51
|
Pallàs M, Vázquez S, Sanfeliu C, Galdeano C, Griñán-Ferré C. Soluble Epoxide Hydrolase Inhibition to Face Neuroinflammation in Parkinson's Disease: A New Therapeutic Strategy. Biomolecules 2020; 10:E703. [PMID: 32369955 PMCID: PMC7277900 DOI: 10.3390/biom10050703] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation is a crucial process associated with the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Several pieces of evidence suggest an active role of lipid mediators, especially epoxy-fatty acids (EpFAs), in the genesis and control of neuroinflammation; 14,15-epoxyeicosatrienoic acid (14,15-EET) is one of the most commonly studied EpFAs, with anti-inflammatory properties. Soluble epoxide hydrolase (sEH) is implicated in the hydrolysis of 14,15-EET to its corresponding diol, which lacks anti-inflammatory properties. Preventing EET degradation thus increases its concentration in the brain through sEH inhibition, which represents a novel pharmacological approach to foster the reduction of neuroinflammation and by end neurodegeneration. Recently, it has been shown that sEH levels increase in brains of PD patients. Moreover, the pharmacological inhibition of the hydrolase domain of the enzyme or the use of sEH knockout mice reduced the deleterious effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. This paper overviews the knowledge of sEH and EETs in PD and the importance of blocking its hydrolytic activity, degrading EETs in PD physiopathology. We focus on imperative neuroinflammation participation in the neurodegenerative process in PD and the putative therapeutic role for sEH inhibitors. In this review, we also describe highlights in the general knowledge of the role of sEH in the central nervous system (CNS) and its participation in neurodegeneration. We conclude that sEH is one of the most promising therapeutic strategies for PD and other neurodegenerative diseases with chronic inflammation process, providing new insights into the crucial role of sEH in PD pathophysiology as well as a singular opportunity for drug development.
Collapse
Affiliation(s)
- Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Department de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain;
| | - Coral Sanfeliu
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, C/Roselló 161, 08036 Barcelona, Spain;
| | - Carles Galdeano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain;
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
| |
Collapse
|
52
|
Han KH, Kim B, Ji SC, Kang HG, Cheong HI, Cho JY, Ha IS. Mechanism of Chronic Kidney Disease Progression and Novel Biomarkers: A Metabolomic Analysis of Experimental Glomerulonephritis. Metabolites 2020; 10:E169. [PMID: 32344531 PMCID: PMC7240957 DOI: 10.3390/metabo10040169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
While a complex network of cellular and molecular events is known to be involved in the pathophysiological mechanism of chronic kidney disease (CKD), the divergence point between reversal and progression and the event that triggers CKD progression are still unknown. To understand the different mechanisms between reversible and irreversible kidney disease and to search for urinary biomarkers that can predict prognosis, a metabolomic analysis was applied to compare acute and chronic experimental glomerulonephritis (GN) models. Four metabolites, namely, epoxyoctadecenoic acid (EpOME), epoxyeicosatetraenoic acid (EpETE), α-linolenic acid (ALA), and hydroxyretinoic acid, were identified as predictive markers after comparing the chronic nephritis model with acute nephritis and control groups (false discovery rate adjusted p-value (q-value) < 0.05). Renal mRNA expression of cytochrome P450 and epoxide hydrolase was also identified as being involved in the production of epoxide metabolites from these polyunsaturated fatty acids (p < 0.05). These results suggested that the progression of chronic kidney disease is associated with abnormally activated epoxide hydrolase, leading to an increase in EpOME and EpETE as pro-inflammatory eicosanoids.
Collapse
Affiliation(s)
- Kyoung Hee Han
- Department of Pediatrics, Jeju National University School of Medicine, Aran 13gil 15, Jeju-si, Jeju 63241, Korea;
| | - Bora Kim
- Kidney Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (S.C.J.); (H.G.K.)
- Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Sang Chun Ji
- Kidney Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (S.C.J.); (H.G.K.)
- Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Hee Gyung Kang
- Kidney Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (S.C.J.); (H.G.K.)
- Department of Pediatrics, Seoul National University College of Medicine and Hospital, 103, Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University College of Medicine and Hospital, 103, Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| | - Joo-Youn Cho
- Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Il-Soo Ha
- Kidney Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (S.C.J.); (H.G.K.)
