51
|
Formaggio E, Fazzini F, Dalfini A, Di Chio M, Cantù C, Decimo I, Fiorini Z, Fumagalli G, Chiamulera C. Nicotine increases the expression of neurotrophin receptor tyrosine kinase receptor A in basal forebrain cholinergic neurons. Neuroscience 2010; 166:580-9. [DOI: 10.1016/j.neuroscience.2009.12.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/29/2009] [Accepted: 12/30/2009] [Indexed: 11/30/2022]
|
52
|
Li N, Liu GT. The novel squamosamide derivative FLZ enhances BDNF/TrkB/CREB signaling and inhibits neuronal apoptosis in APP/PS1 mice. Acta Pharmacol Sin 2010; 31:265-72. [PMID: 20154710 DOI: 10.1038/aps.2010.3] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM The aim of this study was to study the effects of compound FLZ, a novel cyclic derivative of squamosamide from Annona glabra, on brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB)/cAMP response element-binding protein (CREB) signaling and neuronal apoptosis in the hippocampus of the amyloid precursor protein (APP)/presenilin-1 (PS1) double transgenic mice. METHODS APP/PS1 mice at the age of 5 months and age-matched wild-type mice (WT) were intragastrically administered FLZ (150 mg/kg) or vehicle [0.05% carboxymethyl cellulose sodium (CMC-Na)] daily for 20 weeks. The levels of BDNF in the hippocampus of WT and APP/PS1 mice were then measured by immunohistochemistry and Western blot analysis. Neuronal apoptosis in mouse hippocampus was detected by Nissl staining. Expression of NGF, NT3, pTrkB (Tyr515)/TrkB, pAkt (Ser473)/Akt, pERK/ERK, pCREB (Ser133)/CREB, Bcl-2/Bax, and active caspase-3 fragment/caspase-3 in the hippocampus of WT and APP/PS1 mice was detected by Western blot analysis. RESULTS Compared with vehicle-treated APP/PS1 mice, FLZ (150 mg/kg) significantly increased BDNF and NT3 expression in the hippocampus of APP/PS1 mice. In addition, FLZ promoted BDNF high-affinity receptor TrkB phosphorylation and activated its downstream ERK, thus increasing phosphorylation of CREB at Ser133 in the hippocampus of APP/PS1 mice. Moreover, FLZ showed neuroprotective effects on neuronal apoptosis by increasing the Bcl-2/Bax ratio and decreasing the active caspase-3 fragment/caspase-3 ratio in the hippocampus of APP/PS1 mice. CONCLUSION FLZ exerted neuroprotection at least partly through enhancing the BDNF/TrkB/CREB pathway and inhibiting neuronal apoptosis in APP/PS1 mice, which suggests that FLZ can be explored as a potential therapeutic agent in long-term Alzheimer's disease therapy.
Collapse
|
53
|
Niewiadomska G, Baksalerska-Pazera M, Riedel G. The septo-hippocampal system, learning and recovery of function. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:791-805. [PMID: 19389457 DOI: 10.1016/j.pnpbp.2009.03.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 03/30/2009] [Indexed: 12/23/2022]
Abstract
We understand this review as an attempt to summarize recent advances in the understanding of cholinergic function in cognition. Such a role has been highlighted in the 1970s by the discovery that dementia patients have greatly reduced cholinergic activity in cortex and hippocampus. A brief anatomical description of the major cholinergic pathways focuses on the basal forebrain and its projections to cortex and hippocampus. From this distinction, compelling evidence suggests that the basal forebrain --> cortex projection regulates the excitability of principal cortical neurons and is thereby critically involved in attention, stimulus detection and memory function, although the biological conditions for these functions are still debated. Similar uncertainties remain for the septo-hippocampal cholinergic system. Although initial lesions of the septum caused memory deficits reminiscent of hippocampal ablations, recent and more refined neurotoxic lesion studies which spared non-cholinergic cells of the basal forebrain failed to confirm these memory impairments in experimental animals despite a near total loss of cholinergic labeling. Yet, a decline in cholinergic markers in aging and dementia still stands as the most central piece of evidence for a link between the cholinergic system and cognition and appear to provide valuable targets for therapeutic approaches.
