51
|
Lidgard B, Bansal N, Zelnick LR, Hoofnagle AN, Fretts AM, Longstreth WT, Shlipak MG, Siscovick DS, Umans JG, Lemaitre RN. Evaluation of plasma sphingolipids as mediators of the relationship between kidney disease and cardiovascular events. EBioMedicine 2023; 95:104765. [PMID: 37634384 PMCID: PMC10474367 DOI: 10.1016/j.ebiom.2023.104765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Sphingolipids are a family of circulating lipids with regulatory and signaling roles that are strongly associated with both eGFR and cardiovascular disease. Patients with chronic kidney disease (CKD) are at high risk for cardiovascular events, and have different plasma concentrations of certain plasma sphingolipids compared to patients with normal kidney function. We hypothesize that circulating sphingolipids partially mediate the associations between eGFR and cardiovascular events. METHODS We measured the circulating concentrations of 8 sphingolipids, including 4 ceramides and 4 sphingomyelins with the fatty acids 16:0, 20:0, 22:0, and 24:0, in plasma from 3,463 participants in a population-based cohort (Cardiovascular Health Study) without prevalent cardiovascular disease. We tested the adjusted mediation effects by these sphingolipids of the associations between eGFR and incident cardiovascular disease via quasi-Bayesian Monte Carlo method with 2,000 simulations, using a Bonferroni correction for significance. FINDINGS The mean (±SD) eGFR was 70 (±16) mL/min/1.73 m2; 62% of participants were women. Lower eGFR was associated with higher plasma ceramide-16:0 and sphingomyelin-16:0, and lower ceramides and sphingomyelins-20:0 and -22:0. Lower eGFR was associated with risk of incident heart failure and ischemic stroke, but not myocardial infarction. Five of eight sphingolipids partially mediated the association between eGFR and heart failure. The sphingolipids associated with the greatest proportion mediated were ceramide-16:0 (proportion mediated 13%, 95% CI 8-22%) and sphingomyelin-16:0 (proportion mediated 10%, 95% CI 5-17%). No sphingolipids mediated the association between eGFR and ischemic stroke. INTERPRETATION Plasma sphingolipids partially mediated the association between lower eGFR and incident heart failure. Altered sphingolipids metabolism may be a novel mechanism for heart failure in patients with CKD. FUNDING This study was supported by T32 DK007467 and a KidneyCure Ben J. Lipps Research Fellowship (Dr. Lidgard). Sphingolipid measurements were supported by R01 HL128575 (Dr. Lemaitre) and R01 HL111375 (Dr. Hoofnagle) from the National Heart, Lung, and Blood Institute (NHLBI).
Collapse
Affiliation(s)
- Benjamin Lidgard
- Department of Medicine, University of Washington, United States.
| | - Nisha Bansal
- Department of Medicine, University of Washington, United States
| | - Leila R Zelnick
- Department of Medicine, University of Washington, United States
| | | | - Amanda M Fretts
- Department of Medicine, University of Washington, United States
| | | | - Michael G Shlipak
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Healthcare System and University of California San Francisco, United States
| | | | | | | |
Collapse
|
52
|
Pilátová MB, Solárová Z, Mezencev R, Solár P. Ceramides and their roles in programmed cell death. Adv Med Sci 2023; 68:417-425. [PMID: 37866204 DOI: 10.1016/j.advms.2023.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Programmed cell death plays a crucial role in maintaining the homeostasis and integrity of multicellular organisms, and its dysregulation contributes to the pathogenesis of many diseases. Programmed cell death is regulated by a range of macromolecules and low-molecular messengers, including ceramides. Endogenous ceramides have different functions, that are influenced by their localization and the presence of their target molecules. This article provides an overview of the current understanding of ceramides and their impact on various types of programmed cell death, including apoptosis, anoikis, macroautophagy and mitophagy, and necroptosis. Moreover, it highlights the emergence of dihydroceramides as a new class of bioactive sphingolipids and their downstream targets as well as their future roles in cancer cell growth, drug resistance and tumor metastasis.
Collapse
Affiliation(s)
- Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic
| | - Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic
| | - Roman Mezencev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic.
| |
Collapse
|
53
|
Lallement J, Raho I, Merlen G, Rainteau D, Croyal M, Schiffano M, Kassis N, Doignon I, Soty M, Lachkar F, Krempf M, Van Hul M, Cani PD, Foufelle F, Amouyal C, Le Stunff H, Magnan C, Tordjmann T, Cruciani-Guglielmacci C. Hepatic deletion of serine palmitoyl transferase 2 impairs ceramide/sphingomyelin balance, bile acids homeostasis and leads to liver damage in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159333. [PMID: 37224999 DOI: 10.1016/j.bbalip.2023.159333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 04/30/2023] [Indexed: 05/26/2023]
Abstract
Ceramides (Cer) have been shown as lipotoxic inducers, which disturb numerous cell-signaling pathways, leading to metabolic disorders such as type 2 diabetes. In this study, we aimed to determine the role of de novo hepatic ceramide synthesis in energy and liver homeostasis in mice. We generated mice lacking serine palmitoyltransferase 2 (Sptlc2), the rate limiting enzyme of ceramide de novo synthesis, in liver under albumin promoter. Liver function, glucose homeostasis, bile acid (BA) metabolism and hepatic sphingolipids content were assessed using metabolic tests and LC-MS. Despite lower expression of hepatic Sptlc2, we observed an increased concentration of hepatic Cer, associated with a 10-fold increase in neutral sphingomyelinase 2 (nSMase2) expression, and a decreased sphingomyelin content in the liver. Sptlc2ΔLiv mice were protected against obesity induced by high fat diet and displayed a defect in lipid absorption. In addition, an important increase in tauro-muricholic acid was associated with a downregulation of the nuclear BA receptor FXR target genes. Sptlc2 deficiency also enhanced glucose tolerance and attenuated hepatic glucose production, while the latter effect was dampened in presence of nSMase2 inhibitor. Finally, Sptlc2 disruption promoted apoptosis, inflammation and progressive development of hepatic fibrosis, worsening with age. Our data suggest a compensatory mechanism to regulate hepatic ceramides content from sphingomyelin hydrolysis, with deleterious impact on liver homeostasis. In addition, our results show the involvement of hepatic sphingolipid modulation in BA metabolism and hepatic glucose production in an insulin-independent manner, which highlight the still under-researched role of ceramides in many metabolic functions.
Collapse
Affiliation(s)
- Justine Lallement
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Ilyès Raho
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | - Dominique Rainteau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Biochemistry Department, Paris, France
| | - Mikael Croyal
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France; Plateforme de Spectrométrie de Masse du CRNH-O, UMR1280, Nantes, France
| | - Melody Schiffano
- Plateforme de Spectrométrie de Masse du CRNH-O, UMR1280, Nantes, France
| | - Nadim Kassis
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | - Maud Soty
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Floriane Lachkar
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, 75006 Paris, France
| | | | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), 1200 Brussels, Belgium; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), 1200 Brussels, Belgium; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, 75006 Paris, France
| | - Chloé Amouyal
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Université Paris Saclay, France
| | - Christophe Magnan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | | |
Collapse
|
54
|
Nagree MS, Rybova J, Kleynerman A, Ahrenhoerster CJ, Saville JT, Xu T, Bachochin M, McKillop WM, Lawlor MW, Pshezhetsky AV, Isaeva O, Budde MD, Fuller M, Medin JA. Spinal muscular atrophy-like phenotype in a mouse model of acid ceramidase deficiency. Commun Biol 2023; 6:560. [PMID: 37231125 DOI: 10.1038/s42003-023-04932-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Mutations in ASAH1 have been linked to two allegedly distinct disorders: Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). We have previously reported FD-like phenotypes in mice harboring a single amino acid substitution in acid ceramidase (ACDase), P361R, known to be pathogenic in humans (P361R-Farber). Here we describe a mouse model with an SMA-PME-like phenotype (P361R-SMA). P361R-SMA mice live 2-3-times longer than P361R-Farber mice and have different phenotypes including progressive ataxia and bladder dysfunction, which suggests neurological dysfunction. We found profound demyelination, loss of axons, and altered sphingolipid levels in P361R-SMA spinal cords; severe pathology was restricted to the white matter. Our model can serve as a tool to study the pathological effects of ACDase deficiency on the central nervous system and to evaluate potential therapies for SMA-PME.
Collapse
Affiliation(s)
- Murtaza S Nagree
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, ON, Canada
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Annie Kleynerman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Jennifer T Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5006, Australia
| | - TianMeng Xu
- CHU Sainte-Justine, Université de Montréal, Montréal, QC, H3T 1C5, Canada
| | | | - William M McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael W Lawlor
- Department of Pathology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Olena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Matthew D Budde
- Clement J. Zablocki Veteran's Affairs Medical Center, Milwaukee, WI, 53295, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jeffrey A Medin
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, ON, Canada.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
55
|
Wu Q, Shi D, Dong T, Zhang Z, Ou Q, Fang Y, Zhang C. Serum Saturated Fatty Acids including Very Long-Chain Saturated Fatty Acids and Colorectal Cancer Risk among Chinese Population. Nutrients 2023; 15:nu15081917. [PMID: 37111137 PMCID: PMC10141165 DOI: 10.3390/nu15081917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The association between circulating saturated fatty acids (SFAs) including very long-chain SFAs (VLCSFAs) and colorectal cancer (CRC) risk has not been clearly established. To investigate the association between serum SFAs and CRC risk in Chinese population, 680 CRC cases and 680 sex and age-matched (5-year interval) controls were recruited in our study. Serum levels of SFAs were detected by gas chromatography. Unconditional logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between serum SFAs and CRC risk. Results showed that total SFAs were positively associated with the risk of CRC (adjusted OR quartile 4 vs. 1 = 2.64, 95%CI: 1.47-4.74). However, VLCSFAs were inversely associated with CRC risk (adjusted OR quartile 4 vs. 1 = 0.51, 95%CI: 0.36-0.72). Specifically, lauric acid, myristic acid, palmitic acid, heptadecanoic acid, and arachidic acid were positively associated with CRC risk, while behenic acid and lignoceric acid were inversely associated with CRC risk. This study indicates that higher levels of total serum SFAs and lower levels of serum VLCSFAs were associated with an increased risk of CRC in Chinese population. To reduce the risk of CRC, we recommend reducing the intake of foods containing palmitic acid and heptadecanoic acid such as animal products and dairy products, and moderately increasing the intake of foods containing VLCSFAs such as peanuts and canola oil.
Collapse
Affiliation(s)
- Qixin Wu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dandan Shi
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Dong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuolin Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingjian Ou
- Department of Experimental Research, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou 510060, China
| | - Yujing Fang
- Department of Experimental Research, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou 510060, China
| | - Caixia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
56
|
Xu Y, Pan J, Lin Y, Wu Y, Chen Y, Li H. Ceramide Synthase 1 Inhibits Brain Metastasis of Non-Small Cell Lung Cancer by Interacting with USP14 and Downregulating the PI3K/AKT/mTOR Signaling Pathway. Cancers (Basel) 2023; 15:cancers15071994. [PMID: 37046655 PMCID: PMC10093008 DOI: 10.3390/cancers15071994] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Brain metastasis (BM) is common in patients with non-small cell lung cancer (NSCLC) and is associated with a poor prognosis. Ceramide synthase 1 (CERS1) participates in malignancy development, but its potential role in NSCLC BM remains unclear. This study aimed to explore the physiological effects and molecular mechanism of CERS1 in NSCLC BM. CERS1 expression was evaluated in NSCLC tissues and cell lines, and its physiological roles were subsequently explored in vivo and in vitro. Mass spectrometry and co-immunoprecipitation were performed to explore CERS1-interacting proteins. The associated signaling pathways of CERS1 in NSCLC BM were further investigated using bioinformatics analysis and molecular biotechnology. We demonstrated that CERS1 was significantly downregulated in NSCLC cell lines and BM tissues, and its upregulation was associated with better prognoses. In vitro, CERS1 overexpression inhibited cell migration, invasion, and the ability to penetrate the blood-brain barrier. Moreover, CERS1 interacted with ubiquitin-specific protease 14 (USP14) and inhibited BM progression by downregulating the PI3K/AKT/mTOR signaling pathway. Further, CERS1 expression substantially suppressed BM tumor formation in vivo. This study demonstrated that CERS1 plays a suppressor role in NSCLC BM by interacting with USP14 and downregulating the PI3K/AKT/mTOR signaling pathway, thereby serving as a novel therapeutic target for NSCLC BM.
