51
|
Neuropeptidase activity in the frontal cortex of Wistar-Kyoto and spontaneously hypertensive rats treated with vasoactive drugs: a bilateral study. J Hypertens 2020; 37:612-628. [PMID: 30044313 PMCID: PMC6365296 DOI: 10.1097/hjh.0000000000001884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background and objective: Hypertension can lead to mood disorders that may worsen or ameliorate depending on the type of antihypertensive prescribed. Depression is associated with modifications in basal brain asymmetry particularly that of the frontal cortex, which is involved in blood pressure control. Furthermore, different vasoactive drugs may change the brain's asymmetry in a manner that contributes to cognition status. We studied the bilateral activity of several neuropeptidases in frontal cortex as a reflect of the functional status of certain neuropeptides involved in mood. Methods: Using arylamide derivatives as substrates, we fluorometrically analysed the activity of these enzymes in the left and right frontal cortex of control untreated Wistar–Kyoto (WKY) and spontaneously hypertensive rats (SHRs) and compared their activities with WKY or SHR treated with the antihypertensive drugs captopril (CAP) and propranolol (PRO) or with the hypertensive N (G)-nitro-l-arginine methyl ester. SBP was also measured in all WKY and SHR groups. Results: Untreated WKY, WKY treated with CAP or PRO and SHR treated with CAP exhibited normotensive values of SBP. However, WKY treated with N (G)-nitro-l-arginine methyl ester as well as untreated SHR and SHR treated with PRO and N(G)-nitro-l-arginine methyl ester demonstrated hypertensive values of SBP. Changes in the bilateral distribution of neuropeptidases were depending on the strain, the enzyme analysed and the drug used. Normotensive WKY groups (WKY, CAP, PRO) revealed intrahemispheric correlations mainly in the left hemisphere. In contrast, WKY treated with N(G)-nitro-l-arginine methyl ester and SHR groups demonstrated intrahemispheric correlations mainly in the right hemisphere. Interhemispheric correlations were mostly observed in WKY as well as in SHR groups with antihypertensive treatments (CAP, PRO). Conclusion: Our results suggest specific brain bilateral patterns of neuropeptidase activities in WKY that change in SHR. This observation may be related to the cognitive disorders that have been described in these animals and that change under antihypertensive or hypertensive drug's treatments.
Collapse
|
52
|
Perdomo-Pantoja A, Chara A, Kalb S, Casaos J, Ahmed AK, Pennington Z, Cottrill E, Shah S, Jiang B, Manbachi A, Zygourakis C, Witham TF, Theodore N. The effect of renin-angiotensin system blockers on spinal cord dysfunction and imaging features of spinal cord compression in patients with symptomatic cervical spondylosis. Spine J 2020; 20:519-529. [PMID: 31821888 DOI: 10.1016/j.spinee.2019.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/31/2019] [Accepted: 12/02/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Cervical spondylosis may lead to spinal cord compression, poor vascular perfusion, and ultimately, cervical myelopathy. Studies suggest a neuroprotective effect of renin-angiotensin system (RAS) inhibitors in the brain, but limited data exist regarding their impact on the spinal cord. PURPOSE To investigate whether RAS blockers and other antihypertensive drugs are correlated with preoperative functional status and imaging markers of cord compression in patients with symptomatic cervical spondylosis. STUDY DESIGN Retrospective observational study. PATIENT SAMPLE Individuals with symptomatic degenerative cervical stenosis who underwent surgery. OUTCOME MEASURES Imaging features of spinal cord compression and functional status (modified Japanese Orthopedic Association [mJOA] and Nurick grading scales). METHODS Two hundred sixty-six operative patients with symptomatic degenerative cervical stenosis were included. Demographic data, comorbidities, antihypertensive medications, and functional status (including mJOA and Nurick grading scales) were collected. We evaluated canal compromise, cord compromise, surface area of T2 signal cord change, and pixel intensity of signal cord change compared with normal cord on T2-weighted magnetic resonance imaging sequences. RESULTS Of 266 patients, 41.7% were women, 58.3% were men; median age was 57.2 years; 20.6% smoked tobacco; 24.7% had diabetes mellitus. One hundred forty-nine patients (55.8%) had hypertension, 142 (95.3%) of these were taking antihypertensive medications (37 angiotensin-II receptor blockers [ARBs], 44 angiotensin-converting enzyme inhibitors, and 61 other medications). Patients treated with ARBs displayed a higher signal intensity ratio (ie, less signal intensity change in the compressed cord area) compared with untreated patients without hypertension (p=.004). Patients with hypertension had worse preoperative mJOA and Nurick scores than those without (p<.001). In the multivariate analysis, ARBs remained an independent beneficial factor for lower signal intensity change (p=.04), whereas hypertension remained a risk factor for worse preoperative neurological status (p<.01). CONCLUSIONS In our study, patients with hypertension who were treated with RAS inhibitors had decreased T2-weighted signal intensity change than untreated patients without hypertension. Patients with hypertension also had worse preoperative functional status. Prospective case-control studies may deepen understanding of RAS modulators in the imaging and functional status of chronic spinal cord compression.
Collapse
Affiliation(s)
| | - Alejandro Chara
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Samuel Kalb
- Division of Neurological Surgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Joshua Casaos
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - A Karim Ahmed
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Zachary Pennington
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Ethan Cottrill
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Sohan Shah
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Bowen Jiang
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Corinna Zygourakis
- Department of Neurosurgery, Stanford University School Of Medicine, Stanford, CA, USA
| | - Timothy F Witham
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School Of Medicine, Baltimore, MD, USA.
| |
Collapse
|
53
|
Wright JW, Harding JW. Contributions by the Brain Renin-Angiotensin System to Memory, Cognition, and Alzheimer's Disease. J Alzheimers Dis 2020; 67:469-480. [PMID: 30664507 DOI: 10.3233/jad-181035] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive neuron losses in memory-associated brain structures that rob patients of their dignity and quality of life. Five drugs have been approved by the FDA to treat AD but none modify or significantly slow disease progression. New therapies are needed to delay the course of this disease with the ultimate goal of preventing neuron losses and preserving memory functioning. In this review we describe the renin-angiotensin II (AngII) system (RAS) with specific regard to its deleterious contributions to hypertension, facilitation of neuroinflammation and oxidative stress, reduced cerebral blood flow, tissue remodeling, and disruption of memory consolidation and retrieval. There is evidence that components of the RAS, AngIV and Ang(1-7), are positioned to counter such damaging influences and these systems are detailed with the goal of drawing attention to their importance as drug development targets. Ang(1-7) binds at the Mas receptor, while AngIV binds at the AT4 receptor subtype, and these receptor numbers are significantly decreased in AD patients, accompanied by declines in brain aminopeptidases A and N, enzymes essential for the synthesis of AngIV. Potent analogs may be useful to counter these changes and facilitate neuronal functioning and reduce apoptosis in memory associated brain structures of AD patients.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, Pullman, WA, USA.,Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, USA.,M3 Biotechnology, Inc., Seattle, WA, USA
| | - Joseph W Harding
- Department of Psychology, Washington State University, Pullman, WA, USA.,Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, USA.,M3 Biotechnology, Inc., Seattle, WA, USA
| |
Collapse
|
54
|
Role of brain renin angiotensin system in neurodegeneration: An update. Saudi J Biol Sci 2020; 27:905-912. [PMID: 32127770 PMCID: PMC7042626 DOI: 10.1016/j.sjbs.2020.01.026] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/12/2023] Open
Abstract
Renin angiotensin system (RAS) is an endocrine system widely known for its physiological roles in electrolyte homeostasis, body fluid volume regulation and cardiovascular control in peripheral circulation. However, brain RAS is an independent form of RAS expressed locally in the brain, which is known to be involved in brain functions and disorders. There is strong evidence for a major involvement of excessive brain angiotensin converting enzyme (ACE)/Angiotensin II (Ang II)/Angiotensin type-1 receptor (AT-1R) axis in increased activation of oxidative stress, apoptosis and neuroinflammation causing neurodegeneration in several brain disorders. Numerous studies have demonstrated strong neuroprotective effects by blocking AT1R in these brain disorders. Additionally, the angiotensin converting enzyme 2 (ACE2)/Angiotensin (1–7)/Mas receptor (MASR), is another axis of brain RAS which counteracts the damaging effects of ACE/Ang II/AT1R axis on neurons in the brain. Thus, angiotensin II receptor blockers (ARBs) and activation of ACE2/Angiotensin (1–7)/MASR axis may serve as an exciting and novel method for neuroprotection in several neurodegenerative diseases. Here in this review article, we discuss the expression of RAS in the brain and highlight how altered RAS level may cause neurodegeneration. Understanding the pathophysiology of RAS and their links to neurodegeneration has enormous potential to identify potentially effective pharmacological tools to treat neurodegenerative diseases in the brain.
Collapse
|
55
|
Hsieh SW, Liu MW, Huang LC, Wu MN, Yang YH. The Impact of Angiotensin-Converting Enzyme Gene on Behavioral and Psychological Symptoms of Dementia in Alzheimer’s Disease. Curr Alzheimer Res 2020; 16:1269-1275. [DOI: 10.2174/1567205017666200103114550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022]
Abstract
Background:
The Angiotensin-Converting Enzyme (ACE) gene has drawn attention for its
possible role in regulating the degradation of β-amyloid (Aβ), yet its role in affecting the cognitive and
psychiatric symptoms of Alzheimer`s Disease (AD) patients has yet to be elucidated.
Objective:
This study aimed to investigate whether the ACE gene acts as a risk factor of Behavioral and
Psychological Symptoms of Dementia (BPSD) in the AD population.
Method:
The genotyping of ACE and Apolipoprotein E gene with allele ε4(APOEε4) was determined
among 360s clinically diagnosed AD patients. Symptoms and severity of BPSD were evaluated annually
via Neuropsychiatric Inventory (NPI).
Results:
At the base measurement of the first year of patient recruitment, there were no significant contributory
risk factors to NPI score. In the two-year follow-up, ACE insertion polymorphism showed a
significant risk (adjusted odds ratio=1.65, 95% CI=1.1- 2.5, p=0.019) of progression of NPI total score.
Conclusion:
ACE gene is involved in aggravating BPSD among AD patients.
Collapse
Affiliation(s)
- Sun-Wung Hsieh
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Wei Liu
- Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Ling-Chun Huang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Ni Wu
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
56
|
Nani JV, Yonamine CM, Castro Musial D, Dal Mas C, Mari JJ, Hayashi MAF. ACE activity in blood and brain axis in an animal model for schizophrenia: Effects of dopaminergic manipulation with antipsychotics and psychostimulants. World J Biol Psychiatry 2020; 21:53-63. [PMID: 30806143 DOI: 10.1080/15622975.2019.1583372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Objectives: Angiotensin I-converting enzyme (ACE) was initially correlated with schizophrenia (SCZ) in studies showing a correlation of ACE increased enzyme activity with memory impairments. Possible role for ACE in SCZ was also suggested by ACE activity interaction with dopaminergic mechanisms to modulate abnormalities of sensorimotor gating. In addition, we have demonstrated higher ACE activity in blood of SCZ subjects, its implication in cognitive performance in SCZ and its power as a predictor for SCZ diagnosis.Methods: ACE activity was determined in the serum and in selected brain regions of an animal model presenting SCZ-like behaviour, before and after the treatment with typical and atypical antipsychotics, and also in the serum of animals receiving the psychostimulants amphetamine/lisdexamphetamine.Results: Dopaminergic manipulations with antipsychotics and psychostimulants influenced the ACE activity, but with no correlation with the animal blood pressure.Conclusions: The validity of measuring ACE activity in animal blood to predict activity in the CNS, as well as the lack of correlation between the activity and blood pressure, before and after the treatment with antipsychotics, were confirmed here. Correlations of the present findings with data from clinical studies also strengthen the value of this animal model for studying several aspects of SCZ.
