51
|
Benedetti F, Amanzio M, Thoen W. Disruption of opioid-induced placebo responses by activation of cholecystokinin type-2 receptors. Psychopharmacology (Berl) 2011; 213:791-7. [PMID: 20931328 DOI: 10.1007/s00213-010-2037-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/24/2010] [Indexed: 12/17/2022]
Abstract
RATIONALE Placebos are known to induce analgesia through the activation of μ-opioid receptors in some circumstances, such as after morphine pre-conditioning, an effect that is blocked by opioid antagonists. OBJECTIVES On the basis of the anti-opioid action of cholecystokinin, here we tested whether the activation of the cholecystokinin type-2 receptors abolishes opioid-induced placebo responses. METHODS The activation of the cholecystokinin type-2 receptors was performed by means of the agonist pentagastrin, and placebo responses were obtained after morphine pre-conditioning in an experimental human model of pain (tourniquet technique). RESULTS Opioid-induced placebo responses were completely disrupted by pentagastrin administration. In addition, a high correlation between the response to morphine and the response to placebo was found, and this correlation was completely abolished by pentagastrin. CONCLUSION These results show that the cholecystokinin-2 receptor agonist, pentagastrin, has the same effect as the μ-opioid receptor antagonist, naloxone, on placebo analgesia induced by morphine pre-conditioning, which suggests that the balance between cholecystokinergic and opioidergic systems is crucial in placebo responsiveness in pain. These findings also suggest that cholecystokinin type-2 receptor hyperactivity might be present in placebo non-responders.
Collapse
Affiliation(s)
- Fabrizio Benedetti
- Department of Neuroscience, University of Turin Medical School and National Institute of Neuroscience (INN), Turin, Italy.
| | | | | |
Collapse
|
52
|
Benedetti F, Carlino E, Pollo A. How placebos change the patient's brain. Neuropsychopharmacology 2011; 36:339-54. [PMID: 20592717 PMCID: PMC3055515 DOI: 10.1038/npp.2010.81] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/25/2010] [Accepted: 05/09/2010] [Indexed: 12/19/2022]
Abstract
Although placebos have long been considered a nuisance in clinical research, today they represent an active and productive field of research and, because of the involvement of many mechanisms, the study of the placebo effect can actually be viewed as a melting pot of concepts and ideas for neuroscience. Indeed, there exists not a single but many placebo effects, with different mechanisms and in different systems, medical conditions, and therapeutic interventions. For example, brain mechanisms of expectation, anxiety, and reward are all involved, as well as a variety of learning phenomena, such as Pavlovian conditioning, cognitive, and social learning. There is also some experimental evidence of different genetic variants in placebo responsiveness. The most productive models to better understand the neurobiology of the placebo effect are pain and Parkinson's disease. In these medical conditions, the neural networks that are involved have been identified: that is, the opioidergic-cholecystokinergic-dopaminergic modulatory network in pain and part of the basal ganglia circuitry in Parkinson's disease. Important clinical implications emerge from these recent advances in placebo research. First, as the placebo effect is basically a psychosocial context effect, these data indicate that different social stimuli, such as words and rituals of the therapeutic act, may change the chemistry and circuitry of the patient's brain. Second, the mechanisms that are activated by placebos are the same as those activated by drugs, which suggests a cognitive/affective interference with drug action. Third, if prefrontal functioning is impaired, placebo responses are reduced or totally lacking, as occurs in dementia of the Alzheimer's type.
Collapse
Affiliation(s)
- Fabrizio Benedetti
- Department of Neuroscience, University of Turin Medical School, Turin, Italy.
| | | | | |
Collapse
|
53
|
Bi-directional effect of cholecystokinin receptor-2 overexpression on stress-triggered fear memory and anxiety in the mouse. PLoS One 2010; 5:e15999. [PMID: 21209861 PMCID: PMC3012733 DOI: 10.1371/journal.pone.0015999] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/02/2010] [Indexed: 12/02/2022] Open
Abstract
Fear, an emotional response of animals to environmental stress/threats, plays an important role in initiating and driving adaptive response, by which the homeostasis in the body is maintained. Overwhelming/uncontrollable fear, however, represents a core symptom of anxiety disorders, and may disturb the homeostasis. Because to recall or imagine certain cue(s) of stress/threats is a compulsory inducer for the expression of anxiety, it is generally believed that the pathogenesis of anxiety is associated with higher attention (acquisition) selectively to stress or mal-enhanced fear memory, despite that the actual relationship between fear memory and anxiety is not yet really established. In this study, inducible forebrain-specific cholecystokinin receptor-2 transgenic (IF-CCKR-2 tg) mice, different stress paradigms, batteries of behavioral tests, and biochemical assays were used to evaluate how different CCKergic activities drive fear behavior and hormonal reaction in response to stresses with different intensities. We found that in IF-CCKR-2 tg mice, contextual fear was impaired following 1 trial of footshock, while overall fear behavior was enhanced following 36 trials of footshock, compared to their littermate controls. In contrast to a standard Yerkes-Dodson (inverted-U shaped) stress-fear relationship in control mice, a linearized stress-fear curve was observed in CCKR-2 tg mice following gradient stresses. Moreover, compared to 1 trial, 36 trials of footshock in these transgenic mice enhanced anxiety-like behavior in other behavioral tests, impaired spatial and recognition memories, and prolonged the activation of adrenocorticotropic hormone (ACTH) and glucocorticoids (CORT) following new acute stress. Taken together, these results indicate that stress may trigger two distinctive neurobehavioral systems, depending on both of the intensity of stress and the CCKergic tone in the brain. A “threshold theory” for this two-behavior system has been suggested.