Collapse
|
57
|
Klemetti MM, Alahari S, Post M, Caniggia I. Distinct Changes in Placental Ceramide Metabolism Characterize Type 1 and 2 Diabetic Pregnancies with Fetal Macrosomia or Preeclampsia. Biomedicines 2023; 11:932. [PMID: 36979912 PMCID: PMC10046505 DOI: 10.3390/biomedicines11030932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Disturbances of lipid metabolism are typical in diabetes. Our objective was to characterize and compare placental sphingolipid metabolism in type 1 (T1D) and 2 (T2D) diabetic pregnancies and in non-diabetic controls. Placental samples from T1D, T2D, and control pregnancies were processed for sphingolipid analysis using tandem mass spectrometry. Western blotting, enzyme activity, and immunofluorescence analyses were used to study sphingolipid regulatory enzymes. Placental ceramide levels were lower in T1D and T2D compared to controls, which was associated with an upregulation of the ceramide degrading enzyme acid ceramidase (ASAH1). Increased placental ceramide content was found in T1D complicated by preeclampsia. Similarly, elevated ceramides were observed in T1D and T2D pregnancies with poor glycemic control. The protein levels and activity of sphingosine kinases (SPHK) that produce sphingoid-1-phosphates (S1P) were highest in T2D. Furthermore, SPHK levels were upregulated in T1D and T2D pregnancies with fetal macrosomia. In vitro experiments using trophoblastic JEG3 cells demonstrated increased SPHK expression and activity following glucose and insulin treatments. Specific changes in the placental sphingolipidome characterize T1D and T2D placentae depending on the type of diabetes and feto-maternal complications. Increased exposure to insulin and glucose is a plausible contributor to the upregulation of the SPHK-S1P-axis in diabetic placentae.
Collapse
Affiliation(s)
- Miira M. Klemetti
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland
| | - Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
| | - Martin Post
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
58
|
den Hoedt S, Dorst-Lagerwerf KY, de Vries HE, Rozemuller AJ, Scheltens P, Walter J, Sijbrands EJ, Martinez-Martinez P, Verhoeven AJ, Teunissen CE, Mulder MT. Sphingolipids in Cerebrospinal Fluid and Plasma Lipoproteins of APOE4 Homozygotes and Non-APOE4 Carriers with Mild Cognitive Impairment versus Subjective Cognitive Decline. J Alzheimers Dis Rep 2023; 7:339-354. [DOI: 10.3233/adr220072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Alzheimer’s disease (AD) patients display alterations in cerebrospinal fluid (CSF) and plasma sphingolipids. The APOE4 genotype increases the risk of developing AD. Objective: To test the hypothesis that the APOE4 genotype affects common sphingolipids in CSF and in plasma of patients with early stages of AD. Methods: Patients homozygous for APOE4 and non-APOE4 carriers with mild cognitive impairment (MCI; n = 20 versus 20) were compared to patients with subjective cognitive decline (SCD; n = 18 versus 20). Sphingolipids in CSF and plasma lipoproteins were determined by liquid-chromatography-tandem mass spectrometry. Aβ42 levels in CSF were determined by immunoassay. Results: APOE4 homozygotes displayed lower levels of sphingomyelin (SM; p = 0.042), SM(d18:1/18:0) (p = 0.026), and Aβ 42 (p < 0.001) in CSF than non-APOE4 carriers. CSF-Aβ 42 correlated with Cer(d18:1/18:0), SM(d18:1/18:0), and SM(d18:1/18:1) levels in APOE4 homozygotes (r > 0.49; p < 0.032) and with Cer(d18:1/24:1) in non-APOE4 carriers (r = 0.50; p = 0.025). CSF-Aβ 42 correlated positively with Cer(d18:1/24:0) in MCI (p = 0.028), but negatively in SCD patients (p = 0.019). Levels of Cer(d18:1/22:0) and long-chain SMs were inversely correlated with Mini-Mental State Examination score among MCI patients, independent of APOE4 genotype (r< –0.47; p < 0.039). Nevertheless, age and sex are stronger determinants of individual sphingolipid levels in CSF than either the APOE genotype or the cognitive state. In HDL, ratios of Cer(d18:1/18:0) and Cer(d18:1/22:0) to cholesterol were higher in APOE4 homozygotes than in non-APOE4 carriers (p = 0.048 and 0.047, respectively). Conclusion: The APOE4 genotype affects sphingolipid profiles of CSF and plasma lipoproteins already at early stages of AD. ApoE4 may contribute to the early development of AD through modulation of sphingolipid metabolism.
Collapse
Affiliation(s)
- Sandra den Hoedt
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, The Netherlands
| | - Annemieke J.M. Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Clinical Chemistry, The Alzheimer Center Amsterdam, and Neurochemistry Laboratory, Amsterdam Neuroscience, Amsterdam University Medical Center, VrijeUniversiteit Amsterdam, The Netherlands
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Eric J.G. Sijbrands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pilar Martinez-Martinez
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Adrie J.M. Verhoeven
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Charlotte E. Teunissen
- Department of Clinical Chemistry, The Alzheimer Center Amsterdam, and Neurochemistry Laboratory, Amsterdam Neuroscience, Amsterdam University Medical Center, VrijeUniversiteit Amsterdam, The Netherlands
| | - Monique T. Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
59
|
Yamazaki A, Kawashima A, Honda T, Kohama T, Murakami C, Sakane F, Murayama T, Nakamura H. Identification and characterization of diacylglycerol kinase ζ as a novel enzyme producing ceramide-1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159307. [PMID: 36906254 DOI: 10.1016/j.bbalip.2023.159307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Ceramide-1-phosphate (C1P) is a sphingolipid formed by the phosphorylation of ceramide; it regulates various physiological functions, including cell survival, proliferation, and inflammatory responses. In mammals, ceramide kinase (CerK) is the only C1P-producing enzyme currently known. However, it has been suggested that C1P is also produced by a CerK-independent pathway, although the identity of this CerK-independent C1P was unknown. Here, we identified human diacylglycerol kinase (DGK) ζ as a novel C1P-producing enzyme and demonstrated that DGKζ catalyzes the phosphorylation of ceramide to produce C1P. Analysis using fluorescently labeled ceramide (NBD-ceramide) demonstrated that only DGKζ among ten kinds of DGK isoforms increased C1P production by transient overexpression of the DGK isoforms. Furthermore, an enzyme activity assay using purified DGKζ revealed that DGKζ could directly phosphorylate ceramide to produce C1P. Furthermore, genetic deletion of DGKζ decreased the formation of NBD-C1P and the levels of endogenous C18:1/24:1- and C18:1/26:0-C1P. Interestingly, the levels of endogenous C18:1/26:0-C1P were not decreased by the knockout of CerK in the cells. These results suggest that DGKζ is also involved in the formation of C1P under physiological conditions.
Collapse
Affiliation(s)
- Ayako Yamazaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayane Kawashima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takafumi Kohama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; Institute for Advanced Academic Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
60
|
Gharib AR, Jensen PN, Psaty BM, Hoofnagle AN, Siscovick D, Gharib SA, Sitlani CM, Sotoodehnia N, Lemaitre RN. Plasma sphingolipids, lung function and COPD: the Cardiovascular Health Study. ERJ Open Res 2023; 9:00346-2022. [PMID: 37020834 PMCID: PMC10068528 DOI: 10.1183/23120541.00346-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/29/2022] [Indexed: 01/27/2023] Open
Abstract
Rationale COPD is the third leading cause of death in the United States. Sphingolipids, structural membrane constituents that play a role in cellular stress and apoptosis signalling, may be involved in lung function. Methods In the Cardiovascular Health Study, a prospective cohort of older adults, we cross-sectionally examined the association of plasma levels of 17 sphingolipid species with lung function and COPD. Multivariable linear regression and logistic regression were used to evaluate associations of sphingolipid concentrations with forced expiratory volume in 1 s (FEV1) and odds of COPD, respectively. Results Of the 17 sphingolipids evaluated, ceramide-18 (Cer-18) and sphingomyelin-18 (SM-18) were associated with lower FEV1 values (-0.061 L per two-fold higher Cer-18, p=0.001; -0.092 L per two-fold higher SM-18, p=0.002) after correction for multiple testing. Several other associations were significant at a 0.05 level, but did not reach statistical significance after correction for multiple testing. Specifically, Cer-18 and SM-18 were associated with higher odds of COPD (odds ratio per two-fold higher Cer-18 1.29, p=0.03 and SM-18 1.73, p=0.008). Additionally, Cer-16 and SM-16 were associated with lower FEV1 values, and Cer-14, SM-14 and SM-16 with a higher odds of COPD. Conclusion In this large cross-sectional study, specific ceramides and sphingomyelins were associated with reduced lung function in a population-based study. Future studies are needed to examine whether these biomarkers are associated with longitudinal change in FEV1 within individuals or with incident COPD.
Collapse
Affiliation(s)
- Arya R Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Paul N Jensen
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | | | - Sina A Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
61
|
Ali H, Kobayashi M, Morito K, Hasi RY, Aihara M, Hayashi J, Kawakami R, Tsuchiya K, Sango K, Tanaka T. Peroxisomes attenuate cytotoxicity of very long-chain fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159259. [PMID: 36460260 DOI: 10.1016/j.bbalip.2022.159259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/13/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022]
Abstract
One of the major functions of peroxisomes in mammals is oxidation of very long-chain fatty acids (VLCFAs). Genetic defects in peroxisomal β-oxidation result in the accumulation of VLCFAs and lead to a variety of health problems, such as demyelination of nervous tissues. However, the mechanisms by which VLCFAs cause tissue degeneration have not been fully elucidated. Recently, we found that the addition of small amounts of isopropanol can enhance the solubility of saturated VLCFAs in an aqueous medium. In this study, we characterized the biological effect of extracellular VLCFAs in peroxisome-deficient Chinese hamster ovary (CHO) cells, neural crest-derived pheochromocytoma cells (PC12), and immortalized adult Fischer rat Schwann cells (IFRS1) using this solubilizing technique. C20:0 FA was the most toxic of the C16-C26 FAs tested in all cells. The basis of the toxicity of C20:0 FA was apoptosis and was observed at 5 μM and 30 μM in peroxisome-deficient and wild-type CHO cells, respectively. The sensitivity of wild-type CHO cells to cytotoxic C20:0 FA was enhanced in the presence of a peroxisomal β-oxidation inhibitor. Further, a positive correlation was evident between cell toxicity and the extent of intracellular accumulation of toxic FA. These results suggest that peroxisomes are pivotal in the detoxification of apoptotic VLCFAs by preventing their accumulation.
