51
|
Bakhtiary S, Chegeni A, Babaeipour V, Omidi M, Keshel SH, Khodamoradi N. Culture and maintenance of neural progressive cells on cellulose acetate/graphene‑gold nanocomposites. Int J Biol Macromol 2022; 210:63-75. [PMID: 35537583 DOI: 10.1016/j.ijbiomac.2022.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/05/2022]
Abstract
In this study, the first CA nanofibers were fabricated by electrospinning under optimal conditions: flow rate of 0.5 ml/h, a voltage of 20 kV, electrospinning distance of 15 cm, and an internal temperature of 25 °C, and humidity of 38%. The used Graphene/gold nanoparticles for CA performance improvement were examined by TGA, XRD, and SEM analysis. Then the CA/graphene‑gold nanocomposite was synthesized under optimum electrospinning conditions: flow rate 3 ml/h, voltage 20 kV, electrospinning distance 15 cm, internal temperature 26 °C, and humidity 36%. The SEM images revealed that the nanofibers' thicknesses of Graphene‑gold NPs (CA1) and Chitosan (CA2) were 350 and 120 nm, respectively. The XRD diagrams of CA0, CA1 and CA2 revealed the peaks at 2θ, 8°, and 21° with Miller indices of (001) and (110) are related to CA (CA0), which proves its presence in other scaffolds. The FTIR analysis of samples indicated the presence of graphene‑gold NPs in scaffolding CA1 and CA2. The CA2 nanofibers exhibited a high-water absorption capacity of about 2500% with the water contact-angle and Swelling method. The antibacterial properties of this nanocomposite were also confirmed by an antibacterial test on Staphylococcus aureus bacteria. The growth of Schwann cells on three scaffolds showed the highest growth of cells on CA1 scaffolds.
Collapse
Affiliation(s)
- Samaneh Bakhtiary
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 15875-1774, Tehran, Iran
| | - Asma Chegeni
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 15875-1774, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 15875-1774, Tehran, Iran.
| | - Meisam Omidi
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Khodamoradi
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 15875-1774, Tehran, Iran
| |
Collapse
|
52
|
Mu X, Liu H, Yang S, Li Y, Xiang L, Hu M, Wang X. Chitosan Tubes Inoculated with Dental Pulp Stem Cells and Stem Cell Factor Enhance Facial Nerve-Vascularized Regeneration in Rabbits. ACS OMEGA 2022; 7:18509-18520. [PMID: 35694480 PMCID: PMC9178771 DOI: 10.1021/acsomega.2c01176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Facial nerve injury is a common clinical condition that leads to disfigurement and emotional distress in the affected individuals, and the recovery presents clinical challenges. Tissue engineering is the standard method to repair nerve defects. However, nerve regeneration is still not satisfactory because of poor neovascularization after implantation, especially for the long-segment nerve defects. In the current study, we aimed to investigate the potential of chitosan tubes inoculated with stem cell factor (SCF) and dental pulp stem cells (DPSCs) in facial nerve-vascularized regeneration. In the in vitro experiment, DPSCs were isolated, cultured, and then identified. The optimal concentration of SCF was screened by CCK8. Cytoskeleton and living-cell staining, migration, CCK8 test, and neural differentiation assays were performed, revealing that SCF promoted the biological activity of DPSCs. Surprisingly, SCF increased the neural differentiation of DPSCs. The migration and angiogenesis experiments were carried out to show that SCF promoted the angiogenesis and migration of human umbilical vein endothelial cells (HUVECs). In the facial nerve, 7 mm defects of New Zealand white rabbits, hematoxylin-eosin (HE), immunohistochemistry, toluidine blue staining, and transmission electron microscopy observation were performed at 12 weeks postsurgery to show more nerve fibers and better myelin sheath in the SCF + DPSC group. In addition, the whisker movements, Masson's staining, and western blot assays were performed, demonstrating functional repair and that the expression level of CD31 protein in the group SCF + DPSCs was relatively close to that in the group Autograft. In summary, chitosan tubes inoculated with SCF and DPSCs increased neurovascularization and provided an effective method for repairing facial nerve defects, indicating great promise for clinical application.
Collapse
Affiliation(s)
- Xiaodan Mu
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Huawei Liu
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuhui Yang
- Department
of Materials Science and Engineering, State Key Laboratory of New
Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Yongfeng Li
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Xiang
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Min Hu
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiumei Wang
- Department
of Materials Science and Engineering, State Key Laboratory of New
Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| |
Collapse
|
53
|
Idrisova KF, Zeinalova AK, Masgutova GA, Bogov AA, Allegrucci C, Syromiatnikova VY, Salafutdinov II, Garanina EE, Andreeva DI, Kadyrov AA, Rizvanov AA, Masgutov RF. Application of neurotrophic and proangiogenic factors as therapy after peripheral nervous system injury. Neural Regen Res 2022; 17:1240-1247. [PMID: 34782557 PMCID: PMC8643040 DOI: 10.4103/1673-5374.327329] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/14/2020] [Accepted: 06/04/2021] [Indexed: 11/24/2022] Open
Abstract
The intrinsic ability of peripheral nerves to regenerate after injury is extremely limited, especially in case of severe injury. This often leads to poor motor function and permanent disability. Existing approaches for the treatment of injured nerves do not provide appropriate conditions to support survival and growth of nerve cells. This drawback can be compensated by the use of gene therapy and cell therapy-based drugs that locally provide an increase in the key regulators of nerve growth, including neurotrophic factors and extracellular matrix proteins. Each growth factor plays its own specific angiotrophic or neurotrophic role. Currently, growth factors are widely studied as accelerators of nerve regeneration. Particularly noteworthy is synergy between various growth factors, that is essential for both angiogenesis and neurogenesis. Fibroblast growth factor 2 and vascular endothelial growth factor are widely known for their proangiogenic effects. At the same time, fibroblast growth factor 2 and vascular endothelial growth factor stimulate neural cell growth and play an important role in neurodegenerative diseases of the peripheral nervous system. Taken together, their neurotrophic and angiogenic properties have positive effect on the regeneration process. In this review we provide an in-depth overview of the role of fibroblast growth factor 2 and vascular endothelial growth factor in the regeneration of peripheral nerves, thus demonstrating their neurotherapeutic efficacy in improving neuron survival in the peripheral nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Cinzia Allegrucci
- Biodiscovery Institute, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | - Ruslan Faridovich Masgutov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Republican Clinical Hospital, Kazan, Russia
| |
Collapse
|
54
|
Wu S, Dong T, Li Y, Sun M, Qi Y, Liu J, Kuss MA, Chen S, Duan B. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. APPLIED MATERIALS TODAY 2022; 27:101473. [PMID: 35434263 PMCID: PMC8994858 DOI: 10.1016/j.apmt.2022.101473] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 05/02/2023]
Abstract
The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 μm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.
Collapse
Key Words
- CNT, carbon nanotube
- COVID-19, coronavirus disease 2019
- ECM, extracellular matrix
- Electrospinning
- FDA, food and drug administration
- GF, gauge factor
- GO, graphene oxide
- HAVIC, human aortic valve interstitial cell
- HAp, hydroxyapatite
- MSC, mesenchymal stem cell
- MSC-SC, MSC derived Schwann cell-like cell
- MWCNT, multiwalled carbon nanotube
- MY, microfiber yarn
- MeGel, methacrylated gelatin
- NGC, nerve guidance conduit
- NHMR, neutral hollow metal rod
- NMD, neutral metal disc
- NY, nanofiber yarn
- Nanoyarns
- PA6, polyamide 6
- PA66, polyamide 66
- PAN, polyacrylonitrile
- PANi, polyaniline
- PCL, polycaprolactone
- PEO, polyethylene oxide
- PGA, polyglycolide
- PHBV, poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- PLCL, poly(L-lactide-co-ε-caprolactone)
- PLGA, poly(lactic-co-glycolic acid)
- PLLA, poly(L-lactic acid)
- PMIA, poly(m-phenylene isophthalamide)
- PPDO, polydioxanone
- PPy, polypyrrole
- PSA, poly(sulfone amide)
- PU, polyurethane
- PVA, poly(vinyl alcohol)
- PVAc, poly(vinyl acetate)
- PVDF, poly(vinylidene difluoride)
- PVDF-HFP, poly(vinylidene floride-co-hexafluoropropylene)
- PVDF-TrFE, poly(vinylidene fluoride trifluoroethylene)
- PVP, poly(vinyl pyrrolidone)
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SC, Schwann cell
- SF, silk fibroin
- SWCNT, single-walled carbon nanotube
- TGF-β1, transforming growth factor-β1
- Textile-forming technique
- Tissue scaffolds
- VEGF, vascular endothelial growth factor
- Wearable bioelectronics
- bFGF, basic fibroblast growth factor
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ting Dong
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mingchao Sun
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Jiao Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
55
|
Kong Y, Xu J, Han Q, Zheng T, Wu L, Li G, Yang Y. Electrospinning porcine decellularized nerve matrix scaffold for peripheral nerve regeneration. Int J Biol Macromol 2022; 209:1867-1881. [PMID: 35489621 DOI: 10.1016/j.ijbiomac.2022.04.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
Abstract
The composition and spatial structure of bioscaffold materials are essential for constructing tissue regeneration microenvironments. In this study, by using an electrospinning technique without any other additives, we successfully developed pure porcine decellularized nerve matrix (xDNME) conduits. The developed xDNME was composed of an obvious decellularized matrix fiber structure and effectively retained the natural components in the decellularized matrix of the nerve tissue. The xDNME conduit exhibited superior biocompatibility and the ability to overcome inter-species barriers. In vivo, after 12 weeks of implantation, xDNME significantly promoted the regeneration of rat sciatic nerve. The regenerated nerve fibers completely connected the two ends of the nerve defect, which were about 8 mm apart. The xDNME and xDNME-OPC groups showed myelin structures in the regenerated nerve fibers. In the xDNME group, the average thickness of the regenerated myelin sheath was 0.640 ± 0.013 μm, which was almost comparable to that in the autologous nerve group (0.646 ± 0.017 μm). Electrophysiological experiments revealed that both of the regenerated nerve fibers in the xDNME and xDNME-OPC groups had excellent abilities to transmit electrical signals. Respectively, the average conduction velocities of xDNME and xDNME-OPC were 8.86 ± 3.57 m/s and 6.99 ± 3.43 m/s. In conclusion, the xDNME conduits have a great potential for clinical treatment of peripheral nerve injuries, which may clinically transform peripheral nerve related regenerative medicine.