Collapse
|
54
|
Dere E, Pause BM, Pietrowsky R. Emotion and episodic memory in neuropsychiatric disorders. Behav Brain Res 2010; 215:162-71. [DOI: 10.1016/j.bbr.2010.03.017] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/05/2010] [Indexed: 11/25/2022]
|
55
|
|
56
|
De Lima J, Carmo KB. Practical pain management in the neonate. Best Pract Res Clin Anaesthesiol 2010; 24:291-307. [DOI: 10.1016/j.bpa.2010.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
57
|
Schoell ED, Bingel U, Eippert F, Yacubian J, Christiansen K, Andresen H, May A, Buechel C. The effect of opioid receptor blockade on the neural processing of thermal stimuli. PLoS One 2010; 5:e12344. [PMID: 20811582 PMCID: PMC2930255 DOI: 10.1371/journal.pone.0012344] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 07/22/2010] [Indexed: 11/18/2022] Open
Abstract
The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent) signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone.
Collapse
Affiliation(s)
- Eszter D Schoell
- NeuroImage Nord, Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Hu W, Zhang M, Czéh B, Flügge G, Zhang W. Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology 2010; 35:1693-707. [PMID: 20357756 PMCID: PMC3055473 DOI: 10.1038/npp.2010.31] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Stress facilitates the development of psychiatric disorders in vulnerable individuals. It affects physiological functions of hippocampal excitatory neurons, but little is known about the impact of stress on the GABAergic network. Here, we studied the effects of stress and a synthetic glucocorticoid on hippocampal GABAergic neurotransmission and network function focusing on two perisomatic interneurons, the parvalbumin (PV)- and the cholecystokinin (CCK)-positive neurons. In acute hippocampal slices of rat, application of the potent glucocorticoid receptor (GR) agonist dexamethasone (DEX) caused a rapid increase in spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 pyramidal neurons. This effect was mediated by a nongenomic GR that evoked nitric oxide (NO) release from pyramidal neurons. Retrograde NO signaling caused the augmentation of GABA release from the interneurons and increased CCK release, which in turn further enhanced the activity of the PV-positive cells. Interestingly, chronic restraint stress also resulted in increased sIPSCs in CA1 pyramidal neurons that were Ca(2+)-dependent and an additional DEX application elicited no further effect. Concomitantly, chronic stress reduced the number of PV-immunoreactive cells and impaired rhythmic sIPSCs originating from the PV-positive neurons. In contrast, the CCK-positive neurons remained unaffected. We therefore propose that, in addition to the immediate effect, the sustained activation of nongenomic GRs during chronic stress injures the PV neuron network and results in an imbalance in perisomatic inhibition mediated by the PV and CCK interneurons. This stress-induced dysfunctional inhibitory network may in turn impair rhythmic oscillations and thus lead to cognitive deficits that are common in stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Wen Hu
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Mingyue Zhang
- Department of Neurophysiology, Center of Physiology and Pathophysiology, University of Göttingen, Göttingen, Germany,DFG Research Center Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany,Laboratory of Molecular Psychiatry, Department of Psychiatry, Westfälische Wilhelms University, Münster, Germany
| | - Boldizsár Czéh
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Gabriele Flügge
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany,DFG Research Center Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany,Clinical Neurobiology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany. Tel: +49-551-3851133, Fax: +49-551-3851307, E-mail:
| | - Weiqi Zhang
- Department of Neurophysiology, Center of Physiology and Pathophysiology, University of Göttingen, Göttingen, Germany,DFG Research Center Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany,Laboratory of Molecular Psychiatry, Department of Psychiatry, Westfälische Wilhelms University, Münster, Germany,Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Albert-Schweitzer-Str. 11, 48149 Münster, Germany, Tel: +49-251-8356610, Fax: +49-251-8357128, E-mail:
| |
Collapse
|
59
|
Marini P, Romanelli L, Valeri D, Tucci P, Valeri P, Palmery M. Acute withdrawal induced by adenosine A1-receptor activation in isolated guinea-pig ileum: role of opioid receptors and effect of cholecystokinin. J Pharm Pharmacol 2010; 62:622-32. [DOI: 10.1211/jpp.62.05.0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
60
|
Botelho AP, Gameiro GH, Tuma CEDSN, Marcondes FK, de Arruda Veiga MCF. The effects of acute restraint stress on nociceptive responses evoked by the injection of formalin into the temporomandibular joint of female rats. Stress 2010; 13:269-75. [PMID: 20392197 DOI: 10.3109/10253890903362645] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The temporomandibular joint (TMJ) formalin test was used to evaluate the effects of acute restraint stress on the nociceptive behavioral responses of female rats during proestrus and estrus phases of the estrous cycle. Rats were subjected to one session of restraint stress (15, 30 min or 1 h). They were then either immediately killed to allow the collection of blood for hormonal radioimmunoassay determinations or subjected to TMJ formalin test to evaluate nociception. All stress protocols significantly raised the plasma concentrations of corticosterone. The performance of rats subjected to 15 and 30 min of restraint stress was similar to that of control rats, whereas rats that were stressed for 1 h showed a decrease in nociceptive responses, during both proestrus and estrus phases. The stress-induced analgesia (SIA) was greater in the proestrus phase. To evaluate the role of kappa-opioid receptors, the selective receptor kappa-opioid antagonist nor-binaltorphimine (nor-BNI; 200 microg or saline) was injected into the TMJ 24 h prior to the 1 h stress period and the TMJ formalin test. The local administration of nor-BNI partially reversed the SIA during the proestrus phase. These findings suggest that (1) acute stress for 1 h can produce analgesia both during proestrus and estrus phases; this effect is greater during the proestrus phase and (2) kappa-opioid receptor activation is involved in the SIA observed in the proestrus phase.