- Department of Pediatrics, Seoul National University College of Medicine and Hospital, 103, Daehak-ro, Jongno-gu, Seoul 03080, Korea;
| |
Collapse
|
53
|
Li X, Chu G, Zhu F, Zheng Z, Wang X, Zhang G, Wang F. Epoxyeicosatrienoic acid prevents maladaptive remodeling in pressure overload by targeting calcineurin/NFAT and Smad-7. Exp Cell Res 2020; 386:111716. [PMID: 31734152 DOI: 10.1016/j.yexcr.2019.111716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Emerging evidence demonstrates that epoxyeicosatrienoic acids (EETs) as important active eicosanoids that regulate cardiovascular homeostasis, but the mechanisms underlying its favorable anti-hypertrophic benefits in overpressure model remain obscure. METHODS AND RESULTS Four weeks after transverse aortic constriction (TAC), TAC mice developed maladaptive cardiac hypertrophy and consequent cardiac failure. Conversely, a cardiotropic adeno-associated viral vector (AAV9) encoding CYP2J2 prevented transverse aortic constriction-induced cardiac hypertrophy with preserved ejection fraction. EET also conferred protection against phenylephrine-induced hypertrophy in H9c2 cardiomyoblasts. Further investigations indicate CYP2J2/EET exerts protection against cardiac hypertrophy through opposing the increase of intracellular Ca2+ level and Ca2+-mediated calcineurin/NFATc3 signaling. Meanwhile, extended myocardial fibrosis in TAC mice was also effectively abolished with the administration of AAV9-2J2. Intriguingly, TAC mice display activated TGF-β/Samd-3 signaling with decreased Smad-7 expression, whereas AAV9-2J2 attenuated the phosphorylation of Smad-3 without altering TGF-β expression, whilst preservation of Smad-7. Subsequently, the differentiation of cardiac fibroblasts into myofibroblasts in the presence of TGF-β1 stimulation was significantly disrupted with EET treatment, accompanied by declined Smad-3 activation and collagen production, whereas inhibition of Smad-7 with SiRNA Smad-7 substantially abrogated these effects of EET on cardiac fibroblasts. CONCLUSIONS EET has synergistic actions on cardiomyocytes and cardiac fibroblasts, preventing cardiac hypertrophy through inhibition of Ca2+-mediated calcineurin/NFATc3 signaling cascades, and ameliorating myocardial fibrosis dependent on Smad-7. This work further extends the potential mechanisms of EET, providing a novel therapeutic approach for the treatment of pathological remodeling and heart failure.
Collapse
Affiliation(s)
- Xuguang Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Guang Chu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Feng Zhu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Zhifeng Zheng
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Xiang Wang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Guobing Zhang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
54
|
Stavniichuk A, Savchuk O, Khan AH, Jankiewicz WK, Imig JD, Merk D. THE EFFECT OF COMPOUND DM509 ON KIDNEY FIBROSIS IN THE CONDITIONS OF THE EXPERIMENTAL MODEL. ACTA ACUST UNITED AC 2020; 80:10-15. [PMID: 33437972 DOI: 10.17721/1728_2748.2020.80.10-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Renal fibrosis is a critical event in the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD). Unfortunately, there are few options to target renal fibrosis in order to develop novel anti-fibrotic agents that could prevent CKD progression to ESRD. We evaluated the efficacy of a novel dual-acting molecule, DM509, in preventing renal fibrosis using the unilateral ureteral obstruction (UUO) renal fibrosis mouse model. DM509 acts simultaneously as a farnesoid X receptor agonist (FXRA) and a soluble epoxide hydrolase inhibitor (sEHi). In this study, groups of 8-12 weeks old C57BL/6J male mice went through either UUO or sham surgery (n=6/group). Mice were pre-treated with DM509 (10mg/kg/d) or vehicle administered in drinking water one day prior to the UUO surgery. Sham, vehicle and DM509 treatments continued until day 10 and blood and kidney tissue were collected for biochemical, histological, and gene expression analysis at the end of the treatment protocol. The UUO group exhibited kidney dysfunction with elevated blood urea nitrogen (BUN) compared to the sham group (63±7 vs. 34±6 mg/dL). DM509 treatment prevented renal dysfunction as evident from 36% lower BUN level in the DM509 treated UUO mice compared to UUO mice treated with vehicle. Vehicle treated UUO mice demonstrated renal fibrosis with elevated kidney hydroxyproline content (213±11 vs. 49±9 μg/mg protein) and kidney collagen positive area (13±2% vs. 1.1±0.1%) compared to the sham group. We found that DM509 treatment prevented renal fibrosis and DM509 treated mice had 34-66% lower levels of kidney hydroxyproline and collagen positive renal area compared to vehicle-treated UUO mice. In conclusion, our data provide evidence that the novel dual-acting FXRA and a sEHi, DM509, prevented renal dysfunction and renal fibrosis in UUO mouse model.
