51
|
Maximo JO, Nelson CM, Kana RK. "Unrest while Resting"? Brain entropy in autism spectrum disorder. Brain Res 2021; 1762:147435. [PMID: 33753068 DOI: 10.1016/j.brainres.2021.147435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/20/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
Biological systems typically exhibit complex behavior with nonlinear dynamic properties. Nonlinear signal processing techniques such as sample entropy is a novel approach to characterize the temporal dynamics of brain connectivity. Estimating entropy is especially important in clinical populations such as autism spectrum disorder (ASD) as differences in entropy may signal functional alterations in the brain. Considering the models of disrupted brain network connectivity in ASD, sample entropy would provide a novel direction to understand brain organization. Resting state fMRI data from 45 high-functioning children with ASD and 45 age-and-IQ-matched typically developing (TD) children were obtained from the Autism Brain Imaging Data Exchange (ABIDE-II) database. Data were preprocessed using the CONN toolbox. Sample entropy was then calculated using the complexity toolbox, in a whole-brain voxelwise manner as well as in regions of interests (ROIs) based methods. ASD participants demonstrated significantly increased entropy in left angular gyrus, superior parietal lobule, and right inferior temporal gyrus; and reduced sample entropy in superior frontal gyrus compared to TD participants. Positive correlations of average entropy in clusters of significant group differences scores across all subjects were found. Finally, ROI analysis revealed a main effect of lobes. Differences in entropy between the ASD and TD groups suggests that entropy may provide another important index of brain dysfunction in clinical populations like ASD. Further, the relationship between increased entropy and ASD symptoms in our study underscores the role of optimal brain synchronization in cognitive and behavioral functions.
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, United States
| | - Cailee M Nelson
- Department of Educational Studies in Psychology, Research Methodology, & Counseling, University of Alabama, United States
| | - Rajesh K Kana
- Department of Psychology, University of Alabama, United States; Center for Innovative Research in Autism, University of Alabama, United States.
| |
Collapse
|
52
|
Cerullo S, Fulceri F, Muratori F, Contaldo A. Acting with shared intentions: A systematic review on joint action coordination in Autism Spectrum Disorder. Brain Cogn 2021; 149:105693. [PMID: 33556847 DOI: 10.1016/j.bandc.2021.105693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Joint actions, described as a form of social interaction in which individuals coordinate their actions in space and time to bring about a change in the environment, rely on sensory-motor processes that play a role in the development of social skills. Two brain networks, associated with "mirroring" and "mentalizing", are engaged during these actions: the mirror neuron and the theory of mind systems. People with autism spectrum disorder (ASD) showed impairment in interpersonal coordination during joint actions. Studying joint action coordination in ASD will contribute to clarify the interplay between sensory-motor and social processes throughout development and the interactions between the brain and the behavior. METHOD This review focused on empirical studies that reported behavioral and kinematic findings related to joint action coordination in people with ASD. RESULTS Literature on mechanisms involved in the joint action coordination impairment in ASD is still limited. Data are controversial. Different key-components of joint action coordination may be impaired, such as cooperative behavior, temporal coordination, and motor planning. CONCLUSIONS Interpersonal coordination during joint actions relies on early sensory-motor processes that have a key role in guiding social development. Early intervention targeting the sensory-motor processes involved in the development of joint action coordination could positively support social skills.
Collapse
Affiliation(s)
- Sonia Cerullo
- IRCCS Stella Maris Foundation, 331 Viale del Tirreno, 56018 Pisa, Italy
| | - Francesca Fulceri
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Filippo Muratori
- IRCCS Stella Maris Foundation, 331 Viale del Tirreno, 56018 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annarita Contaldo
- IRCCS Stella Maris Foundation, 331 Viale del Tirreno, 56018 Pisa, Italy.
| |
Collapse
|
53
|
Sexually dimorphic neuroanatomical differences relate to ASD-relevant behavioral outcomes in a maternal autoantibody mouse model. Mol Psychiatry 2021; 26:7530-7537. [PMID: 34290368 PMCID: PMC8776898 DOI: 10.1038/s41380-021-01215-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Immunoglobulin G (IgG) autoantibodies reactive to fetal brain proteins in mothers of children with ASD have been described by several groups. To understand their pathologic significance, we developed a mouse model of maternal autoantibody related ASD (MAR-ASD) utilizing the peptide epitopes from human autoantibody reactivity patterns. Male and female offspring prenatally exposed to the salient maternal autoantibodies displayed robust deficits in social interactions and increased repetitive self-grooming behaviors as juveniles and adults. In the present study, neuroanatomical differences in adult MAR-ASD and control offspring were assessed via high-resolution ex vivo magnetic resonance imaging (MRI) at 6 months of age. Of interest, MAR-ASD mice displayed significantly larger total brain volume and of the 159 regions examined, 31 were found to differ significantly in absolute volume (mm3) at an FDR of <5%. Specifically, the absolute volumes of several white matter tracts, cortical regions, and basal nuclei structures were significantly increased in MAR-ASD animals. These phenomena were largely driven by female MAR-ASD offspring, as no significant differences were seen with either absolute or relative regional volume in male MAR-ASD mice. However, structural covariance analysis suggests network-level desynchronization in brain volume in both male and female MAR-ASD mice. Additionally, preliminary correlational analysis with behavioral data relates that volumetric increases in numerous brain regions of MAR-ASD mice were correlated with social interaction and repetitive self-grooming behaviors in a sex-specific manner. These results demonstrate significant sex-specific effects in brain size, regional relationships, and behavior for offspring prenatally exposed to MAR-ASD autoantibodies relative to controls.
Collapse
|
54
|
Zhang H, Wang YF, Zheng LJ, Lin L, Zhang XY, Yang YT, Liu Y, Lu GM, Zhang LJ. Impacts of FKBP5 variants on large-scale brain network connectivity in healthy adults. J Affect Disord 2020; 273:32-40. [PMID: 32421620 DOI: 10.1016/j.jad.2020.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND FK506 binding protein 5 (FKBP5) rs1360780 polymorphism has been identified as a molecular genetic marker associated with the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. The impact of FKBP5 rs1360780 on the large-scale brain network connectivity in healthy adults is still unknown. METHODS 479 healthy volunteers (age: 20-80years) completed MRI scans, neuropsychological assessments and blood analysis.All subjects were divided into CC, CT and TT genotypes. Within and between network connectivities (10 sub-networks) were calculated using resting state functional MRI (rs-fMRI) data. The genetic effects and gene-gender/age interaction on large-scale network connectivity were explored. RESULTS Compared with CC and CT groups, TT group showed increased intra-connectivity in default mode network (DMN) and increased inter-connectivity mainly distributed among the network of DMN, salience network (SAN), dorsal attention network (DAN), ventral attention network (VAN), subcortical network (SUB), and visual network (VIS). Gene-by-gender and gene-by-age interaction were found in inter-connectivity of DAN to VIS and DMN to FPN, respectively. The altered connectivities correlated with anxiety status test score. LIMITATIONS Plasma adrenocorticotropic hormone (ACTH) or cortisol were not measured,or else, we could estimate the hypothalamic-pituitary-adrenal (HPA) axis activity which may strengthen our results. CONCLUSIONS FKBP5 rs1360780 modulates the large-scale brain network connectivity in healthy adults. TT carriers showed the increased intra- and inter-connectivities mainly distributed among the network of DMN, SAN, DAN, VAN, SUB and VIS.
Collapse
Affiliation(s)
- Han Zhang
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Yun Fei Wang
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Li Juan Zheng
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Li Lin
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Xin Yuan Zhang
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Yu Ting Yang
- Department of Medical Imaging, Medical Imaging Center, Nanjing Clinical School, Southern Medical University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Ya Liu
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Guang Ming Lu
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China.
| |
Collapse
|
55
|
Audrain SP, Urbain CM, Yuk V, Leung RC, Wong SM, Taylor MJ. Frequency-specific neural synchrony in autism during memory encoding, maintenance and recognition. Brain Commun 2020; 2:fcaa094. [PMID: 32954339 PMCID: PMC7472901 DOI: 10.1093/braincomms/fcaa094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 11/23/2022] Open
Abstract
Working memory impairment is associated with symptom severity and poor functional outcome in autistic individuals, and yet the neurobiology underlying such deficits is poorly understood. Neural oscillations are an area of investigation that can shed light on this issue. Theta and alpha oscillations have been found consistently to support working memory in typically developing individuals and have also been shown to be functionally altered in people with autism. While there is evidence, largely from functional magnetic resonance imaging studies, that neural processing underlying working memory is altered in autism, there remains a dearth of information concerning how sub-processes supporting working memory (namely encoding, maintenance and recognition) are impacted. In this study, we used magnetoencephalography to investigate inter-regional theta and alpha brain synchronization elicited during the widely used one-back task across encoding, maintenance and recognition in 24 adults with autism and 30 controls. While both groups performed comparably on the working-memory task, we found process- and frequency-specific differences in networks recruited between groups. In the theta frequency band, both groups used similar networks during encoding and recognition, but different networks specifically during maintenance. In comparison, the two groups recruited distinct networks across encoding, maintenance and recognition in alpha that showed little overlap. These differences may reflect a breakdown of coherent theta and alpha synchronization that supports mnemonic functioning, or in the case of alpha, impaired inhibition of task-irrelevant neural processing. Thus, these data provide evidence for specific theta and widespread alpha synchrony alterations in autism, and underscore that a detailed examination of the sub-processes that comprise working memory is warranted for a complete understanding of cognitive impairment in this population.
Collapse
Affiliation(s)
- Samantha P Audrain
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto M5T 0S8, Canada.,Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada
| | - Charline M Urbain
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), Brussels B-1050, Belgium.,2LCFC - Laboratoire de Cartographie Fonctionnelle du Cerveau at UNI, Erasme Hospital, ULB, Brussels B-1070, Belgium
| | - Veronica Yuk
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.,Neurosciences & Mental Health Programme, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Rachel C Leung
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada
| | - Simeon M Wong
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Neurosciences & Mental Health Programme, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.,Neurosciences & Mental Health Programme, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Canada.,Department of Medical Imaging, University of Toronto, Toronto M5T 1W7, Canada
| |
Collapse
|
56
|
Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR, Goldberg EM, Su K, Li S, Lu L, Jacob F, Nguyen PTT, Huh S, Hoke A, Swinford-Jackson SE, Wen Z, Gu X, Pierce RC, Wu H, Briand LA, Chen HI, Wolf JA, Song H, Ming GL. Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation. Cell Stem Cell 2020; 26:766-781.e9. [PMID: 32142682 PMCID: PMC7366517 DOI: 10.1016/j.stem.2020.02.002] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/18/2019] [Accepted: 02/10/2020] [Indexed: 01/08/2023]
Abstract
Human brain organoids provide unique platforms for modeling development and diseases by recapitulating the architecture of the embryonic brain. However, current organoid methods are limited by interior hypoxia and cell death due to insufficient surface diffusion, preventing generation of architecture resembling late developmental stages. Here, we report the sliced neocortical organoid (SNO) system, which bypasses the diffusion limit to prevent cell death over long-term cultures. This method leads to sustained neurogenesis and formation of an expanded cortical plate that establishes distinct upper and deep cortical layers for neurons and astrocytes, resembling the third trimester embryonic human neocortex. Using the SNO system, we further identify a critical role of WNT/β-catenin signaling in regulating human cortical neuron subtype fate specification, which is disrupted by a psychiatric-disorder-associated genetic mutation in patient induced pluripotent stem cell (iPSC)-derived SNOs. These results demonstrate the utility of SNOs for investigating previously inaccessible human-specific, late-stage cortical development and disease-relevant mechanisms.
