51
|
Forde GM, Rainey TJ, Speight R, Batchelor W, Pattenden LK. Matching the biomass to the bioproduct. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
52
|
Basu A, Mutturi S, Prapulla SG. Production of isomaltooligosaccharides (IMO) using simultaneous saccharification and transglucosylation from starch and sustainable sources. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
53
|
Loman AA, Ju LK. Soybean carbohydrate as fermentation feedstock for production of biofuels and value-added chemicals. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
54
|
Zhang T, Zhu MJ. Enhancing enzymolysis and fermentation efficiency of sugarcane bagasse by synergistic pretreatment of Fenton reaction and sodium hydroxide extraction. BIORESOURCE TECHNOLOGY 2016; 214:769-777. [PMID: 27213578 DOI: 10.1016/j.biortech.2016.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
A study on the synergistic pretreatment of sugarcane bagasse (SCB) using Fenton reaction and NaOH extraction was conducted. The optimized process conditions for Fenton pretreatment were 10% (w/w) of H2O2, 20mM of Fe(2+), pH 2.5, pretreatment time 6h, and pretreatment temperature 55°C. Sequential pretreatments were performed in combination with NaOH extraction (NaOH 1% (w/w), 80°C, 5% of solid loading, 1h). Among all the pretreatments, Fenton pretreatment followed by NaOH extraction had the highest efficiency of 64.7% and 108.3% for enzymolysis and simultaneous saccharification fermentation (SSF) with an ethanol concentration of 17.44g/L. The analyses by the scanning electron microscopy, X-ray diffraction and confocal laser scanning microscopy revealed that Fenton pretreatment disrupts the structure of SCB to facilitate the degradation of lignin by NaOH. The overall data suggest that this combinatorial strategy is a promising process for SCB pretreatment.
Collapse
Affiliation(s)
- Teng Zhang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Ming-Jun Zhu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
55
|
Genetic Enhancement of Saccharomyces cerevisiae for First and Second Generation Ethanol Production. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
56
|
Neves PV, Pitarelo AP, Ramos LP. Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content, acid catalysis and different fermentation technologies. BIORESOURCE TECHNOLOGY 2016; 208:184-194. [PMID: 26943936 DOI: 10.1016/j.biortech.2016.02.085] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
The production of cellulosic ethanol was carried out using samples of native (NCB) and ethanol-extracted (EECB) sugarcane bagasse. Autohydrolysis (AH) exhibited the best glucose recovery from both samples, compared to the use of both H3PO4 and H2SO4 catalysis at the same pretreatment time and temperature. All water-insoluble steam-exploded materials (SEB-WI) resulted in high glucose yields by enzymatic hydrolysis. SHF (separate hydrolysis and fermentation) gave ethanol yields higher than those obtained by SSF (simultaneous hydrolysis and fermentation) and pSSF (pre-hydrolysis followed by SSF). For instance, AH gave 25, 18 and 16 g L(-1) of ethanol by SHF, SSF and pSSF, respectively. However, when the total processing time was taken into account, pSSF provided the best overall ethanol volumetric productivity of 0.58 g L(-1) h(-1). Also, the removal of ethanol-extractable materials from cane bagasse had no influence on the cellulosic ethanol production of SEB-WI, regardless of the fermentation strategy used for conversion.