Collapse
Affiliation(s)
- A Stavniichuk
- Taras Shevchenko National University of Kyiv, ESC Institute of Biology and Medicine», Kyiv, Ukraine
| | - O Savchuk
- Taras Shevchenko National University of Kyiv, ESC Institute of Biology and Medicine», Kyiv, Ukraine
| | - Abdul Hye Khan
- Department of Pharmacology & Toxicology, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wojciech K Jankiewicz
- Department of Pharmacology & Toxicology, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - John D Imig
- Department of Pharmacology & Toxicology, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
55
|
Čertíková Chábová V, Kujal P, Vaňourková Z, Škaroupková P, Sadowski J, Kompanowska-Jezierska E, Tesař V, Hammock B, Imig J, Maxová H, Červenka L, Vaněčková I. Addition of Endothelin A-Receptor Blockade Spoils the Beneficial Effect of Combined Renin-Angiotensin and Soluble Epoxide Hydrolase Inhibition: Studies on the Course of Chronic Kidney Disease in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats. Kidney Blood Press Res 2019; 44:1493-1505. [PMID: 31770762 PMCID: PMC10107074 DOI: 10.1159/000504137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/12/2019] [Indexed: 11/19/2022] Open
Abstract
Introduction: Previous studies in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX) have shown that besides pharmacological blockade of the renin-angiotensin system (RAS) also increasing kidney tissue epoxyeicosatrienoic acids (EET) levels by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for degradation of EETs, and endothelin type A (ETA) receptor blockade retards chronic kidney disease (CKD) progression. This prompted us to evaluate if this progression will be alleviated by the addition of sEH inhibitor and ETA receptor antagonist to the standard complex blockade of RAS (angiotensin-converting enzyme inhibitor plus angiotensin II type 1 receptor blocker) in rats with established CKD. Methods: The treatment regimens were initiated 6 weeks after 5/6 NX in TGR, and the follow-up period was 60 weeks. Results: The addition of sEH inhibition to RAS blockade improved survival rate, further reduced albuminuria and renal glomerular and kidney tubulointerstitial injury, and attenuated the decline in creatinine clearance – all this as compared with 5/6 NX TGR treated with RAS blockade alone. Addition of ETA receptor antagonist to the combined RAS and sEH blockade not only offered no additional renoprotection but, surprisingly, also abolished the beneficial effects of adding sEH inhibitor to the RAS blockade. Conclusion: These data indicate that pharmacological strategies that combine the blockade of RAS and sEH could be a novel tool to combat the progression of CKD. Any attempts to further extend this therapeutic regimen should be made with extreme caution.