Collapse
Affiliation(s)
- Yan Kong
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jiawei Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Qi Han
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Tiantian Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Linliang Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Yumin Yang
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu 226001, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
56
|
Gong B, Zhang X, Zahrani AA, Gao W, Ma G, Zhang L, Xue J. Neural tissue engineering: From bioactive scaffolds and in situ monitoring to regeneration. EXPLORATION (BEIJING, CHINA) 2022; 2:20210035. [PMID: 37323703 PMCID: PMC10190951 DOI: 10.1002/exp.20210035] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/09/2022] [Indexed: 06/17/2023]
Abstract
Peripheral nerve injury is a large-scale problem that annually affects more than several millions of people all over the world. It remains a great challenge to effectively repair nerve defects. Tissue engineered nerve guidance conduits (NGCs) provide a promising platform for peripheral nerve repair through the integration of bioactive scaffolds, biological effectors, and cellular components. Herein, we firstly describe the pathogenesis of peripheral nerve injuries at different orders of severity to clarify their microenvironments and discuss the clinical treatment methods and challenges. Then, we discuss the recent progress on the design and construction of NGCs in combination with biological effectors and cellular components for nerve repair. Afterward, we give perspectives on imaging the nerve and/or the conduit to allow for the in situ monitoring of the nerve regeneration process. We also cover the applications of different postoperative intervention treatments, such as electric field, magnetic field, light, and ultrasound, to the well-designed conduit and/or the nerve for improving the repair efficacy. Finally, we explore the prospects of multifunctional platforms to promote the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Bowen Gong
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| | - Xindan Zhang
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| | - Ahmed Al Zahrani
- Department of Mechanical and Materials EngineeringUniversity of JeddahJeddahSaudi Arabia
| | - Wenwen Gao
- Department of RadiologyChina–Japan Friendship HospitalBeijingChina
| | - Guolin Ma
- Department of RadiologyChina–Japan Friendship HospitalBeijingChina
| | - Liqun Zhang
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| | - Jiajia Xue
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
57
|
Yan Y, Yao R, Zhao J, Chen K, Duan L, Wang T, Zhang S, Guan J, Zheng Z, Wang X, Liu Z, Li Y, Li G. Implantable nerve guidance conduits: Material combinations, multi-functional strategies and advanced engineering innovations. Bioact Mater 2022; 11:57-76. [PMID: 34938913 PMCID: PMC8665266 DOI: 10.1016/j.bioactmat.2021.09.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 01/15/2023] Open
Abstract
Nerve guidance conduits (NGCs) have attracted much attention due to their great necessity and applicability in clinical use for the peripheral nerve repair. Great efforts in recent years have been devoted to the development of high-performance NGCs using various materials and strategies. The present review provides a comprehensive overview of progress in the material innovation, structural design, advanced engineering technologies and multi functionalization of state-of-the-art nerve guidance conduits NGCs. Abundant advanced engineering technologies including extrusion-based system, laser-based system, and novel textile forming techniques in terms of weaving, knitting, braiding, and electrospinning techniques were also analyzed in detail. Findings arising from this review indicate that the structural mimetic NGCs combined with natural and synthetic materials using advanced manufacturing technologies can make full use of their complementary advantages, acquiring better biomechanical properties, chemical stability and biocompatibility. Finally, the existing challenges and future opportunities of NGCs were put forward aiming for further research and applications of NGCs.
Collapse
Affiliation(s)
- Yixin Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ruotong Yao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jingyuan Zhao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Kaili Chen
- Department of Materials, Imperial College London, SW7 2AZ, UK
| | - Lirong Duan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Tian Wang
- Wilson College of Textiles, North Carolina State University, Raleigh, 27695, USA
| | - Shujun Zhang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jinping Guan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Zekun Liu
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Yi Li
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
58
|
Roca FG, Santos LG, Roig MM, Medina LM, Martínez-Ramos C, Pradas MM. Novel Tissue-Engineered Multimodular Hyaluronic Acid-Polylactic Acid Conduits for the Regeneration of Sciatic Nerve Defect. Biomedicines 2022; 10:biomedicines10050963. [PMID: 35625700 PMCID: PMC9138968 DOI: 10.3390/biomedicines10050963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
The gold standard for the treatment of peripheral nerve injuries, the autograft, presents several drawbacks, and engineered constructs are currently suitable only for short gaps or small diameter nerves. Here, we study a novel tissue-engineered multimodular nerve guidance conduit for the treatment of large nerve damages based in a polylactic acid (PLA) microfibrillar structure inserted inside several co-linear hyaluronic acid (HA) conduits. The highly aligned PLA microfibers provide a topographical cue that guides axonal growth, and the HA conduits play the role of an epineurium and retain the pre-seeded auxiliary cells. The multimodular design increases the flexibility of the device. Its performance for the regeneration of a critical-size (15 mm) rabbit sciatic nerve defect was studied and, after six months, very good nerve regeneration was observed. The multimodular approach contributed to a better vascularization through the micrometrical gaps between HA conduits, and the pre-seeded Schwann cells increased axonal growth. Six months after surgery, a cross-sectional available area occupied by myelinated nerve fibers above 65% at the central and distal portions was obtained when the multimodular device with pre-seeded Schwann cells was employed. The results validate the multi-module approach for the regeneration of large nerve defects and open new possibilities for surgical solutions in this field.
Collapse
Affiliation(s)
- Fernando Gisbert Roca
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
| | - Luis Gil Santos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
| | - Manuel Mata Roig
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (M.M.R.); (L.M.M.)
| | - Lara Milian Medina
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; (M.M.R.); (L.M.M.)
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
- Unitat Predepartamental de Medicina, Universitat Jaume I, 12071 Castellón de la Plana, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain; (F.G.R.); (L.G.S.); (C.M.-R.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-963-877000
| |
Collapse
|
59
|
Zhang J, Tao J, Cheng H, Liu H, Wu W, Dong Y, Liu X, Gou M, Yang S, Xu J. Nerve transfer with 3D-printed branch nerve conduits. BURNS & TRAUMA 2022; 10:tkac010. [PMID: 35441080 PMCID: PMC9012979 DOI: 10.1093/burnst/tkac010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023]
Abstract
Background Nerve transfer is an important clinical surgical procedure for nerve repair by the coaptation of a healthy donor nerve to an injured nerve. Usually, nerve transfer is performed in an end-to-end manner, which will lead to functional loss of the donor nerve. In this study, we aimed to evaluate the efficacy of 3D-printed branch nerve conduits in nerve transfer. Methods Customized branch conduits were constructed using gelatine-methacryloyl by 3D printing. The nerve conduits were characterized both in vitro and in vivo. The efficacy of 3D-printed branch nerve conduits in nerve transfer was evaluated in rats through electrophysiology testing and histological evaluation. Results The results obtained showed that a single nerve stump could form a complex nerve network in the 3D-printed multibranch conduit. A two-branch conduit was 3D printed for transferring the tibial nerve to the peroneal nerve in rats. In this process, the two branches were connected to the distal tibial nerve and peroneal nerve. It was found that the two nerves were successfully repaired with functional recovery. Conclusions It is implied that the two-branch conduit could not only repair the peroneal nerve but also preserve partial function of the donor tibial nerve. This work demonstrated that 3D-printed branch nerve conduits provide a potential method for nerve transfer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jie Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Yinchu Dong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xuesong Liu
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA, Chinese PLA General Hospital, Medical College of PLA, Beijing 100853, P.R. China
| | - Jianguo Xu
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
60
|
Lai CSE, Leyva-Aranda V, Kong VH, Lopez-Silva TL, Farsheed AC, Cristobal CD, Swain JWR, Lee HK, Hartgerink JD. A Combined Conduit-Bioactive Hydrogel Approach for Regeneration of Transected Sciatic Nerves. ACS APPLIED BIO MATERIALS 2022; 5:10.1021/acsabm.2c00132. [PMID: 35446025 PMCID: PMC11097895 DOI: 10.1021/acsabm.2c00132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transected peripheral nerve injury (PNI) affects the quality of life of patients, which leads to socioeconomic burden. Despite the existence of autografts and commercially available nerve guidance conduits (NGCs), the complexity of peripheral nerve regeneration requires further research in bioengineered NGCs to improve surgical outcomes. In this work, we introduce multidomain peptide (MDP) hydrogels, as intraluminal fillers, into electrospun poly(ε-caprolactone) (PCL) conduits to bridge 10 mm rat sciatic nerve defects. The efficacy of treatment groups was evaluated by electromyography and gait analysis to determine their electrical and motor recovery. We then studied the samples' histomorphometry with immunofluorescence staining and automatic axon counting/measurement software. Comparison with negative control group shows that PCL conduits filled with an anionic MDP may improve functional recovery 16 weeks postoperation, displaying higher amplitude of compound muscle action potential, greater gastrocnemius muscle weight retention, and earlier occurrence of flexion contracture. In contrast, PCL conduits filled with a cationic MDP showed the least degree of myelination and poor functional recovery. This phenomenon may be attributed to MDPs' difference in degradation time. Electrospun PCL conduits filled with an anionic MDP may become an attractive tissue engineering strategy for treating transected PNI when supplemented with other bioactive modifications.
Collapse
Affiliation(s)
- Cheuk Sun Edwin Lai
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Victoria H Kong
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Tania L Lopez-Silva
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Adam C Farsheed
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Carlo D Cristobal
- Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Joseph W R Swain
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
61
|
The Role of Tissue Geometry in Spinal Cord Regeneration. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040542. [PMID: 35454380 PMCID: PMC9028021 DOI: 10.3390/medicina58040542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Unlike peripheral nerves, axonal regeneration is limited following injury to the spinal cord. While there may be reduced regenerative potential of injured neurons, the central nervous system (CNS) white matter environment appears to be more significant in limiting regrowth. Several factors may inhibit regeneration, and their neutralization can modestly enhance regrowth. However, most investigations have not considered the cytoarchitecture of spinal cord white matter. Several lines of investigation demonstrate that axonal regeneration is enhanced by maintaining, repairing, or reconstituting the parallel geometry of the spinal cord white matter. In this review, we focus on environmental factors that have been implicated as putative inhibitors of axonal regeneration and the evidence that their organization may be an important determinant in whether they inhibit or promote regeneration. Consideration of tissue geometry may be important for developing successful strategies to promote spinal cord regeneration.