Collapse
Affiliation(s)
- João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Psychiatry, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Camila M Yonamine
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Diego Castro Musial
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Caroline Dal Mas
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Jair J Mari
- Department of Psychiatry, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| |
Collapse
|
57
|
Greaney JL, Saunders EFH, Santhanam L, Alexander LM. Oxidative Stress Contributes to Microvascular Endothelial Dysfunction in Men and Women With Major Depressive Disorder. Circ Res 2019; 124:564-574. [PMID: 30582458 DOI: 10.1161/circresaha.118.313764] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE In rodent models of depression, oxidative stress-induced reductions in NO bioavailability contribute to impaired endothelium-dependent dilation. Endothelial dysfunction is evident in major depressive disorder (MDD); however, the molecular mediators remain undefined. OBJECTIVE We sought to translate preclinical findings to humans by testing the role of oxidative stress in mediating microvascular endothelial dysfunction, including potential modulatory influences of sex, in MDD. METHODS AND RESULTS Twenty-four treatment-naive, otherwise healthy, young adults with MDD (14 women; 18-23 years) and 20 healthy adults (10 women; 19-30 years) participated. Red blood cell flux (laser Doppler flowmetry) was measured during graded intradermal microdialysis perfusion of the endothelium-dependent agonist acetylcholine, alone and in combination with an NO synthase inhibitor (L-NAME), a superoxide scavenger (Tempol), and an NADPH oxidase inhibitor (apocynin), as well as during perfusion of the endothelium-independent agonist sodium nitroprusside. Tissue oxidative stress markers (eg, nitrotyrosine abundance, superoxide production) were also quantified. Endothelium-dependent dilation was blunted in MDD and mediated by reductions in NO-dependent dilation. Endothelium-independent dilation was likewise attenuated in MDD. In MDD, there were no sex differences in either NO-mediated endothelium-dependent dilation or endothelium-independent dilation. Acute scavenging of superoxide or inhibition of NADPH oxidase improved NO-dependent dilation in MDD. Expression and activity of oxidative stress markers were increased in MDD. In a subset of adults with MDD treated with a selective serotonin reuptake inhibitor for their depressive symptoms and in remission (n=8; 7 women; 19-37 years), NO-mediated endothelium-dependent dilation was preserved, but endothelium-independent dilation was impaired, compared with healthy adults. CONCLUSIONS Oxidative stress-induced reductions in NO-dependent dilation, as well as alterations in vascular smooth muscle function, directly contribute to microvascular dysfunction in MDD. Strategies targeting vascular oxidative stress may be viable therapeutic options for improving NO-mediated endothelial function and reducing cardiovascular risk in MDD.
Collapse
Affiliation(s)
- Jody L Greaney
- From the Noll Laboratory, Department of Kinesiology, Pennsylvania State University, University Park (J.L.G., L.M.A.)
| | - Erika F H Saunders
- Department of Psychiatry, Penn State College of Medicine, Hershey, PA (E.F.H.S.)
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (L.S.)
| | - Lacy M Alexander
- From the Noll Laboratory, Department of Kinesiology, Pennsylvania State University, University Park (J.L.G., L.M.A.)
| |
Collapse
|
58
|
Ivanova N, Tchekalarova J. The Potential Therapeutic Capacity of Inhibiting the Brain Renin-Angiotensin System in the Treatment of Co-Morbid Conditions in Epilepsy. CNS Drugs 2019; 33:1101-1112. [PMID: 31680223 DOI: 10.1007/s40263-019-00678-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Epilepsy is one of the most prevalent neurological diseases and although numerous novel anticonvulsants have been approved, the proportion of patients who are refractory to medical treatment of seizures and have progressive co-morbidities such as cognitive impairment and depression remains at about 20-30%. In the last decade, extensive research has identified a therapeutic capacity of the components of the brain renin-angiotensin system (RAS) in seizure- and epilepsy-related phenomena. Alleviating the activity of RAS in the central nervous system is considered to be a potential adjuvant strategy for the treatment of numerous detrimental consequences of epileptogenesis. One of the main advantages of RAS is associated with its modulatory influence on different neurotransmitter systems, thereby exerting a fine-tuning control mechanism for brain excitability. The most recent scientific findings regarding the involvement of the components of brain RAS show that angiotensin II (Ang II), angiotensin-converting enzyme (ACE), Ang II type 1 (AT1) and type 2 (AT2) receptors are involved in the control of epilepsy and its accompanying complications, and therefore they are currently of therapeutic interest in the treatment of this disease. However, data on the role of different components of brain RAS on co-morbid conditions in epilepsy, including hypertension, are insufficient. Experimental and clinical findings related to the involvement of Ang II, ACE, AT1, and AT2 receptors in the control of epilepsy and accompanying complications may point to new therapeutic opportunities and adjuvants for the treatment of common co-morbid conditions of epilepsy.
Collapse
Affiliation(s)
- Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria.
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria
| |
Collapse
|
59
|
Renin-angiotensin system in osteoarthritis: A new potential therapy. Int Immunopharmacol 2019; 75:105796. [PMID: 31408841 DOI: 10.1016/j.intimp.2019.105796] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is one of the most common chronic joint diseases. However, the mechanism remains unclear. The traditional renin-angiotensin system (RAS) is an important system for regulating homeostasis and controlling balance. In recent years, RAS-related components have played an important role in the occurrence of OA. The purpose of this review is to summarize the research results of RAS-related components that are associated with OA. This study systematically searched e-medical databases such as PubMed, Embase, Medline, and Web of Science. The search targets included English publications describing the effects of RAS-related components in OA, including the role of renin, angiotensin-converting enzyme (ACE), Angiotensin II (Ang II), and angiotensin receptor (ATR). Additionally, this study summarizes the potential pathways for RAS-related components to intervene in OA. This study found that RAS-related components including renin, ACE, Ang II, AT1R and AT2R are involved in inflammation and chondrocyte hypertrophy in OA. RAS is involved in signaling pathways including the NF-κB, JNK, VEGFR/Tie-2, and the Axna2/Axna2R axis ones, which may be potential targets for the treatment of OA. Although there are few studies on RAS in the field of OA, the pathogenic effect of RAS-related components is still an important topic in OA treatment, and great progress may be made in this aspect in future studies.
Collapse
|
60
|
Rocha NP, Toledo A, Corgosinho LTS, de Souza LC, Guimarães HC, Resende EPF, Braz NFT, Gomes KB, Simoes E Silva AC, Caramelli P, Teixeira AL. Cerebrospinal Fluid Levels of Angiotensin-Converting Enzyme Are Associated with Amyloid-β42 Burden in Alzheimer's Disease. J Alzheimers Dis 2019; 64:1085-1090. [PMID: 30040721 DOI: 10.3233/jad-180282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was designed to determine whether the levels of renin-angiotensin system (RAS) components are associated with Alzheimer's disease (AD) pathology. Cerebrospinal fluid levels of Angiotensin (Ang) II, Ang-(1-7), angiotensin-converting enzyme (ACE), ACE2, Amyloid-β (Aβ)40, Aβ42, total tau (hTau), and phospho-tau (pTau) were measured in 18 patients with AD and 10 controls. Patients with AD presented decreased levels of ACE when compared with controls. We found a significant positive correlation between ACE and Aβ42 levels among patients. Our results strengthen the hypothesis that ACE is associated with Aβ pathology in AD.
Collapse
Affiliation(s)
- Natalia P Rocha
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Andre Toledo
- Cognitive and Behavioral Neurology Unit, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laiane T S Corgosinho
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo C de Souza
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Cognitive and Behavioral Neurology Unit, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Henrique C Guimarães
- Cognitive and Behavioral Neurology Unit, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elisa P F Resende
- Cognitive and Behavioral Neurology Unit, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Global Brain Health Institute, The University of California, San Francisco (UCSF) Memory and Aging Center, San Francisco, CA, USA
| | - Nayara F T Braz
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karina B Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana C Simoes E Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paulo Caramelli
- Cognitive and Behavioral Neurology Unit, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio L Teixeira
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
61
|
Costa-Ferreira W, Morais-Silva G, Gomes-de-Souza L, Marin MT, Crestani CC. The AT1 Receptor Antagonist Losartan Does Not Affect Depressive-Like State and Memory Impairment Evoked by Chronic Stressors in Rats. Front Pharmacol 2019; 10:705. [PMID: 31293424 PMCID: PMC6598205 DOI: 10.3389/fphar.2019.00705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
The present study investigated the effect of the treatment with the angiotensin II type 1 receptor (AT1) antagonist losartan in the depressive-like state and memory impairment evoked by exposure to either homotypic (i.e., repeated exposure to the same type of stressor) or heterotypic (i.e., exposure to different aversive stimuli) chronic stressors in rats. For this, male Wistar rats were subjected to a 10 days regimen of repeated restraint stress (RRS, homotypic stressor) or chronic variable stress (CVS, heterotypic stressor) while being concurrently treated daily with losartan (30 mg/kg/day, p.o.). Depressive-like state was evaluated by analysis of the alterations considered as markers of depression (decreased sucrose preference and body weight and coat state deterioration), whereas cognitive non-emotional performance was tested using the novel object recognition (NOR) test. Locomotor activity was also evaluated in the open field test. Both RRS and CVS impaired sucrose preference and caused coat state deterioration, whereas only CVS impaired body weight gain. Besides, RRS impaired short-term memory (but not long-term memory) in the NOR test. Neither depressive-like state nor memory impairment evoked by the chronic stressors was affected by the treatment with losartan. Nevertheless, CVS increased the locomotion, which was inhibited by losartan. Taken together, these results provide evidence that the chronic treatment with losartan does not affect the depressive-like state and memory impairment evoked by either homotypic or heterotypic chronic stress regimens in rats.
Collapse
Affiliation(s)
- Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Gessynger Morais-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Lucas Gomes-de-Souza
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Marcelo T Marin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| |
Collapse
|
62
|
Kehoe PG. The Coming of Age of the Angiotensin Hypothesis in Alzheimer's Disease: Progress Toward Disease Prevention and Treatment? J Alzheimers Dis 2019; 62:1443-1466. [PMID: 29562545 PMCID: PMC5870007 DOI: 10.3233/jad-171119] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is wide recognition of a complex association between midlife hypertension and cardiovascular disease and later development of Alzheimer’s disease (AD) and cognitive impairment. While significant progress has been made in reducing rates of mortality and morbidity due to cardiovascular disease over the last thirty years, progress towards effective treatments for AD has been slower. Despite the known association between hypertension and dementia, research into each disease has largely been undertaken in parallel and independently. Yet over the last decade and a half, the emergence of converging findings from pre-clinical and clinical research has shown how the renin angiotensin system (RAS), which is very important in blood pressure regulation and cardiovascular disease, warrants careful consideration in the pathogenesis of AD. Numerous components of the RAS have now been found to be altered in AD such that the multifunctional and potent vasoconstrictor angiotensin II, and similarly acting angiotensin III, are greatly altered at the expense of other RAS signaling peptides considered to contribute to neuronal and cognitive function. Collectively these changes may contribute to many of the neuropathological hallmarks of AD, as well as observed progressive deficiencies in cognitive function, while also linking elements of a number of the proposed hypotheses for the cause of AD. This review discusses the emergence of the RAS and its likely importance in AD, not only because of the multiple facets of its involvement, but also perhaps fortuitously because of the ready availability of numerous RAS-acting drugs, that could be repurposed as interventions in AD.