Collapse
Affiliation(s)
- P V Neves
- Research Center in Applied Chemistry (CEPESQ), Department of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | - A P Pitarelo
- Research Center in Applied Chemistry (CEPESQ), Department of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil; Sugarcane Technology Center (CTC), Piracicaba, SP, Brazil
| | - L P Ramos
- Research Center in Applied Chemistry (CEPESQ), Department of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
57
|
Loaces I, Bottini G, Moyna G, Fabiano E, Martínez A, Noya F. EndoG: A novel multifunctional halotolerant glucanase and xylanase isolated from cow rumen. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
58
|
Hu ML, Zha J, He LW, Lv YJ, Shen MH, Zhong C, Li BZ, Yuan YJ. Enhanced Bioconversion of Cellobiose by Industrial Saccharomyces cerevisiae Used for Cellulose Utilization. Front Microbiol 2016; 7:241. [PMID: 26973619 PMCID: PMC4776165 DOI: 10.3389/fmicb.2016.00241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/15/2016] [Indexed: 01/26/2023] Open
Abstract
Cellobiose accumulation and the compromised temperature for yeast fermentation are the main limiting factors of enzymatic hydrolysis process during simultaneous saccharification and fermentation (SSF). In this study, genes encoding cellobiose transporter and β-glucosidase were introduced into an industrial Saccharomyces cerevisiae strain, and evolution engineering was carried out to improve the cellobiose utilization of the engineered yeast strain. The evolved strain exhibited significantly higher cellobiose consumption rate (2.8-fold) and ethanol productivity (4.9-fold) compared with its parent strain. Besides, the evolved strain showed a high cellobiose consumption rate of 3.67 g/L/h at 34°C and 3.04 g/L/h at 38°C. Moreover, little cellobiose was accumulated during SSF of Avicel using the evolved strain at 38°C, and the ethanol yield from Avicel increased by 23% from 0.34 to 0.42 g ethanol/g cellulose. Overexpression of the genes encoding cellobiose transporter and β-glucosidase accelerated cellobiose utilization, and the improvement depended on the strain background. The results proved that fast cellobiose utilization enhanced ethanol production by reducing cellobiose accumulation during SSF at high temperature.
Collapse
Affiliation(s)
- Meng-Long Hu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Jian Zha
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Lin-Wei He
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Ya-Jin Lv
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Ming-Hua Shen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology Tianjin, China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin UniversityTianjin, China
| |
Collapse
|
59
|
Rodrigues THS, de Barros EM, de Sá Brígido J, da Silva WM, Rocha MVP, Gonçalves LRB. The Bioconversion of Pretreated Cashew Apple Bagasse into Ethanol by SHF and SSF Processes. Appl Biochem Biotechnol 2015; 178:1167-83. [DOI: 10.1007/s12010-015-1936-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/24/2015] [Indexed: 11/30/2022]
|
60
|
A Neurospora crassa ÿ-glucosidase with potential for lignocellulose hydrolysis shows strong glucose tolerance and stimulation by glucose and xylose. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
61
|
Lytic Polysaccharide Monooxygenases in Biomass Conversion. Trends Biotechnol 2015; 33:747-761. [DOI: 10.1016/j.tibtech.2015.09.006] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 01/02/2023]
|
62
|
Chatzifragkou A, Kosik O, Prabhakumari PC, Lovegrove A, Frazier RA, Shewry PR, Charalampopoulos D. Biorefinery strategies for upgrading Distillers’ Dried Grains with Solubles (DDGS). Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
63
|
Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnol Adv 2015; 33:1091-107. [DOI: 10.1016/j.biotechadv.2014.12.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022]
|
64
|
Yan J, Wei Z, Wang Q, He M, Li S, Irbis C. Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain. BIORESOURCE TECHNOLOGY 2015; 193:103-109. [PMID: 26119051 DOI: 10.1016/j.biortech.2015.06.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/13/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
In this study, bioethanol production from NaOH/H2O2-pretreated water hyacinth was investigated. Pretreatment of water hyacinth with 1.5% (v/v) H2O2 and 3% (w/v) NaOH at 25 °C increased the production of reducing sugars (223.53 mg/g dry) and decreased the cellulose crystallinity (12.18%), compared with 48.67 mg/g dry and 22.80% in the untreated sample, respectively. The newly isolated Kluyveromyces marxianu K213 showed greater ethanol production from glucose (0.43 g/g glucose) at 45 °C than did the control Saccharomyces cerevisiae angel yeast. The maximum ethanol concentration (7.34 g/L) achieved with K. marxianu K213 by simultaneous saccharification and fermentation (SSF) from pretreated water hyacinth at 42 °C was 1.78-fold greater than that produced by angel yeast S. cerevisiae at 30 °C. The present work demonstrates that bioethanol production achieved via SSF of NaOH/H2O2-pretreated water hyacinth with K. marxianu K213 is a promising strategy to utilize water hyacinth biomass.