Collapse
Affiliation(s)
- Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan; Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Miyu Kobayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Katsuya Morito
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Rumana Yesmin Hasi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Mutsumi Aihara
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Koichiro Tsuchiya
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan.
| |
Collapse
|
62
|
A method for quantifying hepatic and intestinal ceramides on mice by UPLC-MS/MS. Anal Biochem 2023; 661:114982. [PMID: 36375519 DOI: 10.1016/j.ab.2022.114982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Ceramide is one type of sphingolipids, is associated with the occurrence of metabolic diseases, including obesity, diabetes, cardiovascular disease, cancer, and nonalcoholic fatty liver disease. Dihydroceramide, the direct precursors of ceramide, which is converted to ceramide with the dihydroceramide desaturase, is recently regarded as involving in various biological processes and metabolic diseases. The liver and gut ceramide levels are interactional in pathophysiological condition, quantifying hepatic and intestinal ceramide levels become indispensable. The aim of this study is to establish a rapid method for the determination of ceramides including dihydroceramides in liver and small intestinal tissues for researching the mechanisms of ceramide related diseases. METHODS The levels of Cer d18:1/2:0, Cer d18:1/6:0, Cer d18:1/12:0, Cer d18:1/14:0, Cer d18:1/16:0, Cer d18:1/17:0, Cer d18:1/18:0, Cer d18:1/20:0, Cer d18:1/22:0, Cer d18:1/24:1, Cer d18:1/24:0, dHCer d18:0/12:0, dHCer d18:0/14:0, dHCer d18:0/16:0, dHCer d18:0/18:0, dHCer d18:0/24:1 and dHCer d18:0/24:0 in mice liver and small intestine were directly quantified by ultra-high performance liquid chromatography-tandem mass spectrometry after methanol extraction. In detail, liver or small intestine tissues were thoroughly homogenized with methanol. The resultant ceramides were separated on a Waters BEH C18 column using gradient elution within 10 min. Positive electrospray ionization with multiple reaction monitoring was applied to detect. In the end, the levels of ceramides in mice liver and small intestine tissues were quantified by this developed method. RESULTS The limits of detection and quantification of 11 ceramides and 6 dihydroceramides were 0.01-0.5 ng/mL and 0.02-1 ng/mL, respectively, and all detected ceramides had good linearities (R2 > 0.997). The extraction recoveries of ceramides at three levels were within 82.32%-115.24% in the liver and within 83.21%-118.70% in the small intestine. The relative standard deviations of intra- and inter-day precision were all within 15%. The extracting solutions of the liver and small intestine could be stably stored in the autosampler 24 h at 10 °C, the lyophilized liver and small intestine for ceramides quantification could be stably stored at least 1 week at -80 °C. The ceramides and dihydroceramides in normal mice liver and small intestinal tissues analyzed by the developed method indicated that the detected 9 ceramide and 5 dihydroceramides levels were significantly different, in which Cer d18:1/16:0, Cer d18:1/22:0, Cer d18:1/24:1, Cer d18:1/24:0 and dHCer d18:0/24:1 are the main components in the liver, whereas Cer d18:1/16:0 and dHCer d18:0/16:0 accounts for the majority of proportion in the intestinal tissues. CONCLUSION A simple and rapid method for the quantification of 11 ceramides and 6 dihydroceramides in the animal tissues was developed and applied. The compositions of ceramides in two tissues suggested that the compositional features should to be considered when exploring the biomarkers or molecular mechanisms.
Collapse
|
63
|
Wang Y, Feltham BA, Louis XL, Eskin MNA, Suh M. Maternal diets affected ceramides and fatty acids in brain regions of neonatal rats with prenatal ethanol exposure. Nutr Neurosci 2023; 26:60-71. [PMID: 34957933 DOI: 10.1080/1028415x.2021.2017661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objectives: Ceramide (Cer), known as apoptotic markers, increases with prenatal ethanol (EtOH) exposure, resulting in neuroapoptosis. Whether maternal nutrition can impact Cer concentrations in brain, via altering plasma and brain fatty acid compositions have not been examined. This study compared a standard chow with a formulated semi-purified energy dense (E-dense) diet on fatty acid composition, Cer concentrations, and apoptosis in plasma and brain regions (cortex, cerebellum, and hippocampus) of pups exposed to EtOH during gestation. Methods: Pregnant Sprague-Dawley rats were randomized into four groups: chow (n = 6), chow + EtOH (20% v/v) (n = 7), E-dense (n = 6), and E-dense + EtOH (n = 8). At postnatal day 7, representing the peak brain growth spurt in rats, lipids, and apoptosis were analyzed by gas chromatography and a fluorometric caspase-3 assay kit, respectively. Results: Maternal E-dense diet increased total fatty acid concentrations (p < 0.0001), including docosahexaenoic acid (DHA) (p < 0.0001) in plasma, whereas DHA concentrations were decreased in the cerebellum (p < 0.03) of pups than those from chow-fed dams. EtOH-induced Cer elevations in the hippocampus of pups born to dams fed chow were reduced by an E-dense diet (p < 0.02). No significant effects of maternal diet quality and EtOH were observed on caspase-3 activity. No significant correlations existed between plasma/brain fatty acids and Cer concentrations. Discussions: Maternal diet quality affected fatty acid compositions and Cer concentrations of pups with prenatal EtOH exposure, differently. Maternal nutrition has the potential to prevent or alleviate some of the adverse effects of prenatal EtOH exposure.
Collapse
Affiliation(s)
- Yidi Wang
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Bradley A Feltham
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Xavier L Louis
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Michael N A Eskin
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| |
Collapse
|
64
|
Lai KZH, Yehia NA, Semnani-Azad Z, Mejia SB, Boucher BA, Malik V, Bazinet RP, Hanley AJ. Lifestyle Factors Associated with Circulating Very Long-Chain Saturated Fatty Acids in Humans: A Systematic Review of Observational Studies. Adv Nutr 2023; 14:99-114. [PMID: 36811597 PMCID: PMC10102996 DOI: 10.1016/j.advnut.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/22/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Recent observational studies have documented inverse associations of circulating very long-chain saturated fatty acids (VLCSFAs), namely arachidic acid (20:0), behenic acid (22:0), and lignoceric acid (24:0), with cardiometabolic outcomes. In addition to their endogenous production, it has been suggested that dietary intake or an overall healthier lifestyle may influence VLCSFA concentrations; however, a systematic review of the modifiable lifestyle contributors to circulating VLCSFAs is lacking. Therefore, this review aimed to systematically assess the effects of diet, physical activity, and smoking on circulating VLCSFAs. Following registration on PROSPERO (International Prospective Register of Systematic Reviews) (ID: CRD42021233550), a systematic search of observational studies was conducted in MEDLINE, EMBASE, and The Cochrane databases up to February 2022. A total of 12 studies consisting of mostly cross-sectional analyses were included in this review. The majority of the studies documented the associations of dietary intake with total plasma or red blood cell VLCSFAs, in which a range of macronutrients and food groups were examined. Two cross-sectional analyses showed a consistent positive association between total fat and peanut intake with 22:0 and 24:0 and an inverse association between alcohol intake and 20:0 and 22:0. Furthermore, a moderate positive association between physical activity and 22:0 and 24:0 was observed. Lastly, there were conflicting results on the effects of smoking on VLCSFA. Although most studies had a low risk of bias; the findings of this review are limited by the bi-variate analyses presented in the majority of the included studies, therefore, the impact of confounding is unclear. In conclusion, although the current observational literature examining lifestyle determinants of VLCSFAs is limited, existing evidence suggests that circulating 22:0 and 24:0 may be influenced by higher total and saturated fat consumption and nut intake.
Collapse
Affiliation(s)
- Kira Zhi Hua Lai
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nagam A Yehia
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zhila Semnani-Azad
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - Beatrice A Boucher
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vasanti Malik
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony J Hanley
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada; Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
65
|
Morito K, Shimizu R, Ali H, Shimada A, Miyazaki T, Takahashi N, Rahman MM, Tsuji K, Shimozawa N, Nakao M, Sano S, Azuma M, Nanjundan M, Kogure K, Tanaka T. Molecular species profiles of plasma ceramides in different clinical types of X-linked adrenoleukodystrophy. THE JOURNAL OF MEDICAL INVESTIGATION 2023; 70:403-410. [PMID: 37940524 DOI: 10.2152/jmi.70.403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder associated with peroxisomal dysfunction. Patients with this rare disease accumulate very long-chain fatty acids (VLCFAs) in their bodies because of impairment of peroxisomal VLCFA ?-oxidation. Several clinical types of X-ALD, ranging from mild (axonopathy in the spinal cord) to severe (cerebral demyelination), are known. However, the molecular basis for this phenotypic variability remains largely unknown. In this study, we determined plasma ceramide (CER) profile using liquid chromatography-tandem mass spectrometry. We characterized the molecular species profile of CER in the plasma of patients with mild (adrenomyeloneuropathy;AMN) and severe (cerebral) X-ALD. Eleven X-ALD patients (five cerebral, five AMN, and one carrier) and 10 healthy volunteers participated in this study. Elevation of C26:0 CER was found to be a common feature regardless of the clinical types. The level of C26:1 CER was significantly higher in AMN but not in cerebral type, than that in healthy controls. The C26:1 CER level in the cerebral type was significantly lower than that in the AMN type. These results suggest that a high level of C26:0 CER, along with a control level of C26:1 CER, is a characteristic feature of the cerebral type X-ALD. J. Med. Invest. 70 : 403-410, August, 2023.
Collapse
Affiliation(s)
- Katsuya Morito
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Ryota Shimizu
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Hanif Ali
- Department of Medical Pharmacology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Akina Shimada
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Tohru Miyazaki
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Naoko Takahashi
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - M Motiur Rahman
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Kazuki Tsuji
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Nobuyuki Shimozawa
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu 501-1193, Japan
| | - Michiyasu Nakao
- Depertment of Molecular Medicinal Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Shigeki Sano
- Depertment of Molecular Medicinal Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Momoyo Azuma
- Department of Infection Control and Prevention, Tokushima University Hospital, Tokushima 770-8503, Japan
| | - Meera Nanjundan
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida 33647, U.S.A
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| |
Collapse
|
66
|
Lee TH, Cheng CN, Lee CW, Kuo CH, Tang SC, Jeng JS. Investigating sphingolipids as biomarkers for the outcomes of acute ischemic stroke patients receiving endovascular treatment. J Formos Med Assoc 2023; 122:19-28. [PMID: 36184387 DOI: 10.1016/j.jfma.2022.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Long-chain ceramides are associated with the mechanisms and clinical outcomes of acute ischemic stroke (AIS). This study aimed to investigate the plasma ceramides and sphingosine-1-phosphate in AIS patients undergoing endovascular thrombectomy (EVT) and their associations with outcomes. METHODS Plasma samples were collected from 75 AIS patients who underwent EVT before (T1), immediately after (T2), and 24 h after (T3) the procedures and 19 controls that were matched with age, sex, and co-morbidities. The levels of ceramides with different fatty acyl chain lengths and sphingosine-1-phosphate were measured by UHPLC-ESI-MS/MS. A poor outcome was defined as a modified Rankin Scale score of 3-6 at 3 months after stroke. RESULTS The plasma levels of long-chain ceramides Cer (d18:1/16:0) at all three time points, Cer (d18:1/18:0) at T1 and T3, and Cer (d18:1/20:0) at T1 and very-long-chain ceramide Cer (d18:1/24:1) at T1 were significantly higher in AIS patients than those in the controls. In contrast, the plasma levels of sphingosine-1-phosphate in AIS patients were significantly lower than those in the controls at all three time points. Among the AIS patients, 34 (45.3%) had poor functional outcomes at 3 months poststroke. Multivariable analysis showed that higher levels of Cer (d18:1/16:0) and Cer (d18:1/18:0) at all three time points, Cer (d18:1/20:0) at T1 and T2, and Cer (d18:1/24:0) at T2 remained significantly associated with poor functional outcomes after adjustment for potential confounding factors. CONCLUSION Plasma ceramides were elevated early in AIS patients with acute large artery occlusion. Furthermore, Cer (d18:1/16:0) and Cer (d18:1/18:0) could be early prognostic indicators for AIS patients undergoing EVT.