Collapse
Affiliation(s)
- Patrick Gavin Kehoe
- Dementia Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| |
Collapse
|
63
|
Xia MM, Wang M, Jiang H, Liu Y, Ma L, Lu C, Zhang W. Association of Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism with the Risk of Atherosclerosis. J Stroke Cerebrovasc Dis 2019; 28:1732-1743. [PMID: 30878369 DOI: 10.1016/j.jstrokecerebrovasdis.2019.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/17/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
AIMS The objective of this study was to perform a meta-analysis to evaluate the association between angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism and susceptibility to atherosclerosis (AS). METHODS MEDLINE, EMBASE, and the ISI Web of Science were searched for all eligible published studies concerning the relationship of ACE gene polymorphism with AS without language restrictions. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate this relationship under different genetic models using meta-analytic methods. RESULTS A total of 15 articles (16 studies) were involved in this meta-analysis. The D allele of the ACE gene had a nonsignificant increase in the risk of AS (D versus I: OR = 1.23, 95% CI, .98-1.53, P = .07; I2 = 87.2%, Pheterogeneity < .01). Compared with the II genotype, the DI (relative risk [RR]: 1.35, 95% CI: 1.09, 1.67, P < .01; I2 = 47.8%, Pheterogeneity = .017) and (DD + DI) (RR = 1.38, 95% CI: 1.04, 1.82, P = .02; I2 = 73.3%, Pheterogeneity < .01) genotype of ACE was associated with higher risk of AS, respectively. Subjects with the DD genotype showed a statistically nonsignificant trend toward greater risk of AS (RR = 1.53, 95% CI: .97, 2.43, P = .07; I2 = 88.6%, Pheterogeneity < .01). Further subgroup analyses showed that significant relationships were only found in Europeans under different gene polymorphism or different genotype models rather than Asians. CONCLUSIONS The present meta-analysis indicated that the D allele in the ACE gene was associated with the risk of AS, especially in Europeans. Furthermore, increased copy number of D allele was significantly associated with increased AS risk in a dose-dependent manner.
Collapse
Affiliation(s)
- Man-Man Xia
- The First Affiliated Hospital, Xi'an Jiaotong University College of medicine, Xi'an, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Mingxu Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hong Jiang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Le Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chao Lu
- Xi'an Honghui Hospital, Xi'an, China.
| | - Wei Zhang
- The First Affiliated Hospital, Xi'an Jiaotong University College of medicine, Xi'an, China.
| |
Collapse
|
64
|
Establishment of Novel Murine Model showing Vascular Inflammation-derived Cognitive Dysfunction. Sci Rep 2019; 9:4023. [PMID: 30858535 PMCID: PMC6411753 DOI: 10.1038/s41598-019-40726-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a critical feature of aging and its related diseases, including cardiovascular diseases. Recent epidemiological studies demonstrated that abdominal aortic aneurysm (AAA), an aging-related vascular pathological condition, is associated with cognitive decline. However, the underlying mechanism, especially the role of vascular inflammation, is largely unknown because of lack of an available animal model. In this study, we examined whether vascular inflammation affects synaptic and cognitive dysfunction, using an AAA mouse model. In young (3 months) and middle-aged (12 months) C57BL/6J mice, AAA was induced by angiotensin II infusion with calcium chloride application. After 4 weeks of induction, aortic diameter was significantly increased and excessive Mac3-positive inflammatory cells infiltrated the destroyed aorta in middle-aged mice. AAA-induced middle-aged mice further exhibited cognitive impairment. Neuronal loss was observed in the CA3 region of the hippocampus. IBA1/MHCII-double-positive microglia activation was also seen in the hippocampus, suggesting that vascular inflammation drives neuroinflammation and subsequent cognitive dysfunction. Furthermore, we found that senescence-accelerated mice prone 8 exhibited robust AAA formation and a marked decrease of cognitive and synaptic function in the hippocampus mediated by inflammation. In conclusion, this novel murine model convincingly suggested the occurrence of vascular inflammation-derived cognitive dysfunction.
Collapse
|
65
|
Angiotensin Type 2 Receptor Agonist C21 Ameliorates the High-Fat Diet-Induced Pancreatic β-Cell Dysfunction Partially by Activation of Antiapoptosis and Autophagy. Pancreas 2019; 48:250-256. [PMID: 30629032 DOI: 10.1097/mpa.0000000000001241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE We aim to investigate whether C21, a selective angiotensin type 2 receptor agonist, can exert protective effects on pancreatic β-cells through activation of antiapoptosis and autophagy. METHODS The high-fat diet-induced obese rats (HFDs) were under C21 treatment for 4 weeks. RESULTS C21 treatment decreased the fasting glucose levels and improved β-cell insulin secretory function in the HFD group. Hematoxylin and eosin staining and electron microscopy indicated that the islet morphology was improved in the C21-treated obese rats, which was associated with increased levels of the key transcription factor PDX1, glucose sensing, and uptaking protein GCK and GLUT2, respectively. C21 treatment exerted antiapoptotic effects through decreasing the levels of apoptotic marker Caspase-3 while increasing the levels of antiapoptotic markers AKT, p-AKT, and BCL2. C21 treatment also induced autophagosome formation in the mitochondria of the β-cells in the HFD group accompanied by increased levels of autophagy markers, LC-3B and Beclin-1. CONCLUSIONS The results suggested C21 treatment decreased the fasting glucose level and protected β-cell function in the HFD-induced obese rat model, which in part through activation of antiapoptotic and autophagy processes. This study provided preclinical evidence for the utilization of C21 in the treatment of type 2 diabetes.
Collapse
|
66
|
Qiu M, Li J, Tan L, Zhang M, Zhou G, Zeng T, Li A. Targeted Ablation of Distal Cerebrospinal Fluid-Contacting Nucleus Alleviates Renal Fibrosis in Chronic Kidney Disease. Front Physiol 2018; 9:1640. [PMID: 30524304 PMCID: PMC6262366 DOI: 10.3389/fphys.2018.01640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/30/2018] [Indexed: 01/18/2023] Open
Abstract
The potential function of distal cerebrospinal fluid-contacting nucleus (dCSF-CNs) in chronic kidney disease (CKD) development is poorly understood. We hypothesized that dCSF-CNs might affect the renin-angiotensin system (RAS) in kidney injury progression, with dCSF-CNs ablation potentially alleviating local RAS and renal fibrosis in rats after five-sixths nephrectomy (5/6Nx). Part of rats were randomly administered artificial cerebrospinal fluid (aCSF) intracerebroventricularly (icv), followed by 5/6Nx or sham operation; and other part of rats were administered Cholera toxin B subunit conjugated with saporin (CB-SAP) for dCSF-CNs lesion before 5/6Nx. The effect of CB-SAP on dCSF-CNs ablation was confirmed by double immunofluorescence staining. RAS component, NOX2 and c-fos levels in the subfornical organ (SFO), hypothalamic paraventricular nucleus (PVN) and hippocampus, as well as tyrosine hydroxylase (TH) and c-fos positive cells in rostral ventrolateral medulla (RVLM) were assessed. Next, the levels of RAS components (angiotensinogen [AGT], angiotensin-converting enzyme [ACE], Ang II type 1 receptor [AT1R], angiotensin-converting enzyme 2 [ACE2], and Mas receptor), NADPH oxidases (NOX2 and catalase), inflammatory cytokines (monocyte chemotactic protein 1 [MCP-1] and IL-6), and fibrotic factors (fibronectin and collagen I) were assessed. Less CB-labeled neurons were found in dCSF-CNs of CB-SAP-treated rats compared with 5/6Nx animals. Meanwhile, CB-SAP downregulated AGT, Ang II, AT1R, NOX2, catalase, MCP-1, IL-6, fibronectin, and collagen I, and upregulated ACE2 and Mas receptor, compared with CKD rats. More TH and c-fos positive cells were found in RVLM of 5/6Nx rats but the number decreased after dCSF-CNs ablation. Targeted dCSF-CNs ablation could alleviate renal inflammation and fibrosis in chronic kidney injury by inhibiting cerebral and renal RAS/NADPH oxidase.
Collapse
Affiliation(s)
- Minzi Qiu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawen Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lishan Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengbi Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guang Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Zeng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
67
|
Perdomo-Pantoja A, Mejía-Pérez SI, Reynoso-Noverón N, Gómez-Flores-Ramos L, Soto-Reyes E, Sánchez-Correa TE, Guerra-Calderas L, Castro-Hernandez C, Vidal-Millán S, Sánchez-Corona J, Taja-Chayeb L, Gutiérrez O, Cacho-Diaz B, Alvarez-Gomez RM, Gómez-Amador JL, Ostrosky-Wegman P, Corona T, Herrera-Montalvo LA, Wegman-Ostrosky T. Angiotensinogen rs5050 germline genetic variant as potential biomarker of poor prognosis in astrocytoma. PLoS One 2018; 13:e0206590. [PMID: 30383794 PMCID: PMC6211735 DOI: 10.1371/journal.pone.0206590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/16/2018] [Indexed: 01/11/2023] Open
Abstract
Introduction Renin-angiotensin system (RAS) in brain cancer represents a scarcely explored field in neuro-oncology. Recently, some pre- and clinical studies have reported that RAS components play a relevant role in the development and behavior of gliomas. The angiotensinogen (AGT) rs5050 genetic variant has been identified as a crucial regulator of the transcription of AGT mRNA, which makes it a logical and promising target of research. The aim of this study was to determine the relationship between the AGT rs5050 genetic variant in blood with prognosis in astrocytoma. Methods A prospective pilot study was performed on forty-eight astrocytoma patients, who received the standard-of-care treatment. Blood samples were taken prior to surgery and DNA was sequenced using Ion Torrent next-generation sequencing and analyzed by Ion Reporter software. Descriptive, bivariate, multivariate, and survival analyses were performed using SPSS v21, STATA 12 and GraphPad Prism 7. Results Median follow-up was 41 months (range 1–48). Survival analysis showed a significant difference between the rs5050 genotypes (p = .05). We found lower survival rates in individuals with the GG-genotype of rs5050 AGT compared to patients with the TT- and TG-genotype (2 months vs. 11.5 months, respectively [p = .01]). In bivariate and multivariate analyses, GG-genotype was negatively associated with survival. Conclusions In patients with astrocytoma, AGT rs5050 GG-genotype was associated with poor prognosis. We propose this germline genetic variant as a complementary biomarker, which can be detected practically and safely in blood samples or saliva.