Collapse
Affiliation(s)
- Xuyu Qian
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher D Adam
- Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Sarshan R Pather
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ethan M Goldberg
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kenong Su
- Department of Computer Science, Emory University College of Arts and Sciences, Atlanta, GA 30322, USA
| | - Shiying Li
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Lu Lu
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Phuong T T Nguyen
- Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sooyoung Huh
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahmet Hoke
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Zhexing Wen
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - R Christopher Pierce
- Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Lisa A Briand
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - H Isaac Chen
- Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - John A Wolf
- Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
57
|
Wang XJ. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat Rev Neurosci 2020; 21:169-178. [PMID: 32029928 PMCID: PMC7334830 DOI: 10.1038/s41583-020-0262-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
With advances in connectomics, transcriptome and neurophysiological technologies, the neuroscience of brain-wide neural circuits is poised to take off. A major challenge is to understand how a vast diversity of functions is subserved by parcellated areas of mammalian neocortex composed of repetitions of a canonical local circuit. Areas of the cerebral cortex differ from each other not only in their input-output patterns but also in their biological properties. Recent experimental and theoretical work has revealed that such variations are not random heterogeneities; rather, synaptic excitation and inhibition display systematic macroscopic gradients across the entire cortex, and they are abnormal in mental illness. Quantitative differences along these gradients can lead to qualitatively novel behaviours in non-linear neural dynamical systems, by virtue of a phenomenon mathematically described as bifurcation. The combination of macroscopic gradients and bifurcations, in tandem with biological evolution, development and plasticity, provides a generative mechanism for functional diversity among cortical areas, as a general principle of large-scale cortical organization.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
58
|
Yuk V, Urbain C, Anagnostou E, Taylor MJ. Frontoparietal Network Connectivity During an N-Back Task in Adults With Autism Spectrum Disorder. Front Psychiatry 2020; 11:551808. [PMID: 33033481 PMCID: PMC7509600 DOI: 10.3389/fpsyt.2020.551808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/13/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Short-term and working memory (STM and WM) deficits have been demonstrated in individuals with autism spectrum disorder (ASD) and may emerge through atypical functional activity and connectivity of the frontoparietal network, which exerts top-down control necessary for successful STM and WM processes. Little is known regarding the spectral properties of the frontoparietal network during STM or WM processes in ASD, although certain neural frequencies have been linked to specific neural mechanisms. METHODS We analysed magnetoencephalographic data from 39 control adults (26 males; 27.15 ± 5.91 years old) and 40 adults with ASD (26 males; 27.17 ± 6.27 years old) during a 1-back condition (STM) of an n-back task, and from a subset of this sample during a 2-back condition (WM). We performed seed-based connectivity analyses using regions of the frontoparietal network. Interregional synchrony in theta, alpha, and beta bands was assessed with the phase difference derivative and compared between groups during periods of maintenance and recognition. RESULTS During maintenance of newly presented vs. repeated stimuli, the two groups did not differ significantly in theta, alpha, or beta phase synchrony for either condition. Adults with ASD showed alpha-band synchrony in a network containing the right dorsolateral prefrontal cortex, bilateral inferior parietal lobules (IPL), and precuneus in both 1- and 2-back tasks, whereas controls demonstrated alpha-band synchrony in a sparser set of regions, including the left insula and IPL, in only the 1-back task. During recognition of repeated vs. newly presented stimuli, adults with ASD exhibited decreased theta-band connectivity compared to controls in a network with hubs in the right inferior frontal gyrus and left IPL in the 1-back condition. Whilst there were no group differences in connectivity in the 2-back condition, adults with ASD showed no frontoparietal network recruitment during recognition, whilst controls activated networks in the theta and beta bands. CONCLUSIONS Our findings suggest that since adults with ASD performed well on the n-back task, their appropriate, but effortful recruitment of alpha-band mechanisms in the frontoparietal network to maintain items in STM and WM may compensate for atypical modulation of this network in the theta band to recognise previously presented items in STM.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Charline Urbain
- Neuropsychology and Functional Neuroimaging Research Group, Center for Research in Cognition & Neurosciences and ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Laboratoire de Cartographie Fonctionnelle du Cerveau, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Neurology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
59
|
McDonough IM, Letang SK, Erwin HB, Kana RK. Evidence for Maintained Post-Encoding Memory Consolidation Across the Adult Lifespan Revealed by Network Complexity. ENTROPY 2019. [PMCID: PMC7514376 DOI: 10.3390/e21111072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Memory consolidation is well known to occur during sleep, but might start immediately after encoding new information while awake. While consolidation processes are important across the lifespan, they may be even more important to maintain memory functioning in old age. We tested whether a novel measure of information processing known as network complexity might be sensitive to post-encoding consolidation mechanisms in a sample of young, middle-aged, and older adults. Network complexity was calculated by assessing the irregularity of brain signals within a network over time using multiscale entropy. To capture post-encoding mechanisms, network complexity was estimated using functional magnetic resonance imaging (fMRI) during rest before and after encoding of picture pairs, and subtracted between the two rest periods. Participants received a five-alternative-choice memory test to assess associative memory performance. Results indicated that aging was associated with an increase in network complexity from pre- to post-encoding in the default mode network (DMN). Increases in network complexity in the DMN also were associated with better subsequent memory across all age groups. These findings suggest that network complexity is sensitive to post-encoding consolidation mechanisms that enhance memory performance. These post-encoding mechanisms may represent a pathway to support memory performance in the face of overall memory declines.
Collapse
|
60
|
Patterns of Cerebellar Connectivity with Intrinsic Connectivity Networks in Autism Spectrum Disorders. J Autism Dev Disord 2019; 49:4498-4514. [DOI: 10.1007/s10803-019-04168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
61
|
Oprisan SA, Clementsmith X, Tompa T, Lavin A. Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice. PLoS One 2019; 14:e0223469. [PMID: 31618234 PMCID: PMC6795423 DOI: 10.1371/journal.pone.0223469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
The goal of this study was to investigate the effects of acute cocaine injection or dopamine (DA) receptor antagonists on the medial prefrontal cortex (mPFC) gamma oscillations and their relationship to short term neuroadaptation that may mediate addiction. For this purpose, optogenetically evoked local field potentials (LFPs) in response to a brief 10 ms laser light pulse were recorded from 17 mice. D1-like receptor antagonist SCH 23390 or D2-like receptor antagonist sulpiride, or both, were administered either before or after cocaine. A Euclidian distance-based dendrogram classifier separated the 100 trials for each animal in disjoint clusters. When baseline and DA receptor antagonists trials were combined in a single trial, a minimum of 20% overlap occurred in some dendrogram clusters, which suggests a possible common, invariant, dynamic mechanism shared by both baseline and DA receptor antagonists data. The delay-embedding method of neural activity reconstruction was performed using the correlation time and mutual information to determine the lag/correlation time of LFPs and false nearest neighbors to determine the embedding dimension. We found that DA receptor antagonists applied before cocaine cancels out the effect of cocaine and leaves the lag time distributions at baseline values. On the other hand, cocaine applied after DA receptor antagonists shifts the lag time distributions to longer durations, i.e. increase the correlation time of LFPs. Fourier analysis showed that a reasonable accurate decomposition of the LFP data can be obtained with a relatively small (less than ten) Fourier coefficients.
Collapse
Affiliation(s)
- Sorinel A. Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States of America
- * E-mail:
| | - Xandre Clementsmith
- Department of Computer Science, College of Charleston, Charleston, SC, United States of America
| | - Tamas Tompa
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States of America
- Faculty of Healthcare, Department of Preventive Medicine, University of Miskolc, Miskolc, Hungary
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States of America
| |
Collapse
|
62
|
Guo X, Duan X, Chen H, He C, Xiao J, Han S, Fan YS, Guo J, Chen H. Altered inter- and intrahemispheric functional connectivity dynamics in autistic children. Hum Brain Mapp 2019; 41:419-428. [PMID: 31600014 PMCID: PMC7268059 DOI: 10.1002/hbm.24812] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence has associated autism spectrum disorder (ASD) with static functional connectivity abnormalities between multiple brain regions. However, the temporal dynamics of intra‐ and interhemispheric functional connectivity patterns remain unknown in ASD. Resting‐state functional magnetic resonance imaging data were analyzed for 105 ASD and 102 demographically matched typically developing control (TC) children (age range: 7–12 years) available from the Autism Brain Imaging Data Exchange database. Whole‐brain functional connectivity was decomposed into ipsilateral and contralateral functional connectivity, and sliding‐window analysis was utilized to capture the intra‐ and interhemispheric dynamic functional connectivity density (dFCD) patterns. The temporal variability of the functional connectivity dynamics was further quantified using the standard deviation (SD) of intra‐ and interhemispheric dFCD across time. Finally, a support vector regression model was constructed to assess the relationship between abnormal dFCD variance and autism symptom severity. Both intra‐ and interhemispheric comparisons showed increased dFCD variability in the anterior cingulate cortex/medial prefrontal cortex and decreased variability in the fusiform gyrus/inferior temporal gyrus in autistic children compared with TC children. Autistic children additionally showed lower intrahemispheric dFCD variability in sensorimotor regions including the precentral/postcentral gyrus. Moreover, aberrant temporal variability of the contralateral dFCD predicted the severity of social communication impairments in autistic children. These findings demonstrate altered temporal dynamics of the intra‐ and interhemispheric functional connectivity in brain regions incorporating social brain network of ASD, and highlight the potential role of abnormal interhemispheric communication dynamics in neural substrates underlying impaired social processing in ASD.
Collapse
Affiliation(s)
- Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Heng Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China.,School of Medicine, Guizhou University, Guiyang, China
| | - Changchun He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shaoqiang Han
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun-Shuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
63
|
Szczurkowska J, Pischedda F, Pinto B, Managò F, Haas CA, Summa M, Bertorelli R, Papaleo F, Schäfer MK, Piccoli G, Cancedda L. NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain 2019; 141:2772-2794. [PMID: 30059965 PMCID: PMC6113639 DOI: 10.1093/brain/awy190] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/04/2018] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorders are neurodevelopmental conditions with diverse aetiologies, all characterized by common core symptoms such as impaired social skills and communication, as well as repetitive behaviour. Cell adhesion molecules, receptor tyrosine kinases and associated downstream signalling have been strongly implicated in both neurodevelopment and autism spectrum disorders. We found that downregulation of the cell adhesion molecule NEGR1 or the receptor tyrosine kinase fibroblast growth factor receptor 2 (FGFR2) similarly affects neuronal migration and spine density during mouse cortical development in vivo and results in impaired core behaviours related to autism spectrum disorders. Mechanistically, NEGR1 physically interacts with FGFR2 and modulates FGFR2-dependent extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) signalling by decreasing FGFR2 degradation from the plasma membrane. Accordingly, FGFR2 overexpression rescues all defects due to Negr1 knockdown in vivo. Negr1 knockout mice present phenotypes similar to Negr1-downregulated animals. These data indicate that NEGR1 and FGFR2 cooperatively regulate cortical development and suggest a role for defective NEGR1-FGFR2 complex and convergent downstream ERK and AKT signalling in autism spectrum disorders.