Collapse
Affiliation(s)
- Ana Paula Botelho
- Laboratory of Orofacial Pain, Department of Physiological Sciences, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
61
|
Werner FM, Coveñas R. Classical Neurotransmitters and Neuropeptides Involved in Major Depression: a Review. Int J Neurosci 2010; 120:455-70. [DOI: 10.3109/00207454.2010.483651] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
62
|
Chermont AG, Falcão LFM, de Souza Silva EHL, de Cássia Xavier Balda R, Guinsburg R. Skin-to-skin contact and/or oral 25% dextrose for procedural pain relief for term newborn infants. Pediatrics 2009; 124:e1101-7. [PMID: 19948613 DOI: 10.1542/peds.2009-0993] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The goal was to compare the efficacy of oral 25% dextrose treatment and/or skin-to-skin contact for analgesia in term newborns during intramuscular injection of a hepatitis B vaccine. METHODS A prospective, randomized, partially blinded, clinical trial was performed with 640 healthy term newborns. Infants at 12 to 72 hours of life were assigned randomly to receive an intramuscular injection of hepatitis B vaccine in the right thigh according to 4 analgesia groups, that is, no analgesia (routine); oral 25% dextrose treatment, given 2 minutes before the injection; skin-to-skin contact, initiated 2 minutes before the injection and persisting throughout the procedure; and a combination of the oral dextrose treatment and skin-to-skin contact strategies. For all groups, Neonatal Facial Coding System and Neonatal Infant Pain Scale scores were evaluated before the procedure, during thigh cleansing, during the injection, and 2 minutes after the injection. Premature Infant Pain Profile scores also were assessed for all infants. Pain scores were compared among the 4 groups. RESULTS The use of oral 25% dextrose treatment reduced the duration of procedural pain in the studied population. Skin-to-skin contact decreased injection pain and duration. The combination of the 2 analgesic measures was more effective than either measure separately for term newborns. CONCLUSIONS Nonpharmacologic analgesic measures were effective for the treatment of procedural pain in term infants. The combination of oral 25% dextrose treatment and skin-to-skin contact acted synergistically to decrease acute pain in healthy neonates.
Collapse
|
63
|
Poulin JF, Arbour D, Laforest S, Drolet G. Neuroanatomical characterization of endogenous opioids in the bed nucleus of the stria terminalis. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1356-65. [PMID: 19583989 DOI: 10.1016/j.pnpbp.2009.06.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 12/21/2022]
Abstract
Numerous neuroanatomical data indicate that the bed nucleus of the stria terminalis (BST) provides an interface between cortical and amygdaloid neurons, and effector neurons modulating motor, autonomic and neuroendocrine responses. Distinct divisions of the BST may be involved in stress response, homeostatic regulation, nociception, and motivated behaviors. Endogenous opioid peptides and receptors are expressed in the BST, but their exact distribution is poorly characterized. The present study used in situ hybridization in order to characterize the endogenous opioid system of the BST, focusing on both enkephalin and dynorphin neuropeptides, as well as their respective receptors (mu, delta, and kappa opioid receptors). We report that preprodynorphin mRNA is observed in distinct nuclei of the BST, namely the fusiform, oval and anterior lateral nuclei. In contrast, there is a widespread expression of preproenkephalin mRNA in both anterior and posterior divisions of the BST. Similarly, mu and kappa opioid receptors are broadly expressed in the BST, whereas delta opioid receptor mRNA was observed only in the principal nucleus. For further characterization of enkephalin-expressing neurons of the BST, we performed a double fluorescent in situ hybridization in order to reveal the coexpression of enkephalin peptides and markers of GABAergic and glutamatergic neurons. Although most neurons of the BST are GABAergic, there is also a modest population of glutamatergic cells expressing vesicular glutamate transporter 2 (VGLUT2) in specific nuclei of the BST. Finally, we identified a previously unreported population of enkephalinergic neurons expressing VGLUT2, which is principally located in the posterior BST.
Collapse
Affiliation(s)
- Jean-François Poulin
- Centre de recherche du CHUQ (CHUL), Neurosciences, Université Laval, Québec, QC, Canada.
| | | | | | | |
Collapse
|
64
|
Eyvazzadeh AD, Pennington KP, Pop-Busui R, Sowers M, Zubieta JK, Smith YR. The role of the endogenous opioid system in polycystic ovary syndrome. Fertil Steril 2009; 92:1-12. [PMID: 19560572 DOI: 10.1016/j.fertnstert.2009.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 04/29/2009] [Accepted: 05/07/2009] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To review the complex role of the opioid system in reproduction and carbohydrate metabolism, abnormalities in the opioid system in women with polycystic ovary syndrome (PCOS), and the role of opioid antagonists in the management of PCOS-related infertility. DESIGN Pertinent articles were identified through a computer PubMed search. References of selected articles were hand searched for additional citations. CONCLUSION(S) Endogenous opioids are generally considered inhibitory central neurotransmitters. Peripherally, opioids are involved in the regulation of pancreatic islet function, hepatic insulin clearance, and glucose metabolism, potentially contributing to the pathogenesis of hyperinsulinemia and insulin resistance in PCOS. The presence of sex steroids is required for normal function of the opioid system in both GnRH secretion and carbohydrate metabolism. In women with PCOS, growing evidence suggests dysregulation of the opioid system both centrally and peripherally, with complex interactions. The opioid system effects on carbohydrate metabolism appear to be modulated by obesity. Finally, naltrexone has been demonstrated to successfully augment traditional ovulation induction regimens, but has limited support as a single ovulation induction agent for PCOS.