Collapse
Affiliation(s)
- Věra Čertíková Chábová
- Department of Nephrology, 1st Faculty of Medicine, Charles University, Prague, Czechia,
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia,
| | - Petr Kujal
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
- Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czechia
| | - Zdeňka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Petra Škaroupková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Vladimír Tesař
- Department of Nephrology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Bruce Hammock
- Department of Entomology and UCD Cancer Center, University of California, Davis, California, USA
| | - John Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hana Maxová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Ivana Vaněčková
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
56
|
Li X, Zhu F, Meng W, Zhang F, Hong J, Zhang G, Wang F. CYP2J2/EET reduces vulnerability to atrial fibrillation in chronic pressure overload mice. J Cell Mol Med 2019; 24:862-874. [PMID: 31749335 PMCID: PMC6933320 DOI: 10.1111/jcmm.14796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Growing evidence has well established the protective effects of CYP2J2/EET on the cardiovascular system. The aim of the present study was to determine whether CYP2J2/EET has a preventive effect on atrial fibrillation (AF) and to investigate the underlying mechanisms. Wild‐type mice were injected with or without AAV9‐CYP2J2 before abdominal aortic constriction (AAC) operation. After 8 weeks, compared with wild‐type mice, AAC mice display higher AF inducibility and longer AF durations, which were remarkably attenuated with AAV9‐CYP2J2. Also, AAV9‐CYP2J2 reduced atrial fibrosis area and the deposit of collagen‐I/III in AAC mice, accompanied by the blockade of TGF‐β/Smad‐2/3 signalling pathways, as well as the recovery in Smad‐7 expression. In vitro, isolated atrial fibroblasts were administrated with TGF‐β1, EET, EEZE, GW9662, SiRNA Smad‐7 and pre‐MiR‐21, and EET was demonstrated to restrain the differentiation of atrial fibroblasts largely dependent on Smad‐7, due to the inhibition of EET on MiR‐21. In addition, increased inflammatory cytokines, as well as activated NF‐κB pathways induced by AAC surgery, were also significantly blunted by AAV9‐CYP2J2 treatment. These effects of CYP2J2/EET were partially blocked by GW9662, the antagonist of PPAR‐γ. In conclusion, this study revealed that CYP2J2/EET ameliorates atrial fibrosis through modulating atrial fibroblasts activation by disinhibition of MiR‐21 on Smad‐7, and attenuates atrial inflammatory response by repressing NF‐κB pathways, reducing the vulnerability to AF, and CYP2J2/EET exerts its role at least partially through PPAR‐γ activation. Our findings might provide a novel upstream therapeutic strategy for AF.
Collapse
Affiliation(s)
- Xuguang Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Zhu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weidong Meng
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Zhang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Hong
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guobing Zhang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
57
|
Tunctan B, Senol SP, Temiz-Resitoglu M, Guden DS, Sahan-Firat S, Falck JR, Malik KU. Eicosanoids derived from cytochrome P450 pathway of arachidonic acid and inflammatory shock. Prostaglandins Other Lipid Mediat 2019; 145:106377. [PMID: 31586592 DOI: 10.1016/j.prostaglandins.2019.106377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Septic shock, the most common form of vasodilatory shock, is a subset of sepsis in which circulatory and cellular/metabolic abnormalities are severe enough to increase mortality. Inflammatory shock constitutes the hallmark of sepsis, but also a final common pathway of any form of severe long-term tissue hypoperfusion. The pathogenesis of inflammatory shock seems to be due to circulating substances released by pathogens (e.g., bacterial endotoxins) and host immuno-inflammatory responses (e.g., changes in the production of histamine, bradykinin, serotonin, nitric oxide [NO], reactive nitrogen and oxygen species, and arachidonic acid [AA]-derived eicosanoids mainly through NO synthase, cyclooxygenase, and cytochrome P450 [CYP] pathways, and proinflammatory cytokine formation). Therefore, refractory hypotension to vasoconstrictors with end-organ hypoperfusion is a life threatening feature of inflammatory shock. This review summarizes the current knowledge regarding the role of eicosanoids derived from CYP pathway of AA in animal models of inflammatory shock syndromes with an emphasis on septic shock in addition to potential therapeutic strategies targeting specific CYP isoforms responsible for proinflammatory/anti-inflammatory mediator production.