Collapse
Affiliation(s)
- Jinping Yan
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Zhilei Wei
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming 650500, PR China; Changdu Institute of Agriculture Science, Changdu 854000, PR China
| | - Qiaoping Wang
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Manman He
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Shumei Li
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Chagan Irbis
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming 650500, PR China
| |
Collapse
|
65
|
Haque MA, Cho KM, Barman DN, Kim MK, Yun HD. A potential cellulose microfibril swelling enzyme isolated from Bacillus sp. AY8 enhances cellulose hydrolysis. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Complete Genome Sequence of Kluyveromyces marxianus NBRC1777, a Nonconventional Thermotolerant Yeast. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00389-15. [PMID: 25908152 PMCID: PMC4408353 DOI: 10.1128/genomea.00389-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We determined the genome sequence of the thermotolerant yeast Kluyveromyces marxianus strain NBRC1777. The genome of strain NBRC1777 is composed of 4,912 open reading frames (ORFs) on 8 chromosomes, with a total size of 10,895,581 bp, including mitochondrial DNA.
Collapse
|
67
|
Dahnum D, Tasum SO, Triwahyuni E, Nurdin M, Abimanyu H. Comparison of SHF and SSF Processes Using Enzyme and Dry Yeast for Optimization of Bioethanol Production from Empty Fruit Bunch. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.egypro.2015.03.238] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
68
|
Liu Z, Inokuma K, Ho SH, Haan RD, Hasunuma T, van Zyl WH, Kondo A. Combined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:162. [PMID: 26413161 PMCID: PMC4584016 DOI: 10.1186/s13068-015-0344-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/18/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND Engineering Saccharomyces cerevisiae to produce heterologous cellulases is considered as a promising strategy for production of bioethanol from lignocellulose. The production of cellulase is usually pursued by one of the two strategies: displaying enzyme on the cell surface or secreting enzyme into the medium. However, to our knowledge, the combination of the two strategies in a yeast strain has not been employed. RESULTS In this study, heterologous endoglucanase (EG) and cellobiohydrolase I (CBHI) were produced in a β-glucosidase displaying S. cerevisiae strain using cell-surface display, secretion, or a combined strategy. Strains EG-D-CBHI-D and EG-S-CBHI-S (with both enzymes displayed on the cell surface or with both enzymes secreted to the surrounding medium) showed higher ethanol production (2.9 and 2.6 g/L from 10 g/L phosphoric acid swollen cellulose, respectively), than strains EG-D-CBHI-S and EG-S-CBHI-D (with EG displayed on cell surface and CBHI secreted, or vice versa). After 3-cycle repeated-batch fermentation, the cellulose degradation ability of strain EG-D-CBHI-D remained 60 % of the 1st batch, at a level that was 1.7-fold higher than that of strain EG-S-CBHI-S. CONCLUSIONS This work demonstrated that placing EG and CBHI in the same space (on the cell surface or in the medium) was favorable for amorphous cellulose-based ethanol fermentation. In addition, the cellulolytic yeast strain that produced enzymes by the cell-surface display strategy performed better in cell-recycle batch fermentation compared to strains producing enzymes via the secretion strategy.