Collapse
Affiliation(s)
- Alexander Perdomo-Pantoja
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, United States of America
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suarez", Mexico City, Mexico
| | - Sonia Iliana Mejía-Pérez
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suarez", Mexico City, Mexico
| | | | | | - Ernesto Soto-Reyes
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | | - Clementina Castro-Hernandez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-INCAN, Mexico City, Mexico
| | - Silvia Vidal-Millán
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Lucia Taja-Chayeb
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Olga Gutiérrez
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Bernardo Cacho-Diaz
- Unidad de Neuro-oncologia, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | | - Juan Luis Gómez-Amador
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suarez", Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Teresa Corona
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurologia y Neurocirugia, "Manuel Velasco Suarez", Mexico City, Mexico
| | - Luis Alonso Herrera-Montalvo
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-INCAN, Mexico City, Mexico
| | - Talia Wegman-Ostrosky
- Dirección de Investigación, Instituto Nacional de Cancerología, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
68
|
Hu Z, Wang L, Ma S, Kirisci L, Feng Z, Xue Y, Klunk WE, Kamboh MI, Sweet RA, Becker J, Lv Q, Lopez OL, Xie XQ. Synergism of antihypertensives and cholinesterase inhibitors in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:542-555. [PMID: 30386819 PMCID: PMC6205113 DOI: 10.1016/j.trci.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION We investigated the effect of antihypertensive (aHTN) medications and cholinesterase inhibitors (ChEIs) on the cognitive decline in patients with Alzheimer's disease (AD) and analyzed synergism by chemogenomics systems pharmacology mapping. METHODS We compared the effect of aHTN drugs on Mini-Mental State Examination scores in 617 AD patients with hypertension, and studied the synergistic effects. RESULTS The combination of diuretics, calcium channel blockers, and renin-angiotensin-aldosterone system blockers showed slower cognitive decline compared with other aHTN groups (Δβ = +1.46, P < .0001). aHTN medications slow down cognitive decline in ChEI users (Δβ = +0.56, P = .006), but not in non-ChEI users (Δβ = -0.31, P = .53). DISCUSSION aHTN and ChEI drugs showed synergistic effects. A combination of diuretics, renin-angiotensin-aldosterone system blockers, and calcium channel blockers had the slowest cognitive decline. The chemogenomics systems pharmacology-identified molecular targets provide system pharmacology interpretation of the synergism of the drugs in clinics. The results suggest that improving vascular health is essential for AD treatment and provide a novel direction for AD drug development.
Collapse
Affiliation(s)
- Ziheng Hu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lirong Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shifan Ma
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Levent Kirisci
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Xue
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - William E. Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Becker
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qianzhou Lv
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
69
|
Łukawski K, Raszewski G, Czuczwar SJ. Effect of aliskiren, a direct renin inhibitor, on the protective action of antiepileptic drugs against pentylenetetrazole-induced clonic seizures in mice. Fundam Clin Pharmacol 2018; 33:191-198. [PMID: 30312501 DOI: 10.1111/fcp.12421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/29/2018] [Accepted: 10/08/2018] [Indexed: 01/13/2023]
Abstract
It has been demonstrated that certain angiotensin-converting enzyme (ACE) inhibitors and angiotensin AT1 receptor antagonists can possess anticonvulsant activity. The purpose of the current study was to examine the effect of aliskiren, a direct renin inhibitor and a novel antihypertensive drug, against pentylenetetrazole (PTZ)-induced clonic seizures in mice and on the protective activity of conventional antiepileptic drugs (AEDs) in this seizure model. Effects of aliskiren on the PTZ threshold and the protective efficacy of AEDs, such as clonazepam (CLO), phenobarbital (PB), valproate (VPA), and ethosuximide (ETX) in the PTZ test, were evaluated in adult Swiss mice. Aliskiren and AEDs were administered intraperitoneally (i.p.) while PTZ (50-100 mg/kg) was injected subcutaneously (s.c.). The rota-rod and passive avoidance test were used to assess the adverse effects of the combined treatment with aliskiren and AEDs. Aliskiren, at the dose of 75 mg/kg, significantly raised the PTZ threshold (P < 0.05). Furthermore, aliskiren, at the subthreshold dose of 50 mg/kg, significantly enhanced the protective action of CLO (P < 0.01), PB (P < 0.01), and VPA (P < 0.05) but not ETX (P > 0.05) in the s.c. PTZ test. Motor coordination in the rota-rod test and long-term memory in the passive avoidance task were not impaired by the combined treatment of the drugs. This study suggests that treatment with aliskiren can be useful in hypertensive patients with myoclonic seizures. Certainly, a clinical verification of using aliskiren in such patients would be necessary.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.,Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, Lublin, 20-090, Poland
| | - Grzegorz Raszewski
- Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
| | - Stanisław J Czuczwar
- Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.,Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, Lublin, 20-090, Poland
| |
Collapse
|
70
|
Klempin F, Mosienko V, Matthes S, Villela DC, Todiras M, Penninger JM, Bader M, Santos RAS, Alenina N. Depletion of angiotensin-converting enzyme 2 reduces brain serotonin and impairs the running-induced neurogenic response. Cell Mol Life Sci 2018; 75:3625-3634. [PMID: 29679094 PMCID: PMC7079801 DOI: 10.1007/s00018-018-2815-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022]
Abstract
Physical exercise induces cell proliferation in the adult hippocampus in rodents. Serotonin (5-HT) and angiotensin (Ang) II are important mediators of the pro-mitotic effect of physical activity. Here, we examine precursor cells in the adult brain of mice lacking angiotensin-converting enzyme (ACE) 2, and explore the effect of an acute running stimulus on neurogenesis. ACE2 metabolizes Ang II to Ang-(1-7) and is essential for the intestinal uptake of tryptophan (Trp), the 5-HT precursor. In ACE2-deficient mice, we observed a decrease in brain 5-HT levels and no increase in the number of BrdU-positive cells following exercise. Targeting the Ang II/AT1 axis by blocking the receptor, or experimentally increasing Trp/5-HT levels in the brain of ACE2-deficient mice, did not rescue the running-induced effect. Furthermore, mice lacking the Ang-(1-7) receptor, Mas, presented a normal neurogenic response to exercise. Our results identify ACE2 as a novel factor required for exercise-dependent modulation of adult neurogenesis and essential for 5-HT metabolism.
Collapse
Affiliation(s)
- Friederike Klempin
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany.
- Charité, University Medicine Berlin, Berlin, Germany.
| | - Valentina Mosienko
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- University of Exeter Medical School, Hatherly Building D11, Exeter, EX4 4PS, UK
| | - Susann Matthes
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Daniel C Villela
- Federal University of Minas Gerais (UFmG), ICB, Belo Horizonte, MG, 6627, Brazil
- Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Charité, University Medicine Berlin, Berlin, Germany
- Institute of Biology, University of Lübeck, 23562, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Robson A S Santos
- Federal University of Minas Gerais (UFmG), ICB, Belo Horizonte, MG, 6627, Brazil
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute of Translational Biomedicine, St. Petersburg State University, Saint Petersburg, 199034, Russia
| |
Collapse
|
71
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2018; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
72
|
Abrahão MV, Dos Santos NFT, Kuwabara WMT, do Amaral FG, do Carmo Buonfiglio D, Peres R, Vendrame RFA, Flávio da Silveira P, Cipolla-Neto J, Baltatu OC, Afeche SC. Identification of insulin-regulated aminopeptidase (IRAP) in the rat pineal gland and the modulation of melatonin synthesis by angiotensin IV. Brain Res 2018; 1704:40-46. [PMID: 30222958 DOI: 10.1016/j.brainres.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
A local renin-angiotensin system (RAS) has been postulated in the pineal gland. In addition to angiotensin II (Ang II), other active metabolites have been described. In this study, we aimed to investigate a role for Ang IV in melatonin synthesis and the presence of its proposed (IRAP)/AT4 receptor (insulin-regulated aminopeptidase) in the pineal gland. The effect of Ang IV on melatonin synthesis was investigated in vitro using isolated pinealocytes. IRAP protein expression and activity were evaluated by Western blot and fluorimetry using Leu-4Me-β-naphthylamide as a substrate. Melatonin was analyzed by HPLC, calcium content by confocal microscopy and cAMP by immunoassay. Ang IV significantly augmented the NE-induced melatonin synthesis to a similar degree as that achieved by Ang II. This Ang IV effect in pinealocytes appears to be mediated by an increase in the intracellular calcium content but not by cAMP. The (IRAP)/AT4 expression and activity were identified in the pineal gland, which were significantly higher in membrane fractions than in soluble fractions. Ang IV significantly reduced IRAP activity in the pineal membrane fractions. The main findings of the present study are as follows: (1) Ang IV potentiates NE-stimulated melatonin production in pinealocytes, (2) the (IRAP)/AT4 receptor is present in the rat pineal gland, and (3) Ang IV inhibits IRAP activity and increases pinealocytes [Ca2+]i. We conclude that Ang IV is an important component of RAS and modulates melatonin synthesis in the rat pineal gland.
Collapse
Affiliation(s)
| | | | - Wilson Mitsuo Tatagiba Kuwabara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Fernanda Gaspar do Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil; Department of Physiology, Federal University of São Paulo, 04023-901 São Paulo, SP, Brazil
| | - Daniella do Carmo Buonfiglio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Rafael Peres
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | | | | | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Ovidiu Constantin Baltatu
- Center of Innovation, Technology and Education (CITE), Anhembi Morumbi University-Laureate International Universities, 12247-016 São José dos Campos, SP, Brazil
| | | |
Collapse
|
73
|
Tao MX, Xue X, Gao L, Lu JL, Zhou JS, Jiang T, Zhang YD. Involvement of angiotensin-(1-7) in the neuroprotection of captopril against focal cerebral ischemia. Neurosci Lett 2018; 687:16-21. [PMID: 30219484 DOI: 10.1016/j.neulet.2018.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 11/30/2022]
Abstract
Accumulating evidence suggests that brain angiotensin-converting enzyme (ACE)/angiotensin II/angiotensin II type I receptor axis is activated and thus contributes to the neuronal injury during ischemic stroke. Conversely, inhibition of this axis using centrally active ACE inhibitor captopril was proven neuroprotective in rodents with focal cerebral ischemia. Interestingly, captopril was able to increase angiotensin-(1-7) [Ang-(1-7)] levels in the peripheral organs. As the main component of the alternative renin-angiotensin system axis in the brain, Ang-(1-7) was revealed to protect against focal cerebral ischemia via a MAS1 receptor-dependent manner. Based on this evidence, we hypothesized that Ang-(1-7) might contribute to the neuroprotection of captopril during ischemic stroke. In this study, we evaluated this hypothesis using a rat model of focal cerebral ischemia. We revealed that brain ACE2 activity and Ang-(1-7) levels were significantly elevated following captopril treatment in rats with focal cerebral ischemia. More importantly, we showed that the neuroprotection provided by captopril was partially reversed by A-779, an antagonist for Ang-(1-7) receptor MAS1, indicating that Ang-(1-7) was involved in the neuroprotection of captopril. These findings have uncovered new mechanisms by which captopril protects against focal cerebral ischemia and further suggest that captopril may have practical clinical use for stroke prevention and treatment in addition to its antihypertensive effect.
Collapse
Affiliation(s)
- Meng-Xing Tao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Xiao Xue
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Li Gao
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Jun-Ling Lu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Jun-Shan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China.
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
74
|
Hardy RN, Simsek ZD, Curry B, Core SL, Beltz T, Xue B, Johnson AK, Thunhorst RL, Curtis KS. Aging affects isoproterenol-induced water drinking, astrocyte density, and central neuronal activation in female Brown Norway rats. Physiol Behav 2018; 192:90-97. [PMID: 29518407 PMCID: PMC6019141 DOI: 10.1016/j.physbeh.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/26/2018] [Accepted: 03/03/2018] [Indexed: 01/22/2023]
Abstract
Age-dependent impairments in the central control of compensatory responses to body fluid challenges have received scant experimental attention, especially in females. In the present study, we found that water drinking in response to β-adrenergic activation with isoproterenol (30 μg/kg, s.c.) was reduced by more than half in aged (25 mo) vs. young (5 mo) ovariectomized female Brown Norway rats. To determine whether this age-related decrease in water intake was accompanied by changes in central nervous system areas associated with fluid balance, we assessed astrocyte density and neuronal activation in the SFO, OVLT, SON, AP and NTS of these rats using immunohistochemical labeling for GFAP and c-fos, respectively. GFAP labeling intensity was increased in the SFO, AP, and NTS of aged females independent of treatment, and was increased in the OVLT of isoproterenol-treated rats independent of age. Fos immunolabeling in response to isoproterenol was reduced in both the SFO and the OVLT of aged females compared to young females, but was increased in the SON of female rats of both ages. Finally, fos labeling in the AP and caudal NTS of aged rats was elevated after vehicle control treatment and did not increase in response to isoproterenol as it did in young females. Thus, age-related declines in water drinking are accompanied by site-specific, age-related changes in astrocyte density and neuronal activation. We suggest that astrocyte density may alter the detection and/or processing of signals related to isoproterenol treatment, and thereby alter neuronal activation in areas associated with fluid balance.