Collapse
Affiliation(s)
- Tsung-Heng Lee
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Ning Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Wei Lee
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
67
|
Kurokawa GA, Hamamoto Filho PT, Delafiori J, Galvani AF, de Oliveira AN, Dias-Audibert FL, Catharino RR, Pardini MIMC, Zanini MA, Lima EDO, Ferrasi AC. Differential Plasma Metabolites between High- and Low-Grade Meningioma Cases. Int J Mol Sci 2022; 24:ijms24010394. [PMID: 36613836 PMCID: PMC9820229 DOI: 10.3390/ijms24010394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Meningiomas (MGMs) are currently classified into grades I, II, and III. High-grade tumors are correlated with decreased survival rates and increased recurrence rates. The current grading classification is based on histological criteria and determined only after surgical tumor sampling. This study aimed to identify plasma metabolic alterations in meningiomas of different grades, which would aid surgeons in predefining the ideal surgical strategy. Plasma samples were collected from 51 patients with meningioma and classified into low-grade (LG) (grade I; n = 43), and high-grade (HG) samples (grade II, n = 5; grade III, n = 3). An untargeted metabolomic approach was used to analyze plasma metabolites. Statistical analyses were performed to select differential biomarkers among HG and LG groups. Metabolites were identified using tandem mass spectrometry along with database verification. Five and four differential biomarkers were identified for HG and LG meningiomas, respectively. To evaluate the potential of HG MGM metabolites to differentiate between HG and LG tumors, a receiving operating characteristic curve was constructed, which revealed an area under the curve of 95.7%. This indicates that the five HG MGM metabolites represent metabolic alterations that can differentiate between LG and HG meningiomas. These metabolites may indicate tumor grade even before the appearance of histological features.
Collapse
Affiliation(s)
- Gabriel A. Kurokawa
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Pedro T. Hamamoto Filho
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Aline F. Galvani
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Arthur N. de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Flávia L. Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Rodrigo R. Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Maria Inês M. C. Pardini
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Marco A. Zanini
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Estela de O. Lima
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
- Correspondence: ; Tel.: +55-14-3880-1453
| | - Adriana C. Ferrasi
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| |
Collapse
|
68
|
Guzman G, Creek C, Farley S, Tafesse FG. Genetic Tools for Studying the Roles of Sphingolipids in Viral Infections. Methods Mol Biol 2022; 2610:1-16. [PMID: 36534277 DOI: 10.1007/978-1-0716-2895-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingolipids are a critical family of membrane lipids with diverse functions in eukaryotic cells, and a growing body of literature supports that these lipids play essential roles during the lifecycles of viruses. While small molecule inhibitors of sphingolipid synthesis and metabolism are widely used, the advent of CRISPR-based genomic editing techniques allows for nuanced exploration into the manners in which sphingolipids influence various stages of viral infections. Here we describe some of these critical considerations needed in designing studies utilizing genomic editing techniques for manipulating the sphingolipid metabolic pathway, as well as the current body of literature regarding how viruses depend on the products of this pathway. Here, we highlight the ways in which sphingolipids affect viruses as these pathogens interact with and influence their host cell and describe some of the many open questions remaining in the field.
Collapse
Affiliation(s)
- Gaelen Guzman
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Cameron Creek
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Scotland Farley
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Fikadu G Tafesse
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
69
|
Long chain ceramides raise the main phase transition of monounsaturated phospholipids to physiological temperature. Sci Rep 2022; 12:20803. [PMID: 36460753 PMCID: PMC9718810 DOI: 10.1038/s41598-022-25330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Little is known about the molecular mechanisms of ceramide-mediated cellular signaling. We examined the effects of palmitoyl ceramide (C16-ceramide) and stearoyl ceramide (C18-ceramide) on the phase behavior of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) using differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SAXS, WAXS). As previously published, the presence of ceramides increased the lamellar gel-to-lamellar liquid crystalline (Lβ-Lα) phase transition temperature of POPC and POPE and decreased the Lα-to-inverted hexagonal (Lα-HII) phase transition temperature of POPE. Interestingly, despite an ~ 30° difference in the main phase transition temperatures of POPC and POPE, the Lβ-Lα phase transition temperatures were very close between POPC/C18-ceramide and POPE/C18-ceramide and were near physiological temperature. A comparison of the results of C16-ceramide in published and our own results with those of C18-ceramide indicates that increase of the carbon chain length of ceramide from 16 to 18 and/or the small difference of ceramide content in the membrane dramatically change the phase transition temperature of POPC and POPE to near physiological temperature. Our results support the idea that ceramide signaling is mediated by the alteration of lipid phase-dependent partitioning of signaling proteins.
Collapse
|
70
|
Tang L, Zhang S, Zhang M, Wang P, Liang G, Gao X. Analysis of protective effects of Rosa Roxburghii Tratt fruit polyphenols on lipopolysaccharide-induced acute lung injury through network pharmacology and metabolomics. Food Sci Nutr 2022; 10:4258-4269. [PMID: 36514748 PMCID: PMC9731534 DOI: 10.1002/fsn3.3019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022] Open
Abstract
Acute lung injury (ALI) is a respiratory disease with high morbidity and mortality rates and is the primary cause of death in children and the elderly around the world. The use of Chinese foods in the complementary and alternative treatment of ALI has attracted more and more attention. This study aimed to explore the anti-ALI activity of Chinese functional foods Rosa roxburghii Tratt fruit polyphenols (RRTP). RRTP was administered to lipopolysaccharide-induced ALI mice, and its protective effects were comprehensively evaluated by lung histopathological examination, wet/dry (W/D) ratio, and cytokine production. Metabolomics analysis was used to identify the differential metabolites and metabolic pathways in plasma, and molecular docking and systemic biology-based network pharmacology assay were performed to explore the active components and potential therapeutic targets. The results indicated that RRTP significantly attenuated the severity of pathological changes and pulmonary capillary permeability. Furthermore, RRTP limited the increase in tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6) levels and the decrease in interleukin 10 (IL-10) levels in ALI mice. Metabolomics studies revealed that RRTP markedly affected 19 different metabolites, three amino acid metabolism pathways, and sphingolipid metabolism. Moreover, network pharmacology identified AKT1 (AKT serine/threonine kinase 1), TP53, IL-6, VEGFA (vascular endothelial growth factor A), and TNF (tumor necrosis factor) as the most promising target proteins, while quercetin, luteolin, and kaempferol were the core active components of RRTP. This study investigated the complex mechanisms of RRTP against ALI for the first time, and provided a foundation for the application of RRTP as a functional food, facilitating the research of nutritional food additives for the adjuvant treatment of ALI.
Collapse
Affiliation(s)
- Li Tang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
- School of Ethnic MedicineGuizhou Minzu UniversityGuiyangChina
| | - Shuo Zhang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
| | - Min Zhang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
| | - Peng‐Jiao Wang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
| | - Gui‐You Liang
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Translational Medicine Research CenterGuizhou Medical UniversityGuiyangChina
| | - Xiu‐Li Gao
- School of Basic Medical Sciences & State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of EducationGuizhou Medical UniversityGuiyangChina
- Translational Medicine Research CenterGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
71
|
The FKBP51 Inhibitor SAFit2 Restores the Pain-Relieving C16 Dihydroceramide after Nerve Injury. Int J Mol Sci 2022; 23:ijms232214274. [PMID: 36430751 PMCID: PMC9695264 DOI: 10.3390/ijms232214274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Neuropathic pain is a pathological pain state with a broad symptom scope that affects patients after nerve injuries, but it can also arise after infections or exposure to toxic substances. Current treatment possibilities are still limited because of the low efficacy and severe adverse effects of available therapeutics, highlighting an emerging need for novel analgesics and for a detailed understanding of the pathophysiological alterations in the onset and maintenance of neuropathic pain. Here, we show that the novel and highly specific FKBP51 inhibitor SAFit2 restores lipid signaling and metabolism in nervous tissue after nerve injury. More specifically, we identify that SAFit2 restores the levels of the C16 dihydroceramide, which significantly reduces the sensitization of the pain-mediating TRPV1 channel and subsequently the secretion of the pro-inflammatory neuropeptide CGRP in primary sensory neurons. Furthermore, we show that the C16 dihydroceramide is capable of reducing acute thermal hypersensitivity in a capsaicin mouse model. In conclusion, we report for the first time the C16 dihydroceramide as a novel and crucial lipid mediator in the context of neuropathic pain as it has analgesic properties, contributing to the pain-relieving properties of SAFit2.
Collapse
|
72
|
Stephan D, Taege N, Dore R, Folberth J, Jöhren O, Schwaninger M, Lehnert H, Schulz C. Knockdown of Endogenous Nucb2/Nesfatin-1 in the PVN Leads to Obese-Like Phenotype and Abolishes the Metformin- and Stress-Induced Thermogenic Response in Rats. Horm Metab Res 2022; 54:768-779. [PMID: 36195118 DOI: 10.1055/a-1926-7280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Nesfatin-1, the cleavage product of nucleobindin-2, is an anorexigenic peptide and major regulator of energy homeostasis. Beyond reducing food intake and increasing energy expenditure, it is also involved in regulating the stress response. Interaction of nucleobindin-2/nesfatin-1 and glucose homeostasis has been observed and recent findings suggest a link between the action of the antidiabetic drug metformin and the nesfatinergic system. Hence, this study aimed to clarify the role of nucleobindin-2/nesfatin-1 in the paraventricular nucleus of the hypothalamus in energy homeostasis as well as its involvement in stress- and metformin-mediated changes in energy expenditure. Knockdown of nucleobindin-2/nesfatin-1 in male Wistar rats led to significantly increased food intake, body weight, and reduced energy expenditure compared to controls. Nucleobindin-2/nesfatin-1 knockdown animals developed an obese-like phenotype represented by significantly increased fat mass and overall increase of circulating lipids. Concomitantly, expression of nucleobindin-2 and melanocortin receptor type 3 and 4 mRNA in the paraventricular nucleus was decreased indicating successful knockdown and impairment at the level of the melanocortin system. Additionally, stress induced activation of interscapular brown adipose tissue was significantly decreased in nucleobindin-2/nesfatin-1 knockdown animals and accompanied by lower adrenal weight. Finally, intracerebroventricular administration of metformin significantly increased energy expenditure in controls and this effect was absent in nucleobindin-2/nesfatin-1 knockdown animals. Overall, we clarified the crucial role of nucleobindin-2/nesfatin-1 in the paraventricular nucleus of the hypothalamus in the regulation of energy homeostasis. The nesfatinergic system was further identified as important mediator in stress- and metformin-induced thermogenesis.
Collapse
Affiliation(s)
- Daniel Stephan
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Department of Oral- and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Natalie Taege
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Institute of Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Lübeck, Germany
| | - Riccardo Dore
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Julica Folberth
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Rektorat, Paris Lodron Universität Salzburg, Salzburg, Austria
| | - Carla Schulz
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
73
|
Rybova J, Kuchar L, Sikora J, McKillop WM, Medin JA. Skin inflammation and impaired adipogenesis in a mouse model of acid ceramidase deficiency. J Inherit Metab Dis 2022; 45:1175-1190. [PMID: 36083604 PMCID: PMC9826362 DOI: 10.1002/jimd.12552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 01/11/2023]
Abstract
Acid ceramidase catalyzes the degradation of ceramide into sphingosine and a free fatty acid. Acid ceramidase deficiency results in lipid accumulation in many tissues and leads to the development of Farber disease (FD). Typical manifestations of classical FD include formation of subcutaneous nodules and joint contractures as well as the development of a hoarse voice. Healthy skin depends on a unique lipid profile to form a barrier that confers protection from pathogens, prevents excessive water loss, and mediates cell-cell communication. Ceramides comprise ~50% of total epidermis lipids and regulate cutaneous homeostasis and inflammation. Abnormal skin development including visual skin lesions has been reported in FD patients, but a detailed study of FD skin has not been performed. We conducted a pathophysiological study of the skin in our mouse model of FD. We observed altered lipid composition in FD skin dominated by accumulation of all studied ceramide species and buildup of abnormal storage structures affecting mainly the dermis. A deficiency of acid ceramidase activity also led to the activation of inflammatory IL-6/JAK/signal transducer and activator of transcription 3 and noncanonical NF-κB signaling pathways. Last, we report reduced proliferation of FD mouse fibroblasts and adipose-derived stem/stromal cells (ASC) along with impaired differentiation of ASCs into mature adipocytes.