Collapse
Affiliation(s)
- Aimee D Eyvazzadeh
- Department of Obstetrics and Gynecology, School of Medicine and School of Public Health, University of Michigan, 1500 East Medical Center Drive, Women's Hospital, Ann Arbor, MI 48109-0276, USA
| | | | | | | | | | | |
Collapse
|
65
|
Wei X, Zhang Z, Zhao L, Si J. CCK-8S inhibited the NMDA-activated current of cultured hippocampal neuron under normal and ethanol exposure conditions. Neurosci Lett 2009; 449:34-7. [DOI: 10.1016/j.neulet.2008.10.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/26/2008] [Accepted: 10/21/2008] [Indexed: 11/26/2022]
|
66
|
Thakker-Varia S, Alder J. Neuropeptides in depression: role of VGF. Behav Brain Res 2008; 197:262-78. [PMID: 18983874 DOI: 10.1016/j.bbr.2008.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/05/2008] [Indexed: 12/20/2022]
Abstract
The monoamine hypothesis of depression is increasingly called into question by newer theories that revolve around changes in neuronal plasticity, primarily in the hippocampus, at both the structural and the functional levels. Chronic stress negatively regulates hippocampal function while antidepressants ameliorate the effects of stress on neuronal morphology and activity. Both stress and antidepressants have been shown to affect levels of brain-derived neurotrophic factor (BDNF) whose transcription is dependent on cAMP response element binding protein (CREB). BDNF itself has antidepressant-like actions and can induce transcription of a number of molecules. One class of genes regulated by both BDNF and serotonin (5-HT) are neuropeptides including VGF (non-acryonimic) which has a novel role in depression. Neuropeptides are important modulators of neuronal function but their role in affective disorders is just emerging. Recent studies demonstrate that VGF, which is also a CREB-dependent gene, is upregulated by antidepressant drugs and voluntary exercise and is reduced in animal models of depression. VGF enhances hippocampal synaptic plasticity as well as neurogenesis in the dentate gyrus but the mechanisms of antidepressant-like actions of VGF in behavioral paradigms are not known. We summarize experimental data describing the roles of BDNF, VGF and other neuropeptides in depression and how they may be acting through the generation of new neurons and altered synaptic activity. Understanding the molecular and cellular changes that underlie the actions of neuropeptides and how these adaptations result in antidepressant-like effects will aid in developing drugs that target novel pathways for major depressive disorders.
Collapse
Affiliation(s)
- Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 683 Hoes Lane West, Robert Wood Johnson-School of Public Health 357A, Piscataway, NJ 08854-5635, United States
| | | |
Collapse
|
67
|
Positive psychological well-being and mortality: a quantitative review of prospective observational studies. Psychosom Med 2008; 70:741-56. [PMID: 18725425 DOI: 10.1097/psy.0b013e31818105ba] [Citation(s) in RCA: 752] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To review systematically prospective, observational, cohort studies of the association between positive well-being and mortality using meta-analytic methods. Recent years have witnessed increased interest in the relationship between positive psychological well-being and physical health. METHODS We searched general bibliographic databases: Medline, PsycINFO, Web of Science, and PubMed up to January 2008. Two reviewers independently extracted data on study characteristics, quality, and estimates of associations. RESULTS There were 35 studies (26 articles) investigating mortality in initially healthy populations and 35 studies (28 articles) of disease populations. The meta-analyses showed that positive psychological well-being was associated with reduced mortality in both the healthy population (combined hazard ratio (HR) = 0.82; 95% Confidence Interval (CI) = 0.76-0.89; p < .001) and the disease population (combined HR = 0.98; CI = 0.95-1.00; p = .030) studies. There were indications of publication bias in this literature, although the fail-safe numbers were 2444 and 1397 for healthy and disease population studies, respectively. Intriguingly, meta-analysis of studies that controlled for negative affect showed that the protective effects of positive psychological well-being were independent of negative affect. Both positive affect (e.g., emotional well-being, positive mood, joy, happiness, vigor, energy) and positive trait-like dispositions (e.g., life satisfaction, hopefulness, optimism, sense of humor) were associated with reduced mortality in healthy population studies. Positive psychological well-being was significantly associated with reduced cardiovascular mortality in healthy population studies, and with reduced death rates in patients with renal failure and with human immunodeficiency virus-infection. CONCLUSIONS The current review suggests that positive psychological well-being has a favorable effect on survival in both healthy and diseased populations.
Collapse
|
68
|
|
69
|
Befort K, Filliol D, Ghate A, Darcq E, Matifas A, Muller J, Lardenois A, Thibault C, Dembele D, Le Merrer J, Becker JAJ, Poch O, Kieffer BL. Mu-opioid receptor activation induces transcriptional plasticity in the central extended amygdala. Eur J Neurosci 2008; 27:2973-84. [PMID: 18588537 DOI: 10.1111/j.1460-9568.2008.06273.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Addiction develops from the gradual adaptation of the brain to chronic drug exposure, and involves genetic reprogramming of neuronal function. The central extended amygdala (EAc) is a network formed by the central amygdala and the bed nucleus of the stria terminalis. This key site controls drug craving and seeking behaviors, and has not been investigated at the gene regulation level. We used Affymetrix microarrays to analyze transcriptional activity in the murine EAc, with a focus on mu-opioid receptor-associated events because these receptors mediate drug reward and dependence. We identified 132 genes whose expression is regulated by a chronic escalating morphine regimen in the EAc from wild-type but not mu-opioid receptor knockout mice. These modifications are mostly EAc-specific. Gene ontology analysis reveals an overrepresentation of neurogenesis, cell growth and signaling protein categories. A separate quantitative PCR analysis of genes in the last of these groups confirms the dysregulation of both orphan (Gpr88) and known (DrD1A, Adora2A, Cnr1, Grm5, Gpr6) G protein-coupled receptors, scaffolding (PSD95, Homer1) and signaling (Sgk, Cap1) proteins, and neuropeptides (CCK, galanin). These transcriptional modifications do not occur following a single morphine injection, and hence result from long-term adaptation to excessive mu receptor activation. Proteins encoded by these genes are classically associated with spine modules function in other brain areas, and therefore our data suggest a remodeling of EAc circuits at sites where glutamatergic and monoaminergic afferences interact. Together, mu receptor-dependent genes identified in this study potentially contribute to drug-induced neural plasticity, and provide a unique molecular repertoire towards understanding drug craving and relapse.