Collapse
Affiliation(s)
- Joanna Szczurkowska
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Università degli Studi di Genova, Via Balbi, 5, Genoa, Italy
| | - Francesca Pischedda
- Laboratory of Biology of Synapse. Center for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Francesca Managò
- Genetics of Cognition Laboratory, Italian Institute of Technology, Genoa, Italy
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Summa
- Department of Drug Discovery and Development, Italian Institute of Technology, Genoa, Italy
| | - Rosalia Bertorelli
- Department of Drug Discovery and Development, Italian Institute of Technology, Genoa, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Italian Institute of Technology, Genoa, Italy
| | - Michael K Schäfer
- Department of Anesthesiology and Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Giovanni Piccoli
- Laboratory of Biology of Synapse. Center for Integrative Biology (CIBIO), University of Trento, Trento, Italy.,Dulbecco Telethon Institute, Varese Street 16b - 00185 Rome, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Dulbecco Telethon Institute, Varese Street 16b - 00185 Rome, Italy
| |
Collapse
|
64
|
Humble J, Hiratsuka K, Kasai H, Toyoizumi T. Intrinsic Spine Dynamics Are Critical for Recurrent Network Learning in Models With and Without Autism Spectrum Disorder. Front Comput Neurosci 2019; 13:38. [PMID: 31263407 PMCID: PMC6585147 DOI: 10.3389/fncom.2019.00038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
It is often assumed that Hebbian synaptic plasticity forms a cell assembly, a mutually interacting group of neurons that encodes memory. However, in recurrently connected networks with pure Hebbian plasticity, cell assemblies typically diverge or fade under ongoing changes of synaptic strength. Previously assumed mechanisms that stabilize cell assemblies do not robustly reproduce the experimentally reported unimodal and long-tailed distribution of synaptic strengths. Here, we show that augmenting Hebbian plasticity with experimentally observed intrinsic spine dynamics can stabilize cell assemblies and reproduce the distribution of synaptic strengths. Moreover, we posit that strong intrinsic spine dynamics impair learning performance. Our theory explains how excessively strong spine dynamics, experimentally observed in several animal models of autism spectrum disorder, impair learning associations in the brain.
Collapse
Affiliation(s)
- James Humble
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Saitama, Japan
| | - Kazuhiro Hiratsuka
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Saitama, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Faculty of Medicine, Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo, Japan
| | - Taro Toyoizumi
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
65
|
Steinman G, Mankuta D. Molecular biology of autism's etiology - An alternative mechanism. Med Hypotheses 2019; 130:109272. [PMID: 31383342 DOI: 10.1016/j.mehy.2019.109272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 01/02/2023]
Abstract
Autism is a neuropathologic condition believed to be the consequence of cerebral dysconnectivity. Hypomyelination of axons in brain nerve pathways parallels behavioral abnormalities characteristic of autism. The present discussion will examine the functional association of insulin-like growth factor-1 (IGF1) to neo-neuron myelination, especially in autistic children. These structural defects apparently correlate with a reduced level of circulating IGF. In addition, the potential connection of single nucleotide polymorphism to the etiology of autism is considered. Pharmaceutical and nutritional supplements that may enhance IGF1 to reduce the incidence of autism are proposed.
Collapse
Affiliation(s)
- Gary Steinman
- Department of Obstetrics & Gynecology, Hadassah Hospital/Hebrew University, Ein Kerem, Jerusalem 12000, Israel.
| | - David Mankuta
- Department of Obstetrics & Gynecology, Hadassah Hospital/Hebrew University, Ein Kerem, Jerusalem 12000, Israel
| |
Collapse
|
66
|
Abstract
Psychiatric disorders are disturbances of cognitive and behavioral processes mediated by the brain. Emerging evidence suggests that accurate biomarkers for psychiatric disorders might benefit from incorporating information regarding multiple brain regions and their interactions with one another, rather than considering local perturbations in brain structure and function alone. Recent advances in the field of applied mathematics generally - and network science specifically - provide a language to capture the complexity of interacting brain regions, and the application of this language to fundamental questions in neuroscience forms the emerging field of network neuroscience. This chapter provides an overview of the use and utility of network neuroscience for building biomarkers in psychiatry. The chapter begins with an overview of the theoretical frameworks and tools that encompass network neuroscience before describing applications of network neuroscience to the study of schizophrenia and major depressive disorder. With reference to work on genetic, molecular, and environmental correlates of network neuroscience features, the promises and challenges of network neuroscience for providing tools that aid in the diagnosis and the evaluation of treatment response in psychiatric disorders are discussed.
Collapse
|
67
|
Abstract
Increasing evidence indicates that the subjective experience of recollection is diminished in autism spectrum disorder (ASD) compared to neurotypical individuals. The neurocognitive basis of this difference in how past events are re-experienced has been debated and various theoretical accounts have been proposed to date. Although each existing theory may capture particular features of memory in ASD, recent research questions whether any of these explanations are alone sufficient or indeed fully supported. This review first briefly considers the cognitive neuroscience of how episodic recollection operates in the neurotypical population, informing predictions about the encoding and retrieval mechanisms that might function atypically in ASD. We then review existing research on recollection in ASD, which has often not distinguished between different theoretical explanations. Recent evidence suggests a distinct difficulty engaging recollective retrieval processes, specifically the ability to consciously reconstruct and monitor a past experience, which is likely underpinned by altered functional interactions between neurocognitive systems rather than brain region-specific or process-specific dysfunction. This integrative approach serves to highlight how memory research in ASD may enhance our understanding of memory processes and networks in the typical brain. We make suggestions for future research that are important for further specifying the neurocognitive basis of episodic recollection in ASD and linking such difficulties to social developmental and educational outcomes.
Collapse
|
68
|
Brain Network Organization Correlates with Autistic Features in Preschoolers with Autism Spectrum Disorders and in Their Fathers: Preliminary Data from a DWI Analysis. J Clin Med 2019; 8:jcm8040487. [PMID: 30974902 PMCID: PMC6518033 DOI: 10.3390/jcm8040487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 11/17/2022] Open
Abstract
Autism Spectrum Disorders (ASD) is a group of neurodevelopmental disorders that is characterized by an altered brain connectivity organization. Autistic traits below the clinical threshold (i.e., the broad autism phenotype; BAP) are frequent among first-degree relatives of subjects with ASD; however, little is known regarding whether subthreshold behavioral manifestations of ASD mirror also at the neuroanatomical level in parents of ASD probands. To this aim, we applied advanced diffusion network analysis to MRI of 16 dyads consisting of a child with ASD and his father in order to investigate: (i) the correlation between structural network organization and autistic features in preschoolers with ASD (all males; age range 1.5-5.2 years); (ii) the correlation between structural network organization and BAP features in the fathers of individuals with ASD (fath-ASD). Local network measures significantly correlated with autism severity in ASD children and with BAP traits in fath-ASD, while no significant association emerged when considering the global measures of brain connectivity. Notably, an overlap of some brain regions that are crucial for social functioning (cingulum, superior temporal gyrus, inferior temporal gyrus, middle frontal gyrus, frontal pole, and amygdala) in patients with ASD and fath-ASD was detected, suggesting an intergenerational transmission of these neural substrates. Overall, the results of this study may help in elucidating the neurostructural endophenotype of ASD, paving the way for bridging connections between underlying genetic and ASD symptomatology.
Collapse
|
69
|
Petanjek Z, Sedmak D, Džaja D, Hladnik A, Rašin MR, Jovanov-Milosevic N. The Protracted Maturation of Associative Layer IIIC Pyramidal Neurons in the Human Prefrontal Cortex During Childhood: A Major Role in Cognitive Development and Selective Alteration in Autism. Front Psychiatry 2019; 10:122. [PMID: 30923504 PMCID: PMC6426783 DOI: 10.3389/fpsyt.2019.00122] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
The human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass. Here, we provide an overview of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal cortico-cortical output, while their long projections modulate inter-areal processing. In this way, layer IIIC pyramids are the major integrative element of cortical processing, and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC neurons have a unique pattern of dendritic maturation. In contrast to other classes of principal neurons, they undergo an additional phase of extensive dendritic growth during early childhood, and show characteristic molecular changes. Taken together, circuits associated with layer IIIC neurons have the most protracted period of developmental plasticity. This unique feature is advanced but also provides a window of opportunity for pathological events to disrupt normal formation of cognitive circuits involving layer IIIC neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation of layer IIIC neurons may lead into global cortical disconnectivity, affecting development of complex communication and social abilities. We also propose a model that developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other classes of principal neurons. This "disclosure" of pre-existing functionally silent lesions of other neuronal classes induced by development of layer IIIC associative neurons, or their direct alteration, could be found in different forms of autism spectrum disorders. Understanding the gene-environment interaction in shaping cognitive microcircuitries may be fundamental for developing rehabilitation and prevention strategies in autism spectrum and other cognitive disorders.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Džaja
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Roko Rašin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Nataša Jovanov-Milosevic
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
70
|
Francis SM, Camchong J, Brickman L, Goelkel-Garcia L, Mueller BA, Tseng A, Lim KO, Jacob S. Hypoconnectivity of insular resting-state networks in adolescents with Autism Spectrum Disorder. Psychiatry Res Neuroimaging 2019; 283:104-112. [PMID: 30594068 PMCID: PMC6901290 DOI: 10.1016/j.pscychresns.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 11/17/2022]
Abstract
Autism Spectrum Disorder (ASD) is characterized by deficits in social interaction and communication. The anterior insula (AI) participates in emotional salience detection; and the posterior insula (PI) participates in sensorimotor integration and response selection. Meta-analyses have noted insula-based aberrant connectivity within ASD. Given the observed social impairments in ASD and the role of the insula in social information processing (SIP), investigating functional organization of this structure in ASD is important. We investigated differences in resting-state functional connectivity (RSFC) using fMRI in male youths with (N=13; mean=14.6 years; range: 10.2-18.0 years) and without ASD (N=17; mean=14.5 years; range: 10.0-17.5 years). With seed-based FC measures, we compared RSFC in insular networks. Hypoconnectivity was observed in ASD (AI-superior frontal gyrus (SFG); AI-thalamus; PI-inferior parietal lobule (IPL); PI-fusiform gyrus (FG); PI-lentiform nucleus/putamen). Using the Social Communication Questionnaire (SCQ) to assess social functioning, regression analyses yielded negative correlations between SCQ scores and RSFC (AI-SFG; AI-thalamus; PI-FG; PI-IPL). Given the insula's connections to limbic regions, and its role in integrating external sensory stimuli with internal states, atypical activity in this structure may be associated with social deficits characterizing ASD. Our results suggest further investigation of the insula's role in SIP across a continuum of social abilities is needed.