Collapse
|
54
|
Pellitteri R, Spatuzza M, Russo A, Zaccheo D, Stanzani S. Olfactory ensheathing cells represent an optimal substrate for hippocampal neurons: an in vitro study. Int J Dev Neurosci 2009; 27:453-8. [PMID: 19446628 DOI: 10.1016/j.ijdevneu.2009.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 04/21/2009] [Accepted: 05/05/2009] [Indexed: 11/24/2022] Open
Abstract
Olfactory ensheathing cells (OECs) are cells that display Schwann cell or astrocyte-like properties. They are a source of growth factors and adhesion molecules which play a very important role as neuronal support enhancing cellular survival. Over the past 10 years, OECs have emerged as a leading reparative candidate, when transplanted into the injured spinal cord, having shown significant promise in the regeneration of spinal cord lesions. In this study we assessed the efficacy of OECs on the survival and neurite outgrowth of hippocampal neurons in vitro. Co-cultures of OECs and hippocampal of postnatal rats were successfully established and cells were immunocytochemically characterized. Some hippocampal cultures were added with growth factors, as bFGF, NGF and GDNF. Furthermore, conditioned medium from OECs cultures was used to feed some hippocampal neurons coverslips. Our results show that in co-cultures of hippocampal neurons and OECs the number of neurons and their neurite outgrowth were significantly increased in comparison with controls. Moreover, we showed that NGF and GDNF promoted a more positive effect in both neuronal survival and neurite outgrowth than bFGF. OEC-conditioned media stimulated both the neuronal survival and dense neurite outgrowth. These data indicate that OECs, as a source of growth factors, can promote the survival and the neurite outgrowth of hippocampal neurons in vitro and that bFGF, NGF and GDNF support them differently. Therefore, as OECs and their secreted growth factors appear to exert a neuroprotective effect for functional restoration and for neural plasticity in neurodegenerative disorders, they might be considered an approach for functional recovery.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Section of Catania, via P. Gaifami 18, 95126 Catania, Italy.
| | | | | | | | | |
Collapse
|
55
|
Fumagalli F, Molteni R, Calabrese F, Maj PF, Racagni G, Riva MA. Neurotrophic factors in neurodegenerative disorders : potential for therapy. CNS Drugs 2009; 22:1005-19. [PMID: 18998739 DOI: 10.2165/0023210-200822120-00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Finding an effective therapy to treat chronic neurodegenerative disorders still represents an unmet and elusive goal, mainly because so many pathogenic variables come into play in these diseases. Recent emphasis has been placed on the role of neurotrophic factors in the aetiology of such disorders because of their role in the survival of different cell phenotypes under various adverse conditions, including neurodegeneration.This review summarizes the current status and the efforts to treat neurodegenerative disorders by the exogenous administration of neurotrophic factors in an attempt to replenish trophic supply, the paucity of which may contribute to the development of the illness. Although promising results have been seen in animal models, this approach still meets disparate and often insurmountable problems in clinical settings, presumably related to the unique nature of the human being.
Collapse
Affiliation(s)
- Fabio Fumagalli
- Department of Pharmacological Sciences, Center of Neuropharmacology, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
56
|
Fragkouli A, Pachnis V, Stylianopoulou F. Sex differences in water maze performance and cortical neurotrophin levels of LHX7 null mutant mice. Neuroscience 2008; 158:1224-33. [PMID: 19095044 DOI: 10.1016/j.neuroscience.2008.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/20/2008] [Accepted: 11/13/2008] [Indexed: 01/08/2023]
Abstract
Mice lacking both alleles of the LIM-homeobox gene Lhx7 display dramatically reduced number of forebrain cholinergic neurons. Given the fact that sex differences are consistently observed in forebrain cholinergic function, in the present study we investigated whether the absence of LHX7 differentially affects water maze performance in the two sexes. Herein we demonstrate that LHX7 null mutants display a sex-dependent impairment in water maze, with females appearing more affected than males. Moreover, neurotrophin assessment revealed a compensatory increase of brain-derived neurotrophic factor and neurotrophin 3 in the neocortex of both male and female mutants and an increase of nerve growth factor levels only in the females. Nevertheless, the compensatory increase of cortical neurotrophin levels did not restore cognitive abilities of Lhx7 homozygous mutants. Finally, our analysis revealed that cortical neurotrophin levels correlate negatively with water maze proficiency, indicating that there is an optimal neurotrophin level for successful cognitive performance.