Collapse
|
62
|
Contreras E, Bolívar S, Navarro X, Udina E. New insights into peripheral nerve regeneration: The role of secretomes. Exp Neurol 2022; 354:114069. [DOI: 10.1016/j.expneurol.2022.114069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/05/2022] [Accepted: 04/03/2022] [Indexed: 11/04/2022]
|
63
|
Advances in Electrospun Nerve Guidance Conduits for Engineering Neural Regeneration. Pharmaceutics 2022; 14:pharmaceutics14020219. [PMID: 35213952 PMCID: PMC8876219 DOI: 10.3390/pharmaceutics14020219] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Injuries to the peripheral nervous system result in devastating consequences with loss of motor and sensory function and lifelong impairments. Current treatments have largely relied on surgical procedures, including nerve autografts to repair damaged nerves. Despite improvements to the surgical procedures over the years, the clinical success of nerve autografts is limited by fundamental issues, such as low functionality and mismatching between the damaged and donor nerves. While peripheral nerves can regenerate to some extent, the resultant outcomes are often disappointing, particularly for serious injuries, and the ongoing loss of function due to poor nerve regeneration is a serious public health problem worldwide. Thus, a successful therapeutic modality to bring functional recovery is urgently needed. With advances in three-dimensional cell culturing, nerve guidance conduits (NGCs) have emerged as a promising strategy for improving functional outcomes. Therefore, they offer a potential therapeutic alternative to nerve autografts. NGCs are tubular biostructures to bridge nerve injury sites via orienting axonal growth in an organized fashion as well as supplying a supportively appropriate microenvironment. Comprehensive NGC creation requires fundamental considerations of various aspects, including structure design, extracellular matrix components and cell composition. With these considerations, the production of an NGC that mimics the endogenous extracellular matrix structure can enhance neuron–NGC interactions and thereby promote regeneration and restoration of function in the target area. The use of electrospun fibrous substrates has a high potential to replicate the native extracellular matrix structure. With recent advances in electrospinning, it is now possible to generate numerous different biomimetic features within the NGCs. This review explores the use of electrospinning for the regeneration of the nervous system and discusses the main requirements, challenges and advances in developing and applying the electrospun NGC in the clinical practice of nerve injuries.
Collapse
|
64
|
Chen X, Tang X, Wang Y, Gu X, Huang T, Yang Y, Ling J. Silk-inspired fiber implant with multi-cues enhanced bionic microenvironment for promoting peripheral nerve repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112674. [DOI: 10.1016/j.msec.2022.112674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
|
65
|
Zhang X, Meng Y, Gong B, Wang T, Lu Y, Zhang L, Xue J. Electrospun Nanofibers for Manipulating the Soft Tissue Regeneration. J Mater Chem B 2022; 10:7281-7308. [DOI: 10.1039/d2tb00609j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soft tissue damage is a common clinical problem that affects the lives of a large number of patients all over the world. It is of great importance to develop functional...
Collapse
|
66
|
Yu X, Zhang D, Liu C, Liu Z, Li Y, Zhao Q, Gao C, Wang Y. Micropatterned Poly(D,L-Lactide-Co-Caprolactone) Conduits With KHI-Peptide and NGF Promote Peripheral Nerve Repair After Severe Traction Injury. Front Bioeng Biotechnol 2021; 9:744230. [PMID: 34957063 PMCID: PMC8696012 DOI: 10.3389/fbioe.2021.744230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/15/2021] [Indexed: 01/06/2023] Open
Abstract
Severe traction injuries after stretch to peripheral nerves are common and challenging to repair. The nerve guidance conduits (NGCs) are promising in the regeneration and functional recovery after nerve injuries. To enhance the repair of severe nerve traction injuries, in this study KHIFSDDSSE (KHI) peptides were grafted on a porous and micropatterned poly(D,L-lactide-co-caprolactone) (PLCL) film (MPLCL), which was further loaded with a nerve growth factor (NGF). The adhesion number of Schwann cells (SCs), ratio of length/width (L/W), and percentage of elongated SCs were significantly higher in the MPLCL-peptide group and MPLCL-peptide-NGF group compared with those in the PLCL group in vitro. The electromyography (EMG) and morphological changes of the nerve after severe traction injury were improved significantly in the MPLCL-peptide group and MPLCL-peptide-NGF group compared with those in the PLCL group in vivo. Hence, the NGCs featured with both bioactive factors (KHI peptides and NGF) and physical topography (parallelly linear micropatterns) have synergistic effect on nerve reinnervation after severe traction injuries.
Collapse
Affiliation(s)
- Xing Yu
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chang Liu
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaodi Liu
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Yujun Li
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Qunzi Zhao
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yong Wang
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
67
|
Casanova MR, Reis RL, Martins A, Neves NM. Stimulation of Neurite Outgrowth Using Autologous NGF Bound at the Surface of a Fibrous Substrate. Biomolecules 2021; 12:25. [PMID: 35053173 PMCID: PMC8773656 DOI: 10.3390/biom12010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023] Open
Abstract
Peripheral nerve injury still remains a major clinical challenge, since the available solutions lead to dysfunctional nerve regeneration. Even though autologous nerve grafts are the gold standard, tissue engineered nerve guidance grafts are valid alternatives. Nerve growth factor (NGF) is the most potent neurotrophic factor. The development of a nerve guidance graft able to locally potentiate the interaction between injured neurons and autologous NGF would be a safer and more effective alternative to grafts that just release NGF. Herein, a biofunctional electrospun fibrous mesh (eFM) was developed through the selective retrieval of NGF from rat blood plasma. The neurite outgrowth induced by the eFM-NGF systems was assessed by culturing rat pheochromocytoma (PC12) cells for 7 days, without medium supplementation. The biological results showed that this NGF delivery system stimulates neuronal differentiation, enhancing the neurite growth more than the control condition.
Collapse
Affiliation(s)
- Marta R. Casanova
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark–Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (M.R.C.); (R.L.R.); (A.M.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark–Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (M.R.C.); (R.L.R.); (A.M.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark–Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (M.R.C.); (R.L.R.); (A.M.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark–Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (M.R.C.); (R.L.R.); (A.M.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
68
|
Liu S, Zhou L, Li C, Min T, Lu C, Han S, Zhang M, Wen Y, Zhang P, Jiang B. Chitin conduits modified with DNA-peptide coating promote the peripheral nerve regeneration. Biofabrication 2021; 14. [PMID: 34808601 DOI: 10.1088/1758-5090/ac3bdc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/22/2021] [Indexed: 11/12/2022]
Abstract
Peripheral nerve injury (PNI) is one of the common clinical injuries which needs to be addressed. Previous studies demonstrated the effectiveness of using biodegradable chitin (CT) conduits small gap tubulization technology as a substitute for traditional epineurial neurorrhaphy. Aiming to improve the effectiveness of CT conduits in repairing PNI, we modified their surface with a DNA-peptide coating. The coating consisted of single strand DNA (ssDNA) and its complementary DNA'-peptide mimics. First, we immobilize ssDNA (DNA1 + 2) on CT conduits by carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) method to construct CT/DNA conduits. EDC/NHS was used to activate carboxyl groups of modified ssDNA for direct reaction with primary amines on the CT via amide bond formation. Then, DNA1'-BDNF + DNA2'-VEGF mimic peptide (RGI + KLT) were bonded to CT/DNA conduits by complementary base pairing principle at room temperature to form CT/RGI + KLT conduits. When the surrounding environment rose to a certain point (37 °C), the CT/RGI + KLT conduits achieved sustainable release of DNA'-peptide.In vitro, the CT conduits modified with the DNA-peptide coating promoted the proliferation and secretion of Schwann cells by maintaining their repair state. It also promoted the proliferation of human umbilical vein vessel endothelial cells and axon outgrowth of dorsal root ganglion explants.In vivo, CT/RGI + KLT conduits promoted regeneration of injured nerves and functional recovery of target muscles, which was facilitated by the synergistic contribution of angiogenesis and neurogenesis. Our research brings DNA and DNA-peptide hybrids into the realm of tissue engineering to repair PNI.
Collapse
Affiliation(s)
- Songyang Liu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, People's Republic of China.,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, People's Republic of China.,National Center for Trauma Medicine, Beijing, People's Republic of China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Ci Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, People's Republic of China.,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, People's Republic of China
| | - Tiantian Min
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Changfeng Lu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, People's Republic of China.,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, People's Republic of China
| | - Shuai Han
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, People's Republic of China.,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, People's Republic of China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, People's Republic of China.,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, People's Republic of China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, People's Republic of China.,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, People's Republic of China
| | - Baoguo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, People's Republic of China.,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, People's Republic of China
| |
Collapse
|
69
|
Lu P, Wang G, Qian T, Cai X, Zhang P, Li M, Shen Y, Xue C, Wang H. The balanced microenvironment regulated by the degradants of appropriate PLGA scaffolds and chitosan conduit promotes peripheral nerve regeneration. Mater Today Bio 2021; 12:100158. [PMID: 34841240 PMCID: PMC8605345 DOI: 10.1016/j.mtbio.2021.100158] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 12/19/2022] Open
Abstract
Tissue-engineered nerve grafts (TENGs) are the most promising way for repairing long-distance peripheral nerve defects. Chitosan and poly (lactic-co-glycolic acid) (PLGA) scaffolds are considered as the promising materials in the pharmaceutical and biomedical fields especially in the field of tissue engineering. To further clarify the effects of a chitosan conduit inserted with various quantity of poly (lactic-co-glycolic acid) (PLGA) scaffolds, and their degrades on the peripheral nerve regeneration, the chitosan nerve conduit inserted with different amounts of PLGA scaffolds were used to repair rat sciatic nerve defects. The peripheral nerve regeneration at the different time points was dynamically and comprehensively evaluated. Moreover, the influence of different amounts of PLGA scaffolds on the regeneration microenvironment including inflammatory response and cell state were also revealed. The modest abundance of PLGA is more instrumental to the success of nerve regeneration, which is demonstrated in terms of the structure of the regenerated nerve, reinnervation of the target muscle, nerve impulse conduction, and overall function. The PLGA scaffolds aid the migration and maturation of Schwann cells. Furthermore, the PLGA and chitosan degradation products in a correct ratio neutralize, reducing the inflammatory response and enhancing the regeneration microenvironment. The balanced microenvironment regulated by the degradants of appropriate PLGA scaffolds and chitosan conduit promotes peripheral nerve regeneration. The findings represent a further step towards programming TENGs construction, applying polyester materials in regenerative medicine, and understanding the neural regeneration microenvironment. Guide scaffolds are necessary for construction of TENGs to benefeat Schwann cell migration and maturation. A large number of acid degradation products of PLGA scaffolds adversely affect cell proliferation, migration and apoptosis. Appropriate amount of PLGA scaffolds balance positive cell guidance and negative degradation inflammation. Dosage of PLGA and its combination with complementary biomaterials are key factors that affect regeneration effects.