Collapse
Affiliation(s)
- Sunday M Francis
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Jazmin Camchong
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Laura Brickman
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | | | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Angela Tseng
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Suma Jacob
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
71
|
Morgan BR, Ibrahim GM, Vogan VM, Leung RC, Lee W, Taylor MJ. Characterization of Autism Spectrum Disorder across the Age Span by Intrinsic Network Patterns. Brain Topogr 2019; 32:461-471. [PMID: 30659389 DOI: 10.1007/s10548-019-00697-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/06/2019] [Indexed: 01/12/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by abnormal functional organization of brain networks, which may underlie the cognitive and social impairments observed in affected individuals. The present study characterizes unique intrinsic connectivity within- and between- neural networks in children through to adults with ASD, relative to controls. Resting state fMRI data were analyzed in 204 subjects, 102 with ASD and 102 age- and sex-matched controls (ages 7-40 years), acquired on a single scanner. ASD was assessed using the autism diagnostic observation schedule (ADOS). BOLD correlations were calculated between 47 regions of interest, spanning seven resting state brain networks. Partial least squares (PLS) analyses evaluated the association between connectivity patterns and ASD diagnosis as well as ASD severity scores. PLS demonstrated dissociable connectivity patterns in those with ASD, relative to controls. Similar patterns were observed in the whole cohort and in a subgroup analysis of subjects under 18 years of age. Greater inter-network connectivity was seen in ASD with greater intra-network connectivity in controls. In conclusion, stronger inter-network and weaker intra-network resting state-fMRI BOLD correlations characterize ASD and may differentiate control and ASD cohorts. These findings are relevant to understanding ASD as a disruption of network topology.
Collapse
Affiliation(s)
- Benjamin R Morgan
- Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| | - George M Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Vanessa M Vogan
- Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Applied Psychology and Human Development, Ontario Institute for Studies in Education, University of Toronto, Toronto, ON, Canada
| | - Rachel C Leung
- Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Departments of Medical Imaging and Psychology, University of Toronto, Toronto, ON, Canada
| | - Wayne Lee
- Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Margot J Taylor
- Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Departments of Medical Imaging and Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
72
|
Maximo JO, Kana RK. Aberrant "deep connectivity" in autism: A cortico-subcortical functional connectivity magnetic resonance imaging study. Autism Res 2019; 12:384-400. [PMID: 30624021 DOI: 10.1002/aur.2058] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
The number of studies examining functional brain networks in Autism Spectrum Disorder (ASD) has risen over the last decade and has characterized ASD as a disorder of altered brain connectivity. However, these studies have focused largely on cortical structures, and only a few studies have examined cortico-subcortical connectivity in regions like thalamus and basal ganglia in ASD. The goal of this study was to characterize the functional connectivity between cortex and subcortical regions in ASD using the Autism Brain Imaging Data Exchange (ABIDE-II). Resting-state functional magnetic resonance imaging data were used from 168 typically developing (TD) and 138 ASD participants across different sites from the ABIDE II dataset. Functional connectivity of basal ganglia and thalamus to unimodal and supramodal networks was examined in this study. Overconnectivity (ASD > TD) was found between unimodal (except for medial visual network) and subcortical regions, and underconnectivity (TD > ASD) was found between supramodal (except for default mode and dorsal attention networks) and subcortical regions; positive correlations between ASD phenotype and unimodal-subcortical connectivity were found and negative ones with supramodal-subcortical connectivity. These findings suggest that brain networks heavily involved in sensory processing had higher connectivity with subcortical regions, whereas those involved in higher-order thinking showed decreased connectivity in ASD. In addition, brain-behavior correlations indicated a relationship between ASD phenotype and connectivity. Thus, differences in cortico-subcortical connectivity may have a significant impact on basic and higher-order cognitive processes in ASD. Autism Res 2019, 12: 384-400 © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: This study focused on examining the functional connectivity (synchronization of brain activity across regions) of two types of brain networks (unimodal and supramodal) with subcortical areas (thalamus and basal ganglia) in children, adolescents, and adults with autism spectrum disorder (ASD) and how this relates to ASD phenotype. ASD participants showed overconnectivity in unimodal networks and underconnectivity in supramodal networks. These findings provide new insights into cortico-subcortical connections between basic sensory and high-order cognitive processes.
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychology, University of Alabama at Birmingham, Alabama
| | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham, Alabama
| |
Collapse
|
73
|
Not So Fast: Autistic traits and Anxious Apprehension in Real-World Visual Search Scenarios. J Autism Dev Disord 2019; 49:1795-1806. [DOI: 10.1007/s10803-018-03874-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
74
|
Reinwald JR, Becker R, Mallien AS, Falfan-Melgoza C, Sack M, Clemm von Hohenberg C, Braun U, Cosa Linan A, Gass N, Vasilescu AN, Tollens F, Lebhardt P, Pfeiffer N, Inta D, Meyer-Lindenberg A, Gass P, Sartorius A, Weber-Fahr W. Neural Mechanisms of Early-Life Social Stress as a Developmental Risk Factor for Severe Psychiatric Disorders. Biol Psychiatry 2018; 84:116-128. [PMID: 29397900 DOI: 10.1016/j.biopsych.2017.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/21/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND To explore the domain-general risk factor of early-life social stress in mental illness, rearing rodents in persistent postweaning social isolation has been established as a widely used animal model with translational relevance for neurodevelopmental psychiatric disorders such as schizophrenia. Although changes in resting-state brain connectivity are a transdiagnostic key finding in neurodevelopmental diseases, a characterization of imaging correlates elicited by early-life social stress is lacking. METHODS We performed resting-state functional magnetic resonance imaging of postweaning social isolation rats (N = 23) 9 weeks after isolation. Addressing well-established transdiagnostic connectivity changes of psychiatric disorders, we focused on altered frontal and posterior connectivity using a seed-based approach. Then, we examined changes in regional network architecture and global topology using graph theoretical analysis. RESULTS Seed-based analyses demonstrated reduced functional connectivity in frontal brain regions and increased functional connectivity in posterior brain regions of postweaning social isolation rats. Graph analyses revealed a shift of the regional architecture, characterized by loss of dominance of frontal regions and emergence of nonfrontal regions, correlating to our behavioral results, and a reduced modularity in isolation-reared rats. CONCLUSIONS Our result of functional connectivity alterations in the frontal brain supports previous investigations postulating social neural circuits, including prefrontal brain regions, as key pathways for risk for mental disorders arising through social stressors. We extend this knowledge by demonstrating more widespread changes of brain network organization elicited by early-life social stress, namely a shift of hubness and dysmodularity. Our results highly resemble core alterations in neurodevelopmental psychiatric disorders such as schizophrenia, autism, and attention-deficit/hyperactivity disorder in humans.
Collapse
Affiliation(s)
- Jonathan Rochus Reinwald
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Robert Becker
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anne Stephanie Mallien
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Claudia Falfan-Melgoza
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Markus Sack
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Christian Clemm von Hohenberg
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alejandro Cosa Linan
- Research Group In Silico Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Natalia Gass
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andrei-Nicolae Vasilescu
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Fabian Tollens
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Philipp Lebhardt
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Natascha Pfeiffer
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alexander Sartorius
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Weber-Fahr
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
75
|
Mamashli F, Khan S, Bharadwaj H, Losh A, Pawlyszyn SM, Hämäläinen MS, Kenet T. Maturational trajectories of local and long-range functional connectivity in autism during face processing. Hum Brain Mapp 2018; 39:4094-4104. [PMID: 29947148 DOI: 10.1002/hbm.24234] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized neurophysiologically by, among other things, functional connectivity abnormalities in the brain. Recent evidence suggests that the nature of these functional connectivity abnormalities might not be uniform throughout maturation. Comparing between adolescents and young adults (ages 14-21) with ASD and age- and IQ-matched typically developing (TD) individuals, we previously documented, using magnetoencephalography (MEG) data, that local functional connectivity in the fusiform face areas (FFA) and long-range functional connectivity between FFA and three higher order cortical areas were all reduced in ASD. Given the findings on abnormal maturation trajectories in ASD, we tested whether these results extend to preadolescent children (ages 7-13). We found that both local and long-range functional connectivity were in fact normal in this younger age group in ASD. Combining the two age groups, we found that local and long-range functional connectivity measures were positively correlated with age in TD, but negatively correlated with age in ASD. Last, we showed that local functional connectivity was the primary feature in predicting age in ASD group, but not in the TD group. Furthermore, local functional connectivity was only correlated with ASD severity in the older group. These results suggest that the direction of maturation of functional connectivity for processing of faces from childhood to young adulthood is itself abnormal in ASD, and that during the processing of faces, these trajectory abnormalities are more pronounced for local functional connectivity measures than they are for long-range functional connectivity measures.
Collapse
Affiliation(s)
- Fahimeh Mamashli
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts
| | - Sheraz Khan
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts.,Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts
| | - Hari Bharadwaj
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts.,Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts
| | - Ainsley Losh
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts
| | | | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts.,Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Tal Kenet
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts
| |
Collapse
|
76
|
Multimodal Functional and Structural Brain Connectivity Analysis in Autism: A Preliminary Integrated Approach With EEG, fMRI, and DTI. IEEE Trans Cogn Dev Syst 2018. [DOI: 10.1109/tcds.2017.2680408] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
77
|
Kynast J, Lampe L, Luck T, Frisch S, Arelin K, Hoffmann KT, Loeffler M, Riedel-Heller SG, Villringer A, Schroeter ML. White matter hyperintensities associated with small vessel disease impair social cognition beside attention and memory. J Cereb Blood Flow Metab 2018; 38:996-1009. [PMID: 28685621 PMCID: PMC5999004 DOI: 10.1177/0271678x17719380] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Age-related white matter hyperintensities (WMH) are a manifestation of white matter damage seen on magnetic resonance imaging (MRI). They are related to vascular risk factors and cognitive impairment. This study investigated the cognitive profile at different stages of WMH in a large community-dwelling sample; 849 subjects aged 21 to 79 years were classified on the 4-stage Fazekas scale according to hyperintense lesions seen on individual T2-weighted fluid-attenuated inversion recovery MRI scans. The evaluation of cognitive functioning included seven domains of cognitive performance and five domains of subjective impairment, as proposed by the DSM-5. For the first time, the impact of age-related WMH on Theory of Mind was investigated. Differences between Fazekas groups were analyzed non-parametrically and effect sizes were computed. Effect sizes revealed a slight overall cognitive decline in Fazekas groups 1 and 2 relative to healthy subjects. Fazekas group 3 presented substantial decline in social cognition, attention and memory, although characterized by a high inter-individual variability. WMH groups reported subjective cognitive decline. We demonstrate that extensive WMH are associated with specific impairment in attention, memory, social cognition, and subjective cognitive performance. The detailed neuropsychological characterization of WMH offers new therapeutic possibilities for those affected by vascular cognitive decline.