Collapse
Affiliation(s)
- Jitka Rybova
- Departments of Pediatrics and BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Ladislav Kuchar
- Rare Diseases Research Unit, Department of Pediatrics and Inherited Metabolic DisordersCharles University, 1st Faculty of Medicine and General University HospitalPragueCzech Republic
| | - Jakub Sikora
- Rare Diseases Research Unit, Department of Pediatrics and Inherited Metabolic DisordersCharles University, 1st Faculty of Medicine and General University HospitalPragueCzech Republic
- Institute of PathologyCharles University, 1st Faculty of Medicine and General University HospitalPragueCzech Republic
| | - William M. McKillop
- Departments of Pediatrics and BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Jeffrey A. Medin
- Departments of Pediatrics and BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
74
|
Liu HX, Zhao H, Xi C, Li S, Ma LP, Lu X, Yan J, Tian XL, Gao L, Tian M, Liu QJ. CPT1 Mediated Ionizing Radiation-Induced Intestinal Injury Proliferation via Shifting FAO Metabolism Pathway and Activating the ERK1/2 and JNK Pathway. Radiat Res 2022; 198:488-507. [PMID: 36351324 DOI: 10.1667/rade-21-00174.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 07/07/2022] [Indexed: 06/16/2023]
Abstract
The intestinal compensatory proliferative potential is a key influencing factor for susceptibility to radiation-induced intestinal injury. Studies indicated that the carnitine palmitoyltransferase 1 (CPT1) mediated fatty acid β-oxidation (FAO) plays a crucial role in promoting the survival and proliferation of tumor cells. Here, we aimed to explore the effect of 60Co gamma rays on CPT1 mediated FAO in the radiation-induced intestinal injury models, and investigate the role of CPT1 mediated FAO in the survival and proliferation of intestinal cells after irradiation. We detected the changed of FAO in the plasma and small intestine of Sprague Dawley (SD) rats at 24 h after 60Co gamma irradiation (0, 5 and 10 Gy), using target metabolomics, qRT-PCR, immunohistochemistry (IHC), western blot (WB) and related enzymatic activity kits. We then analyzed the FAO changes in radiation-induced intestinal injury models regardless of ex vivo (mice enteroids), or in vitro (normal human intestinal epithelial cell lines, HIEC-6). HIEC-6 cells were transduced with lentivirus vector GV392 and treated with puromycin for obtaining CPT1 stable knockout cell lines, named CPT1 KO. CPT1 enzymatic activities of HIEC-6 cells and mice enteroids were also inhibited by pharmaceutical inhibitor ST1326 and Etomoxir (ETO), to study the function of CPT1 in the survival and proliferation of HIEC-6 cells after 60Co gamma irradiation. We found that CPT1 mediated FAO was altered in the small intestine of the SD rats after irradiation, especially, the expression level and enzymatic activity of CPT1 were significantly increased. Similarly, the expression levels of CPT1 were also remarkably enhanced in mice enteroids and HIEC-6 cells after irradiation. CPT1 inhibition decreased the proliferation of the HIEC-6 cells and mice enteroids after irradiation partially by reducing the extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways activation, CPT1 inhibition also reduced the proliferation of mice enteroids after irradiation partially by down-regulating the Wnt/β-catenin signaling activity. In conclusion, our study indicated that CPT1 plays a crucial role in promoting intestinal epithelial cell proliferation after irradiation.
Collapse
Affiliation(s)
- Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Cong Xi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Li-Ping Ma
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Juan Yan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
75
|
Paranjpe V, Galor A, Grambergs R, Mandal N. The role of sphingolipids in meibomian gland dysfunction and ocular surface inflammation. Ocul Surf 2022; 26:100-110. [PMID: 35973562 PMCID: PMC10259413 DOI: 10.1016/j.jtos.2022.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Inflammation occurs in response to tissue injury and invasion of microorganisms and is carried out by the innate and adaptive immune systems, which are regulated by numerous chemokines, cytokines, and lipid mediators. There are four major families of bioactive lipid mediators that play an integral role in inflammation - eicosanoids, sphingolipids (SPL), specialized pro-resolving mediators (SPM), and endocannabinoids. SPL have been historically recognized as important structural components of cellular membranes; their roles as bioactive lipids and inflammatory mediators are recent additions. Major SPL metabolites, including sphingomyelin, ceramide, ceramide 1-phosphate (C1P), sphingosine, sphingosine 1-phosphate (S1P), and their respective enzymes have been studied extensively, primarily in cell-culture and animal models, for their roles in cellular signaling and regulating inflammation and apoptosis. Less focus has been given to the involvement of SPL in eye diseases. As such, the aim of this review was to examine relationships between the SPL family and ocular surface diseases, focusing on their role in disease pathophysiology and discussing the potential of therapeutics that disrupt SPL pathways.
Collapse
Affiliation(s)
- Vikram Paranjpe
- Department of Ophthalmology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA.
| | - Richard Grambergs
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
76
|
Consequences of Autophagy Deletion on the Age-Related Changes in the Epidermal Lipidome of Mice. Int J Mol Sci 2022; 23:ijms231911110. [PMID: 36232414 PMCID: PMC9569666 DOI: 10.3390/ijms231911110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 12/02/2022] Open
Abstract
Autophagy is a controlled mechanism of intracellular self-digestion with functions in metabolic adaptation to stress, in development, in proteostasis and in maintaining cellular homeostasis in ageing. Deletion of autophagy in epidermal keratinocytes does not prevent the formation of a functional epidermis and the permeability barrier but causes increased susceptibility to damage stress and metabolic alterations and accelerated ageing phenotypes. We here investigated how epidermal autophagy deficiency using Keratin 14 driven Atg7 deletion would affect the lipid composition of the epidermis of young and old mice. Using mass spectrometric lipidomics we found a reduction of age-related accumulation of storage lipids in the epidermis of autophagy-deficient mice, and specific changes in chain length and saturation of fatty acids in several lipid classes. Transcriptomics and immunostaining suggest that these changes are accompanied by changes in expression and localisation of lipid and fatty acid transporter proteins, most notably fatty acid binding protein 5 (FABP5) in autophagy knockouts. Thus, maintaining autophagic activity at an advanced age may be necessary to maintain epidermal lipid homeostasis in mammals.
Collapse
|
77
|
Hartel JC, Merz N, Grösch S. How sphingolipids affect T cells in the resolution of inflammation. Front Pharmacol 2022; 13:1002915. [PMID: 36176439 PMCID: PMC9513432 DOI: 10.3389/fphar.2022.1002915] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of proper resolution of inflammation rather than counteracting it, gained a lot of attention in the past few years. Re-assembly of tissue and cell homeostasis as well as establishment of adaptive immunity after inflammatory processes are the key events of resolution. Neutrophiles and macrophages are well described as promotors of resolution, but the role of T cells is poorly reviewed. It is also broadly known that sphingolipids and their imbalance influence membrane fluidity and cell signalling pathways resulting in inflammation associated diseases like inflammatory bowel disease (IBD), atherosclerosis or diabetes. In this review we highlight the role of sphingolipids in T cells in the context of resolution of inflammation to create an insight into new possible therapeutical approaches.
Collapse
Affiliation(s)
- Jennifer Christina Hartel
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
- Department of Life Sciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nadine Merz
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- *Correspondence: Sabine Grösch,
| |
Collapse
|
78
|
Jensen PN, Fretts AM, Hoofnagle AN, McKnight B, Howard BV, Umans JG, Sitlani CM, Siscovick DS, King IB, Sotoodehnia N, Lemaitre RN. Circulating ceramides and sphingomyelins and the risk of incident cardiovascular disease among people with diabetes: the strong heart study. Cardiovasc Diabetol 2022; 21:167. [PMID: 36042511 PMCID: PMC9429431 DOI: 10.1186/s12933-022-01596-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasma ceramides and sphingomyelins have been independently linked to diabetes risk, glucose and insulin levels, and the risk of several cardiovascular (CVD) outcomes. However, whether individual ceramide and sphingomyelin species contribute to CVD risk among people with type 2 diabetes is uncertain. Our goal was to evaluate associations of 4 ceramide and 4 sphingomyelin species with incident CVD in a longitudinal population-based study among American Indians with diabetes. METHODS This analysis included participants with prevalent type 2 diabetes from two cohorts: a prospective cohort of 597 participants in the Strong Heart Family Study (116 incident CVD cases; mean age: 49 years; average length of follow-up: 14 years), and a nested case-control sample of 267 participants in the Strong Heart Study (78 cases of CVD and 189 controls; mean age: 61 years; average time until incident CVD in cases: 3.8 years). The average onset of diabetes was 7 years prior to sphingolipid measurement. Sphingolipid species were measured using liquid chromatography and mass spectrometry. Cox regression and logistic regression were used to assess associations of sphingolipid species with incident CVD; results were combined across cohorts using inverse-variance weighted meta-analysis. RESULTS There were 194 cases of incident CVD in the two cohorts. In meta-analysis of the 2 cohort results, higher plasma levels of Cer-16 (ceramide with acylated palmitic acid) were associated with higher CVD risk (HR per two-fold higher Cer-16: 1.85; 95% CI 1.05-3.25), and higher plasma levels of sphingomyelin species with a very long chain saturated fatty acid were associated with lower CVD risk (HR per two-fold higher SM-22: 0.48; 95% CI 0.26-0.87), although none of the associations met our pre-specified threshold for statistical significance of p = 0.006. CONCLUSIONS While replication of the findings from the SHS in other populations is warranted, our findings add to a growing body of research suggesting that ceramides, in particular Cer-16, not only are associated with higher diabetes risk, but may also be associated with higher CVD risk after diabetes onset. We also find support for the hypothesis that sphingomyelins with a very long chain saturated fatty acid are associated with lower CVD risk among adults with type 2 diabetes.
Collapse
Affiliation(s)
- Paul N Jensen
- Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA. .,Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.
| | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle, WA, USA.,Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA, USA.,Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD, USA.,Georgetown and Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA
| | - Colleen M Sitlani
- Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA.,Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | | | - Irena B King
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Nona Sotoodehnia
- Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA.,Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Rozenn N Lemaitre
- Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA, 98101, USA.,Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| |
Collapse
|
79
|
Human iPSC-derived astrocytes generated from donors with globoid cell leukodystrophy display phenotypes associated with disease. PLoS One 2022; 17:e0271360. [PMID: 35921286 PMCID: PMC9348679 DOI: 10.1371/journal.pone.0271360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Globoid cell leukodystrophy (Krabbe disease) is a fatal neurodegenerative, demyelinating disease caused by dysfunctional activity of galactosylceramidase (GALC), leading to the accumulation of glycosphingolipids including psychosine. While oligodendrocytes have been extensively studied due to their high levels of GALC, the contribution of astrocytes to disease pathogenesis remains to be fully elucidated. In the current study, we generated induced pluripotent stem cells (iPSCs) from two donors with infantile onset Krabbe disease and differentiated them into cultures of astrocytes. Krabbe astrocytes recapitulated many key findings observed in humans and rodent models of the disease, including the accumulation of psychosine and elevated expression of the pro-inflammatory cytokine IL-6. Unexpectedly, Krabbe astrocytes had higher levels of glucosylceramide and ceramide, and displayed compensatory changes in genes encoding glycosphingolipid biosynthetic enzymes, suggesting a shunting away from the galactosylceramide and psychosine pathway. In co-culture, Krabbe astrocytes negatively impacted the survival of iPSC-derived human neurons while enhancing survival of iPSC-derived human microglia. Substrate reduction approaches targeting either glucosylceramide synthase or serine palmitoyltransferase to reduce the sphingolipids elevated in Krabbe astrocytes failed to rescue their detrimental impact on neuron survival. Our results suggest that astrocytes may contribute to the progression of Krabbe disease and warrant further exploration into their role as therapeutic targets.