Collapse
Affiliation(s)
- K Befort
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Département Neurobiologie et Génétique, Illkirch, F-67400 France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Gospic K, Gunnarsson T, Fransson P, Ingvar M, Lindefors N, Petrovic P. Emotional perception modulated by an opioid and a cholecystokinin agonist. Psychopharmacology (Berl) 2008; 197:295-307. [PMID: 18071677 DOI: 10.1007/s00213-007-1032-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 11/21/2007] [Indexed: 12/18/2022]
Abstract
RATIONALE The cholecystokinin (CCK) and opioid neuromodulatory systems work in an antagonistic fashion and can modulate emotional states and noxious input in opposite directions. In this behavioral study, we generalize this idea and suggest that CCK and opioids can modulate the processing of other external signals, e.g., visual stimuli rather than only noxious input. OBJECTIVES The objective of this study was to determine whether CCK and an opioid agonist could modulate the emotional experience of visual stimuli. MATERIALS AND METHODS Thirteen healthy male volunteers viewed standardized pictures with either neutral or unpleasant content. Simultaneously, one of three treatments was administered in a randomized, double-blind crossover design: the CCKb receptor agonist pentagastrin (0.1 microg/kg), the mu-opioid receptor agonist remifentanil (0.0625 microg/kg), or saline. Self-ratings of the emotional experience of pictures and drugs were sampled together with psychological tests and recording of heart rate. RESULTS Pentagastrin treatment increased the rating of unpleasantness for both neutral and unpleasant pictures, while it decreased the rating of pleasantness for the neutral pictures. These effects did not correlate with the degree of general unpleasantness induced by the drug. Remifentanil treatment increased the pleasantness for the neutral pictures. While pentagastrin treatment induced a heart rate increase, unpleasant pictures induced a heart rate decrease, and the magnitude of change in heart rate correlated positively for these conditions. CONCLUSIONS This study shows that the CCK and the opioid system modulate how external stimuli are emotionally perceived, suggesting a possible involvement in affective disorders.
Collapse
Affiliation(s)
- Katarina Gospic
- MR-Centre, Department of Clinical Neuroscience, Karolinska Institutet, N-8, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
The placebo effect has evolved from being thought of as a nuisance in clinical and pharmacological research to a biological phenomenon worthy of scientific investigation in its own right. It is now clear that the term placebo effect is too restrictive and, in fact, many placebo-related effects have recently been investigated. A placebo effect differs from a placebo-like effect in that the former follows the administration of a placebo, whereas in the latter no placebo is administered. However, in both cases, the psychosocial context around the treatment plays a key role. In recent years, placebo and placebo-related effects have been analyzed with sophisticated biological tools that have uncovered specific mechanisms at both the biochemical and cellular level. This recent research has revealed that these psychosocial-induced biochemical changes in a patient's brain and body in turn may affect the course of a disease and the response to a therapy.
Collapse
Affiliation(s)
- Fabrizio Benedetti
- Department of Neuroscience, University of Turin Medical School, and National Institute of Neuroscience, Turin, Italy.
| |
Collapse
|
72
|
Colloca L, Sigaudo M, Benedetti F. The role of learning in nocebo and placebo effects. Pain 2008; 136:211-8. [PMID: 18372113 DOI: 10.1016/j.pain.2008.02.006] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 12/10/2007] [Accepted: 02/04/2008] [Indexed: 10/22/2022]
Abstract
The nocebo effect consists in delivering verbal suggestions of negative outcomes so that the subject expects clinical worsening. Here we show that nocebo suggestions, in which expectation of pain increase is induced, are capable of producing both hyperalgesic and allodynic responses. By extending previous findings on the placebo effect, we investigated the role of learning in the nocebo effect by means of a conditioning procedure. To do this, verbal suggestions of pain increase were given to healthy volunteers before administration of either tactile or low-intensity painful electrical stimuli. This nocebo procedure was also carried out after a pre-conditioning session in which two different conditioned visual stimuli were associated to either pain or no-pain. Pain perception was assessed by means of a Numerical Rating Scale raging from 0=tactile to 10=maximum imaginable pain. We found that verbal suggestions alone, without prior conditioning, turned tactile stimuli into pain as well as low-intensity painful stimuli into high-intensity pain. A conditioning procedure produced similar effects, without significant differences. Therefore, in contrast to placebo analgesia, whereby a conditioning procedure elicits larger effects compared to verbal suggestions alone, learning seems to be less important in nocebo hyperalgesia. Overall, these findings indicate that, by defining hyperalgesia as an increase in pain sensitivity and allodynia as the perception of pain in response to innocuous stimulation, nocebos can indeed produce both hyperalgesic and allodynic effects. These results also suggest that learning is not important in nocebo hyperalgesia compared to placebo analgesia.
