associated oxidant pathologies, such as ocular neural degeneration occurring in glaucoma or neurosensorial degeneration occurring in Menière’s disease. Oxidative stress and altered antioxidant systems have been suggested to play a role in the aetiology of major neurodegenerative disorders, and altered expression of genes sensing oxidative stress, as well as decreased cellular stress response mechanisms could synergistically contribute to the course of these oxidant disorders. Thus, the theory that low levels of stress can produce protective responses against the pathogenic processes is a frontier area of neurobiological research focal to understanding and developing therapeutic approaches to neurodegenerative disorders. Herein, we discuss cellular mechanisms underlying AD neuroinflammatory pathogenesis that are contributory to Alzheimer’s disease. We describe endogenous cellular defence mechanism modulation and neurohormesis as a potentially innovative approach to therapeutics for AD and other neurodegenerative conditions that are associated with mitochondrial dysfunction and neuroinflammation. Particularly, we consider the emerging role of the inflammasome as an important component of the neuroprotective network, as well as the importance of Coriolus and Hericium nutritional mushrooms in redox stress responsive mechanisms and neuroprotection.
Collapse
Affiliation(s)
- Angela Trovato Salinaro
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Manuela Pennisi
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.,Spinal Unit, Emergency Hospital "Cannizzaro", Catania, Italy
| | - Rosanna Di Paola
- 2Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina, Messina, Italy
| | - Maria Scuto
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Rosalia Crupi
- 2Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina, Messina, Italy
| | - Maria Teresa Cambria
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Maria Laura Ontario
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Mario Tomasello
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Maurizio Uva
- 3Department of Medical and Surgery Sciences and Advanced Technology, University of Catania, Catania, Italy
| | - Luigi Maiolino
- 3Department of Medical and Surgery Sciences and Advanced Technology, University of Catania, Catania, Italy
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, MA USA
| | - Salvatore Cuzzocrea
- 2Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina, Messina, Italy
| | - Vittorio Calabrese
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|