Collapse
|
80
|
Gao X, Lin L, Hu A, Zhao H, Kang L, Wang X, Yuan C, Yang P, Shen H. Shotgun lipidomics combined targeted MRM reveals sphingolipid signatures of coronary artery disease. Talanta 2022; 245:123475. [DOI: 10.1016/j.talanta.2022.123475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022]
|
81
|
Untargeted lipidomics reveals the antifungal mechanism of essential oils nanoemulsion against Penicillium digitatum. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
82
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
83
|
de Falco B, Grauso L, Fiore A, Bonanomi G, Lanzotti V. Metabolomics and chemometrics of seven aromatic plants: Carob, eucalyptus, laurel, mint, myrtle, rosemary and strawberry tree. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:696-709. [PMID: 35354224 DOI: 10.1002/pca.3121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Arbutus unedo L. (strawberry tree), Ceratonia siliqua L. (carob), Eucalyptus camaldulensis Dehnh. (eucalyptus), Laurus nobilis L. (laurel), Mentha aquatica L. (water mint), Myrtus communis L. (common myrtle), and Rosmarinus officinalis L. (rosemary) are aromatic plants from the Mediterranean region whose parts and preparations are used for their nutritional properties and health benefits. OBJECTIVES To evaluate and compare the metabolites profile, total phenol content (TPC), and antioxidant activity of plant leaves for their future use. Gas chromatography-mass spectrometry (GC-MS) was used for metabolomics. Data comparison was performed by chemometrics. METHODOLOGY Polar and apolar extracts were analysed using untargeted GC-MS metabolomics followed by chemometrics (principal component analysis, heatmap correlation and dendrogram) to identify, quantify and compare the major organic compounds in the plants. Additionally, nuclear magnetic resonance (NMR) spectroscopy was used for the laurel polar extract to identify d-gluco-l-glycero-3-octulose whose presence was unclear from the GC-MS data. TPC and antioxidant assays were performed using classical methods (Folin-Ciocalteu, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH)) and correlated to the phytochemical profiles. RESULTS Forty-three metabolites were identified including amino acids, organic acids, carbohydrates, phenols, polyols, fatty acids, and alkanes. Eight metabolites (d-fructose, d-glucose, d-mannose, gallic acid, quinic acid, myo-inositol, palmitic and stearic acids) were in common between all species. d-Gluco-l-glycero-3-octulose (37.29 ± 1.19%), d-pinitol (31.33 ± 5.12%), and arbutin (1.30 ± 0.44%,) were characteristic compounds of laurel, carob, and strawberry tree, respectively. Carob showed the highest values of TPC and antioxidant activity. CONCLUSION GC-MS metabolomics and chemometrics analyses are fast and useful methods to determine and compare the metabolomics profiling of aromatic plants of food and industrial interest.
Collapse
Affiliation(s)
- Bruna de Falco
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Laura Grauso
- Dipartimento di Agraria, Università di Napoli Federico II, Portici
| | - Alberto Fiore
- Division of Engineering and Food Science, School of Applied Science, Abertay University, Dundee, UK
| | | | | |
Collapse
|
84
|
Tanaka T, Talegawkar SA, Jin Y, Candia J, Tian Q, Moaddel R, Simonsick EM, Ferrucci L. Metabolomic Profile of Different Dietary Patterns and Their Association with Frailty Index in Community-Dwelling Older Men and Women. Nutrients 2022; 14:2237. [PMID: 35684039 PMCID: PMC9182888 DOI: 10.3390/nu14112237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
Diet quality has been associated with slower rates of aging; however, the mechanisms underlying the role of a healthy diet in aging are not fully understood. To address this question, we aimed to identify plasma metabolomic biomarkers of dietary patterns and explored whether these metabolites mediate the relationship between diet and healthy aging, as assessed by the frailty index (FI) in 806 participants of the Baltimore Longitudinal Study of Aging. Adherence to different dietary patterns was evaluated using the Mediterranean diet score (MDS), Mediterranean-DASH Diet Intervention for Neurodegenerative Delay (MIND) score, and Alternate Healthy Eating Index-2010 (AHEI). Associations between diet, FI, and metabolites were assessed using linear regression models. Higher adherence to these dietary patterns was associated with lower FI. We found 236, 218, and 278 metabolites associated with the MDS, MIND, and AHEI, respectively, with 127 common metabolites, which included lipids, tri/di-glycerides, lyso/phosphatidylcholine, amino acids, bile acids, ceramides, cholesterol esters, fatty acids and acylcarnitines, indoles, and sphingomyelins. Metabolomic signatures of diet explained 28%, 37%, and 38% of the variance of the MDS, MIND, and AHEI, respectively. Signatures of MIND and AHEI mediated 55% and 61% of the association between each dietary pattern with FI, while the mediating effect of MDS signature was not statistically significant. The high number of metabolites associated with the different dietary patterns supports the notion of common mechanisms that underly the relationship between diet and frailty. The identification of multiple metabolite classes suggests that the effect of diet is complex and not mediated by any specific biomarkers. Furthermore, these metabolites may serve as biomarkers for poor diet quality to identify individuals for targeted dietary interventions.
Collapse
Affiliation(s)
- Toshiko Tanaka
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| | - Sameera A. Talegawkar
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (S.A.T.); (Y.J.)
| | - Yichen Jin
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (S.A.T.); (Y.J.)
| | - Julián Candia
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| | - Qu Tian
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Eleanor M. Simonsick
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| |
Collapse
|
85
|
Liang H, Yan J, Song K. Comprehensive lipidomic analysis reveals regulation of glyceride metabolism in rat visceral adipose tissue by high-altitude chronic hypoxia. PLoS One 2022; 17:e0267513. [PMID: 35522648 PMCID: PMC9075645 DOI: 10.1371/journal.pone.0267513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/10/2022] [Indexed: 11/18/2022] Open
Abstract
Adipose tissue plays a central role in energy substrate homeostasis and is a key regulator of lipid flow throughout these processes. As hypoxia affects lipid metabolism in adipose tissue, we aimed to investigate the effects of high-altitude chronic hypoxia on lipid metabolism in the adipose tissue of rats using a lipidomic analysis approach. Visceral adipose tissues from rats housed in a high-altitude hypoxia environment representing 4,300 m with 14.07% oxygen (hypoxia group) and from rats housed in a low-altitude normoxia environment representing 41 m with 20.95% oxygen (normoxia group) for 8 weeks were analyzed using an ultra-performance liquid chromatography-Orbitrap mass spectrometry system. After 8 weeks, the body weight and visceral adipose tissue weight of the hypoxia group were significantly decreased compared to those of the normoxia group (p < 0.05). The area and diameter of visceral adipose cells in the hypoxia group were significantly smaller than those of visceral adipose cells in the normoxia group (p < 0.05). The results of lipidomic analysis showed a total of 21 lipid classes and 819 lipid species. The total lipid concentration of the hypoxia group was lower than that in the normoxia group (p < 0.05). Concentrations of diacylglycerols and triacylglycerols in the hypoxia group were significantly lower than those in the normoxia group (p < 0.05). Using univariate and multivariate analyses, we identified 74 lipids that were significantly altered between the normoxia and hypoxia groups. These results demonstrate that high-altitude chronic hypoxia changes the metabolism of visceral adipose glycerides, which may potentially modulate other metabolic processes.
Collapse
Affiliation(s)
- Hong Liang
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining, PR, China
| | - Jun Yan
- Cardiovascular Medicine Department, Xuzhou Medical University affiliated Hospital, Xuzhou, PR China
| | - Kang Song
- Endocrinology Department, Qinghai Provincial People’s Hospital, Xining, PR, China
- Qinghai University affiliated Provincial People’s Hospital, Xining, PR, China
- * E-mail:
| |
Collapse
|
86
|
Fujita J, Taniguchi M, Hashizume C, Ueda Y, Sakai S, Kondo T, Hashimoto-Nishimura M, Hanada K, Kosaka T, Okazaki T. Nuclear Ceramide Is Associated with Ataxia Telangiectasia Mutated Activation in the Neocarzinostatin-Induced Apoptosis of Lymphoblastoid Cells. Mol Pharmacol 2022; 101:322-333. [PMID: 35273080 DOI: 10.1124/molpharm.121.000379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/22/2022] [Indexed: 01/14/2023] Open
Abstract
Ceramide is a bioactive sphingolipid that mediates ionizing radiation- and chemotherapy-induced apoptosis. Neocarzinostatin (NCS) is a genotoxic anti-cancer drug that induces apoptosis in response to DNA double-strand breaks (DSBs) through ataxia telangiectasia mutated (ATM) activation. However, the involvement of ceramide in NCS-evoked nuclear events such as DSB-activated ATM has not been clarified. Here, we found that nuclear ceramide increased by NCS-mediated apoptosis through the enhanced assembly of ATM and the meiotic recombination 11/double-strand break repair/Nijmengen breakage syndrome 1 (MRN) complex proteins in human lymphoblastoid L-39 cells. NCS induced an increase of ceramide production through activation of neutral sphingomyelinase (nSMase) and suppression of sphingomyelin synthase (SMS) upstream of DSB-mediated ATM activation. In ATM-deficient lymphoblastoid AT-59 cells compared with L-39 cells, NCS treatment showed a decrease of apoptosis even though ceramide increase and DSBs were observed. Expression of wild-type ATM, but not the kinase-dead mutant ATM, in AT-59 cells increased NCS-induced apoptosis despite similar ceramide accumulation. Interestingly, NCS increased ceramide content in the nucleus through nSMase activation and SMS suppression and promoted colocalization of ceramide with phosphorylated ATM and foci of MRN complex. Inhibition of ceramide generation by the overexpression of SMS suppressed NCS-induced apoptosis through the inhibition of ATM activation and assembly of the MRN complex. In addition, inhibition of ceramide increased by the nSMase inhibitor GW4869 prevented NCS-mediated activation of the ATM. Therefore, our findings suggest the involvement of the nuclear ceramide with ATM activation in NCS-mediated apoptosis. SIGNIFICANCE STATEMENT: This study demonstrates that regulation of ceramide with neutral sphingomyelinase and sphingomyelin synthase in the nucleus in double-strand break-mimetic agent neocarzinostatin (NCS)-induced apoptosis. This study also showed that ceramide increase in the nucleus plays a role in NCS-induced apoptosis through activation of the ataxia telangiectasia mutated/meiotic recombination 11/double-strand break repair/Nijmengen breakage syndrome 1 complex in human lymphoblastoid cells.