Collapse
Affiliation(s)
- Zhuo Liu
- />Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Kentaro Inokuma
- />Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Shih-Hsin Ho
- />Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- />State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090 People’s Republic of China
| | - Riaan den Haan
- />Department of Biotechnology, University of the Western Cape, Bellville, 7530 South Africa
| | - Tomohisa Hasunuma
- />Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Willem H. van Zyl
- />Department of Microbiology, University of Stellenbosch, Stellenbosch, 7600 South Africa
| | - Akihiko Kondo
- />Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- />Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|
69
|
Khattak WA, Ullah MW, Ul-Islam M, Khan S, Kim M, Kim Y, Park JK. Developmental strategies and regulation of cell-free enzyme system for ethanol production: a molecular prospective. Appl Microbiol Biotechnol 2014; 98:9561-78. [PMID: 25359472 DOI: 10.1007/s00253-014-6154-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
Most biomanufacturing systems developed for the production of biocommodities are based on whole-cell systems. However, with the advent of innovative technologies, the focus has shifted from whole-cell towards cell-free enzyme system. Since more than a century, researchers are using the cell-free extract containing the required enzymes and their respective cofactors in order to study the fundamental aspects of biological systems, particularly fermentation. Although yeast cell-free enzyme system is known since long ago, it is rarely been studied and characterized in detail. In this review, we hope to describe the major pitfalls encountered by whole-cell system and introduce possible solutions to them using cell-free enzyme systems. We have discussed the glycolytic and fermentative pathways and their regulation at both transcription and translational levels. Moreover, several strategies employed for development of cell-free enzyme system have been described with their potential merits and shortcomings associated with these developmental approaches. We also described in detail the various developmental approaches of synthetic cell-free enzyme system such as compartmentalization, metabolic channeling, protein fusion, and co-immobilization strategies. Additionally, we portrayed the novel cell-free enzyme technologies based on encapsulation and immobilization techniques and their development and commercialization. Through this review, we have presented the basics of cell-free enzyme system, the strategies involved in development and operation, and the advantages over conventional processes. Finally, we have addressed some potential directions for the future development and industrialization of cell-free enzyme system.
Collapse
Affiliation(s)
- Waleed Ahmad Khattak
- Department of Chemical Engineering, Kyungpook National University, Daegu, 7020-701, Korea
| | | | | | | | | | | | | |
Collapse
|
70
|
Liu Y, Zhang G, Sun H, Sun X, Jiang N, Rasool A, Lin Z, Li C. Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices. BIORESOURCE TECHNOLOGY 2014; 170:38-44. [PMID: 25118151 DOI: 10.1016/j.biortech.2014.07.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 06/03/2023]
Abstract
In this study, thermo-tolerant devices consisting of heat shock genes from thermophiles were designed and introduced into Saccharomyces cerevisiae for improving its thermo-tolerance. Among ten engineered thermo-tolerant yeasts, T.te-TTE2469, T.te-GroS2 and T.te-IbpA displayed over 25% increased cell density and 1.5-4-fold cell viability compared with the control. Physiological characteristics of thermo-tolerant strains revealed that better cell wall integrity, higher trehalose content and enhanced metabolic energy were preserved by thermo-tolerant devices. Engineered thermo-tolerant strain was used to investigate the impact of thermo-tolerant device on pathway efficiency by introducing β-amyrin synthesis pathway, showed 28.1% increased β-amyrin titer, 28-35°C broadened growth temperature range and 72h shortened fermentation period. The results indicated that implanting heat shock proteins from thermophiles to S. cerevisiae would be an efficient approach to improve its thermo-tolerance.
Collapse
Affiliation(s)
- Yueqin Liu
- School of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Genli Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Huan Sun
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiangying Sun
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Nisi Jiang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Aamir Rasool
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | | | - Chun Li
- School of Chemical Engineering, Tianjin University, Tianjin 300072, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
71
|
Engineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 2014; 80:6677-84. [PMID: 25149522 DOI: 10.1128/aem.02070-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several yeast strains have been engineered to express different cellulases to achieve simultaneous saccharification and fermentation of lignocellulosic materials. However, successes in these endeavors were modest, as demonstrated by the relatively low ethanol titers and the limited ability of the engineered yeast strains to grow using cellulosic materials as the sole carbon source. Recently, substantial enhancements to the breakdown of cellulosic substrates have been observed when lytic polysaccharide monooxygenases (LPMOs) were added to traditional cellulase cocktails. LPMOs are reported to cleave cellulose oxidatively in the presence of enzymatic electron donors such as cellobiose dehydrogenases. In this study, we coexpressed LPMOs and cellobiose dehydrogenases with cellobiohydrolases, endoglucanases, and β-glucosidases in Saccharomyces cerevisiae. These enzymes were secreted and docked onto surface-displayed miniscaffoldins through cohesin-dockerin interaction to generate pentafunctional minicellulosomes. The enzymes on the miniscaffoldins acted synergistically to boost the degradation of phosphoric acid swollen cellulose and increased the ethanol titers from our previously achieved levels of 1.8 to 2.7 g/liter. In addition, the newly developed recombinant yeast strain was also able to grow using phosphoric acid swollen cellulose as the sole carbon source. The results demonstrate the promise of the pentafunctional minicellulosomes for consolidated bioprocessing by yeast.