Collapse
Key Words
- ANOVA, one-way analysis of variance
- CCK8, Cell Counting Kit-8
- CMAPs, compound muscle action potentials
- DAPI, 4’ 6-diamidino-2-phenylindole
- DMEM, Dulbecco’s modified eagle medium
- FBS, fetal bovine serum
- HE, hematoxylin-eosin
- Inflammation
- NC, negative control
- NS, normal saline
- OD, optical density
- PGA, poly (glycolic acid)
- PLA, poly (lactic acid)
- PLGA
- PLGA, poly (lactic-co-glycolic acid)
- Regeneration microenvironment
- SCs, Schwann cells
- SD, Sprague-Dawley
- SD, standard deviation
- SFI, sciatic nerve function index
- Schwann cells
- TENG, tissue-engineered nerve graft
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling
- α-BGT, α-bungarotoxin
Collapse
Affiliation(s)
- Panjian Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Gang Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Tianmei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xiaodong Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Ping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Meiyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yinying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Chengbin Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
70
|
Li C, Zhang M, Liu SY, Zhang FS, Wan T, Ding ZT, Zhang PX. Chitin Nerve Conduits with Three-Dimensional Spheroids of Mesenchymal Stem Cells from SD Rats Promote Peripheral Nerve Regeneration. Polymers (Basel) 2021; 13:polym13223957. [PMID: 34833256 PMCID: PMC8620585 DOI: 10.3390/polym13223957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury (PNI) is an unresolved medical problem with limited therapeutic effects. Epineurium neurorrhaphy is an important method for treating PNI in clinical application, but it is accompanied by inevitable complications such as the misconnection of nerve fibers and neuroma formation. Conduits small gap tubulization has been proved to be an effective suture method to replace the epineurium neurorrhaphy. In this study, we demonstrated a method for constructing peripheral nerve conduits based on the principle of chitosan acetylation. In addition, the micromorphology, mechanical properties and biocompatibility of the chitin nerve conduits formed by chitosan acetylation were further tested. The results showed chitin was a high-quality biological material for constructing nerve conduits. Previous reports have demonstrated that mesenchymal stem cells culture as spheroids can improve the therapeutic potential. In the present study, we used a hanging drop protocol to prepare bone marrow mesenchymal stem cell (BMSCs) spheroids. Meanwhile, spherical stem cells could express higher stemness-related genes. In the PNI rat model with small gap tubulization, BMSCs spheres exhibited a higher ability to improve sciatic nerve regeneration than BMSCs suspension. Chitin nerve conduits with BMSCs spheroids provide a promising therapy option for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Ci Li
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (C.L.); (M.Z.); (S.-Y.L.); (F.-S.Z.); (T.W.); (Z.-T.D.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (C.L.); (M.Z.); (S.-Y.L.); (F.-S.Z.); (T.W.); (Z.-T.D.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Song-Yang Liu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (C.L.); (M.Z.); (S.-Y.L.); (F.-S.Z.); (T.W.); (Z.-T.D.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (C.L.); (M.Z.); (S.-Y.L.); (F.-S.Z.); (T.W.); (Z.-T.D.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (C.L.); (M.Z.); (S.-Y.L.); (F.-S.Z.); (T.W.); (Z.-T.D.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Zhen-Tao Ding
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (C.L.); (M.Z.); (S.-Y.L.); (F.-S.Z.); (T.W.); (Z.-T.D.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (C.L.); (M.Z.); (S.-Y.L.); (F.-S.Z.); (T.W.); (Z.-T.D.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Peking University People’s Hospital, Beijing 100044, China
- Correspondence:
| |
Collapse
|
71
|
Liu S, Liu Y, Zhou L, Li C, Zhang M, Zhang F, Ding Z, Wen Y, Zhang P. XT-type DNA hydrogels loaded with VEGF and NGF promote peripheral nerve regeneration via a biphasic release profile. Biomater Sci 2021; 9:8221-8234. [PMID: 34739533 DOI: 10.1039/d1bm01377g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peripheral nerve injury (PNI) remains an unresolved challenge in the medicine area. With the development of biomaterial science and tissue engineering, a variety of nerve conduits were widely applied for repairing long defect PNI. DNA materials are developing rapidly due to their multiple advantages. In the present study, we aim to combine a DNA hydrogel, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) to construct a new type of delivery system, which could achieve a biphasic release profile of VEGF and NGF by taking advantage of the different degradation rates between X- and T-type DNA. In vitro results showed that the DNA gel + VEGF/NGF system could promote proliferation, migration and myelination of Rat Schwann cells (RSC) while maintaining cell viability. In vivo results indicated a better effect of DNA gel + VEGF/NGF on promoting repair of long defect PNI than the hollow chitin conduits (CT), DNA gel or VEGF/NGF group. The new technology invention holds promising clinical application prospects for repairing PNI and may be used broadly after step-by-step improvement.
Collapse
Affiliation(s)
- Songyang Liu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China. .,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Yijun Liu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China. .,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China.,Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, the Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Ci Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China. .,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China. .,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China. .,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Zhentao Ding
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China. .,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China. .,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| |
Collapse
|
72
|
Sun Y, Chi X, Meng H, Ma M, Wang J, Feng Z, Quan Q, Liu G, Wang Y, Xie Y, Zheng Y, Peng J. Polylysine-decorated macroporous microcarriers laden with adipose-derived stem cells promote nerve regeneration in vivo. Bioact Mater 2021; 6:3987-3998. [PMID: 33997488 PMCID: PMC8082165 DOI: 10.1016/j.bioactmat.2021.03.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Cell transplantation is an effective strategy to improve the repair effect of nerve guide conduits (NGCs). However, problems such as low loading efficiency and cell anoikis undermine the outcomes. Microcarriers are efficient 3D cell culture scaffolds, which can also prevent cell anoikis by providing substrate for adhesion during transplantation. Here, we demonstrate for the first time microcarrier-based cell transplantation in peripheral nerve repair. We first prepared macroporous chitosan microcarriers (CSMCs) by the emulsion-phase separation method, and then decorated the CSMCs with polylysine (pl-CSMCs) to improve cell affinity. We then loaded the pl-CSMCs with adipose-derived stem cells (ADSCs) and injected them into electrospun polycaprolactone/chitosan NGCs to repair rat sciatic nerve defects. The ADSCs-laden pl-CSMCs effectively improved nerve regeneration as demonstrated by evaluation of histology, motor function recovery, electrophysiology, and gastrocnemius recovery. With efficient cell transplantation, convenient operation, and the multiple merits of ADSCs, the ADSCs-laden pl-CSMCs hold good potential in peripheral nerve repair.
Collapse
Affiliation(s)
- Yi Sun
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Xiaoqi Chi
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Haoye Meng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, PR China
| | - Mengjiao Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jing Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, PR China
| | - Zhaoxuan Feng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Qi Quan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, PR China
| | - Guodong Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yansen Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, PR China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226007, PR China
| |
Collapse
|
73
|
Yu M, Gu G, Cong M, Du M, Wang W, Shen M, Zhang Q, Shi H, Gu X, Ding F. Repair of peripheral nerve defects by nerve grafts incorporated with extracellular vesicles from skin-derived precursor Schwann cells. Acta Biomater 2021; 134:190-203. [PMID: 34289422 DOI: 10.1016/j.actbio.2021.07.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Our previous studies have shown that extracellular vesicles from skin-derived precursor Schwann cells (SKP-SC-EVs) promote neurite outgrowth of sensory and motor neurons in vitro. This study was aimed at generating an artificial nerve graft incorporated with SKP-SC-EVs to examine in vivo effects of SKP-SC-EVs on peripheral nerve regeneration. Here SKP-SC-EVs were isolated and then identified by morphological observation and phenotypic marker expression. Following co-culture with SCs or motoneurons, SKP-SC-EVs were internalized, showing the capability to enhance SC viability or motoneuron neurite outgrowth. In vitro, SKP-SC-EVs released from Matrigel could maintain cellular uptake property and neural activity. Nerve grafts were developed by incorporating Matrigel-encapsulated SKP-SC-EVs into silicone conduits. Functional evaluation, histological investigation, and morphometric analysis were performed to compare the nerve regenerative outcome after bridging the 10-mm long sciatic nerve defect in rats with our developed nerve grafts, silicone conduits (filled with vehicle), and autografts respectively. Our developed nerve grafts significantly accelerated the recovery of motor, sensory, and electrophysiological functions of rats, facilitated outgrowth and myelination of regenerated axons, and alleviated denervation-induced atrophy of target muscles. Collectively, our findings suggested that incorporation of SKP-SC-EVs into nerve grafts might represent a promising paradigm for peripheral nerve injury repair. STATEMENT OF SIGNIFICANCE: Nerve grafts have been progressively developed to meet the increasing requirements for peripheral nerve injury repair. Here we reported a design of nerve grafts featured by incorporation of Matrigel-encapsulated extracellular vesicles from skin-derived precursor Schwann cells (SKP-SC-EVs), because SKP-SC-EVs were found to possess in vitro neural activity, thus raising the possibility of cell-free therapy. Our developed nerve grafts yielded the satisfactory outcome of nerve grafting in rats with a 10-mm long sciatic nerve defect, as evaluated by functional and morphological assessments. The promoting effects of SKP-SC-EVs-incorporating nerve grafts on peripheral nerve regeneration might benefit from in vivo biological cues afforded by SKP-SC-EVs, which had been released from Matrigel and then internalized by residual neural cells in sciatic nerve stumps.
Collapse
Affiliation(s)
- Miaomei Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guohao Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mingzhi Du
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Haiyan Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Department of Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
74
|
Harnessing 3D collagen hydrogel-directed conversion of human GMSCs into SCP-like cells to generate functionalized nerve conduits. NPJ Regen Med 2021; 6:59. [PMID: 34593823 PMCID: PMC8484485 DOI: 10.1038/s41536-021-00170-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Achieving a satisfactory functional recovery after severe peripheral nerve injuries (PNI) remains one of the major clinical challenges despite advances in microsurgical techniques. Nerve autografting is currently the gold standard for the treatment of PNI, but there exist several major limitations. Accumulating evidence has shown that various types of nerve guidance conduits (NGCs) combined with post-natal stem cells as the supportive cells may represent a promising alternative to nerve autografts. In this study, gingiva-derived mesenchymal stem cells (GMSCs) under 3D-culture in soft collagen hydrogel showed significantly increased expression of a panel of genes related to development/differentiation of neural crest stem-like cells (NCSC) and/or Schwann cell precursor-like (SCP) cells and associated with NOTCH3 signaling pathway activation as compared to their 2D-cultured counterparts. The upregulation of NCSC-related genes induced by 3D-collagen hydrogel was abrogated by the presence of a specific NOTCH inhibitor. Further study showed that GMSCs encapsulated in 3D-collagen hydrogel were capable of transmigrating into multilayered extracellular matrix (ECM) wall of natural NGCs and integrating well with the aligned matrix structure, thus leading to biofabrication of functionalized NGCs. In vivo, implantation of functionalized NGCs laden with GMSC-derived NCSC/SCP-like cells (designated as GiSCs), significantly improved the functional recovery and axonal regeneration in the segmental facial nerve defect model in rats. Together, our study has identified an approach for rapid biofabrication of functionalized NGCs through harnessing 3D collagen hydrogel-directed conversion of GMSCs into GiSCs.