Collapse
Affiliation(s)
- A Fragkouli
- Department of Basic Sciences, University of Athens, 11527 Athens, Greece
| | | | | |
Collapse
|
57
|
Schulte-Herbrüggen O, Eckart S, Deicke U, Kühl A, Otten U, Danker-Hopfe H, Abramowski D, Staufenbiel M, Hellweg R. Age-dependent time course of cerebral brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 in APP23 transgenic mice. J Neurosci Res 2008; 86:2774-83. [DOI: 10.1002/jnr.21704] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
58
|
NGF and BDNF signaling control amyloidogenic route and Abeta production in hippocampal neurons. Proc Natl Acad Sci U S A 2008; 105:13139-44. [PMID: 18728191 DOI: 10.1073/pnas.0806133105] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Here, we report that interruption of NGF or BDNF signaling in hippocampal neurons rapidly activates the amyloidogenic pathway and causes neuronal apoptotic death. These events are associated with an early intracellular accumulation of PS1 N-terminal catalytic subunits and of APP C-terminal fragments and a progressive accumulation of intra- and extracellular Abeta aggregates partly released into the culture medium. The released pool of Abeta induces an increase of APP and PS1 holoprotein levels, creating a feed-forward toxic loop that might also cause the death of healthy neurons. These events are mimicked by exogenously added Abeta and are prevented by exposure to beta- and gamma-secretase inhibitors and by antibodies directed against Abeta peptides. The same cultured neurons deprived of serum die, but APP and PS1 overexpression does not occur, Abeta production is undetectable, and cell death is not inhibited by anti-Abeta antibodies, suggesting that hippocampal amyloidogenesis is not a simple consequence of an apoptotic trigger but is due to interruption of neurotrophic signaling.
Collapse
|
59
|
Takei Y, Laskey R. Interpreting crosstalk between TNF-alpha and NGF: potential implications for disease. Trends Mol Med 2008; 14:381-8. [PMID: 18693138 DOI: 10.1016/j.molmed.2008.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/04/2008] [Accepted: 07/04/2008] [Indexed: 12/19/2022]
Abstract
Tumour necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine, whereas nerve growth factor (NGF) is a neurotrophin that can promote neural cell survival, differentiation and maturation. However, recent papers indicate that TNF-alpha has a pivotal role in fate decisions of neural cells in normal noninflammatory conditions, whereas NGF contributes to maintenance of inflammation. Although these observations suggest a close relationship between NGF and TNF-alpha signalling, crosstalk between these factors is not fully understood. In this Opinion article, we review recent reports regarding possible crosstalk between NGF and TNF-alpha and we propose a positive-feedback loop of their expression. We discuss the possible mechanisms by which disturbance of the crosstalk could contribute to diseases such as cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Yoshinori Takei
- Medical Research Council (MRC) Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road Cambridge CB2 0XZ, UK.
| | | |
Collapse
|
60
|
Husain MM, Trevino K, Siddique H, McClintock SM. Present and prospective clinical therapeutic regimens for Alzheimer's disease. Neuropsychiatr Dis Treat 2008; 4:765-77. [PMID: 19043521 PMCID: PMC2536544 DOI: 10.2147/ndt.s2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder that produces cognitive impairments that increase in severity as the disease progresses. The clinical symptoms are related to the presence of neuritic plaques and neurofibrillary tangles in the cerebral cortex which represent the pathophysiological hallmarks of AD. The debilitating nature of the disease can result in clinical burden for the patient, emotional strain for those that care for patients with Alzheimer's, and significant financial burden to society. The goals of current treatments, such as cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonist, are to reduce the severity or slow the progression of cognitive symptoms. Although these treatments have demonstrated modest clinical benefit, they are unable to prevent, prohibit, or reverse the underlying pathophysiology of AD. Considerable progress has been made toward the development of disease-modifying treatments. Treatments currently under development mainly target the production, aggregation, and removal of existing amyloid beta-peptide aggregates which are believed to instigate the overall development of the neuropathology. Additional strategies that target tau pathology are being studied to promote neural protection against AD pathology. The current research has continued to expand our knowledge toward the development of disease modifying Alzheimer's therapies; however, no specific treatment strategy capable of demonstrating empirical efficacy and safety has yet to emerge.