Collapse
Affiliation(s)
- Rachel N Hardy
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States
| | - Zinar D Simsek
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States
| | - Brandon Curry
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States
| | - Sheri L Core
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States
| | - Terry Beltz
- University of Iowa, Iowa City, IA, United States
| | - Baojian Xue
- University of Iowa, Iowa City, IA, United States
| | | | | | - Kathleen S Curtis
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States.
| |
Collapse
|
75
|
Diniz CR, Casarotto PC, Fred SM, Biojone C, Castrén E, Joca SR. Antidepressant-like effect of losartan involves TRKB transactivation from angiotensin receptor type 2 (AGTR2) and recruitment of FYN. Neuropharmacology 2018; 135:163-171. [DOI: 10.1016/j.neuropharm.2018.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/06/2018] [Accepted: 03/12/2018] [Indexed: 12/24/2022]
|
76
|
Durães F, Pinto M, Sousa E. Old Drugs as New Treatments for Neurodegenerative Diseases. Pharmaceuticals (Basel) 2018; 11:ph11020044. [PMID: 29751602 PMCID: PMC6027455 DOI: 10.3390/ph11020044] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are increasing in number, given that the general global population is becoming older. They manifest themselves through mechanisms that are not fully understood, in many cases, and impair memory, cognition and movement. Currently, no neurodegenerative disease is curable, and the treatments available only manage the symptoms or halt the progression of the disease. Therefore, there is an urgent need for new treatments for this kind of disease, since the World Health Organization has predicted that neurodegenerative diseases affecting motor function will become the second-most prevalent cause of death in the next 20 years. New therapies can come from three main sources: synthesis, natural products, and existing drugs. This last source is known as drug repurposing, which is the most advantageous, since the drug’s pharmacokinetic and pharmacodynamic profiles are already established, and the investment put into this strategy is not as significant as for the classic development of new drugs. There have been several studies on the potential of old drugs for the most relevant neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Multiple Sclerosis and Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
77
|
Justin A, Divakar S, Ramanathan M. Cerebral ischemia induced inflammatory response and altered glutaminergic function mediated through brain AT 1 and not AT 2 receptor. Biomed Pharmacother 2018; 102:947-958. [PMID: 29710550 DOI: 10.1016/j.biopha.2018.03.164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 11/28/2022] Open
Abstract
In the present study, we investigated the effects of angiotensin (Ang II) receptor blockers in cerebral ischemia by administration of telmisartan (AT1 blocker) and/or PD123319 (AT2 blocker) in global ischemic mice model. The neuroprotective effect of AT antagonists was evaluated through monitoring muscle co-ordination and cerebral blood perfusion in ischemic mice. Gene expression studies (NF-κB, GSK-3β, EAAT-2, AT1 & AT2 receptors) and staining of brain regions with cresyl violet, GFAP, synaptophysin and NSE methods were carried out in to understand the molecular mechanisms. Further, the brain glutamate, cytokines, and Ang II peptide levels were evaluated and their correlation with EAAT-2 mRNA expression was performed. Our results indicate that the induction of ischemia elevates brain Ang II, cytokines, and glutamate levels and reduced muscle co-ordination and cerebral blood perfusion. The expressions of NF-κB, GSK-3β and AT1 were significantly increased, whereas, EAAT-2 expression was decreased. Blocking of AT1 receptors by telmisartan (TM) reversed the detrimental responses of cerebral ischemia and restored the cerebral blood flow denoting blockade of Ang II/AT1 pathway is beneficial in ischemia, whereas, blockade of AT2 receptors by PD123319 (PD) increased the ischemic injury in mice. This vulnerable effect of PD may be attributed through augmenting the Ang II/AT1 dependent cytokines mediated glutamate transporter (EAAT-2) dysfunction. Interestingly, the beneficial effects of AT1 blocker was remarkably antagonized by AT2 blocker in most of the parameters studied in ischemic conditions. Also, the expression of AT2 receptors was significantly increased compared to that of AT1 receptors upon ischemic induction. It denotes that the endogenous Ang II predominantly acts on AT2 receptor, thereby promoting its own mRNA transcription. Hence, the increased expression of AT2 receptors in ischemic condition could be used as target protein for therapeutic benefit.
Collapse
Affiliation(s)
- A Justin
- PSG College of Pharmacy, Peelamedu, Coimbatore, TN, 641004, India
| | - S Divakar
- PSG College of Pharmacy, Peelamedu, Coimbatore, TN, 641004, India
| | - M Ramanathan
- PSG College of Pharmacy, Peelamedu, Coimbatore, TN, 641004, India.
| |
Collapse
|
78
|
Jiang L, Zhu R, Bu Q, Li Y, Shao X, Gu H, Kong J, Luo L, Long H, Guo W, Tian J, Zhao Y, Cen X. Brain Renin-Angiotensin System Blockade Attenuates Methamphetamine-Induced Hyperlocomotion and Neurotoxicity. Neurotherapeutics 2018; 15:500-510. [PMID: 29464572 PMCID: PMC5935642 DOI: 10.1007/s13311-018-0613-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Methamphetamine (METH) abuse has become a major public health concern worldwide without approved pharmacotherapies. The brain renin-angiotensin system (RAS) is involved in the regulation of neuronal function as well as neurological disorders. Angiotensin II (Ang II), which interacts with Ang II type 1 receptor (AT1-R) in the brain, plays an important role as a neuromodulator in dopaminergic transmission. However, the role of brain RAS in METH-induced behavior is largely unknown. Here, we revealed that repeated METH administration significantly upregulated the expression of AT1-R in the striatum of mice, but downregulated dopamine D3 receptor (D3R) expression. A specific AT1-R blocker telmisartan, which can penetrate the brain-blood barrier (BBB), or genetic deletion of AT1-R was sufficient to attenuate METH-triggered hyperlocomotion in mice. However, intraperitoneal injection of AT1-R blocker losartan, which cannot penetrate BBB, failed to attenuate METH-induced behavior. Moreover, intra-striatum re-expression of AT1 with lentiviral virus expressing AT1 reversed the weakened locomotor activity of AT1-/- mice treated with METH. Losartan alleviated METH-induced cytotoxicity in SH-SY5Y cells in vitro, which was accompanied by upregulated expressions of D3R and dopamine transporter. In addition, intraperitoneal injection of perindopril, which is a specific ACE inhibitor and can penetrate BBB, significantly attenuated METH-induced hyperlocomotor activity. Collectively, our results show that blockade of brain RAS attenuates METH-induced hyperlocomotion and neurotoxicity possibly through modulation of D3R expression. Our findings reveal a novel role of Ang II-AT1-R in METH-induced hyperlocomotion.
Collapse
Affiliation(s)
- Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Ruiming Zhu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
- Department of Food Science and Technology, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, 610065, China
| | - Yan Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Xue Shao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Hui Gu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Jueying Kong
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Li Luo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Hailei Long
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Wei Guo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
- School of Pharmacy, Yantai University, Yantai, 264003, China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Yantai, 264003, China
| | - Jingwei Tian
- School of Pharmacy, Yantai University, Yantai, 264003, China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Yantai, 264003, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China.
| |
Collapse
|
79
|
Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the Brain: The Renin Angiotensin System. Int J Mol Sci 2018; 19:E876. [PMID: 29543776 PMCID: PMC5877737 DOI: 10.3390/ijms19030876] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 02/07/2023] Open
Abstract
For many years, modulators of the renin angiotensin system (RAS) have been trusted by clinicians for the control of essential hypertension. It was recently demonstrated that these modulators have other pleiotropic properties independent of their hypotensive effects, such as enhancement of cognition. Within the brain, different components of the RAS have been extensively studied in the context of neuroprotection and cognition. Interestingly, a crosstalk between the RAS and other systems such as cholinergic, dopaminergic and adrenergic systems have been demonstrated. In this review, the preclinical and clinical evidence for the impact of RAS modulators on cognitive impairment of multiple etiologies will be discussed. In addition, the expression and function of different receptor subtypes within the RAS such as: Angiotensin II type I receptor (AT1R), Angiotensin II type II receptor (AT2R), Angiotensin IV receptor (AT4R), Mas receptor (MasR), and Mas-related-G protein-coupled receptor (MrgD), on different cell types within the brain will be presented. We aim to direct the attention of the scientific community to the plethora of evidence on the importance of the RAS on cognition and to the different disease conditions in which these agents can be beneficial.
Collapse
Affiliation(s)
- LaDonya Jackson
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
| | - Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Adviye Ergul
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
80
|
Gao Q, Ou Z, Jiang T, Tian YY, Zhou JS, Wu L, Shi JQ, Zhang YD. Azilsartan ameliorates apoptosis of dopaminergic neurons and rescues characteristic parkinsonian behaviors in a rat model of Parkinson's disease. Oncotarget 2018; 8:24099-24109. [PMID: 28445961 PMCID: PMC5421830 DOI: 10.18632/oncotarget.15732] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/08/2017] [Indexed: 01/12/2023] Open
Abstract
Loss of dopaminergic neurons within the substantia nigra (SN) is a pathological hallmark of Parkinsons disease (PD), which leads to the onset of motor symptoms. Previously, our in vitro studies revealed that Angiotensin II (Ang II) induced apoptosis of dopaminergic neurons through its type 1 receptor (AT1R), but these findings needed to be confirmed via animal experiments. Here, using a rotenone-induced rat model of PD, we observed an overactivation of Ang II/AT1R axis in the SN, since Ang II level and AT1R expression were markedly increased. Furthermore, we provided in vivo evidence that Ang II directly elicited apoptosis of dopaminergic neurons via activation of AT1R in the SN of rats. More importantly, we showed for the first time that oral administration of azilsartan, a newly developed AT1R blocker approved by the U.S. Food and Drug Administration for hypertension treatment, rescued the apoptosis of dopaminergic neurons and relieved the characteristic parkinsonian symptoms in PD rats. These results support the application of AT1R blockers in PD therapy, and strengthen the notion that many therapeutic agents may possess pleiotropic action in addition to their main applications.