Collapse
Affiliation(s)
- Jun Fujita
- Division of General and Digestive Surgery, Department of Medicine (J.F., C.H., T.K.) and Medical Research Institute (M.T.), Kanazawa Medical University, Ishikawa, Japan; Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan (C.H., T.O.); Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan (Y.U.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan. (S.S., K.H.); Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.K.); and Department of Hematology/Oncology, Faculty of Medicine, Tottori University, Yonago, Japan (M.H.-N.)
| | - Makoto Taniguchi
- Division of General and Digestive Surgery, Department of Medicine (J.F., C.H., T.K.) and Medical Research Institute (M.T.), Kanazawa Medical University, Ishikawa, Japan; Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan (C.H., T.O.); Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan (Y.U.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan. (S.S., K.H.); Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.K.); and Department of Hematology/Oncology, Faculty of Medicine, Tottori University, Yonago, Japan (M.H.-N.)
| | - Chieko Hashizume
- Division of General and Digestive Surgery, Department of Medicine (J.F., C.H., T.K.) and Medical Research Institute (M.T.), Kanazawa Medical University, Ishikawa, Japan; Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan (C.H., T.O.); Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan (Y.U.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan. (S.S., K.H.); Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.K.); and Department of Hematology/Oncology, Faculty of Medicine, Tottori University, Yonago, Japan (M.H.-N.)
| | - Yoshibumi Ueda
- Division of General and Digestive Surgery, Department of Medicine (J.F., C.H., T.K.) and Medical Research Institute (M.T.), Kanazawa Medical University, Ishikawa, Japan; Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan (C.H., T.O.); Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan (Y.U.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan. (S.S., K.H.); Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.K.); and Department of Hematology/Oncology, Faculty of Medicine, Tottori University, Yonago, Japan (M.H.-N.)
| | - Shota Sakai
- Division of General and Digestive Surgery, Department of Medicine (J.F., C.H., T.K.) and Medical Research Institute (M.T.), Kanazawa Medical University, Ishikawa, Japan; Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan (C.H., T.O.); Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan (Y.U.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan. (S.S., K.H.); Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.K.); and Department of Hematology/Oncology, Faculty of Medicine, Tottori University, Yonago, Japan (M.H.-N.)
| | - Tadakazu Kondo
- Division of General and Digestive Surgery, Department of Medicine (J.F., C.H., T.K.) and Medical Research Institute (M.T.), Kanazawa Medical University, Ishikawa, Japan; Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan (C.H., T.O.); Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan (Y.U.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan. (S.S., K.H.); Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.K.); and Department of Hematology/Oncology, Faculty of Medicine, Tottori University, Yonago, Japan (M.H.-N.)
| | - Mayumi Hashimoto-Nishimura
- Division of General and Digestive Surgery, Department of Medicine (J.F., C.H., T.K.) and Medical Research Institute (M.T.), Kanazawa Medical University, Ishikawa, Japan; Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan (C.H., T.O.); Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan (Y.U.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan. (S.S., K.H.); Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.K.); and Department of Hematology/Oncology, Faculty of Medicine, Tottori University, Yonago, Japan (M.H.-N.)
| | - Kentaro Hanada
- Division of General and Digestive Surgery, Department of Medicine (J.F., C.H., T.K.) and Medical Research Institute (M.T.), Kanazawa Medical University, Ishikawa, Japan; Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan (C.H., T.O.); Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan (Y.U.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan. (S.S., K.H.); Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.K.); and Department of Hematology/Oncology, Faculty of Medicine, Tottori University, Yonago, Japan (M.H.-N.)
| | - Takeo Kosaka
- Division of General and Digestive Surgery, Department of Medicine (J.F., C.H., T.K.) and Medical Research Institute (M.T.), Kanazawa Medical University, Ishikawa, Japan; Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan (C.H., T.O.); Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan (Y.U.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan. (S.S., K.H.); Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.K.); and Department of Hematology/Oncology, Faculty of Medicine, Tottori University, Yonago, Japan (M.H.-N.)
| | - Toshiro Okazaki
- Division of General and Digestive Surgery, Department of Medicine (J.F., C.H., T.K.) and Medical Research Institute (M.T.), Kanazawa Medical University, Ishikawa, Japan; Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan (C.H., T.O.); Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan (Y.U.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan. (S.S., K.H.); Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.K.); and Department of Hematology/Oncology, Faculty of Medicine, Tottori University, Yonago, Japan (M.H.-N.)
| |
Collapse
|
87
|
Sex Differences in Cardiovascular Diseases: A Matter of Estrogens, Ceramides, and Sphingosine 1-Phosphate. Int J Mol Sci 2022; 23:ijms23074009. [PMID: 35409368 PMCID: PMC8999971 DOI: 10.3390/ijms23074009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
The medical community recognizes sex-related differences in pathophysiology and cardiovascular disease outcomes (CVD), culminating with heart failure. In general, pre-menopausal women tend to have a better prognosis than men. Explaining why this occurs is not a simple matter. For decades, sex hormones like estrogens (Es) have been identified as one of the leading factors driving these sex differences. Indeed, Es seem protective in women as their decline, during and after menopause, coincides with an increased CV risk and HF development. However, clinical trials demonstrated that E replacement in post-menopause women results in adverse cardiac events and increased risk of breast cancer. Thus, a deeper understanding of E-related mechanisms is needed to provide a vital gateway toward better CVD prevention and treatment in women. Of note, sphingolipids (SLs) and their metabolism are strictly related to E activities. Among the SLs, ceramide and sphingosine 1-phosphate play essential roles in mammalian physiology, particularly in the CV system, and appear differently modulated in males and females. In keeping with this view, here we explore the most recent experimental and clinical observations about the role of E and SL metabolism, emphasizing how these factors impact the CV system.
Collapse
|
88
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
89
|
Kim MJ, Jeong H, Krainc D. Lysosomal ceramides regulate cathepsin B-mediated processing of saposin C and glucocerebrosidase activity. Hum Mol Genet 2022; 31:2424-2437. [PMID: 35181782 PMCID: PMC9307309 DOI: 10.1093/hmg/ddac047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Variants in multiple lysosomal enzymes increase Parkinson's disease (PD) risk, including the genes encoding glucocerebrosidase (GCase), acid sphingomyelinase (ASMase) and galactosylceramidase. Each of these enzymes generates ceramide by hydrolysis of sphingolipids in lysosomes, but the role of this common pathway in PD pathogenesis has not yet been explored. Variations in GBA1, the gene encoding GCase, are the most common genetic risk factor for PD. The lysosomal enzyme cathepsin B has recently been implicated as an important genetic modifier of disease penetrance in individuals harboring GBA1 variants, suggesting a mechanistic link between these enzymes. Here, we found that ceramide activates cathepsin B, and identified a novel role for cathepsin B in mediating prosaposin cleavage to form saposin C, the lysosomal coactivator of GCase. Interestingly, this pathway was disrupted in Parkin-linked PD models, and upon treatment with inhibitor of ASMase which resulted in decreased ceramide production. Conversely, increasing ceramide production by inhibiting acid ceramidase activity was sufficient to upregulate cathepsin B- and saposin C-mediated activation of GCase. These results highlight a mechanistic link between ceramide and cathepsin B in regulating GCase activity and suggest that targeting lysosomal ceramide or cathepsin B represents an important therapeutic strategy for activating GCase in PD and related disorders.
Collapse
Affiliation(s)
- Myung Jong Kim
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hyunkyung Jeong
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- To whom correspondence should be addressed. Tel/Fax: 312-503-3936;
| |
Collapse
|
90
|
Beger AW, Dudzik B, Woltjer RL, Wood PL. Human Brain Lipidomics: Pilot Analysis of the Basal Ganglia Sphingolipidome in Parkinson’s Disease and Lewy Body Disease. Metabolites 2022; 12:metabo12020187. [PMID: 35208260 PMCID: PMC8875811 DOI: 10.3390/metabo12020187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids constitute a complex class of bioactive lipids with diverse structural and functional roles in neural tissue. Lipidomic techniques continue to provide evidence for their association in neurological diseases, including Parkinson’s disease (PD) and Lewy body disease (LBD). However, prior studies have primarily focused on biological tissues outside of the basal ganglia, despite the known relevancy of this brain region in motor and cognitive dysfunction associated with PD and LBD. Therefore electrospray ionization high resolution mass spectrometry was used to analyze levels of sphingolipid species, including ceramides (Cer), dihydroceramides (DHC), hydoxyceramides (OH-Cer), phytoceramides (Phyto-Cer), phosphoethanolamine ceramides (PE-Cer), sphingomyelins (SM), and sulfatides (Sulf) in the caudate, putamen and globus pallidus of PD (n = 7) and LBD (n = 14) human subjects and were compared to healthy controls (n = 9). The most dramatic alterations were seen in the putamen, with depletion of Cer and elevation of Sulf observed in both groups, with additional depletion of OH-Cer and elevation of DHC identified in LBD subjects. Diverging levels of DHC in the caudate suggest differing roles of this lipid in PD and LBD pathogenesis. These sphingolipid alterations in PD and LBD provide evidence for biochemical involvement of the neuronal cell death that characterize these conditions.
Collapse
Affiliation(s)
- Aaron W. Beger
- Anatomy Department, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
- Correspondence:
| | - Beatrix Dudzik
- Anatomy Department, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
| | - Randall L. Woltjer
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
| |
Collapse
|
91
|
Melero-Fernandez de Mera RM, Villaseñor A, Rojo D, Carrión-Navarro J, Gradillas A, Ayuso-Sacido A, Barbas C. Ceramide Composition in Exosomes for Characterization of Glioblastoma Stem-Like Cell Phenotypes. Front Oncol 2022; 11:788100. [PMID: 35127492 PMCID: PMC8814423 DOI: 10.3389/fonc.2021.788100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is one of the most malignant central nervous system tumor types. Comparative analysis of GBM tissues has rendered four major molecular subtypes. From them, two molecular subtypes are mainly found in their glioblastoma cancer stem-like cells (GSCs) derived in vitro: proneural (PN) and mesenchymal (MES) with nodular (MES-N) and semi-nodular (MES-SN) disseminations, which exhibit different metabolic, growth, and malignancy properties. Many studies suggest that cancer cells communicate between them, and the surrounding microenvironment, via exosomes. Identifying molecular markers that allow the specific isolation of GSC-derived exosomes is key in the development of new therapies. However, the differential exosome composition produced by main GSCs remains unknown. The aim of this study was to determine ceramide (Cer) composition, one of the critical lipids in both cells and their cell-derived exosomes, from the main three GSC phenotypes using mass spectrometry-based lipidomics. GSCs from human tissue samples and their cell-derived exosomes were measured using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) in an untargeted analysis. Complete characterization of the ceramide profile, in both cells and cell-derived exosomes from GSC phenotypes, showed differential distributions among them. Results indicate that such differences of ceramide are chain-length dependent. Significant changes for the C16 Cer and C24:1 Cer and their ratio were observed among GSC phenotypes, being different for cells and their cell-derived exosomes.
Collapse
Affiliation(s)
- Raquel M Melero-Fernandez de Mera
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
| | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Josefa Carrión-Navarro
- Brain Tumor Laboratory, Faculty of Experimental Sciences and Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Angel Ayuso-Sacido
- Brain Tumor Laboratory, Faculty of Experimental Sciences and Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain.,Fundación Vithas, Grupo Vithas Hospitales, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
92
|
Abstract
PURPOSE OF REVIEW In contrast to other saturated fatty acids, very long-chain saturated fatty acids (VLSFAs) have received limited attention The purpose of this review is to summarize the associations of VLSFAs, including arachidic acid, behenic acid, and lignoceric acid, with cardiovascular disease outcomes and type 2 diabetes; to discuss the findings implications; and to call for future studies of the VLSFAs. RECENT FINDINGS Increased levels of circulating VLSFAs have been found associated with lower risks of incident heart failure, atrial fibrillation, coronary heart disease, mortality, sudden cardiac arrest, type 2 diabetes, and with better aging. The VLSFA associations are paralleled by associations of plasma ceramide and sphingomyelin species carrying a VLSFA with lower risks of heart failure, atrial fibrillation, and mortality, suggesting VLSFAs affect the biological activity of ceramides and sphingomyelins thereby impacting health. For diabetes, there is no such parallel and the associations of VLSFAs with diabetes may be confounded or mediated by triglyceride and circulating palmitic acid, possible biomarkers of de novo lipogenesis. SUMMARY In many ways, the epidemiology has preceded our knowledge of VLSFAs biology. We hope this review will spur interest from the research community in further studying these potentially beneficial fatty acids.