Collapse
Affiliation(s)
- Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | - Sefika Pinar Senol
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | - Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Center for Health Sciences, Memphis, TN, USA
| |
Collapse
|
58
|
Hoff U, Bubalo G, Fechner M, Blum M, Zhu Y, Pohlmann A, Hentschel J, Arakelyan K, Seeliger E, Flemming B, Gürgen D, Rothe M, Niendorf T, Manthati VL, Falck JR, Haase M, Schunck W, Dragun D. A synthetic epoxyeicosatrienoic acid analogue prevents the initiation of ischemic acute kidney injury. Acta Physiol (Oxf) 2019; 227:e13297. [PMID: 31077555 DOI: 10.1111/apha.13297] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
AIM Imbalances in cytochrome P450 (CYP)-dependent eicosanoid formation may play a central role in ischemic acute kidney injury (AKI). We reported previously that inhibition of 20-hydroxyeicosatetraenoic acid (20-HETE) action ameliorated ischemia/reperfusion (I/R)-induced AKI in rats. Now we tested the hypothesis that enhancement of epoxyeicosatrienoic acid (EET) actions may counteract the detrimental effects of 20-HETE and prevent the initiation of AKI. METHODS Male Lewis rats underwent right nephrectomy and ischemia was induced by 45 min clamping of the left renal pedicle followed by up to 48 h of reperfusion. Circulating CYP-eicosanoid profiles were compared in patients who underwent cardiac surgery with (n = 21) and without (n = 38) developing postoperative AKI. RESULTS Ischemia induced an about eightfold increase of renal 20-HETE levels, whereas free EETs were not accumulated. To compensate for this imbalance, a synthetic 14,15-EET analogue was administered by intrarenal infusion before ischemia. The EET analogue improved renal reoxygenation as monitored by in vivo parametric MRI during the initial 2 h reperfusion phase. The EET analogue improved PI3K- as well as mTORC2-dependent rephosphorylation of Akt, induced inactivation of GSK-3β, reduced the development of tubular apoptosis and attenuated inflammatory cell infiltration. The EET analogue also significantly alleviated the I/R-induced drop in creatinine clearance. Patients developing postoperative AKI featured increased preoperative 20-HETE and 8,9-EET levels. CONCLUSIONS Pharmacological interventions targeting the CYP-eicosanoid pathway could offer promising new options for AKI prevention. Individual differences in CYP-eicosanoid formation may contribute to the risk of developing AKI in clinical settings.
Collapse
Affiliation(s)
- Uwe Hoff
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Gordana Bubalo
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Mandy Fechner
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | | | - Ye Zhu
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
- Department of Nephrology The Fifth Affiliated Hospital of Sun Yat‐sun University Zhuhai China
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
| | - Jan Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
| | - Karen Arakelyan
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
- Center for Cardiovascular Research, Institute of Physiology Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Erdmann Seeliger
- Center for Cardiovascular Research, Institute of Physiology Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Bert Flemming
- Center for Cardiovascular Research, Institute of Physiology Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Dennis Gürgen
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | | | - Thoralf Niendorf
- Max Delbrueck Center for Molecular Medicine Berlin Germany
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
| | | | - John R. Falck
- Biochemistry Department UT Southwestern Dallas Texas
| | - Michael Haase
- Medical Faculty Otto‐von‐Guericke University Magdeburg Germany
- Diaverum Deutschland Potsdam Germany
| | | | - Duska Dragun
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
59
|
Abstract
Epoxyeicosatrienoic acids (EETs) are also known as epoxyeicosanoids that have renal and cardiovascular actions. These renal and cardiovascular actions can be regulated by soluble epoxide hydrolase (sEH) that degrades and inactivates EETs. Extensive animal hypertension studies have determined that vascular, epithelial transport, and anti-inflammatory actions of EETs lower blood pressure and decrease renal and cardiovascular disease progression. Human studies have also supported the notion that increasing EET levels in hypertension could be beneficial. Pharmacological and genetic approaches to increase epoxyeicosanoids in several animal models and humans have found improved endothelial vascular function, increased sodium excretion, and decreased inflammation to oppose hypertension and associated renal and cardiovascular complications. These compelling outcomes support the concept that increasing epoxyeicosanoids via sEH inhibitors or EET analogs could be a valuable hypertension treatment.
Collapse
Affiliation(s)
- J D Imig
- Department of Pharmacology and Toxicology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
60
|
Kala P, Červenka L, Škaroupková P, Táborský M, Kompanowska-Jezierska E, Sadowski J. Sex-linked differences in the mortality in Ren-2 transgenic hypertensive rats with aorto-caval fistula: effects of treatment with angiotensin converting enzyme alone and combined with inhibitor of soluble epoxide hydrolase. Physiol Res 2019; 68:589-601. [DOI: 10.33549/physiolres.934094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We found recently that in Ren-2 transgenic hypertensive rats (TGR) addition of soluble epoxide hydrolase inhibitor (sEHi) to treatment with angiotensin-converting enzyme inhibitor (ACEi), surprisingly, increased the mortality due to heart failure (HF) induced by creation of the aorto-caval fistula (ACF). Since TGR exhibit sex-related differences in mortality, we examined here if such differentiation exists also in the response to the treatment with ACEi (trandolapril), alone or combined with sEHi [cis-4-[4-(3-adamantan-1-yl-ureido)cyclohexyloxy]benzoic acid, (c-AUCB)]. ACEi improved survival in males to 74 % (vs. 0 %) and in females to 65 % (vs. 32 %). ACEi and sEHi combined also improved the survival in male ACF TGR, however, it was significantly less (38 %) than after ACEi alone. In contrast, in females the combined treatment significantly improved the final survival rate (84 %). There were no significant sex-linked differences in survival rate in untreated or treated normotensive Hannover Sprague-Dawley rats. In conclusion, in HF patients with co-existing hypertension and RAS hyperactivity, the sex may co-determine the rate of HF progression, and can influence the effectiveness of the therapeutic measures applied. Therefore, in the relevant pre-clinical studies the sex-linked differences should be seriously considered. Our data indicate that TGR might be an optimal model for such studies.