Collapse
Affiliation(s)
- Jana Kynast
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Leonie Lampe
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Tobias Luck
- 2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,3 Institute for Social Medicine, Occupational Medicine and Public Health, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Stefan Frisch
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,4 Department of Neurology, University Hospital Frankfurt/Goethe University, Frankfurt am Main, Germany
| | - Katrin Arelin
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Karl-Titus Hoffmann
- 2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,5 Department of Neuroradiology, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Markus Loeffler
- 2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,6 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Steffi G Riedel-Heller
- 2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,3 Institute for Social Medicine, Occupational Medicine and Public Health, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Arno Villringer
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,7 Clinic for Cognitive Neurology, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Matthias L Schroeter
- 1 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,2 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.,7 Clinic for Cognitive Neurology, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| |
Collapse
|
78
|
Tei S, Fujino J, Hashimoto RI, Itahashi T, Ohta H, Kanai C, Kubota M, Nakamura M, Kato N, Takahashi H. Inflexible daily behaviour is associated with the ability to control an automatic reaction in autism spectrum disorder. Sci Rep 2018; 8:8082. [PMID: 29795394 PMCID: PMC5967343 DOI: 10.1038/s41598-018-26465-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/11/2018] [Indexed: 11/19/2022] Open
Abstract
Inflexible behaviours in people with autism spectrum disorder (ASD) broadly obstruct social communication. Meanwhile, flexibility implicates cognitive control to resolve socially conflicting situations; however, it remains unclear how people with ASD behave in the face of these conflicts in this respect. We used the ultimatum game (UG) and the implicit-association test (IAT) to examine goal-directed/economic flexibility, both of which involve conflict and cognitive control. In addition, we used the Detail and Flexibility Questionnaire (DFlex) to measure inflexible everyday behaviour with diminished cognitive control and attention shifting. We observed the decreased flexibility in participants with ASD (DFlex and IAT); further, their IAT scores positively correlated with DFlex. However, in the UG, contrary to our prediction, participants with ASD accepted unfair offers more frequently than TD. These results suggest that assessing the automatic/attention processing level with the IAT could be a useful approach to study behavioural flexibility among ASD compared with the UG, which might comprise multiple response strategies besides economic rationality. Overall, the severity of inflexible daily behaviours in people with ASD may be associated with a reduced flexible attitude at an automatic level, altered attention processing and decreased cognitive control.
Collapse
Affiliation(s)
- Shisei Tei
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan
- School of Human and Social Sciences, Tokyo International University, 2509 Matoba, Kawagoe, Saitama, Japan
- Institute of Applied Brain Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan
| | - Junya Fujino
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, School of Medicine, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| | - Chieko Kanai
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| | - Manabu Kubota
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Kanagawa Psychiatric Center, 2-5-1 Serigaya, Yokohama, Kanagawa, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| | - Hidehiko Takahashi
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan.
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
79
|
Bosl WJ, Tager-Flusberg H, Nelson CA. EEG Analytics for Early Detection of Autism Spectrum Disorder: A data-driven approach. Sci Rep 2018; 8:6828. [PMID: 29717196 PMCID: PMC5931530 DOI: 10.1038/s41598-018-24318-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/28/2018] [Indexed: 11/09/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex and heterogeneous disorder, diagnosed on the basis of behavioral symptoms during the second year of life or later. Finding scalable biomarkers for early detection is challenging because of the variability in presentation of the disorder and the need for simple measurements that could be implemented routinely during well-baby checkups. EEG is a relatively easy-to-use, low cost brain measurement tool that is being increasingly explored as a potential clinical tool for monitoring atypical brain development. EEG measurements were collected from 99 infants with an older sibling diagnosed with ASD, and 89 low risk controls, beginning at 3 months of age and continuing until 36 months of age. Nonlinear features were computed from EEG signals and used as input to statistical learning methods. Prediction of the clinical diagnostic outcome of ASD or not ASD was highly accurate when using EEG measurements from as early as 3 months of age. Specificity, sensitivity and PPV were high, exceeding 95% at some ages. Prediction of ADOS calibrated severity scores for all infants in the study using only EEG data taken as early as 3 months of age was strongly correlated with the actual measured scores. This suggests that useful digital biomarkers might be extracted from EEG measurements.
Collapse
Affiliation(s)
- William J Bosl
- Boston Children's Hospital, Boston, USA.
- Harvard Medical School, Boston, USA.
- University of San Francisco, San Francisco, USA.
| | | | - Charles A Nelson
- Boston Children's Hospital, Boston, USA
- Harvard Medical School, Boston, USA
- Harvard Graduate School of Education, Cambridge, USA
| |
Collapse
|
80
|
Liska A, Bertero A, Gomolka R, Sabbioni M, Galbusera A, Barsotti N, Panzeri S, Scattoni ML, Pasqualetti M, Gozzi A. Homozygous Loss of Autism-Risk Gene CNTNAP2 Results in Reduced Local and Long-Range Prefrontal Functional Connectivity. Cereb Cortex 2018; 28:1141-1153. [PMID: 28184409 DOI: 10.1093/cercor/bhx022] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2023] Open
Abstract
Functional connectivity aberrancies, as measured with resting-state functional magnetic resonance imaging (rsfMRI), have been consistently observed in the brain of autism spectrum disorders (ASD) patients. However, the genetic and neurobiological underpinnings of these findings remain unclear. Homozygous mutations in contactin associated protein-like 2 (CNTNAP2), a neurexin-related cell-adhesion protein, are strongly linked to autism and epilepsy. Here we used rsfMRI to show that homozygous mice lacking Cntnap2 exhibit reduced long-range and local functional connectivity in prefrontal and midline brain "connectivity hubs." Long-range rsfMRI connectivity impairments affected heteromodal cortical regions and were prominent between fronto-posterior components of the mouse default-mode network, an effect that was associated with reduced social investigation, a core "autism trait" in mice. Notably, viral tracing revealed reduced frequency of prefrontal-projecting neural clusters in the cingulate cortex of Cntnap2-/- mutants, suggesting a possible contribution of defective mesoscale axonal wiring to the observed functional impairments. Macroscale cortico-cortical white-matter organization appeared to be otherwise preserved in these animals. These findings reveal a key contribution of ASD-associated gene CNTNAP2 in modulating macroscale functional connectivity, and suggest that homozygous loss-of-function mutations in this gene may predispose to neurodevelopmental disorders and autism through a selective dysregulation of connectivity in integrative prefrontal areas.
Collapse
Affiliation(s)
- Adam Liska
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto 38068, Italy
| | - Alice Bertero
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
| | - Ryszard Gomolka
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
| | - Mara Sabbioni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Neurotoxicology and Neuroendocrinology Section, Rome 00161, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
| | - Noemi Barsotti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
| | - Stefano Panzeri
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
| | - Maria Luisa Scattoni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Neurotoxicology and Neuroendocrinology Section, Rome 00161, Italy
| | - Massimo Pasqualetti
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
| |
Collapse
|
81
|
Sato JR, Calebe Vidal M, de Siqueira Santos S, Brauer Massirer K, Fujita A. Complex Network Measures in Autism Spectrum Disorders. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:581-587. [PMID: 26353378 DOI: 10.1109/tcbb.2015.2476787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent studies have suggested abnormal brain network organization in subjects with Autism Spectrum Disorders (ASD). Here we applied spectral clustering algorithm, diverse centrality measures (betweenness (BC), clustering (CC), eigenvector (EC), and degree (DC)), and also the network entropy (NE) to identify brain sub-systems associated with ASD. We have found that BC increases in the following ASD clusters: in the somatomotor, default-mode, cerebellar, and fronto-parietal. On the other hand, CC, EC, and DC decrease in the somatomotor, default-mode, and cerebellar clusters. Additionally, NE decreases in ASD in the cerebellar cluster. These findings reinforce the hypothesis of under-connectivity in ASD and suggest that the difference in the network organization is more prominent in the cerebellar system. The cerebellar cluster presents reduced NE in ASD, which relates to a more regular organization of the networks. These results might be important to improve current understanding about the etiological processes and the development of potential tools supporting diagnosis and therapeutic interventions.
Collapse
|
82
|
Oprisan SA, Imperatore J, Helms J, Tompa T, Lavin A. Cocaine-Induced Changes in Low-Dimensional Attractors of Local Field Potentials in Optogenetic Mice. Front Comput Neurosci 2018; 12:2. [PMID: 29445337 PMCID: PMC5797774 DOI: 10.3389/fncom.2018.00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Optogenetically evoked local field potential (LFP) recorded from the medial prefrontal cortex (mPFC) of mice during basal conditions and following a systemic cocaine administration were analyzed. Blue light stimuli were delivered to mPFC through a fiber optic every 2 s and each trial was repeated 100 times. As in the previous study, we used a surrogate data method to check that nonlinearity was present in the experimental LFPs and only used the last 1.5 s of steady activity to measure the LFPs phase resetting induced by the brief 10 ms light stimulus. We found that the steady dynamics of the mPFC in response to light stimuli could be reconstructed in a three-dimensional phase space with topologically similar "8"-shaped attractors across different animals. Therefore, cocaine did not change the complexity of the recorded nonlinear data compared to the control case. The phase space of the reconstructed attractor is determined by the LFP time series and its temporally shifted versions by a multiple of some lag time. We also compared the change in the attractor shape between cocaine-injected and control using (1) dendrogram clustering and (2) Frechet distance. We found about 20% overlap between control and cocaine trials when classified using dendrogram method, which suggest that it may be possible to describe mathematically both data sets with the same model and slightly different model parameters. We also found that the lag times are about three times shorter for cocaine trials compared to control. As a result, although the phase space trajectories for control and cocaine may look similar, their dynamics is significantly different.
Collapse
Affiliation(s)
- Sorinel A Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Julia Imperatore
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Jessica Helms
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Tamas Tompa
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Department of Preventive Medicine, Faculty of Healthcare, University of Miskolc, Miskolc, Hungary
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
83
|
Linke AC, Jao Keehn RJ, Pueschel EB, Fishman I, Müller RA. Children with ASD show links between aberrant sound processing, social symptoms, and atypical auditory interhemispheric and thalamocortical functional connectivity. Dev Cogn Neurosci 2018; 29:117-126. [PMID: 28223033 PMCID: PMC5664206 DOI: 10.1016/j.dcn.2017.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 01/31/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex and prevalent neurodevelopmental disorder characterized by social and communicative deficits, as well as repetitive behaviors and atypical sensitivity to sensory stimulation. Alterations in network connectivity are widely recognized, but their interplay with social and sensory symptoms remains largely unclear. Here, functional magnetic resonance imaging and diagnostic and behavioral assessments were used in a cohort of children and adolescents with ASD (n=40) and matched typically developing (TD, n=38) controls to examine the relation between auditory processing, interhemispheric and thalamocortical network connectivity, and social-behavioral symptom severity. We found that atypical processing of sounds was related to social, cognitive, and communicative impairments. Additionally, severity of sensory processing deficits and lower verbal IQ were related to reduced interhemispheric connectivity of auditory cortices in ASD. Increased connectivity between the thalamus and auditory cortex in ASD, however, was associated with reduced cognitive and behavioral symptomatology, suggesting that thalamocortical overconnectivity might reflect a compensatory mechanism in ASD. These findings provide novel evidence for links between auditory sensory deficits and impairments in social interaction and communication.