Collapse
|
75
|
Cintron-Colon AF, Almeida-Alves G, VanGyseghem JM, Spitsbergen JM. GDNF to the rescue: GDNF delivery effects on motor neurons and nerves, and muscle re-innervation after peripheral nerve injuries. Neural Regen Res 2021; 17:748-753. [PMID: 34472460 PMCID: PMC8530131 DOI: 10.4103/1673-5374.322446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injuries commonly occur due to trauma, like a traffic accident. Peripheral nerves get severed, causing motor neuron death and potential muscle atrophy. The current golden standard to treat peripheral nerve lesions, especially lesions with large (≥ 3 cm) nerve gaps, is the use of a nerve autograft or reimplantation in cases where nerve root avulsions occur. If not tended early, degeneration of motor neurons and loss of axon regeneration can occur, leading to loss of function. Although surgical procedures exist, patients often do not fully recover, and quality of life deteriorates. Peripheral nerves have limited regeneration, and it is usually mediated by Schwann cells and neurotrophic factors, like glial cell line-derived neurotrophic factor, as seen in Wallerian degeneration. Glial cell line-derived neurotrophic factor is a neurotrophic factor known to promote motor neuron survival and neurite outgrowth. Glial cell line-derived neurotrophic factor is upregulated in different forms of nerve injuries like axotomy, sciatic nerve crush, and compression, thus creating great interest to explore this protein as a potential treatment for peripheral nerve injuries. Exogenous glial cell line-derived neurotrophic factor has shown positive effects in regeneration and functional recovery when applied in experimental models of peripheral nerve injuries. In this review, we discuss the mechanism of repair provided by Schwann cells and upregulation of glial cell line-derived neurotrophic factor, the latest findings on the effects of glial cell line-derived neurotrophic factor in different types of peripheral nerve injuries, delivery systems, and complementary treatments (electrical muscle stimulation and exercise). Understanding and overcoming the challenges of proper timing and glial cell line-derived neurotrophic factor delivery is paramount to creating novel treatments to tend to peripheral nerve injuries to improve patients’ quality of life.
Collapse
Affiliation(s)
| | | | | | - John M Spitsbergen
- Biological Sciences Department, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
76
|
Halim A, Qu KY, Zhang XF, Huang NP. Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2021; 7:3503-3529. [PMID: 34291638 DOI: 10.1021/acsbiomaterials.1c00490] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complexity of the nervous system structure and function, and its slow regeneration rate, makes it more difficult to treat compared to other tissues in the human body when an injury occurs. Moreover, the current therapeutic approaches including the use of autografts, allografts, and pharmacological agents have several drawbacks and can not fully restore nervous system injuries. Recently, nanotechnology and tissue engineering approaches have attracted many researchers to guide tissue regeneration in an effective manner. Owing to their remarkable physicochemical and biological properties, two-dimensional (2D) nanomaterials have been extensively studied in the tissue engineering and regenerative medicine field. The great conductivity of these materials makes them a promising candidate for the development of novel scaffolds for neural tissue engineering application. Moreover, the high loading capacity of 2D nanomaterials also has attracted many researchers to utilize them as a drug/gene delivery method to treat various devastating nervous system disorders. This review will first introduce the fundamental physicochemical properties of 2D nanomaterials used in biomedicine and the supporting biological properties of 2D nanomaterials for inducing neuroregeneration, including their biocompatibility on neural cells, the ability to promote the neural differentiation of stem cells, and their immunomodulatory properties which are beneficial for alleviating chronic inflammation at the site of the nervous system injury. It also discusses various types of 2D nanomaterials-based scaffolds for neural tissue engineering applications. Then, the latest progress on the use of 2D nanomaterials for nervous system disorder treatment is summarized. Finally, a discussion of the challenges and prospects of 2D nanomaterials-based applications in neural tissue engineering is provided.
Collapse
Affiliation(s)
- Alexander Halim
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Kai-Yun Qu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Xiao-Feng Zhang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|
77
|
Bayat A, Ramazani S. A. A. Biocompatible conductive alginate/polyaniline-graphene neural conduits fabricated using a facile solution extrusion technique. INT J POLYM MATER PO 2021; 70:486-495. [DOI: 10.1080/00914037.2020.1725764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/30/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Arman Bayat
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Ahmad Ramazani S. A.
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
78
|
Comprehensive strategy of conduit guidance combined with VEGF producing Schwann cells accelerates peripheral nerve repair. Bioact Mater 2021; 6:3515-3527. [PMID: 33842738 PMCID: PMC8008177 DOI: 10.1016/j.bioactmat.2021.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023] Open
Abstract
Peripheral nerve regeneration requires stepwise and well-organized establishment of microenvironment. Since local delivery of VEGF-A in peripheral nerve repair is expected to promote angiogenesis in the microenvironment and Schwann cells (SCs) play critical role in nerve repair, combination of VEGF and Schwann cells may lead to efficient peripheral nerve regeneration. VEGF-A overexpressing Schwann cells were established and loaded into the inner wall of hydroxyethyl cellulose/soy protein isolate/polyaniline sponge (HSPS) conduits. When HSPS is mechanically distorted, it still has high durability of strain strength, thus, can accommodate unexpected strain of nerve tissues in motion. A 10 mm nerve defect rat model was used to test the repair performance of the HSPS-SC (VEGF) conduits, meanwhile the HSPS, HSPS-SC, HSPS-VEGF conduits and autografts were worked as controls. The immunofluorescent co-staining of GFP/VEGF-A, Ki67 and MBP showed that the VEGF-A overexpressing Schwann cells could promote the proliferation, migration and differentiation of Schwann cells as the VEGF-A was secreted from the VEGF-A overexpressing Schwann cells. The nerve repair performance of the multifunctional and flexible conduits was examined though rat behavioristics, electrophysiology, nerve innervation to gastrocnemius muscle (GM), toluidine blue (TB) staining, transmission electron microscopy (TEM) and NF200/S100 double staining in the regenerated nerve. The results displayed that the effects on the repair of peripheral nerves in HSPS-SC (VEGF) group was the best among the conduits groups and closed to autografts. HSPS-SC (VEGF) group exhibited notably increased CD31+ endothelial cells and activation of VEGFR2/ERK signaling pathway in the regenerated nerve tissues, which probably contributed to the improved nerve regeneration. Altogether, the comprehensive strategy including VEGF overexpressing Schwann cells-mediated and HSPS conduit-guided peripheral nerve repair provides a new avenue for nerve tissue engineering.
Collapse
|
79
|
Sarrigiannidis S, Rey J, Dobre O, González-García C, Dalby M, Salmeron-Sanchez M. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater Today Bio 2021; 10:100098. [PMID: 33763641 PMCID: PMC7973388 DOI: 10.1016/j.mtbio.2021.100098] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Collagen hydrogels are among the most well-studied platforms for drug delivery and in situ tissue engineering, thanks to their low cost, low immunogenicity, versatility, biocompatibility, and similarity to the natural extracellular matrix (ECM). Despite collagen being largely responsible for the tensile properties of native connective tissues, collagen hydrogels have relatively low mechanical properties in the absence of covalent cross-linking. This is particularly problematic when attempting to regenerate stiffer and stronger native tissues such as bone. Furthermore, in contrast to hydrogels based on ECM proteins such as fibronectin, collagen hydrogels do not have any growth factor (GF)-specific binding sites and often cannot sequester physiological (small) amounts of the protein. GF binding and in situ presentation are properties that can aid significantly in the tissue regeneration process by dictating cell fate without causing adverse effects such as malignant tumorigenic tissue growth. To alleviate these issues, researchers have developed several strategies to increase the mechanical properties of collagen hydrogels using physical or chemical modifications. This can expand the applicability of collagen hydrogels to tissues subject to a continuous load. GF delivery has also been explored, mathematically and experimentally, through the development of direct loading, chemical cross-linking, electrostatic interaction, and other carrier systems. This comprehensive article explores the ways in which these parameters, mechanical properties and GF delivery, have been optimized in collagen hydrogel systems and examines their in vitro or in vivo biological effect. This article can, therefore, be a useful tool to streamline future studies in the field, by pointing researchers into the appropriate direction according to their collagen hydrogel design requirements.
Collapse
Affiliation(s)
| | | | - O. Dobre
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - C. González-García
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - M.J. Dalby
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - M. Salmeron-Sanchez
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| |
Collapse
|
80
|
Gisbert Roca F, André FM, Más Estellés J, Monleón Pradas M, Mir LM, Martínez-Ramos C. BDNF-Gene Transfected Schwann Cell-Assisted Axonal Extension and Sprouting on New PLA-PPy Microfiber Substrates. Macromol Biosci 2021; 21:e2000391. [PMID: 33645917 DOI: 10.1002/mabi.202000391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Indexed: 01/09/2023]
Abstract
The work here reported analyzes the effect of increased efficiency of brain-derived neurotrophic factor (BDNF) production by electroporated Schwann cells (SCs) on the axonal extension in a coculture system on a biomaterial platform that can be of interest for the treatment of injuries of the nervous system, both central and peripheral. Rat SCs are electrotransfected with a plasmid coding for the BDNF protein in order to achieve an increased expression and release of this protein into the culture medium of the cells, performing the best balance between the level of transfection and the number of living cells. Gene-transfected SCs show an about 100-fold increase in the release of BDNF into the culture medium, compared to nonelectroporated SCs. Cocultivation of electroporated SCs with rat dorsal root ganglia (DRG) is performed on highly aligned substrates of polylactic acid (PLA) microfibers coated with the electroconductive polymer polypyrrol (PPy). The coculture of DRG with electrotransfected SCs increase both the axonal extension and the axonal sprouting from DRG neurons compared to the coculture of DRG with nonelectroporated SCs. Therefore, the use of PLA-PPy highly aligned microfiber substrates preseeded with electrotransfected SCs with an increased BDNF secretion is capable of both guiding and accelerating axonal growth.