Collapse
Affiliation(s)
- Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zhou Ou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - You-Yong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Jun-Shan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Liang Wu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
81
|
Kehoe PG, Hibbs E, Palmer LE, Miners JS. Angiotensin-III is Increased in Alzheimer's Disease in Association with Amyloid-β and Tau Pathology. J Alzheimers Dis 2018; 58:203-214. [PMID: 28387670 DOI: 10.3233/jad-161265] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hyperactivity of the renin-angiotensin system (RAS) is associated with the pathogenesis of Alzheimer's disease (AD) believed to be mediated by angiotensin-II (Ang-II) activation of the angiotensin type 1 receptor (AT1R). We previously showed that angiotensin-converting enzyme-1 (ACE-1) activity, the rate-limiting enzyme in the production of Ang-II, is increased in human postmortem brain tissue in AD. Angiotensin-III (Ang-III) activates the AT1R and angiotensin type-2 receptor (AT2R), but its potential role in the pathophysiology of AD remains unexplored. We measured Ang-II and Ang-III levels by ELISA, and the levels and activities of aminopeptidase-A (AP-A) and aminopeptidase-N (AP-N) (responsible for the production and metabolism of Ang-III, respectively) in human postmortem brain tissue in the mid-frontal cortex (Brodmann area 9) in a cohort of AD (n = 90) and age-matched non-demented controls (n = 59), for which we had previous measurements of ACE-1 activity, Aβ level, and tau pathology (also in the mid-frontal cortex). We found that both Ang-II and Ang-III levels were significantly higher in AD compared to age-matched controls and that Ang-III, rather than Ang-II, was strongly associated with Aβ load and tau load. Levels of AP-A were significantly reduced in AD but AP-A enzyme activity was unchanged whereas AP-N activity was reduced in AD but AP-N protein level was unchanged. Together, these data indicate that the APA/Ang-III/APN/Ang-IV/AT4R pathway is dysregulated and that elevated Ang-III could contribute to the pathogenesis of AD.
Collapse
|
82
|
Renin angiotensin system and its role in biomarkers and treatment in gliomas. J Neurooncol 2018; 138:1-15. [PMID: 29450812 DOI: 10.1007/s11060-018-2789-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
Gliomas are the most common primary intrinsic tumor in the brain and are classified as low- or high-grade according to the World Health Organization (WHO). Patients with high-grade gliomas (HGG) who undergo surgical resection with adjuvant therapy have a mean overall survival of 15 months and 100% recurrence. The renin-angiotensin system (RAS), the primary regulator of cardiovascular circulation, exhibits local action and works as a paracrine system. In the context of this local regulation, the expression of RAS peptides and receptors has been detected in different kinds of tumors, including gliomas. The dysregulation of RAS components plays a significant role in the proliferation, angiogenesis, and invasion of these tumors, and therefore in their outcomes. The study and potential application of RAS peptides and receptors as biomarkers in gliomas could bring advantages against the limitations of current tumoral markers and should be considered in the future. The targeting of RAS components by RAS blockers has shown potential of being protective against cancer and improving immunotherapy. In gliomas, RAS blockers have shown a broad spectrum for beneficial effects and are being considered for use in treatment protocols. This review aims to summarize the background behind how RAS plays a role in gliomagenesis and explore the evidence that could lead to their use as biomarkers and treatment adjuvants.
Collapse
|
83
|
Torika N, Asraf K, Apte RN, Fleisher-Berkovich S. Candesartan ameliorates brain inflammation associated with Alzheimer's disease. CNS Neurosci Ther 2018; 24:231-242. [PMID: 29365370 DOI: 10.1111/cns.12802] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/05/2017] [Accepted: 12/24/2017] [Indexed: 01/08/2023] Open
Abstract
AIMS Alzheimer's disease (AD) pathology is associated with brain inflammation involving microglia and astrocytes. The renin-angiotensin system contributes to brain inflammation associated with AD pathology. This study aimed to investigate the role of candesartan, an angiotensin II type 1 receptor blocker, in modulation of glial functions associated with AD. METHODS Focusing on the role of candesartan in glial inflammation, we evaluated inflammatory mediators' levels, secreted by lipopolysaccharide-induced microglia following candesartan treatment. Also, short-term intranasal candesartan effects on amyloid burden and microglial activation were investigated in 5 familial AD mice. RESULTS Candesartan showed anti-inflammatory effects and shifted microglial activation toward a more neuroprotective phenotype. Candesartan decreased the lipopolysaccharide-induced nitric oxide synthase and cyclooxygenase-2 expression levels, which was accompanied by an induction of arginase-1 expression levels and enhanced Aβ1-42 uptake by microglia. Moreover, intranasally administered candesartan to AD mice model significantly reduced the amyloid burden and microglia activation in the hippocampus. CONCLUSIONS These results thus shed light on the neuroprotective role of candesartan in the early stage of AD, which might relate to modulation of microglial activation states.
Collapse
Affiliation(s)
- Nofar Torika
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Keren Asraf
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ron N Apte
- Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Sigal Fleisher-Berkovich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
84
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 764] [Impact Index Per Article: 109.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
85
|
Ou Z, Tao MX, Gao Q, Zhang XL, Yang Y, Zhou JS, Zhang YD. Up-regulation of angiotensin-converting enzyme in response to acute ischemic stroke via ERK/NF-κB pathway in spontaneously hypertensive rats. Oncotarget 2017; 8:97041-97051. [PMID: 29228591 PMCID: PMC5722543 DOI: 10.18632/oncotarget.21156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/08/2017] [Indexed: 12/02/2022] Open
Abstract
Cerebral ischemic stroke is usually caused by a temporary or permanent decrease in blood supply to the brain. Despite general progress in diagnosis and treatment, the prognosis of stroke is still unsatisfactory, and more detailed potential mechanisms are needed to investigate underlying the pathological process. Here, we showed that serum angiotensin-converting enzyme (ACE) concentration was positively correlated with infarct volume after acute ischemic stroke (AIS). Moreover, using a permanent middle cerebral artery occlusion rat model, we indicated for the first time that increased ACE expression in response to AIS was regulated by the ERK/NF-κB pathway in peri-infarct regions. More importantly, we disclosed that angiotensin II type 1 receptors were implicated in up-regulation of ACE expression in peri-infarct regions. These findings offer insight into ACE expression and activity in response to stroke, and further our understanding of ACE mechanisms.
Collapse
Affiliation(s)
- Zhou Ou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Meng-Xing Tao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xue-Ling Zhang
- Department of Neurology, Suqian City People's Hospital, Suqian, People's Republic of China
| | - Yang Yang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun-Shan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
86
|
Park SY, Scranton MA, Stajich JE, Yee A, Walling LL. Chlorophyte aspartyl aminopeptidases: Ancient origins, expanded families, new locations, and secondary functions. PLoS One 2017; 12:e0185492. [PMID: 29023459 PMCID: PMC5638241 DOI: 10.1371/journal.pone.0185492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/13/2017] [Indexed: 11/19/2022] Open
Abstract
M18 aspartyl aminopeptidases (DAPs) are well characterized in microbes and animals with likely functions in peptide processing and vesicle trafficking. In contrast, there is a dearth of knowledge on plant aminopeptidases with a preference for proteins and peptides with N-terminal acidic residues. During evolution of the Plantae, there was an expansion and diversification of the M18 DAPs. After divergence of the ancestral green algae from red and glaucophyte algae, a duplication yielded the DAP1 and DAP2 lineages. Subsequently DAP1 genes were lost in chlorophyte algae. A duplication of DAP2-related genes occurred early in green plant evolution. DAP2 genes were retained in land plants and picoeukaryotic algae and lost in green algae. In contrast, DAP2-like genes persisted in picoeukaryotic and green algae, while this lineage was lost in land plants. Consistent with this evolutionary path, Arabidopsis thaliana has two DAP gene lineages (AtDAP1 and AtDAP2). Similar to animal and yeast DAPs, AtDAP1 is localized to the cytosol or vacuole; while AtDAP2 harbors an N-terminal transit peptide and is chloroplast localized. His6-DAP1 and His6-DAP2 expressed in Escherichia coli were enzymatically active and dodecameric with masses exceeding 600 kDa. His6-DAP1 and His6-DAP2 preferentially hydrolyzed Asp-p-nitroanilide and Glu-p-nitroanilide. AtDAPs are highly conserved metallopeptidases activated by MnCl2 and inhibited by ZnCl2 and divalent ion chelators. The protease inhibitor PMSF inhibited and DTT stimulated both His6-DAP1 and His6-DAP2 activities suggesting a role for thiols in the AtDAP catalytic mechanism. The enzymes had distinct pH and temperature optima, as well as distinct kinetic parameters. Both enzymes had high catalytic efficiencies (kcat/Km) exceeding 1.0 x 107 M-1 sec-1. Using established molecular chaperone assays, AtDAP1 and AtDAP2 prevented thermal denaturation. AtDAP1 also prevented protein aggregation and promoted protein refolding. Collectively, these data indicate that plant DAPs have a complex evolutionary history and have evolved new biochemical features that may enable their role in vivo.
Collapse
Affiliation(s)
- Sang-Youl Park
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Melissa A. Scranton
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Ashley Yee
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
87
|
Domínguez-Vías G, Aretxaga-Maza G, Prieto I, Luna JDD, De Gasparo M, Ramírez-Sánchez M. Diurnal opposite variation between angiotensinase activities in photo-neuro-endocrine tissues of rats. Chronobiol Int 2017; 34:1180-1186. [PMID: 28910547 DOI: 10.1080/07420528.2017.1354871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Central and peripheral renin-angiotensin systems (RASs) act in a coordinated manner for the physiologic functions regulated by neuroendocrine events. However, whereas the diurnal rhythm of peripheral circulatory and tissue RASs is well known, the circadian behaviour of their components in central photo-neuro-endocrine structures, key elements for the control of circadian rhythms, has been barely studied. In the present study, we analysed the aspartyl- (AspAP) and glutamyl-aminopeptidase (GluAP) (aminopeptidase A) activities, the angiotensinases responsible for the metabolism of Ang I to Ang 2-10 and Ang II to Ang III, respectively, in the retina, anterior hypothalamus and pituitary at different light and dark time-points of a 12:12 h light:dark cycle (7-19 h light), using arylamide derivatives as substrates. The results demonstrated that while retina and pituitary exhibited their highest levels of AspAP activity in the light period and the lowest in the dark one, the contrary occurred in the hypothalamus - the lowest levels were observed in light conditions and the highest in darkness. The outcome for GluAP showed the highest levels in the light period and the lowest in the dark one in the three tissues analysed. In conclusion, changes in angiotensinase activities throughout the daytime may cause changes of their respective substrates and derived peptides and, consequently, in their functions. This observation may have implications for the treatment of hypertension.
Collapse
Affiliation(s)
- Germán Domínguez-Vías
- a Unit of Physiology, Department of Health Sciences , University of Jaén , Jaén , Spain.,b Department of Biomedicine, Biotechnology and Public Health, Medical School , University of Cádiz , Cádiz , Spain
| | - Garbiñe Aretxaga-Maza
- a Unit of Physiology, Department of Health Sciences , University of Jaén , Jaén , Spain
| | - Isabel Prieto
- a Unit of Physiology, Department of Health Sciences , University of Jaén , Jaén , Spain
| | - Juan de Dios Luna
- c Department of Biostatistic, Medical School , University of Granada , Granada , Spain
| | - Marc De Gasparo
- d Cardiovascular and Metabolic Syndrome Adviser , Rossemaison , Switzerland
| | | |
Collapse
|
88
|
Farag E, Sessler DI, Ebrahim Z, Kurz A, Morgan J, Ahuja S, Maheshwari K, John Doyle D. The renin angiotensin system and the brain: New developments. J Clin Neurosci 2017; 46:1-8. [PMID: 28890045 DOI: 10.1016/j.jocn.2017.08.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022]
Abstract
The traditional renin-angiotensin system (RAS) is indispensable system in adjusting sodium homeostasis, body fluid volume, and controlling arterial blood pressure. The key elements are renin splitting inactive angiotensinogen to yield angiotensin (Ang-I). Ang-1 is then changed by angiotensin-1 converting enzyme (ACE) into angiotensin II (Ang-II). Using PubMed, Google Scholar, and other means, we searched the peer-reviewed literature from 1990 to 2013 for articles on newly discovered findings related to the RAS, especially focusing on how the system influences the central nervous system (CNS). The classical RAS is now considered to be only part of the picture; the discovery of additional RAS pathways in the brain and elsewhere has yielded a vastly improved understanding of how the RAS influences the CNS. Newly discovered effects of the RAS on brain tissue include neuroprotection, cognition, and cerebral vasodilation. A number of brain biochemical pathways are influenced by the brain RAS. Within various pathways, there are potential opportunities for classical pharmacologic interventions as well as the possibility of controlling gene expression.