Collapse
Affiliation(s)
- Annika C Linke
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado CT, Suite #200, San Diego, CA, 92120, USA.
| | - R Joanne Jao Keehn
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado CT, Suite #200, San Diego, CA, 92120, USA.
| | - Ellyn B Pueschel
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado CT, Suite #200, San Diego, CA, 92120, USA
| | - Inna Fishman
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado CT, Suite #200, San Diego, CA, 92120, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado CT, Suite #200, San Diego, CA, 92120, USA
| |
Collapse
|
84
|
Lajiness-O'Neill R, Brennan JR, Moran JE, Richard AE, Flores AM, Swick C, Goodcase R, Andersen T, McFarlane K, Rusiniak K, Kovelman I, Wagley N, Ugolini M, Albright J, Bowyer SM. Patterns of altered neural synchrony in the default mode network in autism spectrum disorder revealed with magnetoencephalography (MEG): Relationship to clinical symptomatology. Autism Res 2017; 11:434-449. [PMID: 29251830 DOI: 10.1002/aur.1908] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 11/05/2017] [Accepted: 11/28/2017] [Indexed: 01/02/2023]
Abstract
Disrupted neural synchrony may be a primary electrophysiological abnormality in autism spectrum disorders (ASD), altering communication between discrete brain regions and contributing to abnormalities in patterns of connectivity within identified neural networks. Studies exploring brain dynamics to comprehensively characterize and link connectivity to large-scale cortical networks and clinical symptoms are lagging considerably. Patterns of neural coherence within the Default Mode Network (DMN) and Salience Network (SN) during resting state were investigated in 12 children with ASD (MAge = 9.2) and 13 age and gender-matched neurotypicals (NT) (MAge = 9.3) with magnetoencephalography. Coherence between 231 brain region pairs within four frequency bands (theta (4-7 Hz), alpha, (8-12 Hz), beta (13-30 Hz), and gamma (30-80 Hz)) was calculated. Relationships between neural coherence and social functioning were examined. ASD was characterized by lower synchronization across all frequencies, reaching clinical significance in the gamma band. Lower gamma synchrony between fronto-temporo-parietal regions was observed, partially consistent with diminished default mode network (DMN) connectivity. Lower gamma coherence in ASD was evident in cross-hemispheric connections between: angular with inferior/middle frontal; middle temporal with middle/inferior frontal; and within right-hemispheric connections between angular, middle temporal, and inferior/middle frontal cortices. Lower gamma coherence between left angular and left superior frontal, right inferior/middle frontal, and right precuneus and between right angular and inferior/middle frontal cortices was related to lower social/social-communication functioning. Results suggest a pattern of lower gamma band coherence in a subset of regions within the DMN in ASD (angular and middle temporal cortical areas) related to lower social/social-communicative functioning. Autism Res 2018, 11: 434-449. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Communication between different areas of the brain was observed in children with ASD and neurotypical children while awake, but not working on a task. Magnetoencephalography was used to measure tiny magnetic fields naturally generated via brain activity. The brains of children with ASD showed less communication between areas that are important for social information processing compared to the brains of neurotypical children. The amount of communication between these areas was associated with social and social communication difficulties.
Collapse
Affiliation(s)
- Renée Lajiness-O'Neill
- Eastern Michigan University, Ypsilanti, Michigan.,Center for Human Growth and Development, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | - Casey Swick
- Eastern Michigan University, Ypsilanti, Michigan
| | | | | | | | | | - Ioulia Kovelman
- Center for Human Growth and Development, University of Michigan, Ann Arbor, Michigan.,Department of Psychology, Ann Arbor, Michigan
| | - Neelima Wagley
- Center for Human Growth and Development, University of Michigan, Ann Arbor, Michigan.,Department of Psychology, Ann Arbor, Michigan
| | | | | | - Susan M Bowyer
- University of Massachusetts, Amherst, Massachusetts.,Wayne State University, Detroit, Michigan.,Oakland University, Rochester, Michigan
| |
Collapse
|
85
|
Neuhaus M, Bagutti S, Yaldizli Ö, Zwahlen D, Schaub S, Frey B, Fischer-Barnicol B, Burgunder JM, Martory MD, Pöttgen J, Annoni JM, Penner IK. Characterization of social cognition impairment in multiple sclerosis. Eur J Neurol 2017; 25:90-96. [DOI: 10.1111/ene.13457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/04/2017] [Indexed: 11/27/2022]
Affiliation(s)
- M. Neuhaus
- Neurology Unit; University of Fribourg; Fribourg Switzerland
| | - S. Bagutti
- Neurology Unit; University of Fribourg; Fribourg Switzerland
| | - Ö. Yaldizli
- Department of Neurology; University Hospital Basel; Basel Switzerland
| | - D. Zwahlen
- Department of Cognitive Psychology; University of Basel; Basel Switzerland
| | - S. Schaub
- Department of Cognitive Psychology; University of Basel; Basel Switzerland
| | - B. Frey
- Department of Neurology; University Hospital Berne; Berne Switzerland
| | | | - J.-M. Burgunder
- Department of Neurology; University Hospital Berne; Berne Switzerland
| | - M.-D. Martory
- Neuropsychology Unit; University Hospital of Geneva; Geneva Switzerland
| | - J. Pöttgen
- Institut für Neuroimmunologie und Multiple Sklerose, Klinik und Poliklinik für Neurologie; Universitätsklinikum Hamburg-Eppendorf, Deutschland; Hamburg Germany
| | - J.-M. Annoni
- Neurology Unit; University of Fribourg; Fribourg Switzerland
| | - I.-K. Penner
- Cogito Center for Applied Neurocognition and Neuropsychological Research and Department of Neurology; University Hospital Düsseldorf; Düsseldorf Germany
| |
Collapse
|
86
|
Priming Facial Gender and Emotional Valence: The Influence of Spatial Frequency on Face Perception in ASD. J Autism Dev Disord 2017; 47:927-946. [PMID: 28070789 DOI: 10.1007/s10803-016-3017-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Adolescents with and without autism spectrum disorder (ASD) performed two priming experiments in which they implicitly processed a prime stimulus, containing high and/or low spatial frequency information, and then explicitly categorized a target face either as male/female (gender task) or as positive/negative (Valence task). Adolescents with ASD made more categorization errors than typically developing adolescents. They also showed an age-dependent improvement in categorization speed and had more difficulties with categorizing facial expressions than gender. However, in neither of the categorization tasks, we found group differences in the processing of coarse versus fine prime information. This contradicted our expectations, and indicated that the perceptual differences between adolescents with and without ASD critically depended on the processing time available for the primes.
Collapse
|
87
|
Li D, Tomljenovic L, Li Y, Shaw CA. RETRACTED: Subcutaneous injections of aluminum at vaccine adjuvant levels activate innate immune genes in mouse brain that are homologous with biomarkers of autism. J Inorg Biochem 2017; 177:39-54. [PMID: 28923356 DOI: 10.1016/j.jinorgbio.2017.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Dan Li
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lucija Tomljenovic
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yongling Li
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Shaw
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Program in Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
88
|
Linke AC, Olson L, Gao Y, Fishman I, Müller RA. Psychotropic medication use in autism spectrum disorders may affect functional brain connectivity. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:518-527. [PMID: 29104944 PMCID: PMC5667652 DOI: 10.1016/j.bpsc.2017.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Prescription of psychotropic medications is common in autism spectrum disorders (ASDs), either off-label or to treat comorbid conditions such as ADHD or depression. Psychotropic medications are intended to alter brain function. Yet, studies investigating the functional brain organization in ASDs rarely take medication usage into account. This could explain some of the inconsistent findings of atypical brain network connectivity reported in the autism literature. METHODS The current study tested whether functional connectivity patterns, as assessed with functional magnetic resonance imaging (fMRI), differed in a cohort of 49 children and adolescents with ASDs based on psychotropic medication status, and in comparison with 50 matched typically developing (TD) participants. Twenty-five participants in the ASD group (51%) reported current psychotropic medication usage, including stimulants, antidepressants, antipsychotics, and anxiolytics. Age, IQ, head motion, and ASD symptom severity did not differ between groups. Whole-brain functional connectivity between 132 regions of interest was assessed. RESULTS Different functional connectivity patterns were identified in the ASD group taking psychotropic medications (ASD-on), as compared to the TD group and the ASD subgroup not using psychotropic medications (ASD-none). The ASD-on group showed distinct underconnectivity between the cerebellum and basal ganglia but cortico-cortical overconnectivity compared to the TD group. Cortical underconnectivity relative to the TD pattern, on the other hand, was pronounced in the ASD-none group. CONCLUSIONS These results suggest that psychotropic medications may affect functional connectivity, and that medication status should be taken into consideration when studying brain function in autism.
Collapse
Affiliation(s)
- Annika C. Linke
- Brain Development Imaging Laboratory, Department of Psychology San Diego State University, 6363 Alvarado CT, Suite 200, San Diego, CA 92120, USA
| | - Lindsay Olson
- Brain Development Imaging Laboratory, Department of Psychology San Diego State University, 6363 Alvarado CT, Suite 200, San Diego, CA 92120, USA
- San Diego State University/UC San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado CT, Suite 103, San Diego, CA 92120, USA
| | - Yangfeifei Gao
- Brain Development Imaging Laboratory, Department of Psychology San Diego State University, 6363 Alvarado CT, Suite 200, San Diego, CA 92120, USA
- San Diego State University/UC San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado CT, Suite 103, San Diego, CA 92120, USA
| | - Inna Fishman
- Brain Development Imaging Laboratory, Department of Psychology San Diego State University, 6363 Alvarado CT, Suite 200, San Diego, CA 92120, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology San Diego State University, 6363 Alvarado CT, Suite 200, San Diego, CA 92120, USA
| |
Collapse
|
89
|
Tei S, Fujino J, Kawada R, Jankowski KF, Kauppi JP, van den Bos W, Abe N, Sugihara G, Miyata J, Murai T, Takahashi H. Collaborative roles of Temporoparietal Junction and Dorsolateral Prefrontal Cortex in Different Types of Behavioural Flexibility. Sci Rep 2017; 7:6415. [PMID: 28743978 PMCID: PMC5526981 DOI: 10.1038/s41598-017-06662-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/15/2017] [Indexed: 01/20/2023] Open
Abstract
Behavioural flexibility is essential for everyday life. This involves shifting attention between different perspectives. Previous studies suggest that flexibility is mainly subserved by the dorsolateral prefrontal cortex (DLPFC). However, although rarely emphasized, the temporoparietal junction (TPJ) is frequently recruited during flexible behaviour. A crucial question is whether TPJ plays a role in different types of flexibility, compared to its limited role in perceptual flexibility. We hypothesized that TPJ activity during diverse flexibility tasks plays a common role in stimulus-driven attention-shifting, thereby contributing to different types of flexibility, and thus the collaboration between DLPFC and TPJ might serve as a more appropriate mechanism than DLPFC alone. We used fMRI to measure DLPFC/TPJ activity recruited during moral flexibility, and examined its effect on other domains of flexibility (economic/perceptual). Here, we show the additional, yet crucial role of TPJ: a combined DLPFC/TPJ activity predicted flexibility, regardless of domain. Different types of flexibility might rely on more basic attention-shifting, which highlights the behavioural significance of alternatives.