Collapse
Affiliation(s)
- L Colloca
- Department of Neuroscience, University of Turin Medical School, and National Institute of Neuroscience, Corso Raffaello 30, 10125 Turin, Italy.
| | | | | |
Collapse
|
73
|
Abstract
PURPOSE OF REVIEW Nocebo hyperalgesia is a phenomenon that is opposite to placebo analgesia and whereby expectation of pain increase plays a crucial role. In recent times, both the neuroanatomical and the neurochemical bases of the nocebo effect and of nocebo-related effects have begun to be explored. Here, we highlight recent advances in our understanding of the neurobiology of the nocebo hyperalgesic effect. RECENT FINDINGS A typical nocebo hyperalgesic response occurs following the administration of an inert substance which the subject believes to be a hyperalgesic agent (negative placebo or nocebo). It has been shown that the subject's negative expectations of pain worsening induce anticipatory anxiety about the impending pain increase and this triggers the activation of cholecystokinin that, in turn, facilitates pain transmission. Accordingly, cholecystokinin antagonists have been found to prevent this anxiety-induced hyperalgesia. Brain-imaging studies have shown that the perceived intensity of a painful stimulus following negative expectations of pain increase is higher than in the absence of negative expectations and this is associated with changes in activation of specific brain regions. SUMMARY Since pain appears to be amplified by anxiety through the activation of cholecystokininergic systems, new therapeutic strategies, such as new cholecystokinin antagonists, can be envisaged whenever pain has an important anxiety component.
Collapse
Affiliation(s)
- Luana Colloca
- Department of Neuroscience, University of Turin Medical School and National Institute of Neuroscience, Corso Raffaello 30, 10125 Turin, Italy
| | | |
Collapse
|
74
|
Locked out and still knocking: predictors of excessive demands for postoperative intravenous patient-controlled analgesia. Can J Anaesth 2008; 55:88-99. [DOI: 10.1007/bf03016320] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
75
|
Berna MJ, Tapia JA, Sancho V, Jensen RT. Progress in developing cholecystokinin (CCK)/gastrin receptor ligands that have therapeutic potential. Curr Opin Pharmacol 2007; 7:583-92. [PMID: 17997137 PMCID: PMC2186776 DOI: 10.1016/j.coph.2007.09.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 09/28/2007] [Indexed: 01/09/2023]
Abstract
Gastrin and cholecystokinin (CCK) are two of the oldest hormones and within the past 15 years there has been an exponential increase in knowledge of their pharmacology, cell biology, receptors (CCK1R and CCK2R), and roles in physiology and pathological conditions. Despite these advances there is no approved disease indication for CCK receptor antagonists and only a minor use of agonists. In this review, the important factors determining this slow therapeutic development are reviewed. To assess this it is necessary to briefly review what is known about the roles of CCK receptors (CCK1R and CCK2R) in normal human physiology, their role in pathologic conditions, the selectivity of available potent CCKR agonists/antagonists as well as to review their use in human conditions to date and the results. Despite extensive studies in animals and in humans, recent studies suggest that monotherapy with CCK1R agonists will not be effective in obesity, nor CCK2R antagonists in panic disorders or CCK2R antagonists to inhibit growth of pancreatic cancer. Areas that require more study include the use of CCK2R agonists for imaging tumors and radiotherapy, CCK2R antagonists in hypergastrinemic states especially with long-term PPI use and for potentiation of analgesia as well as use of CCK1R antagonists for a number of gastrointestinal disorders [motility disorders (irritable bowel syndrome, dyspepsia, and constipation) and pancreatitis (acute and chronic)].
Collapse
Affiliation(s)
- Marc J Berna
- Department for Internal Medicine I, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
76
|
Schroeder M, Lavi-Avnon Y, Dagan M, Zagoory-Sharon O, Moran TH, Weller A. Diurnal and nocturnal nursing behavior in the OLETF rat. Dev Psychobiol 2007; 49:323-33. [PMID: 17380526 DOI: 10.1002/dev.20206] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Otsuka Long Evans Tokushima Fatty (OLETF) rat model of obesity has been recently found to develop hyperphagia and obesity early in life. Our goal was to investigate the dams' nursing behavior during the day and the night in order to elucidate their contribution to the pre-obesity of the pups. We examined nursing bout number, length, posture, initiative, nursing total time and frequency of other maternal behaviors over the three postpartum (PP) weeks. In the first week, OLETF dams nursed more during the day and presented more self-directed activities during the night. In the third PP week, OLETF dams displayed increased nursing time, bout number, nursing frequency, and supine postures at the beginning of the nursing episodes and less active self-directed behaviors, both day and night, while OLETF pups displayed more initiative in starting nursing bouts. The results suggest a circadian difference in nursing behavior and self-directed activities between the strains on PP week 1 and a strong influence of the OLETF pups on the nursing behavior of the dam on PP week 3, which contributes to their obese features.
Collapse
Affiliation(s)
- Mariana Schroeder
- Psychology Department and the Gonda (Goldschmied) Brain Research Center, Bar Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
77
|
Benedetti F, Lanotte M, Lopiano L, Colloca L. When words are painful: Unraveling the mechanisms of the nocebo effect. Neuroscience 2007; 147:260-71. [PMID: 17379417 DOI: 10.1016/j.neuroscience.2007.02.020] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/26/2022]
Abstract
The nocebo effect is a phenomenon that is opposite to the placebo effect, whereby expectation of a negative outcome may lead to the worsening of a symptom. Thus far, its study has been limited by ethical constraints, particularly in patients, as a nocebo procedure is per se stressful and anxiogenic. It basically consists in delivering verbal suggestions of negative outcomes so that the subject expects clinical worsening. Although some natural nocebo situations do exist, such as the impact of negative diagnoses upon the patient and the patient's distrust in a therapy, the neurobiological mechanisms have been understood in the experimental setting under strictly controlled conditions. As for the placebo counterpart, the study of pain has been fruitful in recent years to understand both the neuroanatomical and the neurochemical bases of the nocebo effect. Recent experimental evidence indicates that negative verbal suggestions induce anticipatory anxiety about the impending pain increase, and this verbally-induced anxiety triggers the activation of cholecystokinin (CCK) which, in turn, facilitates pain transmission. CCK-antagonists have been found to block this anxiety-induced hyperalgesia, thus opening up the possibility of new therapeutic strategies whenever pain has an important anxiety component. Other conditions, such as Parkinson's disease, although less studied, have been found to be affected by nocebo suggestions as well. All these findings underscore the important role of cognition in the therapeutic outcome, and suggest that nocebo and nocebo-related effects might represent a point of vulnerability both in the course of a disease and in the response to a therapy.