Collapse
Affiliation(s)
- Ehab Farag
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA. http://www.OR.org/
| | - Daniel I Sessler
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zeyd Ebrahim
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrea Kurz
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph Morgan
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sanchit Ahuja
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kamal Maheshwari
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - D John Doyle
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
89
|
Abstract
Depression remains a debilitating condition with an uncertain aetiology. Recently, attention has been given to the renin-angiotensin system. In the central nervous system, angiotensin II may be important in multiple pathways related to neurodevelopment and regulation of the stress response. Studies of drugs targeting the renin-angiotensin system have yielded promising results. Here, we review the potential beneficial effects of angiotensin blockers in depression and their mechanisms of action. Drugs blocking the angiotensin system have efficacy in several animal models of depression. While no randomised clinical trials were found, case reports and observational studies showed that angiotensin-converting enzyme inhibitors or angiotensin receptor blockers had positive effects on depression, whereas other antihypertensive agents did not. Drugs targeting the renin-angiotensin system act on inflammatory pathways implicated in depression. Both preclinical and clinical data suggest that these drugs possess antidepressant properties. In light of these results, angiotensin system-blocking agents offer new horizons in mood disorder treatment.
Collapse
|
90
|
Haithem H, Ons A, Salma N, Jihène R, Mariam A, Mariem M, Mariem N, Nabila BR, Asma O, Sana BA, Sofien B, Ali B. Association between dementia and vascular disease-associated polymorphisms in a Tunisian population. Int J Neurosci 2017; 128:32-41. [PMID: 28657841 DOI: 10.1080/00207454.2017.1348353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Dementia is a multifactorial idiopathic pathology caused by clinical, eDementia is a multifactorial idiopathic pathology caused by clinical, environmental and genetic factors. Hence, its etiology is still unknown. We aimed to evaluate the association between five genetic risk factors for vascular diseases and dementia individually and when gathered in haplotypes. MATERIALS AND METHOD We enrolled 200 dementia patients and 300 controls. All subjects were genotyped for vascular diseaseassociated polymorphisms in the genes coding for Apolipoprotein-E (ApoE), angiotensin converting enzyme (ACE) and Paraoxonase-1 (PON1). RESULTS The association between dementia risk and all the studied polymorphisms except of PON1-Q192R was found to be significant. Carrying the ApoE e4 allele seems to increase dementia risk by 4.32 fold (p = 0.001). The risk associated with ACE I and PON1-L55M T alleles were lower (2.58 and 2.11 fold, p < 0.001 and p = 0.015, respectively). When combined in haplotypes, these polymorphisms showed a cumulative and synergetic effect. GTICC haplotype appears to be associated with 9-fold dementia risk (p < 0.001), whereas AADTT seems to reduce dementia risk by 80% (p = 0.003). CONCLUSION Our results suggest that, ApoE ε4, ACE I and PON1-L55M T alleles are associated with dementia risk whether these polymorphisms were studied separately or gathered in haplotypes. Still, the contribution of each gene to the pathophysiological development of dementia must be more investigated.
Collapse
Affiliation(s)
- Hamdouni Haithem
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,d Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Achour Ons
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,d Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Naija Salma
- b Neurology Department , Sahloul University Hospital , Sousse , Tunisia
| | - Rejeb Jihène
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia
| | - Aounallah Mariam
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia
| | - Mhiri Mariem
- b Neurology Department , Sahloul University Hospital , Sousse , Tunisia
| | - Noureddine Mariem
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,d Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Ben Rejeb Nabila
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,c Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,d Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Omezzine Asma
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,c Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,d Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Ben Amor Sana
- b Neurology Department , Sahloul University Hospital , Sousse , Tunisia
| | - Benammou Sofien
- b Neurology Department , Sahloul University Hospital , Sousse , Tunisia
| | - Bouslama Ali
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,c Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,d Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| |
Collapse
|
91
|
Khan A, Corbett A, Ballard C. Emerging treatments for Alzheimer's disease for non-amyloid and non-tau targets. Expert Rev Neurother 2017; 17:683-695. [PMID: 28490260 DOI: 10.1080/14737175.2017.1326818] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The number of people with dementia, including Alzheimer's disease, is growing as a result of an ageing global population. Treatments available for AD only alleviate the symptoms of the disease, and are effective in some people with AD for a limited time. There is no disease-modifying treatment available, and despite research efforts, the underlying mechanisms of AD and optimal treatment targets have not been fully elucidated. Amyloid and tau are key pathological markers of AD with ongoing trials targeting both. However, there are also many trials at various stages of development that primarily target other markers and processes implicated in the disease, which are now being investigated. Areas covered: This review summarizes current treatment approaches for AD and explores both repositioned and novel therapies that target non amyloid and non tau mechanisms that are in the clinical trials pipeline. This includes treatments for cognitive and neuropsychiatric symptoms and potentially disease modifying therapies. The studies included in this review have been obtained from searches of PubMed and clinical trials databases. Expert commentary: There is a renewed energy in identifying better treatments for behavioural symptoms of AD using both novel drugs and repositioning existing drugs. Lack of success in clinical trials of drugs targeting amyloid and tau have led to a surge in targeting alternative mechanisms. Progress in the development of biomarkers will provide further tools for clinical trials of potential therapeutics for both symptomatic treatment and disease modification in AD.
Collapse
Affiliation(s)
- Ayesha Khan
- a Institute for NanoBiotechnology , Johns Hopkins University , Baltimore , Maryland , USA
| | - Anne Corbett
- b King's College London , Wolfson Centre for Age-Related Diseases , London , UK
| | - Clive Ballard
- b King's College London , Wolfson Centre for Age-Related Diseases , London , UK
| |
Collapse
|
92
|
Abstract
OBJECTIVE Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been reported in depression. The aim was to investigate the potential association between depression and seven genes regulating or interfering with the HPA axis, including the gene encoding angiotensin converting enzyme (ACE). METHODS In total, 78 single nucleotide polymorphisms (SNPs) and one insertion/deletion polymorphism were genotyped. The study included 408 individuals with depression and 289 controls. In a subset of cases, the interaction between genetic variants and stressful life events (SLEs) was investigated. RESULTS After quality control, 68 genetic variants were left for analyses. Four of nine variants within ACE were nominally associated with depression and a gene-wise association was likewise observed. However, none of the SNPs located within AVP, CRH, CRHR1, CRHR2, FKBP5 or NC3C1 were associated with depression. One nominally significant interaction, most likely due to chance, was identified. CONCLUSION The results indicate that ACE could be a potential candidate gene for depression.
Collapse
|
93
|
Kehoe PG, Wong S, Al Mulhim N, Palmer LE, Miners JS. Angiotensin-converting enzyme 2 is reduced in Alzheimer's disease in association with increasing amyloid-β and tau pathology. ALZHEIMERS RESEARCH & THERAPY 2016; 8:50. [PMID: 27884212 PMCID: PMC5123239 DOI: 10.1186/s13195-016-0217-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hyperactivity of the classical axis of the renin-angiotensin system (RAS), mediated by angiotensin II (Ang II) activation of the angiotensin II type 1 receptor (AT1R), is implicated in the pathogenesis of Alzheimer's disease (AD). Angiotensin-converting enzyme-2 (ACE-2) degrades Ang II to angiotensin 1-7 (Ang (1-7)) and counter-regulates the classical axis of RAS. We have investigated the expression and distribution of ACE-2 in post-mortem human brain tissue in relation to AD pathology and classical RAS axis activity. METHODS We measured ACE-2 activity by fluorogenic peptide substrate assay in mid-frontal cortex (Brodmann area 9) in a cohort of AD (n = 90) and age-matched non-demented controls (n = 59) for which we have previous data on ACE-1 activity, amyloid β (Aβ) level and tau pathology, as well as known ACE1 (rs1799752) indel polymorphism, apolipoprotein E (APOE) genotype, and cerebral amyloid angiopathy severity scores. RESULTS ACE-2 activity was significantly reduced in AD compared with age-matched controls (P < 0.0001) and correlated inversely with levels of Aβ (r = -0.267, P < 0.001) and phosphorylated tau (p-tau) pathology (r = -0.327, P < 0.01). ACE-2 was reduced in individuals possessing an APOE ε4 allele (P < 0.05) and was associated with ACE1 indel polymorphism (P < 0.05), with lower ACE-2 activity in individuals homozygous for the ACE1 insertion AD risk allele. ACE-2 activity correlated inversely with ACE-1 activity (r = -0.453, P < 0.0001), and the ratio of ACE-1 to ACE-2 was significantly elevated in AD (P < 0.0001). Finally, we show that the ratio of Ang II to Ang (1-7) (a proxy measure of ACE-2 activity indicating conversion of Ang II to Ang (1-7)) is reduced in AD. CONCLUSIONS Together, our findings indicate that ACE-2 activity is reduced in AD and is an important regulator of the central classical ACE-1/Ang II/AT1R axis of RAS, and also that dysregulation of this pathway likely plays a significant role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Patrick Gavin Kehoe
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Steffenny Wong
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Noura Al Mulhim
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Laura Elyse Palmer
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK.
| |
Collapse
|
94
|
Ou Z, Jiang T, Gao Q, Tian YY, Zhou JS, Wu L, Shi JQ, Zhang YD. Mitochondrial-dependent mechanisms are involved in angiotensin II-induced apoptosis in dopaminergic neurons. J Renin Angiotensin Aldosterone Syst 2016; 17:17/4/1470320316672349. [PMID: 27733642 PMCID: PMC5843909 DOI: 10.1177/1470320316672349] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/29/2016] [Indexed: 01/08/2023] Open
Abstract
Introduction: We recently demonstrated that angiotensin II (Ang II) was involved in the etiology of Parkinson’s disease (PD) via induction of apoptosis of dopaminergic neurons, but the mechanisms are not completely elucidated. Here, we asked whether mitochondrial-dependent mechanisms contributed to the Ang II-induced dopaminergic neuronal apoptosis. Materials and methods: CATH.a cells were incubated with Ang II in combination with mitochondrial permeability transition pore (mPTP) inhibitors or angiotensin receptor antagonists, and apoptosis rate, caspase-3 activity, cytochrome c levels, and mPTP opening were assessed. Results: We showed that Ang II triggered apoptosis via a mitochondrial-dependent pathway, as elevated cytochrome c levels were observed in the cytosol. By employing cyclosporin A and sanglifehrin A, two specific mPTP inhibitors, we revealed that cytochrome c release from mitochondria into cytoplasm was ascribed to mPTP opening. Meanwhile, the aforementioned effects could be abrogated by an AT1 receptor antagonist losartan rather than an AT2 receptor antagonist PD123319. Conclusion: This study demonstrates that Ang II triggers mitochondrial-dependent apoptosis via facilitating mPTP opening through an AT1 receptor-mediated fashion in dopaminergic neurons. These findings give insight into the effect of Ang II in the etiology of PD, and reinforce the application of AT1 receptor antagonists for PD treatment.