Collapse
Affiliation(s)
| | - L. Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 1958/9 Vídeňská, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
61
|
Fleming I. New Lipid Mediators in Retinal Angiogenesis and Retinopathy. Front Pharmacol 2019; 10:739. [PMID: 31333461 PMCID: PMC6624440 DOI: 10.3389/fphar.2019.00739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Retinal diseases associated with vascular destabilization and the inappropriate proliferation of retinal endothelial cells have major consequences on the retinal vascular network. In extreme cases, the development of hypoxia, the upregulation of growth factors, and the hyper-proliferation of unstable capillaries can result in bleeding and vision loss. While anti-vascular endothelial growth factor therapy and laser retinal photocoagulation can be used to treat the symptoms of late stage disease, there is currently no treatment available that can prevent disease progression. Cytochrome P450 enzymes metabolize endogenous substrates (polyunsaturated fatty acids) to bioactive fatty acid epoxides that demonstrate biological activity with generally protective/anti-inflammatory and insulin-sensitizing effects. These epoxides are further metabolized by the soluble epoxide hydrolase (sEH) to fatty acid diols, high concentrations of which have vascular destabilizing effects. Recent studies have identified increased sEH expression and activity and the subsequent generation of the docosahexaenoic acid-derived diol; 19,20-dihydroxydocosapentaenoic acid, as playing a major role in the development of diabetic retinopathy. This review summarizes current understanding of the roles of cytochrome P450 enzyme and sEH–derived PUFA mediators in retinal disease.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Frankfurt, Germany.,German Centre for Cardiovascular Research (DZHK) partner site RheinMain, Frankfurt, Germany
| |
Collapse
|
62
|
A dual farnesoid X receptor/soluble epoxide hydrolase modulator treats non-alcoholic steatohepatitis in mice. Biochem Pharmacol 2019; 166:212-221. [PMID: 31129048 DOI: 10.1016/j.bcp.2019.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/21/2019] [Indexed: 12/29/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are the most prevalent metabolic liver disorders and a serious global health burden. NAFLD/NASH pathogenesis and progression are highly multi-factorial and likely demand a combination of multiple mechanisms to provide a more effective treatment. We have developed a dual farnesoid X receptor agonist (FXRA)/soluble epoxide hydrolase inhibitor (sEHi) to simultaneously address two validated and complementary modes of action in NASH treatment. Here we report the in vivo profiling for this FXRA/sEHi in toxin- and diet-induced rodent NASH models. In streptozotocin-induced NASH as a proof-of-concept study, the experimental FXRA/sEHi drug robustly prevented hepatic steatosis and fibrosis, and improved lipid homeostasis as well as biochemical markers of liver health. In methionine-choline-deficient high-fat diet-induced NASH, FXRA/sEHi treatment reduced hepatic steatosis and fibrosis to levels similar to healthy animals and demonstrated anti-inflammatory activity confirming that dual FXRA/sEHi modulation produces a triad of complementary anti-NASH effects. Our results validate dual FXRA/sEHi modulation as an effective therapeutic strategy to treat NASH and advocates for a combinational drug therapeutic approach for multifactorial liver diseases.