Collapse
Affiliation(s)
- Mustafa M Husain
- Department of Psychiatry, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | | | | | |
Collapse
|
61
|
Abstract
Analysis of the structure of nerve growth factor (NGF)-tyrosine kinase receptor A (TrkA) complex, site-directed mutagenesis studies and results from chemical modification of amino acid residues have identified loop 1, loop 4, and the N-terminal region of the NGF molecule as the most relevant for its biological activity. We synthesized several peptides mimicking the two loops (1 and 4) linked together with an appropriate spacer, with or without the N-terminal region. Two peptides named NL1L4 and L1L4 demonstrated good NGF agonist activity at a concentration as low as 3 mum. They induced differentiation of chick dorsal root ganglia and stimulated tyrosine phosphorylation of TrkA, but not TrkB, receptor. In addition L1L4 was able to induce differentiation of PC12 cells. More interestingly, the peptide with the highest "in vitro" activity (L1L4) was shown to reduce neuropathic behavior and restore neuronal function in a rat model of peripheral neuropathic pain, thereby suggesting a potential therapeutic role for this NGF-mimetic peptide.
Collapse
|
62
|
Mi S, Sandrock A, Miller RH. LINGO-1 and its role in CNS repair. Int J Biochem Cell Biol 2008; 40:1971-8. [PMID: 18468478 DOI: 10.1016/j.biocel.2008.03.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/11/2008] [Accepted: 03/11/2008] [Indexed: 01/17/2023]
Abstract
LINGO-1 is selectively expressed in the CNS on both oligodendrocyte precursor cells (OPCs) and neurons. Its expression is developmentally regulated in the normal CNS, as well as up-regulated in human or rat models of neuropathologies. LINGO-1 functions as a negative regulator of oligodendrocyte differentiation and myelination, neuronal survival and axonal regeneration. Across diverse animal CNS disease models, targeted LINGO-1 inhibition was found to promote neuron and oligodendrocyte survival, axon regeneration, oligodendrocyte differentiation, remyelination and improved functional recovery. The targeted inhibition of LINGO-1 therefore presents a novel therapeutic approach for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Sha Mi
- Biogen Idec Inc., 14 Cambridge Center, Cambridge, MA 02142, United States.
| | | | | |
Collapse
|
63
|
Biswas SC, Buteau J, Greene LA. Glucagon-like Peptide-1 (GLP-1) Diminishes Neuronal Degeneration and Death Caused by NGF Deprivation by Suppressing Bim Induction. Neurochem Res 2008; 33:1845-51. [DOI: 10.1007/s11064-008-9646-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
|
64
|
Mattson MP, Wan R. Neurotrophic factors in autonomic nervous system plasticity and dysfunction. Neuromolecular Med 2008; 10:157-68. [PMID: 18172785 DOI: 10.1007/s12017-007-8021-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 11/20/2007] [Indexed: 01/26/2023]
Abstract
During development, neurotrophic factors are known to play important roles in regulating the survival of neurons in the autonomic nervous system (ANS) and the formation of their synaptic connectivity with their peripheral targets in the cardiovascular, digestive, and other organ systems. Emerging findings suggest that neurotrophic factors may also affect the functionality of the ANS during adult life and may, in part, mediate the effects of environmental factors such as exercise and dietary energy intake on ANS neurons and target cells. In this article, we describe the evidence that ANS neurons express receptors for multiple neurotrophic factors, and data suggesting that activation of those receptors can modify plasticity in the ANS. Neurotrophic factors that may regulate ANS function include brain-derived neurotrophic factor, nerve growth factor, insulin-like growth factors, and ciliary neurotrophic factor. The possibility that perturbed neurotrophic factor signaling is involved in the pathogenesis of ANS dysfunction in some neurological disorders is considered, together with implications for neurotrophic factor-based therapeutic interventions.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD. USA.
| | | |
Collapse
|