Collapse
|
72
|
Ogura K, Ninomiya K, Takahashi K, Ogino C, Kondo A. Pretreatment of Japanese cedar by ionic liquid solutions in combination with acid and metal ion and its application to high solid loading. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:120. [PMID: 25426161 PMCID: PMC4243821 DOI: 10.1186/s13068-014-0120-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/29/2014] [Indexed: 06/01/2023]
Abstract
BACKGROUND Lignocellulosic biomass from plant biomass, especially softwoods, are well-known to present difficulties during attempts at hydrolysis due to their rigid structure. Pretreatment of lignocellulosic biomass with ionic liquids (ILs) is attractive as this requires to a low input of energy. However, IL pretreatment has the disadvantage of the presence of large amounts of water. Recently, it was reported that a small amount of acid has a positive effect on the degradation of biomass in IL with water. In this study the pretreatment of Japanese cedar, the most abundant softwood in Japan, was investigated using a combination of IL, acid and metal ions. RESULTS First, the novel ionic liquid pretreatment was investigated by changing the pretreatment solvent and the anti-solvent. A mixture of IL, acid and ferric oxide (Fe(3+)) ion was most effective for pretreatment, and an acetone-water mixture was also most effective on the precipitation of biomass. These optimized pretreatment combinations attained a higher degree of glucose release from the pretreated biomass. The amount of cellulose was concentrated from to a level of 36 to 84% of the insoluble fraction by the optimized pretreatment. Based on this result, it was assumed that the extraction of the lignin fraction from the biomass into an anti-solvent solution was attained. Finally, this optimized pretreatment was applied to the enzymatic hydrolysis of Japanese cedar at high-solid biomass loading, and 110 g/L of glucose production was attained. In addition, the ethanol fermentation with this hydrolyzed solution by Saccharomyces cerevisiae achieved 50 g/L ethanol production, and this yield reached 90% of the theoretical yield. CONCLUSIONS We developed an effective pretreatment protocol by changing to a pretreatment solvent containing IL, acid, metal ion and anti-solvent. The optimized pretreatment has an effect on softwood and separately retrieved lignin as a by-product. The saccharified solution at high-solid biomass loading was converted to ethanol in a high yield. This proposed methodology would boost the performance of the bioconversion of low-cost materials to other chemicals, and would not be limited to only ethanol but also would include other target chemicals.
Collapse
Affiliation(s)
- Kazuma Ogura
- />Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501 Japan
| | - Kazuaki Ninomiya
- />Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Kenji Takahashi
- />Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Chiaki Ogino
- />Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501 Japan
| | - Akihiko Kondo
- />Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501 Japan
| |
Collapse
|
73
|
Chen C, Ding S, Wang D, Li Z, Ye Q. Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111. BIORESOURCE TECHNOLOGY 2014; 163:100-105. [PMID: 24787322 DOI: 10.1016/j.biortech.2014.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
In this study, the production of succinic acid from cassava starch and raw cassava instead of glucose by Escherichia coli NZN111 was investigated. During the two-stage fermentation, simultaneous saccharification and fermentation (SSF) was applied in the anaerobic stage. The results showed that both the productivity and specific productivity in the process conducted at 40°C were higher than those in the cultivation conducted at 37°C. The yield of succinic acid based on the amount of added starch reached the highest level 0.86 g/g and cassava starch was almost totally hydrolyzed in the SSF process. With the improved cell density, 127.13 g/L of succinic acid was obtained. When the liquefied crude cassava powder was used directly in SSF, 106.17 g/L of succinic acid was formed. The result showed that crude cassava powder could be another cheap raw material for succinic acid formation.