Collapse
Affiliation(s)
- Fernando Gisbert Roca
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Franck M André
- Metabolic and systemic aspects of oncogenesis (METSY), CNRS, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94805, France
| | - Jorge Más Estellés
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Manuel Monleón Pradas
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.,CIBER-BBN, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina, Madrid, 28029, Spain
| | - Lluis M Mir
- Metabolic and systemic aspects of oncogenesis (METSY), CNRS, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94805, France
| | - Cristina Martínez-Ramos
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.,Unitat predepartamental de Medicina, Universitat Jaume I, Avda/Sos Baynat, S/N, Castellón de la Plana, 12071, Spain
| |
Collapse
|
81
|
Shiwarski D. Utility of perfusion decellularization to achieve biochemical and mechanically accurate whole animal and organ-specific tissue scaffolds. Physiol Rep 2021; 9:e14804. [PMID: 33769707 PMCID: PMC7995550 DOI: 10.14814/phy2.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Daniel Shiwarski
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPAUSA
| |
Collapse
|
82
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted Protein Acidic and Rich in Cysteine as A Regeneration Factor: Beyond the Tissue Repair. Life (Basel) 2021; 11:life11010038. [PMID: 33435573 PMCID: PMC7827108 DOI: 10.3390/life11010038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Diverse pathologies (inflammation, tissues injuries, cancer, etc.) and physiological conditions (obesity, physical activity, etc.) induce the expression/secretion of the matricellular protein, secrete protein acidic and rich in cysteine (SPARC). SPARC contributes to the creation of an environment that is suitable for tissue regeneration through a variety of roles, including metabolic homeostasis, inflammation reduction, extracellular matrix remodeling and collagen maturation. Such a homeostatic environment optimizes tissue regeneration and improves tissues’ repair ability. These properties that SPARC has within the regeneration contexts could have a variety of applications, such as in obesity, cancer, sarcopenia, diabetes and bioengineering.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: + 1-(418)-525-4444 (ext. 46448); Fax: +1-(418)-654-2298
| |
Collapse
|
83
|
Zheng C, Yang Z, Chen S, Zhang F, Rao Z, Zhao C, Quan D, Bai Y, Shen J. Nanofibrous nerve guidance conduits decorated with decellularized matrix hydrogel facilitate peripheral nerve injury repair. Theranostics 2021; 11:2917-2931. [PMID: 33456580 PMCID: PMC7806490 DOI: 10.7150/thno.50825] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Peripheral nerve injury (PNI) is a great challenge for regenerative medicine. Nerve autograft is the gold standard for clinical PNI repair. Due to its significant drawbacks, artificial nerve guidance conduits (NGCs) have drawn much attention as replacement therapies. We developed a combinatorial NGC consisting of longitudinally aligned electrospun nanofibers and porcine decellularized nerve matrix hydrogel (pDNM gel). The in vivo capacity for facilitating nerve tissue regeneration and functional recovery was evaluated in a rat sciatic nerve defect model. Methods: Poly (L-lactic acid) (PLLA) was electrospun into randomly oriented (PLLA-random) and longitudinally aligned (PLLA-aligned) nanofibers. PLLA-aligned were further coated with pDNM gel at concentrations of 0.25% (PLLA-aligned/0.25% pDNM gel) and 1% (PLLA-aligned/1% pDNM gel). Axonal extension and Schwann cells migration were evaluated by immunofluorescence staining of dorsal root ganglia cultured on the scaffolds. To fabricate implantable NGCs, the nanofibrous scaffolds were rolled and covered with an electrospun protection tube. The fabricated NGCs were then implanted into a 5 mm sciatic nerve defect model in adult male Sprague-Dawley rats. Nerves treated with NGCs were compared to contralateral uninjured nerves (control group), injured but untreated nerves (unstitched group), and autografted nerves. Nerve regeneration was monitored by an established set of assays, including T2 values and diffusion tensor imaging (DTI) derived from multiparametric magnetic resonance imaging (MRI), histological assessments, and immunostaining. Nerve functional recovery was evaluated by walking track analysis. Results: PLLA-aligned/0.25% pDNM gel scaffold exhibited the best performance in facilitating directed axonal extension and Schwann cells migration in vitro due to the combined effects of the topological cues provided by the aligned nanofibers and the biochemical cues retained in the pDNM gel. Consistent results were obtained in animal experiments with the fabricated NGCs. Both the T2 and fractional anisotropy values of the PLLA-aligned/0.25% pDNM gel group were the closest to those of the autografted group, and returned to normal much faster than those of the other NGCs groups. Histological assessment indicated that the implanted PLLA-aligned/0.25% pDNM gel NGC resulted in the largest number of axons and the most extensive myelination among all fabricated NGCs. Further, the PLLA-aligned/0.25% pDNM gel group exhibited the highest sciatic nerve function index, which was comparable to that of the autografted group, at 8 weeks post-surgery. Conclusions: NGCs composed of aligned PLLA nanofibers decorated with 0.25% pDNM gel provided both topological and biochemical guidance for directing and promoting axonal extension, nerve fiber myelination, and functional recovery. Moreover, T2-mapping and DTI metrics were found to be useful non-invasive monitoring techniques for PNI treatment.
Collapse
Affiliation(s)
- Chushan Zheng
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Zehong Yang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Shihao Chen
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Zilong Rao
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Cailing Zhao
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Daping Quan
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Ying Bai
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
84
|
Bilayer Scaffolds for Interface Tissue Engineering and Regenerative Medicine: A Systematic Reviews. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:83-113. [PMID: 33931833 DOI: 10.1007/5584_2021_637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE This systematic review focus on the application of bilayer scaffolds as an engaging structure for the engineering of multilayered tissues, including vascular and osteochondral tissues, skin, nerve, and urinary bladder. This article provides a concise literature review of different types of bilayer scaffolds to understand their efficacy in targeted tissue engineering. METHODS To this aim, electronic search in the English language was performed in PMC, NBCI, and PubMed from April 2008 to December 2019 based on the PRISMA guidelines. Animal studies, including the "bilayer scaffold" and at least one of the following items were examined: osteochondral tissue, bone, skin, neural tissue, urinary bladder, vascular system. The articles which didn't include "tissue engineering" and just in vitro studies were excluded. RESULTS Totally, 600 articles were evaluated; related articles were 145, and 35 full-text English articles met all the criteria. Fifteen articles in soft tissue engineering and twenty items in hard tissue engineering were the results of this exploration. Based on selected papers, it was revealed that the bilayer scaffolds were used in the regeneration of the multilayered tissues. The highest multilayered tissue regeneration has been achieved when bilayer scaffolds were used with mesenchymal stem cells and differentiation medium before implanting. Among the studies being reported in this review, bone marrow mesenchymal stem cells are the most studied mesenchymal stem cells. Among different kinds of multilayer tissue, the bilayer scaffold has been most used in osteochondral tissue engineering in which collagen and PLGA have been the most frequently used biomaterials. After osteochondral tissue engineering, bilayer scaffolds were widely used in skin tissue engineering. CONCLUSION The current review aimed to manifest the researcher and surgeons to use a more sophisticated bilayer scaffold in combinations of appropriate stem cells, and different can improve multilayer tissue regeneration. This systematic review can pave a way to design a suitable bilayer scaffold for a specific target tissue and conjunction with proper stem cells.
Collapse
|
85
|
Li T, Javed R, Ao Q. Xenogeneic Decellularized Extracellular Matrix-based Biomaterials For Peripheral Nerve Repair and Regeneration. Curr Neuropharmacol 2021; 19:2152-2163. [PMID: 33176651 PMCID: PMC9185777 DOI: 10.2174/1570159x18666201111103815] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injury could lead to either impairment or a complete loss of function for affected patients, and a variety of nerve repair materials have been developed for surgical approaches to repair it. Although autologous or autologous tissue-derived biomaterials remain preferred treatment for peripheral nerve injury, the lack of donor sources has led biomedical researchers to explore more other biomaterials. As a reliable alternative, xenogeneic decellularized extracellular matrix (dECM)-based biomaterials have been widely employed for surgical nerve repair. The dECM derived from animal donors is an attractive and unlimited source for xenotransplantation. Meanwhile, as an increasingly popular technique, decellularization could retain a variety of bioactive components in native ECM, such as polysaccharides, proteins, and growth factors. The resulting dECM-based biomaterials preserve a tissue's native microenvironment, promote Schwann cells proliferation and differentiation, and provide cues for nerve regeneration. Although the potential of dECM-based biomaterials as a therapeutic agent is rising, there are many limitations of this material restricting its use. Herein, this review discusses the decellularization techniques that have been applied to create dECM-based biomaterials, the main components of nerve ECM, and the recent progress in the utilization of xenogeneic dECM-based biomaterials through applications as a hydrogel, wrap, and guidance conduit in nerve tissue engineering. In the end, the existing bottlenecks of xenogeneic dECM-based biomaterials and developing technologies that could be eliminated to be helpful for utilization in the future have been elaborated.
Collapse
Affiliation(s)
- Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
| | - Qiang Ao
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
- Institute of Regulatory Science for Med-ical Devices, Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
86
|
Wang Z, Wu Y, Xiang Y, Kruth MB, Wei P, Dai G, Xu K, Yin J, Huang Y. Efficacy of Large Groove Texture on Rat Sciatic Nerve Regeneration In Vivo Using Polyacrylonitrile Nerve Conduits. Ann Biomed Eng 2021; 49:394-406. [PMID: 32671626 DOI: 10.1007/s10439-020-02560-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/26/2020] [Indexed: 01/07/2023]
Abstract
Physical guidance cues play an important role in enhancing the efficiency of nerve conduits for peripheral nerve injury repair. However, very few in vivo investigations have been performed to evaluate the repair efficiency of nerve conduits with micro-grooved inner textures. In this study, polyacrylonitrile nerve conduits were prepared using dry-jet wet spinning, and micro-grooved textures were incorporated on the inner surface. The nerve conduits were applied to treat 10 mm sciatic nerve gaps in Sprague-Dawley (SD) rats. Sixteen weeks following implantation, nerve function was evaluated based on heat sensory tests, electrophysiological assessments and gastrocnemius muscle mass measurements. The thermal latency reaction and gastrocnemii weight of SD rats treated with grooved nerve conduits were almost 25% faster and 60% heavier than those of SD rats treated with smooth nerve conduits. The histological and immunohistochemical stain analyses showed the repair capacity of inner grooved conduits was found to be similar to that of autografts. These results suggest that grooved nerve conduits with groove width larger than 300 μm significantly improve peripheral nerve regeneration by introducing physical guidance cues. The obtained results can support the design of nerve conduits and lead to the improvement of nerve tissue engineering strategies.
Collapse
Affiliation(s)
- Zonghuan Wang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| | - Yibing Wu
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, 315010, China
| | - Yang Xiang
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, 315010, China
| | - Marie Beatrix Kruth
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, 315010, China.
| | - Guangli Dai
- Department of Medical Engineering, Ningbo First Hospital, Ningbo, 315010, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, 310028, China.
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310028, China.
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China.
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China.
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
87
|
Dong R, Liu C, Tian S, Bai J, Yu K, Liu L, Tian D. Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression. PLoS One 2020; 15:e0244301. [PMID: 33338083 PMCID: PMC7748280 DOI: 10.1371/journal.pone.0244301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
Adhesion and scarring after neural surgery are detrimental to nerve regeneration and functional recovery. Amniotic membranes have been used in tissue repair due to their immunogenicity and richness in cytokines. In this study, an electrospun polycaprolactone (PCL)-amnion nanofibrous membrane was prepared for the treatment of sciatic nerve compression in a rat model. The effects of the PCL-amnion nanofibrous membrane on the prevention of adhesion formation and nerve regeneration were evaluated using electrophysiology and histological analyses. Compared with the medical chitosan hydrogel dressing, the PCL-amnion nanofibrous membrane significantly reduced peripheral nerve adhesion and promoted the rapid recovery of nerve conduction. Moreover, the immunohistochemical analysis identified more Schwann cells and less pro-inflammatory M1 macrophages in the PCL-amnion group. Western blot and RT-PCR results showed that the expression levels of type-Ⅰ and Ⅲ collagen in the PCL-treated rats were half of those in the control group after 12 weeks, while the expression level of nerve growth factor was approximately 3.5 times that found in the rats treated with medical chitosan hydrogel. In summary, electrospun PCL-amnion nanofibrous membranes can effectively reduce adhesion after neural surgery and promote nerve repair and regeneration. The long-term retention in vivo and sustained release of cytokines make PCL-amnion a promising biomaterial for clinical application.