Collapse
Affiliation(s)
- Shisei Tei
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan.,Institute of Applied Brain Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.,School of Human and Social Sciences, Tokyo International University, Saitama, 350-1198, Japan
| | - Junya Fujino
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan.,Medical Institute of Developmental Disabilities Research, Showa University Karasuyama Hospital, Tokyo, 157-8577, Japan
| | - Ryosaku Kawada
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | - Jukka-Pekka Kauppi
- Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland.,Department of Computer Science and HIIT, University of Helsinki, P.O. 68 (Gustaf Hällströmin katu 2b), FI-00014, Helsinki, Finland
| | - Wouter van den Bos
- Center for Adaptive Rationality, Max Planck Institute for Human Development, 14197, Berlin, Germany
| | - Nobuhito Abe
- Kokoro Research Center, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Genichi Sugihara
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jun Miyata
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
90
|
Corticothalamic Axons Are Essential for Retinal Ganglion Cell Axon Targeting to the Mouse Dorsal Lateral Geniculate Nucleus. J Neurosci 2017; 36:5252-63. [PMID: 27170123 DOI: 10.1523/jneurosci.4599-15.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/25/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Retinal ganglion cells (RGCs) relay information about the outside world to multiple subcortical targets within the brain. This information is either used to dictate reflexive behaviors or relayed to the visual cortex for further processing. Many subcortical visual nuclei also receive descending inputs from projection neurons in the visual cortex. Most areas receive inputs from layer 5 cortical neurons in the visual cortex but one exception is the dorsal lateral geniculate nucleus (dLGN), which receives layer 6 inputs and is also the only RGC target that sends direct projections to the cortex. Here we ask how visual system development and function changes in mice that develop without a cortex. We find that the development of a cortex is essential for RGC axons to terminate in the dLGN, but is not required for targeting RGC axons to other subcortical nuclei. RGC axons also fail to target to the dLGN in mice that specifically lack cortical layer 6 projections to the dLGN. Finally, we show that when mice develop without a cortex they can still perform a number of vision-dependent tasks. SIGNIFICANCE STATEMENT The dorsal lateral geniculate nucleus (dLGN) is a sensory thalamic relay area that receives feedforward inputs from retinal ganglion cells (RGCs) in the retina, and feed back inputs from layer 6 neurons in the visual cortex. In this study we examined genetically manipulated mice that develop without a cortex or without cortical layer 6 axonal projections, and find that RGC axons fail to project to the dLGN. Other RGC recipient areas, such as the superior colliculus and suprachiasmatic nucleus, are targeted normally. These results provide support for a new mechanism of target selection that may be specific to the thalamus, whereby descending cortical axons provide an activity that promotes feedforward targeting of RGC axons to the dLGN.
Collapse
|
91
|
Schauder KB, Park WJ, Tadin D, Bennetto L. Larger Receptive Field Size as a Mechanism Underlying Atypical Motion Perception in Autism Spectrum Disorder. Clin Psychol Sci 2017; 5:827-842. [PMID: 28989818 DOI: 10.1177/2167702617707733] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Atypical visual motion perception has been widely observed in individuals with autism spectrum disorder (ASD). The pattern of results, however, has been inconsistent. Emerging mechanistic hypotheses seek to explain these variable patterns of atypical motion sensitivity, each uniquely predicting specific patterns of performance across varying stimulus conditions. Here, we investigated the integrity of two such fundamental mechanisms-response gain control and receptive field size. Twenty children and adolescents with ASD and 20 typically developing (TD) age- and IQ-matched controls performed a motion discrimination task. To adequately model group differences in both mechanisms of interest, we tested a range of 23 stimulus conditions varying in size and contrast. Results revealed a motion perception impairment in ASD that was specific to the smallest sized stimuli (1°), irrespective of stimulus contrast. Model analyses provided evidence for larger receptive field size in ASD as the mechanism that explains this size-specific reduction of motion sensitivity.
Collapse
Affiliation(s)
- Kimberly B Schauder
- Department of Clinical and Social Sciences in Psychology, University of Rochester
- Center for Visual Science, University of Rochester
| | - Woon Ju Park
- Department of Brain and Cognitive Sciences, University of Rochester
- Center for Visual Science, University of Rochester
| | - Duje Tadin
- Department of Brain and Cognitive Sciences, University of Rochester
- Center for Visual Science, University of Rochester
- Department of Ophthalmology, University of Rochester School of Medicine
| | - Loisa Bennetto
- Department of Clinical and Social Sciences in Psychology, University of Rochester
- Department of Brain and Cognitive Sciences, University of Rochester
| |
Collapse
|
92
|
Sadeghi M, Khosrowabadi R, Bakouie F, Mahdavi H, Eslahchi C, Pouretemad H. Screening of autism based on task-free fMRI using graph theoretical approach. Psychiatry Res Neuroimaging 2017; 263:48-56. [PMID: 28324694 DOI: 10.1016/j.pscychresns.2017.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/30/2017] [Accepted: 02/09/2017] [Indexed: 01/07/2023]
Abstract
Studies on autism spectrum disorder (ASD) have indicated several dysfunctions in the structure, and functional organization of the brain. However, findings have not been established as a general diagnostic tool yet. In this regard, current study proposed an automatic screening method for recognition of ASDs from healthy controls (HCs) based on their brain functional abnormalities. In this paradigm, brain functional networks of 60 adolescent and young adult males (29 ASDs and 31 HCs) were estimated from subjects' task-free fMRI data. Then, autism screening was developed based on characteristics of the functional networks using the following steps: A) local and global parameters of the brain functional network were calculated using graph theory. B) network parameters of the ASDs were statistically compared to the HCs. C) significantly altered parameters were used as input features of the screening system. D) performance of the system was verified using various classification techniques. The support vector machine showed superiority to others with an accuracy of 92%. Subsequently, reliability of the results was examined using an independent dataset including 20 ASDs and 20 HCs. Our findings suggest that local parameters of the brain functional network, despite the individual variability, can potentially be used for autism screening.
Collapse
Affiliation(s)
- Masoumeh Sadeghi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran; Department of Computer Sciences, Faculty of Mathematics, Shahid Beheshti University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Fatemeh Bakouie
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Hoda Mahdavi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer Sciences, Faculty of Mathematics, Shahid Beheshti University, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Hamidreza Pouretemad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran; Faculty of Psychology and Educational Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
93
|
Vukusic S, Ciorciari J, Crewther DP. Electrophysiological Correlates of Subliminal Perception of Facial Expressions in Individuals with Autistic Traits: A Backward Masking Study. Front Hum Neurosci 2017; 11:256. [PMID: 28588465 PMCID: PMC5440466 DOI: 10.3389/fnhum.2017.00256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 04/28/2017] [Indexed: 12/28/2022] Open
Abstract
People with Autism spectrum disorder (ASD) show difficulty in social communication, especially in the rapid assessment of emotion in faces. This study examined the processing of emotional faces in typically developing adults with high and low levels of autistic traits (measured using the Autism Spectrum Quotient—AQ). Event-related potentials (ERPs) were recorded during viewing of backward-masked neutral, fearful and happy faces presented under two conditions: subliminal (16 ms, below the level of visual conscious awareness) and supraliminal (166 ms, above the time required for visual conscious awareness). Individuals with low and high AQ differed in the processing of subliminal faces, with the low AQ group showing an enhanced N2 amplitude for subliminal happy faces. Some group differences were found in the condition effects, with the Low AQ showing shorter frontal P3b and N4 latencies for subliminal vs. supraliminal condition. Although results did not show any group differences on the face-specific N170 component, there were shorter N170 latencies for supraliminal vs. subliminal conditions across groups. The results observed on the N2, showing group differences in subliminal emotion processing, suggest that decreased sensitivity to the reward value of social stimuli is a common feature both of people with ASD as well as people with high autistic traits from the normal population.
Collapse
Affiliation(s)
- Svjetlana Vukusic
- Centre for Human Psychopharmacology, Swinburne University of TechnologyMelbourne, VIC, Australia
| | - Joseph Ciorciari
- Centre for Human Psychopharmacology, Swinburne University of TechnologyMelbourne, VIC, Australia
| | - David P Crewther
- Centre for Human Psychopharmacology, Swinburne University of TechnologyMelbourne, VIC, Australia
| |
Collapse
|
94
|
Siemann JK, Muller CL, Forsberg CG, Blakely RD, Veenstra-VanderWeele J, Wallace MT. An autism-associated serotonin transporter variant disrupts multisensory processing. Transl Psychiatry 2017; 7:e1067. [PMID: 28323282 PMCID: PMC5416665 DOI: 10.1038/tp.2017.17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 01/29/2023] Open
Abstract
Altered sensory processing is observed in many children with autism spectrum disorder (ASD), with growing evidence that these impairments extend to the integration of information across the different senses (that is, multisensory function). The serotonin system has an important role in sensory development and function, and alterations of serotonergic signaling have been suggested to have a role in ASD. A gain-of-function coding variant in the serotonin transporter (SERT) associates with sensory aversion in humans, and when expressed in mice produces traits associated with ASD, including disruptions in social and communicative function and repetitive behaviors. The current study set out to test whether these mice also exhibit changes in multisensory function when compared with wild-type (WT) animals on the same genetic background. Mice were trained to respond to auditory and visual stimuli independently before being tested under visual, auditory and paired audiovisual (multisensory) conditions. WT mice exhibited significant gains in response accuracy under audiovisual conditions. In contrast, although the SERT mutant animals learned the auditory and visual tasks comparably to WT littermates, they failed to show behavioral gains under multisensory conditions. We believe these results provide the first behavioral evidence of multisensory deficits in a genetic mouse model related to ASD and implicate the serotonin system in multisensory processing and in the multisensory changes seen in ASD.