Collapse
Affiliation(s)
- Cuixia Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shaopeng Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Dezheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Qin Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
74
|
Doğan A, Demirci S, Aytekin AÖ, Şahin F. Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl Biochem Biotechnol 2014; 174:28-42. [PMID: 24908051 DOI: 10.1007/s12010-014-1006-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 05/29/2014] [Indexed: 02/07/2023]
Abstract
Saccharomyces cerevisiae, industrial yeast isolate, has been of great interest in recent years for fuel ethanol production. The ethanol yield and productivity depend on many inhibitory factors during the fermentation process such as temperature, ethanol, compounds released as the result of pretreatment procedures, and osmotic stress. An ideal strain should be able to grow under different stress conditions occurred at different fermentation steps. Development of tolerant yeast strains can be achieved by reprogramming pathways supporting the ethanol metabolism by regulating the energy balance and detoxicification processes. Complex gene interactions should be solved for an in-depth comprehension of the yeast stress tolerance mechanism. Genetic engineering as a powerful biotechnological tool is required to design new strategies for increasing the ethanol fermentation performance. Upregulation of stress tolerance genes by recombinant DNA technology can be a useful approach to overcome inhibitory situations. This review presents the application of several genetic engineering strategies to increase ethanol yield under different stress conditions including inhibitor tolerance, ethanol tolerance, thermotolerance, and osmotolerance.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Department of Genetics and BioEngineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey,
| | | | | | | |
Collapse
|
75
|
Physiological characterization of thermotolerant yeast for cellulosic ethanol production. Appl Microbiol Biotechnol 2014; 98:3829-40. [PMID: 24535257 PMCID: PMC3973951 DOI: 10.1007/s00253-014-5580-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 11/05/2022]
Abstract
The conversion of lignocellulose into fermentable sugars is considered a promising alternative for increasing ethanol production. Higher fermentation yield has been achieved through the process of simultaneous saccharification and fermentation (SSF). In this study, a comparison was performed between the yeast species Saccharomyces cerevisiae and Kluyveromyces marxianus for their potential use in SSF process. Three strains of S. cerevisiae were evaluated: two are widely used in the Brazilian ethanol industry (CAT-1 and PE-2), and one has been isolated based on its capacity to grow and ferment at 42 °C (LBM-1). In addition, we used thermotolerant strains of K. marxianus. Two strains were obtained from biological collections, ATCC 8554 and CCT 4086, and one strain was isolated based on its fermentative capacity (UFV-3). SSF experiments revealed that S. cerevisiae industrial strains (CAT-1 and PE-2) have the potential to produce cellulosic ethanol once ethanol had presented yields similar to yields from thermotolerant strains. The industrial strains are more tolerant to ethanol and had already been adapted to industrial conditions. Moreover, the study shows that although the K. marxianus strains have fermentative capacities similar to strains of S. cerevisiae, they have low tolerance to ethanol. This characteristic is an important target for enhancing the performance of this yeast in ethanol production.
Collapse
|
76
|
Hickert LR, de Souza-Cruz PB, Rosa CA, Ayub MAZ. Simultaneous saccharification and co-fermentation of un-detoxified rice hull hydrolysate by Saccharomyces cerevisiae ICV D254 and Spathaspora arborariae NRRL Y-48658 for the production of ethanol and xylitol. BIORESOURCE TECHNOLOGY 2013; 143:112-116. [PMID: 23792660 DOI: 10.1016/j.biortech.2013.05.123] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 06/02/2023]
Abstract
Co-fermentation and simultaneous saccharification of rice hull hydrolysate (RHH) were investigated for the production of ethanol and xylitol by Saccharomyces cerevisiae, Spathaspora arborariae, or the combination of both. In bioreactor cultures under oxygen limitation, S. cerevisiae was capable of metabolizing glucose from RHH, which contained small amounts of acetic acid, furfural, and hydroxymethylfurfural, achieving ethanol yields of 0.45 and concentrations of 10.5 g L(-1). In the co-culture of S. cerevisiae and S. arborariae pentoses and hexoses from RHH, were converted to ethanol and xylitol, with yields of 0.48 and 0.39, and concentrations of 11 g L(-1) and 3 g L(-1), respectively. The simultaneous saccharification and co-fermentation using both yeasts produced ethanol and xylitol to final concentrations of 14.5 g L(-1) and 3 g L(-1), respectively. Results showed good prospects to use co-cultures of S. cerevisiae and S. arborariae for the bioconversion of RHH into ethanol and xylitol without further detoxification.