Collapse
Affiliation(s)
- Ruiyi Dong
- Department of Orthopedics, Cangzhou Integrated Traditional Chinese and Western Medicine Hospital, Cangzhou, Hebei, China
| | - Chunjie Liu
- Department of Orthopedics, Tangshan Workers Hospital, Tangshan, Hebei, China
| | - Siyu Tian
- Department of Hand Surgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiangbo Bai
- Department of Hand Surgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kunlun Yu
- Department of Hand Surgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Liu
- Department of Orthopedics, Changping District Hospital, Beijing, China
| | - Dehu Tian
- Department of Hand Surgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- * E-mail:
| |
Collapse
|
88
|
Sadeghianmaryan A, Naghieh S, Alizadeh Sardroud H, Yazdanpanah Z, Afzal Soltani Y, Sernaglia J, Chen X. Extrusion-based printing of chitosan scaffolds and their in vitro characterization for cartilage tissue engineering. Int J Biol Macromol 2020; 164:3179-3192. [DOI: 10.1016/j.ijbiomac.2020.08.180] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 01/01/2023]
|
89
|
Gisbert Roca F, Más Estellés J, Monleón Pradas M, Martínez-Ramos C. Axonal extension from dorsal root ganglia on fibrillar and highly aligned poly(lactic acid)-polypyrrole substrates obtained by two different techniques: Electrospun nanofibres and extruded microfibres. Int J Biol Macromol 2020; 163:1959-1969. [DOI: 10.1016/j.ijbiomac.2020.09.181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
|
90
|
Huang L, Gao J, Wang H, Xia B, Yang Y, Xu F, Zheng X, Huang J, Luo Z. Fabrication of 3D Scaffolds Displaying Biochemical Gradients along Longitudinally Oriented Microchannels for Neural Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48380-48394. [PMID: 33052661 DOI: 10.1021/acsami.0c15185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biochemical and physical guidance cues are both pivotal for axonal guidance and nerve regeneration. However, fabrication of a platform that can integrate biochemical gradients and topographical guidance cues remains challenging, especially in a three-dimensional (3D) scaffold that closely mimics in vivo axonal outgrowth conditions and ready to be used for in vivo nerve repair. In this study, a new method was introduced to construct 3D scaffolds displaying continuous biochemical gradients along longitudinally oriented microchannels by combining the modified 3D printing and directional freezing techniques. Fluorescence analysis and ELISA results demonstrated that a continuous biochemical gradient was formed, and scanning electron microscopy revealed a longitudinally oriented microstructure. Dorsal root ganglia explants seeded on the longitudinal sections of the newly developed scaffold (scaffold with nerve growth factor gradient along oriented microstructure, G-NGF + OS) showed that 81.3 ± 4.5% of neurites oriented within ±10°, 0.3 ± 0.1 of guidance ratio, and 1.5-fold of the average length of neurites on the high-nerve growth factor (NGF) concentration side compared to that on the low-NGF concentration side, which were significantly higher than those in the other groups. In addition, the G-NGF + OS scaffold was used to repair a 15 mm sciatic nerve defect in rats. Immunofluorescence staining, Fluoro-Gold retrograde tracing, and transmission electron microscopy results confirmed that the G-NGF + OS scaffold enhanced nerve regeneration to the distal target and promoted myelination of regenerated axons. More importantly, the sciatic functional index and the von Frey test demonstrated that the G-NGF + OS scaffold accelerated sensory and motor functional recovery. These results provide new insights into the importance of combining topographical guidance cues with bioactive molecule gradient cues for neural tissue engineering. The 3D scaffold displaying biochemical gradients along longitudinally oriented microchannels represents a promising platform for the development of advanced devices for severe nervous system injuries.
Collapse
Affiliation(s)
- Liangliang Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Department of Orthopaedics, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, Hubei 430070, China
| | - Jianbo Gao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Heran Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110000, China
| | - Bing Xia
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yujie Yang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Feng Xu
- Department of Orthopaedics, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, Hubei 430070, China
| | - Xiongfei Zheng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110000, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
91
|
Wang J, Xiong H, Zhu T, Liu Y, Pan H, Fan C, Zhao X, Lu WW. Bioinspired Multichannel Nerve Guidance Conduit Based on Shape Memory Nanofibers for Potential Application in Peripheral Nerve Repair. ACS NANO 2020; 14:12579-12595. [PMID: 32786254 DOI: 10.1021/acsnano.0c03570] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Repairing peripheral nerve injury, especially long-range defects of thick nerves, is a great challenge in the clinic due to their limited regeneration capability. Most FDA-approved nerve guidance conduits with large hollow lumen are only suitable for short lesions, and their effects are unsatisfactory in repairing long gaps of thick nerves. Multichannel nerve guidance conduits have been shown to offer better regeneration of long nerve defects. However, existing approaches of fabricating multichannel nerve conduits are usually complicated and time-consuming. Inspired by the intelligent responsive shaping process of shape memory polymers, in this study, a self-forming multichannel nerve guidance conduit with topographical cues was constructed based on a degradable shape memory PLATMC polymer. With an initial tubular shape obtained by a high-temperature molding process, the electrospun shape memory nanofibrous mat could be temporarily formed into a planar shape for cell loading to realize the uniform distribution of cells. Then triggered by a physical temperature around 37 °C, it could automatically restore its permanent tubular shape to form the multichannel conduit. This multichannel conduit exhibits better performance in terms of cell growth and the repair of rat sciatic nerve defects. These results reveal that self-forming nerve conduits can be realized based on shape memory polymers; thus, the fabricated bioinspired multichannel nerve guidance conduit has great potential in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jing Wang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Hao Xiong
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Tonghe Zhu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yuan Liu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haobo Pan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
- Department of Orthopedics, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, P.R. China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - William Weijia Lu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong 999077, P.R. China
| |
Collapse
|
92
|
Fornasari BE, Carta G, Gambarotta G, Raimondo S. Natural-Based Biomaterials for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol 2020; 8:554257. [PMID: 33178670 PMCID: PMC7596179 DOI: 10.3389/fbioe.2020.554257] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023] Open
Abstract
Peripheral nerve injury treatment is a relevant problem because of nerve lesion high incidence and because of unsatisfactory regeneration after severe injuries, thus resulting in a reduced patient's life quality. To repair severe nerve injuries characterized by substance loss and to improve the regeneration outcome at both motor and sensory level, different strategies have been investigated. Although autograft remains the gold standard technique, a growing number of research articles concerning nerve conduit use has been reported in the last years. Nerve conduits aim to overcome autograft disadvantages, but they must satisfy some requirements to be suitable for nerve repair. A universal ideal conduit does not exist, since conduit properties have to be evaluated case by case; nevertheless, because of their high biocompatibility and biodegradability, natural-based biomaterials have great potentiality to be used to produce nerve guides. Although they share many characteristics with synthetic biomaterials, natural-based biomaterials should also be preferable because of their extraction sources; indeed, these biomaterials are obtained from different renewable sources or food waste, thus reducing environmental impact and enhancing sustainability in comparison to synthetic ones. This review reports the strengths and weaknesses of natural-based biomaterials used for manufacturing peripheral nerve conduits, analyzing the interactions between natural-based biomaterials and biological environment. Particular attention was paid to the description of the preclinical outcome of nerve regeneration in injury repaired with the different natural-based conduits.
Collapse
Affiliation(s)
- Benedetta E. Fornasari
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giacomo Carta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
93
|
Kargozar S, Singh RK, Kim HW, Baino F. "Hard" ceramics for "Soft" tissue engineering: Paradox or opportunity? Acta Biomater 2020; 115:1-28. [PMID: 32818612 DOI: 10.1016/j.actbio.2020.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Tissue engineering provides great possibilities to manage tissue damages and injuries in modern medicine. The involvement of hard biocompatible materials in tissue engineering-based therapies for the healing of soft tissue defects has impressively increased over the last few years: in this regard, different types of bioceramics were developed, examined and applied either alone or in combination with polymers to produce composites. Bioactive glasses, carbon nanostructures, and hydroxyapatite nanoparticles are among the most widely-proposed hard materials for treating a broad range of soft tissue damages, from acute and chronic skin wounds to complex injuries of nervous and cardiopulmonary systems. Although being originally developed for use in contact with bone, these substances were also shown to offer excellent key features for repair and regeneration of wounds and "delicate" structures of the body, including improved cell proliferation and differentiation, enhanced angiogenesis, and antibacterial/anti-inflammatory activities. Furthermore, when embedded in a soft matrix, these hard materials can improve the mechanical properties of the implant. They could be applied in various forms and formulations such as fine powders, granules, and micro- or nanofibers. There are some pre-clinical trials in which bioceramics are being utilized for skin wounds; however, some crucial questions should still be addressed before the extensive and safe use of bioceramics in soft tissue healing. For example, defining optimal formulations, dosages, and administration routes remain to be fixed and summarized as standard guidelines in the clinic. This review paper aims at providing a comprehensive picture of the use and potential of bioceramics in treatment, reconstruction, and preservation of soft tissues (skin, cardiovascular and pulmonary systems, peripheral nervous system, gastrointestinal tract, skeletal muscles, and ophthalmic tissues) and critically discusses their pros and cons (e.g., the risk of calcification and ectopic bone formation as well as the local and systemic toxicity) in this regard. STATEMENT OF SIGNIFICANCE: Soft tissues form a big part of the human body and play vital roles in maintaining both structure and function of various organs; however, optimal repair and regeneration of injured soft tissues (e.g., skin, peripheral nerve) still remain a grand challenge in biomedicine. Although polymers were extensively applied to restore the lost or injured soft tissues, the use of bioceramics has the potential to provides new opportunities which are still partially unexplored or at the very beginning. This reviews summarizes the state of the art of bioceramics in this field, highlighting the latest evolutions and the new horizons that can be opened by their use in the context of soft tissue engineering. Existing results and future challenges are discussed in order to provide an up-to-date contribution that is useful to both experienced scientists and early-stage researchers of the biomaterials community.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran.
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 330-714, Republic of Korea.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| |
Collapse
|
94
|
Li R, Li DH, Zhang HY, Wang J, Li XK, Xiao J. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacol Sin 2020; 41:1289-1300. [PMID: 32123299 PMCID: PMC7608263 DOI: 10.1038/s41401-019-0338-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury (PNI), one of the most common concerns following trauma, can result in a significant loss of sensory or motor function. Restoration of the injured nerves requires a complex cellular and molecular response to rebuild the functional axons so that they can accurately connect with their original targets. However, there is no optimized therapy for complete recovery after PNI. Supplementation with exogenous growth factors (GFs) is an emerging and versatile therapeutic strategy for promoting nerve regeneration and functional recovery. GFs activate the downstream targets of various signaling cascades through binding with their corresponding receptors to exert their multiple effects on neurorestoration and tissue regeneration. However, the simple administration of GFs is insufficient for reconstructing PNI due to their short half‑life and rapid deactivation in body fluids. To overcome these shortcomings, several nerve conduits derived from biological tissue or synthetic materials have been developed. Their good biocompatibility and biofunctionality made them a suitable vehicle for the delivery of multiple GFs to support peripheral nerve regeneration. After repairing nerve defects, the controlled release of GFs from the conduit structures is able to continuously improve axonal regeneration and functional outcome. Thus, therapies with growth factor (GF) delivery systems have received increasing attention in recent years. Here, we mainly review the therapeutic capacity of GFs and their incorporation into nerve guides for repairing PNI. In addition, the possible receptors and signaling mechanisms of the GF family exerting their biological effects are also emphasized.