Collapse
Affiliation(s)
- Zhou Ou
- Department of Neurology, Nanjing First Hospital, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, PR China
| | - Qing Gao
- Department of Neurology, Nanjing First Hospital, PR China
| | - You-Yong Tian
- Department of Neurology, Nanjing First Hospital, PR China
| | - Jun-Shan Zhou
- Department of Neurology, Nanjing First Hospital, PR China
| | - Liang Wu
- Department of Neurology, Nanjing First Hospital, PR China
| | - Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, PR China
| | | |
Collapse
|
95
|
Yeatman HR, Albiston AL, Burns P, Chai SY. Forebrain neurone-specific deletion of insulin-regulated aminopeptidase causes age related deficits in memory. Neurobiol Learn Mem 2016; 136:174-182. [PMID: 27713012 DOI: 10.1016/j.nlm.2016.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/19/2016] [Accepted: 09/25/2016] [Indexed: 12/27/2022]
Abstract
Central infusion of Insulin-Regulated Aminopeptidase (IRAP) inhibitors improves memory in both normal rodents and in models of memory deficit. However, in contrast, the global IRAP knockout mice (KO) demonstrate age-accelerated spatial memory deficits and no improvements in performance in any memory tasks. Potentially, the observed memory deficit could be due to the absence of IRAP in the developing brain. We therefore generated a postnatal forebrain neuron-specific IRAP knockout mouse line (CamKIIalphaCre; IRAPlox/lox). Unexpectedly, we demonstrated that postnatal deletion of IRAP in the brain results in significant deficits in both spatial reference and object recognition memory at three months of age, although spatial working memory remained intact. These results indicate a significant role for IRAP in postnatal brain development and normal function of the hippocampus in adulthood.
Collapse
Affiliation(s)
- Holly R Yeatman
- Florey Neuroscience Institutes and Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Anthony L Albiston
- College of Health and Biomedicine, VU St Albans, Victoria 3021, Australia
| | - Peta Burns
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Siew Yeen Chai
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
96
|
Costa-Ferreira W, Vieira JO, Almeida J, Gomes-de-Souza L, Crestani CC. Involvement of Type 1 Angiontensin II Receptor (AT1) in Cardiovascular Changes Induced by Chronic Emotional Stress: Comparison between Homotypic and Heterotypic Stressors. Front Pharmacol 2016; 7:262. [PMID: 27588004 PMCID: PMC4988975 DOI: 10.3389/fphar.2016.00262] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/04/2016] [Indexed: 01/26/2023] Open
Abstract
Consistent evidence has shown an important role of emotional stress in pathogenesis of cardiovascular diseases. Additionally, studies in animal models have demonstrated that daily exposure to different stressor (heterotypic stressor) evokes more severe changes than those resulting from repeated exposure to the same aversive stimulus (homotypic stressor), possibly due to the habituation process upon repeated exposure to the same stressor. Despite these pieces of evidence, the mechanisms involved in the stress-evoked cardiovascular dysfunction are poorly understood. Therefore, the present study investigated the involvement of angiotensin II (Ang II) acting on the type 1 Ang II receptor (AT1) in the cardiovascular dysfunctions evoked by both homotypic and heterotypic chronic emotional stresses in rats. For this purpose, we compared the effect of the chronic treatment with the AT1 receptor antagonist losartan (30 mg/kg/day, p.o.) on the cardiovascular and autonomic changes evoked by the heterotypic stressor chronic variable stress (CVS) and the homotypic stressor repeated restraint stress (RRS). RRS increased the sympathetic tone to the heart and decreased the cardiac parasympathetic activity, whereas CVS decreased the cardiac parasympathetic activity. Additionally, both stressors impaired the baroreflex function. Alterations in the autonomic activity and the baroreflex impairment were inhibited by losartan treatment. Additionally, CVS reduced the body weight and increased the circulating corticosterone; however, these effects were not affected by losartan. In conclusion, these findings indicate the involvement of angiotensin II/AT1 receptors in the autonomic changes evoked by both homotypic and heterotypic chronic stressors. Moreover, the present results provide evidence that the increase in the circulating corticosterone and body weight reduction evoked by heterotypic stressors are independent of AT1 receptors.
Collapse
Affiliation(s)
- Willian Costa-Ferreira
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Jonas O Vieira
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Jeferson Almeida
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Lucas Gomes-de-Souza
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| | - Carlos C Crestani
- Faculdade de Ciências Farmacêuticas, UNESP-Universidade Estadual PaulistaAraraquara, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, UFSCar-UNESPSão Carlos, Brazil
| |
Collapse
|
97
|
Tchekalarova JD, Ivanova N, Atanasova D, Pechlivanova DM, Lazarov N, Kortenska L, Mitreva R, Lozanov V, Stoynev A. Long-Term Treatment with Losartan Attenuates Seizure Activity and Neuronal Damage Without Affecting Behavioral Changes in a Model of Co-morbid Hypertension and Epilepsy. Cell Mol Neurobiol 2016; 36:927-941. [PMID: 26464042 PMCID: PMC11482433 DOI: 10.1007/s10571-015-0278-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/28/2015] [Indexed: 02/03/2023]
Abstract
Over the last 10 years, accumulated experimental and clinical evidence has supported the idea that AT1 receptor subtype is involved in epilepsy. Recently, we have shown that the selective AT1 receptor antagonist losartan attenuates epileptogenesis and exerts neuroprotection in the CA1 area of the hippocampus in epileptic Wistar rats. This study aimed to verify the efficacy of long-term treatment with losartan (10 mg/kg) after kainate-induced status epilepticus (SE) on seizure activity, behavioral and biochemical changes, and neuronal damage in a model of co-morbid hypertension and epilepsy. Spontaneous seizures were video- and EEG-monitored in spontaneously hypertensive rats (SHRs) for a 16-week period after SE. The behavior was analyzed by open field, elevated plus maze, sugar preference test, and forced swim test. The levels of serotonin in the hippocampus and neuronal loss were estimated by HPLC and hematoxylin and eosin staining, respectively. The AT1 receptor antagonism delayed the onset of seizures and alleviated their frequency and duration during and after discontinuation of treatment. Losartan showed neuroprotection mostly in the CA3 area of the hippocampus and the septo-temporal hilus of the dentate gyrus in SHRs. However, the AT1 receptor antagonist did not exert a substantial influence on concomitant with epilepsy behavioral changes and decreased 5-HT levels in the hippocampus. Our results suggest that the antihypertensive therapy with an AT1 receptor blocker might be effective against seizure activity and neuronal damage in a co-morbid hypertension and epilepsy.
Collapse
Affiliation(s)
- Jana D Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria.
| | - Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Dimitrina Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Daniela M Pechlivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Nikolai Lazarov
- Department of Anatomy, Medical Faculty, MU-Sofia, Sofia, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Rumiana Mitreva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Valentin Lozanov
- Department of Medical Chemistry and Biochemistry, Sofia, Bulgaria
| | - Alexander Stoynev
- Department of Pathophysiology, Medical Faculty, MU-Sofia, Sofia, Bulgaria
| |
Collapse
|
98
|
Linares A, Couling LE, Carrera EJ, Speth RC. Receptor Autoradiography Protocol for the Localized Visualization of Angiotensin II Receptors. J Vis Exp 2016. [PMID: 27341008 DOI: 10.3791/53866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This protocol describes receptor binding patterns for Angiotensin II (Ang II) in the rat brain using a radioligand specific for Ang II receptors to perform receptor autoradiographic mapping. Tissue specimens are harvested and stored at -80 °C. A cryostat is used to coronally section the tissue (brain) and thaw-mount the sections onto charged slides. The slide-mounted tissue sections are incubated in (125)I-SI-Ang II to radiolabel Ang II receptors. Adjacent slides are separated into two sets: 'non-specific binding' (NSP) in the presence of a receptor saturating concentration of non-radiolabeled Ang II, or an AT1 Ang II receptor subtype (AT1R) selective Ang II receptor antagonist, and 'total binding' with no AT1R antagonist. A saturating concentration of AT2 Ang II receptor subtype (AT2R) antagonist (PD123319, 10 µM) is also present in the incubation buffer to limit (125)I-SI-Ang II binding to the AT1R subtype. During a 30 min pre-incubation at ~22 °C, NSP slides are exposed to 10 µM PD123319 and losartan, while 'total binding' slides are exposed to 10 µM PD123319. Slides are then incubated with (125)I-SI-Ang II in the presence of PD123319 for 'total binding', and PD123319 and losartan for NSP in assay buffer, followed by several 'washes' in buffer, and water to remove salt and non-specifically bound radioligand. The slides are dried using blow-dryers, then exposed to autoradiography film using a specialized film and cassette. The film is developed and the images are scanned into a computer for visual and quantitative densitometry using a proprietary imaging system and a spreadsheet. An additional set of slides are thionin-stained for histological comparisons. The advantage of using receptor autoradiography is the ability to visualize Ang II receptors in situ, within a section of a tissue specimen, and anatomically identify the region of the tissue by comparing it to an adjacent histological reference section.
Collapse
Affiliation(s)
- Andrea Linares
- Farquhar College of Arts and Sciences, Nova Southeastern University
| | - Leena E Couling
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University
| | | | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University;
| |
Collapse
|
99
|
Influence of ACE gene on differential response to sertraline versus fluoxetine in patients with major depression: a randomized controlled trial. Eur J Clin Pharmacol 2016; 72:1059-64. [PMID: 27262302 DOI: 10.1007/s00228-016-2079-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Extensive distribution of the different components of renin angiotensin system (RAS) in the brain, along with their roles in promoting anxiety, depression and brain inflammation, opposes RAS as a potential therapeutic target in major depression. Actions of angiotensin II, the main product of RAS, are reduced by antidepressants and this signifies the complex interplay of different mechanisms involved in response to therapy. Here, we hypothesized that genetic polymorphisms of RAS may affect the outcome of therapy in depressed patients. METHODS The frequencies of variants of genes encoding for angiotensin-converting enzyme (ACE) insertion/deletion (I/D), rs4291 and rs4343 polymorphisms were determined in extracted DNAs of 200 newly diagnosed depressed patients. Patients were randomly divided into two groups, one treated with fluoxetine and the other treated with sertraline for 12 weeks. Responsive patients were determined by psychiatrist using Hamilton questionnaire and were compared with regard to their genetic variants. RESULTS Carriers of the D allele and patients with DD genotype responded significantly better to sertraline than to fluoxetine (P = 0.0006, odds ratio (OR) = 3.0, 95 % confidence interval (CI) = 1.80-5.08; P = 0.006, OR = 3.7, 95 % CI = 1.66-8.29, respectively). Mutant genotypes (GG and TT) of rs4343 and rs4291 polymorphisms were also more frequent in patients responding to sertraline, though not achieving the significance level (P = 0.162 and P = 0.256, respectively). CONCLUSION These findings suggest that special genetic variants of RAS may influence or be an indicator for better response to sertraline.
Collapse
|
100
|
Renin-angiotensin system as a potential therapeutic target in stroke and retinopathy: experimental and clinical evidence. Clin Sci (Lond) 2016; 130:221-38. [PMID: 26769658 DOI: 10.1042/cs20150350] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As our knowledge expands, it is now clear that the renin-angiotensin (Ang) system (RAS) mediates functions other than regulating blood pressure (BP). The RAS plays a central role in the pathophysiology of different neurovascular unit disorders including stroke and retinopathy. Moreover, the beneficial actions of RAS modulation in brain and retina have been documented in experimental research, but not yet exploited clinically. The RAS is a complex system with distinct yet interconnected components. Understanding the different RAS components and their functions under brain and retinal pathological conditions is crucial to reap their benefits. The aim of the present review is to provide an experimental and clinical update on the role of RAS in the pathophysiology and treatment of stroke and retinopathy. Combining the evidence from both these disorders allows a unique opportunity to move both fields forward.
Collapse
|