Collapse
Affiliation(s)
- Lilian Raquel Hickert
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, P.O. Box 15090, ZC 91501-970 Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
77
|
Improved xylose fermentation of Kluyveromyces marxianus at elevated temperature through construction of a xylose isomerase pathway. ACTA ACUST UNITED AC 2013; 40:841-54. [DOI: 10.1007/s10295-013-1282-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
Abstract
To improve the xylose fermentation ability of Kluyveromyces marxianus, a xylose assimilation pathway through xylose isomerase was constructed. The genes encoding xylose reductase (KmXyl1) and xylitol dehydrogenase (KmXyl2) were disrupted in K. marxianus YHJ010 and the resultant strain was named YRL002. A codon-optimized xylose isomerase gene from Orpinomyces was transformed into K. marxianus YRL002 and expressed under GAPDH promoter. The transformant was adapted in the SD medium containing 1 % casamino acid with 2 % xylose as sole carbon source. After 32 times of trans-inoculation, a strain named YRL005, which can grow at a specific growth rate of 0.137/h with xylose as carbon source, was obtained. K. marxianus YRL005 could ferment 30.15 g/l of xylose and produce 11.52 g/l ethanol with a yield of 0.38 g/g, production rate of 0.069 g/l/h at 42 °C, and also could ferment 16.60 g/l xylose to produce 5.21 g/l ethanol with a yield of 0.31 g/g, and production rate of 0.054 g/l h at 45 °C. Co-fermentation with 2 % glucose could not improve the amount and yield of ethanol fermented from xylose obviously, but it could improve the production rate. Furthermore, K. marxianus YRL005 can ferment with the corn cob hydrolysate, which contained 20.04 g/l xylose to produce 8.25 g/l ethanol. It is a good platform to construct thermo-tolerant xylose fermentation yeast.
Collapse
|
78
|
Bioethanol production from Lignocellulosic biomass by a novel Kluyveromyces marxianus strain. Biosci Biotechnol Biochem 2013; 77:1505-10. [PMID: 23832346 DOI: 10.1271/bbb.130173] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The yeast Kluyveromyces marxianus is considered as a potential alternative to Saccharomyces cerevisiae in producing ethanol as a biofuel. In this study, we investigated the ethanol fermentation properties of novel K. marxianus strain DMB1, isolated from bagasse hydrolysates. This strain utilized sorbitol as well as various pentoses and hexoses as single carbon sources under aerobic conditions and produced ethanol from glucose in hydrolysates of the Japanese cedar at 42 °C. Reference strains K. marxianus NBRC1777 and S. cerevisiae BY4743 did not assimilate sorbitol or ferment lignocellulosic hydrolysates to ethanol at this temperature. Thus strain DMB1 appears to be optimal for producing bioethanol at high temperatures, and might provide a valuable means of increasing the efficiency of ethanol fermentation.
Collapse
|
79
|
Tsuji M, Goshima T, Matsushika A, Kudoh S, Hoshino T. Direct ethanol fermentation from lignocellulosic biomass by Antarctic basidiomycetous yeast Mrakia blollopis under a low temperature condition. Cryobiology 2013; 67:241-3. [PMID: 23810900 DOI: 10.1016/j.cryobiol.2013.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/14/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
Antarctic basidiomycetous yeast Mrakia blollopis SK-4 has unique fermentability for various sugars under a low temperature condition. Hence, this yeast was used for ethanol fermentation from glucose and also for direct ethanol fermentation (DEF) from cellulosic biomass without/with Tween 80 at 10°C. Maximally, 48.2 g/l ethanol was formed from 12% (w/v) glucose. DEF converted filter paper, Japanese cedar and Eucalyptus to 12.2 g/l, 12.5 g/l and 7.2 g/l ethanol, respectively. In the presence of 1% (v/v) Tween 80, ethanol concentration increased by about 1.1-1.6-fold compared to that without Tween 80. This is the first report on DEF using cryophilic fungi under a low temperature condition. We consider that M. blollopis SK-4 has a good potential for ethanol fermentation in cold environments.