Collapse
Affiliation(s)
- F Benedetti
- Department of Neuroscience, University of Turin Medical School, Corso Raffaello 30, 10125 Turin, Italy.
| | | | | | | |
Collapse
|
78
|
King CD, Devine DP, Vierck CJ, Mauderli A, Yezierski RP. Opioid modulation of reflex versus operant responses following stress in the rat. Neuroscience 2007; 147:174-82. [PMID: 17521823 DOI: 10.1016/j.neuroscience.2007.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 03/29/2007] [Accepted: 04/04/2007] [Indexed: 02/02/2023]
Abstract
In pre-clinical models intended to evaluate nociceptive processing, acute stress suppresses reflex responses to thermal stimulation, an effect previously described as stress-induced "analgesia." Suggestions that endogenous opioids mediate this effect are based on demonstrations that stress-induced hyporeflexia is enhanced by high dose morphine (>5 mg/kg) and is reversed by naloxone. However, reflexes and pain sensations can be modulated differentially. Therefore, in the present study direct comparisons were made of opioid agonist and antagonist actions, independently and in combination with acute restraint stress in Long Evans rats, on reflex lick-guard (L/G) and operant escape responses to nociceptive thermal stimulation (44.5 degrees C). A high dose of morphine (>8 mg/kg) was required to reduce reflex responding, but a moderate dose of morphine (1 mg/kg) significantly reduced escape responding. The same moderate dose (and also 5 mg/kg) of morphine significantly enhanced reflex responding. Naloxone (3 mg/kg) significantly enhanced escape responding but did not affect L/G responding. Restraint stress significantly suppressed L/G reflexes (hyporeflexia) but enhanced escape responses (hyperalgesia). Stress-induced hyperalgesia was significantly reduced by morphine and enhanced by naloxone. In contrast, stress-induced hyporeflexia was blocked by both naloxone and 1 mg/kg of morphine. Thus, stress-induced hyperalgesia was opposed by endogenous opioid release and by administration of morphine. Stress-induced hyporeflexia was dependent upon endogenous opioid release but was counteracted by a moderate dose of morphine. These data demonstrate a differential modulation of reflex and operant outcome measures by stress and by separate or combined opioid antagonism or administration of morphine.
Collapse
MESH Headings
- Acute Disease
- Adaptation, Physiological/drug effects
- Analgesics, Opioid/administration & dosage
- Animals
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Disease Models, Animal
- Displacement, Psychological
- Dose-Response Relationship, Drug
- Escape Reaction/drug effects
- Escape Reaction/physiology
- Female
- Morphine/administration & dosage
- Naloxone/administration & dosage
- Narcotic Antagonists/administration & dosage
- Opioid Peptides/agonists
- Opioid Peptides/antagonists & inhibitors
- Opioid Peptides/metabolism
- Rats
- Rats, Long-Evans
- Reaction Time/drug effects
- Reaction Time/physiology
- Reflex/drug effects
- Reflex/physiology
- Reflex, Abnormal/drug effects
- Reflex, Abnormal/physiology
- Restraint, Physical
- Stress, Psychological/complications
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- C D King
- Department of Orthodontics, College of Dentistry, Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
79
|
Meis S, Munsch T, Sosulina L, Pape HC. Postsynaptic mechanisms underlying responsiveness of amygdaloid neurons to cholecystokinin are mediated by a transient receptor potential-like current. Mol Cell Neurosci 2007; 35:356-67. [PMID: 17482476 DOI: 10.1016/j.mcn.2007.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 03/16/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022] Open
Abstract
Projection neurons of mouse basolateral amygdala responded to CCK with an inward current at a holding potential of -70 mV. This response was mediated by CCK2 receptors as indicated by agonist and antagonist effectiveness, and conveyed via G-proteins of the G(q/11) family as it was abolished in gene knockout mice. Maximal current amplitude was insensitive to extracellular potassium, cesium, and calcium ions, respectively, whereas amplitude and reversal potential critically depended upon extracellular sodium concentration. The current reversed near -20 mV consistent with activation of a mixed cationic channel reminiscent of transient receptor potential (TRP) channels. Extracellular application of the non-selective TRP channel blockers 2-APB, flufenamic acid, Gd3+, and ruthenium red, respectively, inhibited CCK induced inward currents. Single cell PCR confirmed the expression of TRPC1,4,5 and coexpression of TRPC1 with TRPC4 or TRPC5 in some cells. CCK responses were associated with depolarization leading to an increase in cell excitability.
Collapse
Affiliation(s)
- Susanne Meis
- Institut für Physiologie, Medizinische Fakultät, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | |
Collapse
|
80
|
García-Horsman JA, Männistö PT, Venäläinen JI. On the role of prolyl oligopeptidase in health and disease. Neuropeptides 2007; 41:1-24. [PMID: 17196652 DOI: 10.1016/j.npep.2006.10.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/10/2006] [Accepted: 10/17/2006] [Indexed: 11/18/2022]
Abstract
Prolyl oligopeptidase (POP) is a serine peptidase which digests small peptide-like hormones, neuroactive peptides, and various cellular factors. Therefore, this peptidase has been implicated in many physiological processes as well as in some psychiatric disorders, most probably through interference in inositol cycle. Intense research has been performed to elucidate, on the one hand, the basic structure, ligand binding, and kinetic properties of POP, and on the other, the pharmacology of its inhibitors. There is fairly strong evidence of in vivo importance of POP on substance P, arginine vasopressin, thyroliberin and gonadoliberin metabolism. However, information about the biological relevance of POP is not yet conclusive. Evidence regarding the physiological role of POP is lacking, which is surprising considering that peptidase inhibitors have been exploited for drug development, some of which are currently in clinical trials as memory enhancers for the aged and in a variety of neurological disorders. Here we review the recent progress on POP research and evaluate the relevance of the peptidase in the metabolism of various neuropeptides. The recognition of novel forms and relatives of POP may improve our understanding of how this family of proteins functions in normal and in neuropathological conditions.