Collapse
|
63
|
Ren Q. Soluble Epoxide Hydrolase Inhibitor: A Novel Potential Therapeutic or Prophylactic Drug for Psychiatric Disorders. Front Pharmacol 2019; 10:420. [PMID: 31105566 PMCID: PMC6492054 DOI: 10.3389/fphar.2019.00420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Psychiatric disorders, including depression and schizophrenia, affect millions of individuals worldwide. However, the precise neurobiology of psychiatric disorders remains unclear. Accumulating evidence suggests that various inflammatory processes play a key role in depression and schizophrenia, and that anti-inflammatory drugs exert a therapeutic effect in patients with psychiatric disorders. Epoxyeicosatrienoic acids (EETs) and epoxydocosapentaenoic acids (EDPs) have potent anti-inflammatory properties. These mediators are broken down into their corresponding diols by soluble epoxide hydrolase (sEH), and inhibition of sEH enhances the anti-inflammatory effects of EETs. Therefore, sEH may play a key role in inflammation, which is involved in psychiatric disorders. Recent studies have shown that abnormal levels of sEH may be involved in the pathogenesis of certain psychiatric diseases, and that sEH inhibitors exhibit antidepressant and antipsychotic activity. The present review discusses the extensive evidence supporting sEH as a therapeutic target for psychiatric diseases, and the clinical value of sEH inhibitors as therapeutic or prophylactic drugs.
Collapse
Affiliation(s)
- Qian Ren
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China.,Center of Stem Cell and Immune Cell Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
64
|
Hrdlička J, Neckář J, Papoušek F, Husková Z, Kikerlová S, Vaňourková Z, Vernerová Z, Akat F, Vašinová J, Hammock BD, Hwang SH, Imig JD, Falck JR, Červenka L, Kolář F. Epoxyeicosatrienoic Acid-Based Therapy Attenuates the Progression of Postischemic Heart Failure in Normotensive Sprague-Dawley but Not in Hypertensive Ren-2 Transgenic Rats. Front Pharmacol 2019; 10:159. [PMID: 30881303 PMCID: PMC6406051 DOI: 10.3389/fphar.2019.00159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) and their analogs have been identified as potent antihypertensive compounds with cardio- and renoprotective actions. Here, we examined the effect of EET-A, an orally active EET analog, and c-AUCB, an inhibitor of the EETs degrading enzyme soluble epoxide hydrolase, on the progression of post-myocardial infarction (MI) heart failure (HF) in normotensive Hannover Sprague-Dawley (HanSD) and in heterozygous Ren-2 transgenic rats (TGR) with angiotensin II-dependent hypertension. Adult male rats (12 weeks old) were subjected to 60-min left anterior descending (LAD) coronary artery occlusion or sham (non-MI) operation. Animals were treated with EET-A and c-AUCB (10 and 1 mg/kg/day, respectively) in drinking water, given alone or combined for 5 weeks starting 24 h after MI induction. Left ventricle (LV) function and geometry were assessed by echocardiography before MI and during the progression of HF. At the end of the study, LV function was determined by catheterization and tissue samples were collected. Ischemic mortality due to the incidence of sustained ventricular fibrillation was significantly higher in TGR than in HanSD rats (35.4 and 17.7%, respectively). MI-induced HF markedly increased LV end-diastolic pressure (Ped) and reduced fractional shortening (FS) and the peak rate of pressure development [+(dP/dt)max] in untreated HanSD compared to sham (non-MI) group [Ped: 30.5 ± 3.3 vs. 9.7 ± 1.3 mmHg; FS: 11.1 ± 1.0 vs. 40.8 ± 0.5%; +(dP/dt)max: 3890 ± 291 vs. 5947 ± 309 mmHg/s]. EET-A and c-AUCB, given alone, tended to improve LV function parameters in HanSD rats. Their combination amplified the cardioprotective effect of single therapy and reached significant differences compared to untreated HanSD controls [Ped: 19.4 ± 2.2 mmHg; FS: 14.9 ± 1.0%; +(dP/dt)max: 5278 ± 255 mmHg/s]. In TGR, MI resulted in the impairment of LV function like HanSD rats. All treatments reduced the increased level of albuminuria in TGR compared to untreated MI group, but neither single nor combined EET-based therapy improved LV function. Our results indicate that EET-based therapy attenuates the progression of post-MI HF in HanSD, but not in TGR, even though they exhibited renoprotective action in TGR hypertensive rats.