Collapse
Affiliation(s)
- Rui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Duo-Hui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong-Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jian Wang
- Department of Peripheral Neurosurgery, The First Affiliated Hospital, Wenzhou, Medical University, Wenzhou, 325000, China
| | - Xiao-Kun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Peripheral Neurosurgery, The First Affiliated Hospital, Wenzhou, Medical University, Wenzhou, 325000, China.
| |
Collapse
|
95
|
Song S, Wang X, Wang T, Yu Q, Hou Z, Zhu Z, Li R. Additive Manufacturing of Nerve Guidance Conduits for Regeneration of Injured Peripheral Nerves. Front Bioeng Biotechnol 2020; 8:590596. [PMID: 33102468 PMCID: PMC7546374 DOI: 10.3389/fbioe.2020.590596] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/07/2020] [Indexed: 01/28/2023] Open
Abstract
As a common and frequent clinical disease, peripheral nerve defect has caused a serious social burden, which is characterized by poor curative effect, long course of treatment and high cost. Nerve autografting is first-line treatment of peripheral nerve injuries (PNIs) but can result in loss of function of the donor site, neuroma formation, and prolonged operative time. Nerve guidance conduit (NGC) serves as the most promising alternative to autologous transplantation, but its production process is complicated and it is difficult to effectively combine growth factors and bioactive substances. In recent years, additive manufacturing of NGCs has effectively solved the above problems due to its simple and efficient manufacturing method, and it can be used as the carrier of bioactive substances. This review examines recent advances in additive manufacture of NGCs for PNIs as well as insight into how these approaches could be improved in future studies.
Collapse
Affiliation(s)
- Shaochen Song
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xuejie Wang
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tiejun Wang
- Department of Orthopaedic Traumatology, The First Hospital of Jilin University, Changchun, China
| | - Qinghua Yu
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zheyu Hou
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhe Zhu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
96
|
Schwann Cell Role in Selectivity of Nerve Regeneration. Cells 2020; 9:cells9092131. [PMID: 32962230 PMCID: PMC7563640 DOI: 10.3390/cells9092131] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries result in the loss of the motor, sensory and autonomic functions of the denervated segments of the body. Neurons can regenerate after peripheral axotomy, but inaccuracy in reinnervation causes a permanent loss of function that impairs complete recovery. Thus, understanding how regenerating axons respond to their environment and direct their growth is essential to improve the functional outcome of patients with nerve lesions. Schwann cells (SCs) play a crucial role in the regeneration process, but little is known about their contribution to specific reinnervation. Here, we review the mechanisms by which SCs can differentially influence the regeneration of motor and sensory axons. Mature SCs express modality-specific phenotypes that have been associated with the promotion of selective regeneration. These include molecular markers, such as L2/HNK-1 carbohydrate, which is differentially expressed in motor and sensory SCs, or the neurotrophic profile after denervation, which differs remarkably between SC modalities. Other important factors include several molecules implicated in axon-SC interaction. This cell–cell communication through adhesion (e.g., polysialic acid) and inhibitory molecules (e.g., MAG) contributes to guiding growing axons to their targets. As many of these factors can be modulated, further research will allow the design of new strategies to improve functional recovery after peripheral nerve injuries.
Collapse
|
97
|
Stewart CE, Kan CFK, Stewart BR, Sanicola HW, Jung JP, Sulaiman OAR, Wang D. Machine intelligence for nerve conduit design and production. J Biol Eng 2020; 14:25. [PMID: 32944070 PMCID: PMC7487837 DOI: 10.1186/s13036-020-00245-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Nerve guidance conduits (NGCs) have emerged from recent advances within tissue engineering as a promising alternative to autografts for peripheral nerve repair. NGCs are tubular structures with engineered biomaterials, which guide axonal regeneration from the injured proximal nerve to the distal stump. NGC design can synergistically combine multiple properties to enhance proliferation of stem and neuronal cells, improve nerve migration, attenuate inflammation and reduce scar tissue formation. The aim of most laboratories fabricating NGCs is the development of an automated process that incorporates patient-specific features and complex tissue blueprints (e.g. neurovascular conduit) that serve as the basis for more complicated muscular and skin grafts. One of the major limitations for tissue engineering is lack of guidance for generating tissue blueprints and the absence of streamlined manufacturing processes. With the rapid expansion of machine intelligence, high dimensional image analysis, and computational scaffold design, optimized tissue templates for 3D bioprinting (3DBP) are feasible. In this review, we examine the translational challenges to peripheral nerve regeneration and where machine intelligence can innovate bottlenecks in neural tissue engineering.
Collapse
Affiliation(s)
- Caleb E. Stewart
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Chin Fung Kelvin Kan
- Current Affiliation: Department of General Surgery, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Brody R. Stewart
- Current Affiliation: Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Henry W. Sanicola
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Olawale A. R. Sulaiman
- Ochsner Neural Injury & Regeneration Laboratory, Ochsner Clinic Foundation, New Orleans, LA 70121 USA
- Department of Neurosurgery, Ochsner Clinic Foundation, New Orleans, 70121 USA
| | - Dadong Wang
- Quantitative Imaging Research Team, Data 61, Commonwealth Scientific and Industrial Research Organization, Marsfield, NSW 2122 Australia
| |
Collapse
|
98
|
Hopf A, Schaefer DJ, Kalbermatten DF, Guzman R, Madduri S. Schwann Cell-Like Cells: Origin and Usability for Repair and Regeneration of the Peripheral and Central Nervous System. Cells 2020; 9:E1990. [PMID: 32872454 PMCID: PMC7565191 DOI: 10.3390/cells9091990] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
Functional recovery after neurotmesis, a complete transection of the nerve fiber, is often poor and requires a surgical procedure. Especially for longer gaps (>3 mm), end-to-end suturing of the proximal to the distal part is not possible, thus requiring nerve graft implantation. Artificial nerve grafts, i.e., hollow fibers, hydrogels, chitosan, collagen conduits, and decellularized scaffolds hold promise provided that these structures are populated with Schwann cells (SC) that are widely accepted to promote peripheral and spinal cord regeneration. However, these cells must be collected from the healthy peripheral nerves, resulting in significant time delay for treatment and undesired morbidities for the donors. Therefore, there is a clear need to explore the viable source of cells with a regenerative potential similar to SC. For this, we analyzed the literature for the generation of Schwann cell-like cells (SCLC) from stem cells of different origins (i.e., mesenchymal stem cells, pluripotent stem cells, and genetically programmed somatic cells) and compared their biological performance to promote axonal regeneration. Thus, the present review accounts for current developments in the field of SCLC differentiation, their applications in peripheral and central nervous system injury, and provides insights for future strategies.
Collapse
Affiliation(s)
- Alois Hopf
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
| | - Dirk J. Schaefer
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Daniel F. Kalbermatten
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Neurosurgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Srinivas Madduri
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| |
Collapse
|
99
|
Li X, Yang W, Xie H, Wang J, Zhang L, Wang Z, Wang L. CNT/Sericin Conductive Nerve Guidance Conduit Promotes Functional Recovery of Transected Peripheral Nerve Injury in a Rat Model. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36860-36872. [PMID: 32649170 DOI: 10.1021/acsami.0c08457] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Peripheral nerve injury usually leads to poor outcomes such as painful neuropathies and disabilities. Autogenous nerve grafting is the current gold standard; however, the limited source of a donor nerve remains a problem. Numerous tissue engineering nerve guidance conduits have been developed as substitutes for autografts. However, a few conduits can achieve the reparative effect equivalent to autografts. Here, we report for the development and application of a carbon nanotube (CNT)/sericin nerve conduit with electrical conductivity and suitable mechanical properties for nerve repair. This CNT/sericin conduit possesses favorable properties including biocompatibility, biodegradability, porous microarchitecture, and suitable swelling property. We thus applied this conduit for bridging a 10 mm gap defect of a transected sciatic nerve combined with electrical stimulation (ES) in a rat injury model. By the end of 12 weeks, we observed that the CNT/sericin conduit combined with electrical stimulation could effectively promote both structural repair and functional recovery comparable to those of the autografts, evidenced by the morphological and histological analyses, electrophysiological responses, functional studies, and target muscle reinnervation evaluations. These findings suggest that this electric conductive CNT/sericin conduit combined with electrical stimulation may have the potential to serve as a new alternative for the repair of transected peripheral nerves.
Collapse
Affiliation(s)
- Xiaolin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Yang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongjian Xie
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Zhang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
100
|
Dietzmeyer N, Förthmann M, Grothe C, Haastert-Talini K. Modification of tubular chitosan-based peripheral nerve implants: applications for simple or more complex approaches. Neural Regen Res 2020; 15:1421-1431. [PMID: 31997801 PMCID: PMC7059590 DOI: 10.4103/1673-5374.271668] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Surgical treatment of peripheral nerve injuries is still a major challenge in human clinic. Up to now, none of the well-developed microsurgical treatment options is able to guarantee a complete restoration of nerve function. This restriction is also effective for novel clinically approved artificial nerve guides. In this review, we compare surgical repair techniques primarily for digital nerve injuries reported with relatively high prevalence to be valuable attempts in clinical digital nerve repair and point out their advantages and shortcomings. We furthermore discuss the use of artificial nerve grafts with a focus on chitosan-based nerve guides, for which our own studies contributed to their approval for clinical use. In the second part of this review, very recent future perspectives for the enhancement of tubular (commonly hollow) nerve guides are discussed in terms of their clinical translatability and ability to form three-dimensional constructs that biomimick the natural nerve structure. This includes materials that have already shown their beneficial potential in in vivo studies like fibrous intraluminal guidance structures, hydrogels, growth factors, and approaches of cell transplantation. Additionally, we highlight upcoming future perspectives comprising co-application of stem cell secretome. From our overview, we conclude that already simple attempts are highly effective to increase the regeneration supporting properties of nerve guides in experimental studies. But for bringing nerve repair with bioartificial nerve grafts to the next level, e.g. repair of defects > 3 cm in human patients, more complex intraluminal guidance structures such as innovatively manufactured hydrogels and likely supplementation of stem cells or their secretome for therapeutic purposes may represent promising future perspectives.
Collapse
Affiliation(s)
- Nina Dietzmeyer
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Maria Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| |
Collapse
|