Collapse
Affiliation(s)
- J A García-Horsman
- Centro de Investigación Príncipe Felipe, Neurobiology, Av. Autopista del Saler 16, 46013 Valencia, Spain.
| | | | | |
Collapse
|
81
|
Heilborn U, Rost BR, Arborelius L, Brodin E. Arthritis-induced increase in cholecystokinin release in the rat anterior cingulate cortex is reversed by diclofenac. Brain Res 2007; 1136:51-8. [PMID: 17229410 DOI: 10.1016/j.brainres.2006.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 11/15/2006] [Accepted: 12/05/2006] [Indexed: 11/18/2022]
Abstract
Given a hypothesised role for CCK in the anterior cingulate cortex (ACC) for the sensation of pain, the aim of the present study was to investigate whether the increased CCK release could be affected by two different analgesic drugs, morphine and the non-selective cyclooxygenase inhibitor diclofenac. Since opioids stimulate CCK release in other CNS regions we have also studied the effect of morphine by itself on the CCK-LI release in the ACC of non-arthritic rats. Three to seven hours after intraarticular carrageenan injection, at the time when the animals are known to show pain-related behaviour, in vivo microdialysis in awake rats revealed increased CCK-LI release in the ACC. The CCK-LI release was significantly attenuated by diclofenac (25 mg/kg i.m.), but not by morphine (10 mg/kg s.c.). Neither diclofenac (25 mg/kg i.m.) nor morphine (5 or 10 mg/kg s.c.) affected the CCK-LI release in the ACC in non-arthritic rats. The results obtained with diclofenac indicate that prostaglandins contribute to the increased CCK-LI release in the ACC during monoarthritis. However, the lack of effect of morphine suggests that the CCK release in the ACC is not directly related to the sensation of pain. Further on, the failure of morphine to affect the extracellular level of CCK-LI in the ACC in control animals as well as in animals with carrageenan-induced monoarthritis is in contrast to previous studies on the frontal cortex or the dorsal horn of the spinal cord, in which similar doses of morphine stimulate CCK release. Thus, compared to these regions, CCK release may be differently regulated in the ACC.
Collapse
Affiliation(s)
- Umut Heilborn
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
82
|
Benedetti F, Amanzio M, Vighetti S, Asteggiano G. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J Neurosci 2006; 26:12014-22. [PMID: 17108175 PMCID: PMC6674855 DOI: 10.1523/jneurosci.2947-06.2006] [Citation(s) in RCA: 276] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the increasing research on placebos in recent times, little is known about the nocebo effect, a phenomenon that is opposite to the placebo effect and whereby expectations of symptom worsening play a crucial role. By studying experimental ischemic arm pain in healthy volunteers and by using a neuropharmacological approach, we found that verbally induced nocebo hyperalgesia was associated to hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, as assessed by means of adrenocorticotropic hormone and cortisol plasma concentrations. Both nocebo hyperalgesia and HPA hyperactivity were antagonized by the benzodiazepine diazepam, suggesting that anxiety played a major role in these effects. The administration of the mixed cholecystokinin (CCK) type-A/B receptor antagonist proglumide blocked nocebo hyperalgesia completely but had no effect on HPA hyperactivity, which suggests a specific involvement of CCK in the hyperalgesic but not in the anxiety component of the nocebo effect. Importantly, both diazepam and proglumide did not show analgesic properties on basal pain, because they acted only on the nocebo-induced pain increase. These data indicate a close relationship between anxiety and nocebo hyperalgesia, in which the CCKergic systems play a key role in anxiety-induced hyperalgesia. These results, together with previous findings showing that placebo analgesia is mediated by endogenous opioids, suggest that the analgesic placebo/hyperalgesic nocebo phenomenon may involve the opposite activation of endogenous opioidergic and CCKergic systems.
Collapse
Affiliation(s)
- Fabrizio Benedetti
- Department of Neuroscience, University of Turin Medical School, 10125 Turin, Italy.
| | | | | | | |
Collapse
|
83
|
Abstract
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
84
|
Harro J. CCK and NPY as anti-anxiety treatment targets: promises, pitfalls, and strategies. Amino Acids 2006; 31:215-30. [PMID: 16738800 DOI: 10.1007/s00726-006-0334-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 03/06/2006] [Indexed: 11/26/2022]
Abstract
Short CCK peptides elicit panic attacks in humans and anxiogenic-like effects in some animal models, but CCK receptor antagonists have not been found clinically effective. Yet CCK overactivity appears to be involved in submissive behaviour, and CCKB receptor expression and binding are increased in suicide victims and animal models of anxiety. Preliminary data suggest that involvement of CCK and its receptor subtypes in anxiety can be better described when focusing on distinct endophenotypes, and considering environmental contingencies and confounds originating from interactions with dopamin-, opioid- and glutamatergic neurotransmission. In contrast, NPY is an anti-anxiety peptide with robust effects in various animal models when administrated into several brain regions. Studies with non-peptide antagonists selective for receptor subtypes have revealed the role of endogenous NPY in active coping. At least Y1, Y2 and Y5 receptors in various brain regions are involved, with the strongest evidence for contribution of Y1.
Collapse
Affiliation(s)
- J Harro
- Department of Psychology and Psychopharmacological Drug Development Group, Centre of Behavioural and Health Sciences, University of Tartu, Tartu, Estonia.
| |
Collapse
|