Collapse
Affiliation(s)
- Jaroslav Hrdlička
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Neckář
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - František Papoušek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zdenka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zdenka Vernerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Firat Akat
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Department of Physiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Jana Vašinová
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern, Dallas, TX, United States
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - František Kolář
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
65
|
Hashimoto K. Role of Soluble Epoxide Hydrolase in Metabolism of PUFAs in Psychiatric and Neurological Disorders. Front Pharmacol 2019; 10:36. [PMID: 30761004 PMCID: PMC6363819 DOI: 10.3389/fphar.2019.00036] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation plays a key role in the pathogenesis of a number of psychiatric and neurological disorders. Soluble epoxide hydrolases (sEH), enzymes present in all living organisms, metabolize epoxy fatty acids (EpFAs) to corresponding 1,2-diols by the addition of a molecule of water. Accumulating evidence suggests that sEH in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation. Preclinical studies demonstrated that protein expression of sEH in the prefrontal cortex, striatum, and hippocampus from mice with depression-like phenotype was higher than control mice. Furthermore, protein expression of sEH in the parietal cortex from patients with major depressive disorder was higher than controls. Interestingly, Ephx2 knock-out (KO) mice exhibit stress resilience after chronic social defeat stress. Furthermore, the sEH inhibitors have antidepressant effects in animal models of depression. In addition, pharmacological inhibition or gene KO of sEH protected against dopaminergic neurotoxicity in the striatum after repeated administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in an animal model of Parkinson’s disease (PD). Protein expression of sEH in the striatum from MPTP-treated mice was higher than control mice. A number of studies using postmortem brain samples showed that the deposition of protein aggregates of α-synuclein, termed Lewy bodies, is evident in multiple brain regions of patients from PD and dementia with Lewy bodies (DLB). Moreover, the expression of the sEH protein in the striatum from patients with DLB was significantly higher compared with controls. Interestingly, there was a positive correlation between sEH expression and the ratio of phosphorylated α-synuclein to α-synuclein in the striatum. In the review, the author discusses the role of sEH in the metabolism of PUFAs in inflammation-related psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| |
Collapse
|
66
|
Vacková Š, Kopkan L, Kikerlová S, Husková Z, Sadowski J, Kompanowska-Jezierska E, Hammock BD, Imig JD, Táborský M, Melenovský V, Červenka L. Pharmacological Blockade of Soluble Epoxide Hydrolase Attenuates the Progression of Congestive Heart Failure Combined With Chronic Kidney Disease: Insights From Studies With Fawn-Hooded Hypertensive Rats. Front Pharmacol 2019; 10:18. [PMID: 30728778 PMCID: PMC6351500 DOI: 10.3389/fphar.2019.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/08/2019] [Indexed: 12/29/2022] Open
Abstract
An association between congestive heart failure (CHF) and chronic kidney disease (CKD) results in extremely poor patient survival rates. Previous studies have shown that increasing kidney epoxyeicosatrienoic acids (EETs) by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for EETs degradation, improves the survival rate in CHF induced by aorto-caval fistula (ACF) and attenuates CKD progression. This prompted us to examine if sEH inhibitor treatment would improve the outcome if both experimental conditions are combined. Fawn-hooded hypertensive (FHH) rats, a genetic model showing early CKD development was employed, and CHF was induced by ACF. Treatment with an sEH inhibitor was initiated 4 weeks after ACF creation, in FHH and in fawn-hooded low-pressure (FHL) rats, a control strain without renal damage. The follow-up period was 20 weeks. We found that ACF FHH rats exhibited substantially lower survival rates (all the animals died by week 14) as compared with the 64% survival rate observed in ACF FHL rats. The former group showed pronounced albuminuria (almost 30-fold higher than in FHL) and reduced intrarenal EET concentrations. The sEH inhibitor treatment improved survival rate and distinctly reduced increases in albuminuria in ACF FHH and in ACF FHL rats, however, all the beneficial actions were more pronounced in the hypertensive strain. These data indicate that pharmacological blockade of sEH could be a novel therapeutic approach for the treatment of CHF, particularly under conditions when it is associated with CKD.
Collapse
Affiliation(s)
- Šárka Vacková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Libor Kopkan
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Bruce D Hammock
- Department of Entomology, UCD Cancer Center, University of California, Davis, Davis, CA, United States
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Miloš Táborský
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc, Palacký University, Olomouc, Czechia
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
67
|
Imig JD. Epigenetic soluble epoxide hydrolase regulation causes endothelial dysfunction. Acta Physiol (Oxf) 2019; 225:e13203. [PMID: 30307705 DOI: 10.1111/apha.13203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022]
Affiliation(s)
- John D. Imig
- Department of Pharmacology & Toxicology; Medical College of Wisconsin; Milwaukee Wisconsin
| |
Collapse
|