Collapse
Affiliation(s)
- J K Siemann
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - C L Muller
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - C G Forsberg
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - R D Blakely
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL, USA
- Florida Atlantic University Brain Institute, Florida Atlantic University, Jupiter, FL, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - J Veenstra-VanderWeele
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Columbia University, New York, NY, USA
- Center for Autism and The Developing Brain, New York Presbyterian Hospital, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - M T Wallace
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, USA
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
95
|
Giuliano A, Saviozzi I, Brambilla P, Muratori F, Retico A, Calderoni S. The effect of age, sex and clinical features on the volume of Corpus Callosum in pre-schoolers with Autism Spectrum Disorder: a case-control study. Eur J Neurosci 2017; 47:568-578. [PMID: 28112456 DOI: 10.1111/ejn.13527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/31/2016] [Accepted: 01/14/2017] [Indexed: 11/30/2022]
Abstract
A growing body of literature has identified volume alterations of the corpus callosum (CC) in subjects with autism spectrum disorders (ASD). However, to date very few investigations have been conducted on pre-school-age ASD children. This study aims to compare the volume of CC and its sub-regions between pre-schoolers with ASD and controls (CON) and to examine their relationship to demographic and clinical variables (sex, age, non-verbal IQ -NVIQ-, expressive non-echolalic language, emotional and behavioural problems, and autism severity). The volume of CC of 40 pre-schoolers with ASD (20 males and 20 females; mean age: 49 ± 12 months; mean NVIQ: 73 ± 22) and 40 sex-, age-, and NVIQ-matched CON subjects (20 M and 20 F; mean age: 49 ± 14 months; mean NVIQ: 73 ± 23) were quantified applying the FreeSurfer automated parcellation software on Magnetic Resonance images. No significant volumetric differences in CC total volume and in its sub-regions between ASD and CON were found using total brain volume as a covariate. Analogously, absence of CC volumetric differences was evident when boys and girls with ASD were compared with their matched controls. The CC total volume of younger ASD male subjects was found significantly larger with respect to matched CON, which is consistent with the atypical growth trajectory widely reported in these young children. The CC total volume was negatively correlated with autism severity, whereas no association between CC volume and other clinical variables was detected. If replicated, the indirect relationship between CC volume and autism severity suggests the involvement of CC in core ASD symptoms.
Collapse
Affiliation(s)
- Alessia Giuliano
- Physics Department, University of Pisa, Pisa, Italy.,Pisa Division, National Institute for Nuclear Physics, Largo Pontecorvo 3, 56127, Pisa, Italy
| | | | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Psychiatric Clinic, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.,Department of Psychiatry and Behavioural Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Filippo Muratori
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Alessandra Retico
- Pisa Division, National Institute for Nuclear Physics, Largo Pontecorvo 3, 56127, Pisa, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
96
|
Vidal MC, Sato JR, Balardin JB, Takahashi DY, Fujita A. ANOCVA in R: A Software to Compare Clusters between Groups and Its Application to the Study of Autism Spectrum Disorder. Front Neurosci 2017; 11:16. [PMID: 28174516 PMCID: PMC5258722 DOI: 10.3389/fnins.2017.00016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/09/2017] [Indexed: 11/22/2022] Open
Abstract
Understanding how brain activities cluster can help in the diagnosis of neuropsychological disorders. Thus, it is important to be able to identify alterations in the clustering structure of functional brain networks. Here, we provide an R implementation of Analysis of Cluster Variability (ANOCVA), which statistically tests (1) whether a set of brain regions of interest (ROI) are equally clustered between two or more populations and (2) whether the contribution of each ROI to the differences in clustering is significant. To illustrate the usefulness of our method and software, we apply the R package in a large functional magnetic resonance imaging (fMRI) dataset composed of 896 individuals (529 controls and 285 diagnosed with ASD—autism spectrum disorder) collected by the ABIDE (The Autism Brain Imaging Data Exchange) Consortium. Our analysis show that the clustering structure of controls and ASD subjects are different (p < 0.001) and that specific brain regions distributed in the frontotemporal, sensorimotor, visual, cerebellar, and brainstem systems significantly contributed (p < 0.05) to this differential clustering. These findings suggest an atypical organization of domain-specific function brain modules in ASD.
Collapse
Affiliation(s)
- Maciel C Vidal
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo São Paulo, Brazil
| | - João R Sato
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC Santo André, Brazil
| | | | - Daniel Y Takahashi
- Deparment of Psychology and Princeton Neuroscience Institute, Princeton University Princeton, NJ, USA
| | - André Fujita
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo São Paulo, Brazil
| |
Collapse
|
97
|
Guo X, Chen H, Long Z, Duan X, Zhang Y, Chen H. Atypical developmental trajectory of local spontaneous brain activity in autism spectrum disorder. Sci Rep 2017; 7:39822. [PMID: 28057930 PMCID: PMC5216408 DOI: 10.1038/srep39822] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/28/2016] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is marked by atypical trajectory of brain maturation, yet the developmental abnormalities in brain function remain unclear. The current study examined the effect of age on amplitude of low-frequency fluctuations (ALFF) in ASD and typical controls (TC) using a cross-sectional design. We classified all the participants into three age cohorts: child (<11 years, 18ASD/20TC), adolescent (11-18 years, 28ASD/26TC) and adult (≥18 years, 18ASD/18TC). Two-way analysis of variance (ANOVA) was performed to ascertain main effects and interaction effects on whole brain ALFF maps. Results exhibited significant main effect of diagnosis in ASD with decreased ALFF in the right precuneus and left middle occipital gyrus during all developmental stages. Significant diagnosis-by-age interaction was observed in the medial prefrontal cortex (mPFC) with ALFF lowered in autistic children but highered in autistic adolescents and adults. Specifically, remarkable quadratic change of ALFF with increasing age in mPFC presented in TC group was absent in ASD. Additionally, abnormal ALFF values in diagnosis-related brain regions predicted the social deficits in ASD. Our findings indicated aberrant developmental patterns of spontaneous brain activity associated with social deficits in ASD and highlight the crucial role of the default mode network in the development of disease.
Collapse
Affiliation(s)
- Xiaonan Guo
- Center for Information in BioMedicine, Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Heng Chen
- Center for Information in BioMedicine, Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zhiliang Long
- Center for Information in BioMedicine, Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xujun Duan
- Center for Information in BioMedicine, Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Youxue Zhang
- Center for Information in BioMedicine, Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Huafu Chen
- Center for Information in BioMedicine, Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| |
Collapse
|
98
|
Abstract
STATEMENT OF PURPOSE Individuals with autism spectrum disorder (ASD) often demonstrate deficient attentional ability, but the specific nature of the deficit is unclear. The Attention Networks model provides a useful approach to deconstruct this attentional deficit into its component parts. METHOD Fifty-two neurotypical (NT) children and 14 children with ASD performed the child version of the Attention Network Test (ANT). The latter requires participants to indicate the direction of a centre target stimulus, which is presented above/below fixation and sometimes flanked by either congruent or incongruent distractor stimuli. RESULTS Relative to NT children, those with ASD were: (1) slower to react to spatially cued trials and (2) more error prone on executive (conflict) attention trials. CONCLUSIONS Young children with ASD have intact alerting attention, but less-efficient orienting and executive attention.
Collapse
Affiliation(s)
- Rachna Mutreja
- a Department of Human Development and Family Studies , College of Human Sciences, Texas Tech University , Lubbock , TX , USA and
| | - Curtis Craig
- b Department of Psychology , College of Arts and Sciences, Texas Tech University , Lubbock , TX , USA
| | - Michael W O'Boyle
- a Department of Human Development and Family Studies , College of Human Sciences, Texas Tech University , Lubbock , TX , USA and
| |
Collapse
|
99
|
Liska A, Gozzi A. Can Mouse Imaging Studies Bring Order to Autism Connectivity Chaos? Front Neurosci 2016; 10:484. [PMID: 27891068 PMCID: PMC5102904 DOI: 10.3389/fnins.2016.00484] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/10/2016] [Indexed: 12/27/2022] Open
Abstract
Functional Magnetic Resonance Imaging (fMRI) has consistently highlighted impaired or aberrant functional connectivity across brain regions of autism spectrum disorder (ASD) patients. However, the manifestation and neural substrates of these alterations are highly heterogeneous and often conflicting. Moreover, their neurobiological underpinnings and etiopathological significance remain largely unknown. A deeper understanding of the complex pathophysiological cascade leading to aberrant connectivity in ASD can greatly benefit from the use of model organisms where individual pathophysiological or phenotypic components of ASD can be recreated and investigated via approaches that are either off limits or confounded by clinical heterogeneity. Despite some obvious limitations in reliably modeling the full phenotypic spectrum of a complex developmental disorder like ASD, mouse models have played a central role in advancing our basic mechanistic and molecular understanding of this syndrome. Recent progress in mouse brain connectivity mapping via resting-state fMRI (rsfMRI) offers the opportunity to generate and test mechanistic hypotheses about the elusive origin and significance of connectional aberrations observed in autism. Here we discuss recent progress toward this goal, and illustrate initial examples of how the approach can be employed to establish causal links between ASD-related mutations, developmental processes, and brain connectional architecture. As the spectrum of genetic and pathophysiological components of ASD modeled in the mouse is rapidly expanding, the use of rsfMRI can advance our mechanistic understanding of the origin and significance of the connectional alterations associated with autism, and their heterogeneous expression across patient cohorts.
Collapse
Affiliation(s)
- Adam Liska
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di TecnologiaRovereto, Italy
- Center for Mind/Brain Sciences, University of TrentoRovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di TecnologiaRovereto, Italy
| |
Collapse
|
100
|
Libero LE, Burge WK, Deshpande HD, Pestilli F, Kana RK. White Matter Diffusion of Major Fiber Tracts Implicated in Autism Spectrum Disorder. Brain Connect 2016; 6:691-699. [PMID: 27555361 DOI: 10.1089/brain.2016.0442] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder found to have widespread alterations in the function and synchrony of brain regions. These differences may underlie alterations in microstructural organization, such as in white matter pathways. To investigate the diffusion of major white matter tracts, the current study examined multiple indices of white matter diffusion in 42 children and adults with ASD and 44 typically developing (TD) age- and IQ-matched peers using diffusion tensor imaging. Diffusivity measures were compared between groups for the following tracts: bilateral cingulum bundle, corpus callosum, inferior longitudinal fasciculus, superior longitudinal fasciculus, and uncinate fasciculus. Results indicate a significant reduction in fractional anisotropy (FA) for the left superior longitudinal fasciculus (LSLF) in ASD children and adults compared with TD peers. A significant increase in radial diffusivity for ASD participants was also found in the same cluster along the LSLF. In addition, a significant positive correlation emerged for all subjects between FA for the LSLF and age, with FA increasing with age. These findings point to a significant alteration in long-distance white matter connectivity in children and adults with ASD, potentially underscoring the relationship between alterations in white matter diffusion and the ASD phenotype. These results also suggest that the white matter alterations in autism may be subtle and related to the developmental trajectory.
Collapse
Affiliation(s)
- Lauren E Libero
- 1 UC Davis MIND Institute , Sacramento, California.,2 UC Davis Department of Psychiatry & Behavioral Sciences , Sacramento, California
| | - Wesley K Burge
- 3 Department of Psychology, University of Alabama at Birmingham , Birmingham, Alabama
| | | | - Franco Pestilli
- 5 Department of Psychological and Brain Sciences, Indiana University , Bloomington, Indiana
| | - Rajesh K Kana
- 3 Department of Psychology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|