Collapse
Affiliation(s)
- Rozenn N. Lemaitre
- University of Washington, Department of Medicine, Cardiovascular Health Research Unit, Seattle, Washington
| | | |
Collapse
|
93
|
Westhölter D, Schumacher F, Wülfinghoff N, Sutharsan S, Strassburg S, Kleuser B, Horn PA, Reuter S, Gulbins E, Taube C, Welsner M. CFTR modulator therapy alters plasma sphingolipid profiles in people with cystic fibrosis. J Cyst Fibros 2022; 21:713-720. [DOI: 10.1016/j.jcf.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/17/2022]
|
94
|
Affiliation(s)
- Josef Ecker
- ZIEL-Institute for Food and Health, Research Group on Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Klaus-Peter Janssen
- Klinikum rechts der Isar, Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
95
|
Targeted liposomal doxorubicin/ceramides combinations: the importance to assess the nature of drug interaction beyond bulk tumor cells. Eur J Pharm Biopharm 2022; 172:61-77. [PMID: 35104605 DOI: 10.1016/j.ejpb.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022]
Abstract
One of the major assets of anticancer nanomedicine is the ability to co-deliver drug combinations, as it enables targeting of different cellular populations and/or signaling pathways implicated in tumorigenesis and thus tackling tumor heterogeneity. Moreover, drug resistance can be circumvented, for example, upon co-encapsulation and delivery of doxorubicin and sphingolipids, as ceramides. Herein, the impact of short (C6) and long (C18) alkyl chain length ceramides on the nature of drug interaction, within the scope of combination with doxorubicin, was performed in bulk triple-negative breast cancer (TNBC) cells, as well as on the density of putative cancer stem cells and phenotype, including live single-cell tracking. C6- or C18-ceramide enabled a synergistic drug interaction in all conditions and (bulk) cell lines tested. However, differentiation among these two ceramides was reflected on the migratory potential of cancer cells, particularly significant against the highly motile MDA-MB-231 cells. This effect was supported by the downregulation of the PI3K/Akt pathway enabled by C6-ceramide and in contrast with C18-ceramide. The decrease of the migratory potential enabled by the targeted liposomal combinations is of high relevance in the context of TNBC, due to the underlying metastatic potential. Surprisingly, the nature of the drug interaction assessed at the level of bulk cancer cells revealed to be insufficient to predict whether a drug combination enables a decrease in the percentage of the master regulators of tumor relapse as ALDH+/high putative TNBC cancer stem cells, suggesting, for the first time, that it should be extended further down to this level.
Collapse
|
96
|
Cao M, Zhang S, Lam SM, Shui G. Hepatic loss of CerS2 induces cell division defects via a mad2-mediated pathway. Clin Transl Med 2022; 12:e712. [PMID: 35090093 PMCID: PMC8797468 DOI: 10.1002/ctm2.712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Mingjun Cao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shaohua Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Lipidall Technologies Company Limited, Changzhou, Jiangsu Province, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
97
|
Tomasello DL, Kim JL, Khodour Y, McCammon JM, Mitalipova M, Jaenisch R, Futerman AH, Sive H. 16pdel lipid changes in iPSC-derived neurons and function of FAM57B in lipid metabolism and synaptogenesis. iScience 2022; 25:103551. [PMID: 34984324 PMCID: PMC8693007 DOI: 10.1016/j.isci.2021.103551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/23/2021] [Accepted: 11/26/2021] [Indexed: 01/01/2023] Open
Abstract
The complex 16p11.2 deletion syndrome (16pdel) is accompanied by neurological disorders, including epilepsy, autism spectrum disorder, and intellectual disability. We demonstrated that 16pdel iPSC differentiated neurons from affected people show augmented local field potential activity and altered ceramide-related lipid species relative to unaffected. FAM57B, a poorly characterized gene in the 16p11.2 interval, has emerged as a candidate tied to symptomatology. We found that FAM57B modulates ceramide synthase (CerS) activity, but is not a CerS per se. In FAM57B mutant human neuronal cells and zebrafish brain, composition and levels of sphingolipids and glycerolipids associated with cellular membranes are disrupted. Consistently, we observed aberrant plasma membrane architecture and synaptic protein mislocalization, which were accompanied by depressed brain and behavioral activity. Together, these results suggest that haploinsufficiency of FAM57B contributes to changes in neuronal activity and function in 16pdel syndrome through a crucial role for the gene in lipid metabolism.
Collapse
Affiliation(s)
| | - Jiyoon L. Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yara Khodour
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Maya Mitalipova
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony H. Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
98
|
Shalaby YM, Al Aidaros A, Valappil A, Ali BR, Akawi N. Role of Ceramides in the Molecular Pathogenesis and Potential Therapeutic Strategies of Cardiometabolic Diseases: What we Know so Far. Front Cell Dev Biol 2022; 9:816301. [PMID: 35127726 PMCID: PMC8808480 DOI: 10.3389/fcell.2021.816301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023] Open
Abstract
Ceramides represent a class of biologically active lipids that are involved in orchestrating vital signal transduction pathways responsible for regulating cellular differentiation and proliferation. However, accumulating clinical evidence have shown that ceramides are playing a detrimental role in the pathogenesis of several diseases including cardiovascular disease, type II diabetes and obesity, collectively referred to as cardiometabolic disease. Therefore, it has become necessary to study in depth the role of ceramides in the pathophysiology of such diseases, aiming to tailor more efficient treatment regimens. Furthermore, understanding the contribution of ceramides to the pathological molecular mechanisms of those interrelated conditions may improve not only the therapeutic but also the diagnostic and preventive approaches of the preceding hazardous events. Hence, the purpose of this article is to review currently available evidence on the role of ceramides as a common factor in the pathological mechanisms of cardiometabolic diseases as well as the mechanism of action of the latest ceramides-targeted therapies.
Collapse
Affiliation(s)
- Youssef M Shalaby
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Egypt
| | - Anas Al Aidaros
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anjana Valappil
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Nadia Akawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
99
|
Galor A, Sanchez V, Jensen A, Burton M, Maus K, Stephenson D, Chalfant C, Mandal N. Meibum sphingolipid composition is altered in individuals with meibomian gland dysfunction-a side by side comparison of Meibum and Tear Sphingolipids. Ocul Surf 2022; 23:87-95. [PMID: 34861426 PMCID: PMC8792295 DOI: 10.1016/j.jtos.2021.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE Sphingolipids (SPL) play a role in cell signaling, inflammation, and apoptosis. The purpose of this study was to examine meibum and tear SPL composition in individuals with poor versus good meibum quality. METHODS Individuals were grouped by meibum quality (n = 25 with poor quality, case group and n = 25 with good quality, control group). Meibum and tears were analyzed with liquid chromatography-mass spectrometry (LC-MS) to quantify SPL classes. Semiquantitative and relative composition (mole percent) of SPL and major classes, Ceramide (Cer), Hexosyl-Ceramide (Hex-Cer), Sphingomyelin (SM), Sphingosine (Sph), and sphingosine 1-phosphate (S1P) were compared between groups. RESULTS Demographic characteristics were similar between the two groups. Overall, individuals with poor meibum quality had more SPL pmole in meibum and tears than controls. Relative composition analysis revealed that individuals with poor meibum quality had SPL composed of less Cer, Hex-Cer, and Sph and more SM compared to individuals with good quality meibum. This pattern was not reproduced in tears as individuals with poor meibum quality had SPL composed of a similar amount of Cer, but more Hex-Cer, Sph and SM compared to controls. In meibum, SPL pmole and relative composition most strongly correlated with MG metrics while in tears, SPL pmole and relative composition most strongly correlated with tear production. SPL in both compartments, specifically Cer pmole in meibum and S1P% in tears, correlated with DE symptoms. CONCLUSION SPL composition differs in meibum and tears in patients with poor vs good meibum quality. These findings may be translated into therapeutic targets for disease.
Collapse
Affiliation(s)
- Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL 33125,Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL 33136
| | - Victor Sanchez
- New York University Grossman School of Medicine, New York, NY 10016
| | - Andrew Jensen
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL 33125
| | - Madeline Burton
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN 38163
| | - Kenneth Maus
- Departments of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620
| | | | - Charles Chalfant
- Departments of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620,The Moffitt Cancer Center, Tampa, FL 33620,Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612
| | - Nawajes Mandal
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN 38163,Departments of Anatomy and Neurobiology, and Pharmaceutical Sciences, University of Tennessee Health Sciences Center, 930 Madison Avenue, Memphis, TN 38163,Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104.,Corresponding Author: Nawajes Mandal, PhD, 930 Madison Avenue, Suite 718, Memphis, TN 38163;
| |
Collapse
|
100
|
Phillips GR, Saville JT, Hancock SE, Brown SHJ, Jenner AM, McLean C, Fuller M, Newell KA, Mitchell TW. The long and the short of Huntington’s disease: how the sphingolipid profile is shifted in the caudate of advanced clinical cases. Brain Commun 2021; 4:fcab303. [PMID: 35169703 PMCID: PMC8833324 DOI: 10.1093/braincomms/fcab303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/27/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
Huntington’s disease is a devastating neurodegenerative disorder that onsets in late adulthood as progressive and terminal cognitive, psychiatric and motor deficits. The disease is genetic, triggered by a CAG repeat (polyQ) expansion mutation in the Huntingtin gene and resultant huntingtin protein. Although the mutant huntingtin protein is ubiquitously expressed, the striatum degenerates early and consistently in the disease. The polyQ mutation at the N-terminus of the huntingtin protein alters its natural interactions with neural phospholipids in vitro, suggesting that the specific lipid composition of brain regions could influence their vulnerability to interference by mutant huntingtin; however, this has not yet been demonstrated in vivo. Sphingolipids are critical cell signalling molecules, second messengers and membrane components. Despite evidence of sphingolipid disturbance in Huntington’s mouse and cell models, there is limited knowledge of how these lipids are affected in human brain tissue. Using post-mortem brain tissue from five brain regions implicated in Huntington’s disease (control n = 13, Huntington’s n = 13), this study aimed to identify where and how sphingolipid species are affected in the brain of clinically advanced Huntington’s cases. Sphingolipids were extracted from the tissue and analysed using targeted mass spectrometry analysis; proteins were analysed by western blot. The caudate, putamen and cerebellum had distinct sphingolipid changes in Huntington’s brain whilst the white and grey frontal cortex were spared. The caudate of Huntington’s patients had a shifted sphingolipid profile, favouring long (C13–C21) over very-long-chain (C22–C26) ceramides, sphingomyelins and lactosylceramides. Ceramide synthase 1, which synthesizes the long-chain sphingolipids, had a reduced expression in Huntington’s caudate, correlating positively with a younger age at death and a longer CAG repeat length of the Huntington’s patients. The expression of ceramide synthase 2, which synthesizes very-long-chain sphingolipids, was not different in Huntington’s brain. However, there was evidence of possible post-translational modifications in the Huntington’s patients only. Post-translational modifications to ceramide synthase 2 may be driving the distinctive sphingolipid profile shifts of the caudate in advanced Huntington’s disease. This shift in the sphingolipid profile is also found in the most severely affected brain regions of several other neurodegenerative conditions and may be an important feature of region-specific cell dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Gabrielle R. Phillips
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jennifer T. Saville
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Sarah E. Hancock
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Simon H. J. Brown
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Andrew M. Jenner
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Health and Florey Neuroscience, Parkville, VIC 3052, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Kelly A. Newell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Todd W. Mitchell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|