Collapse
Affiliation(s)
- Masaharu Tsuji
- Biomass Refinery Research Center (BRRC), National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashihiroshima, Hirosima 739-0046, Japan
| | | | | | | | | |
Collapse
|
80
|
Efficient production of ethanol from empty palm fruit bunch fibers by fed-batch simultaneous saccharification and fermentation using Saccharomyces cerevisiae. Appl Biochem Biotechnol 2013; 170:1807-14. [PMID: 23754558 DOI: 10.1007/s12010-013-0314-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
The concentration of ethanol produced from lignocellulosic biomass should be at least 40 g l(-1) [about 5 % (v/v)] to minimize the cost of distillation process. In this study, the conditions for the simultaneous saccharification and fermentation (SSF) at fed-batch mode for the production of ethanol from alkali-pretreated empty palm fruit bunch fibers (EFB) were investigated. Optimal conditions for the production of ethanol were identified as temperature, 30 °C; enzyme loading, 15 filter paper unit g(-1) biomass; and yeast (Saccharomyces cerevisiae) loading, 5 g l(-1) of dry cell weight. Under these conditions, an economical ethanol concentration was achieved within 17 h, which further increased up to 62.5 g l(-1) after 95 h with 70.6 % of the theoretical yield. To our knowledge, this is the first report to evaluate the economic ethanol production from alkali-pretreated EFB in fed-batch SSF using S. cerevisiae.
Collapse
|
81
|
Ismail KSK, Sakamoto T, Hasunuma T, Kondo A. Time-based comparative transcriptomics in engineered xylose-utilizing Saccharomyces cerevisiae identifies temperature-responsive genes during ethanol production. J Ind Microbiol Biotechnol 2013; 40:1039-50. [PMID: 23748446 DOI: 10.1007/s10295-013-1293-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/14/2013] [Indexed: 01/07/2023]
Abstract
Agricultural residues comprising lignocellulosic materials are excellent sources of pentose sugar, which can be converted to ethanol as fuel. Ethanol production via consolidated bioprocessing requires a suitable microorganism to withstand the harsh fermentation environment of high temperature, high ethanol concentration, and exposure to inhibitors. We genetically enhanced an industrial Saccharomyces cerevisiae strain, sun049, enabling it to uptake xylose as the sole carbon source at high fermentation temperature. This strain was able to produce 13.9 g/l ethanol from 50 g/l xylose at 38 °C. To better understand the xylose consumption ability during long-term, high-temperature conditions, we compared by transcriptomics two fermentation conditions: high temperature (38 °C) and control temperature (30 °C) during the first 12 h of fermentation. This is the first long-term, time-based transcriptomics approach, and it allowed us to discover the role of heat-responsive genes when xylose is the sole carbon source. The results suggest that genes related to amino acid, cell wall, and ribosomal protein synthesis are down-regulated under heat stress. To allow cell stability and continuous xylose uptake in order to produce ethanol, hexose transporter HXT5, heat shock proteins, ubiquitin proteins, and proteolysis were all induced at high temperature. We also speculate that the strong relationship between high temperature and increased xylitol accumulation represents the cell's mechanism to protect itself from heat degradation.
Collapse
Affiliation(s)
- Ku Syahidah Ku Ismail
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan
| | | | | | | |
Collapse
|
82
|
Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. BIORESOURCE TECHNOLOGY 2013. [PMID: 23195654 DOI: 10.1016/j.biortech.2012.10.047] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The biorefinery manufacturing process for producing chemicals and liquid fuels from biomass is a promising approach for securing energy and resources. To establish cost-effective fermentation of lignocellulosic biomass, the consolidation of sacccharification and fermentation processes is a desirable strategy, but requires the development of microorganisms capable of cellulose/hemicellulose hydrolysis and target chemical production. Such an endeavor requires a large number of prerequisites to be realized, including engineering microbial strains with high cellulolytic activity, high product yield, productivities, and titers, ability to use many carbon sources, and resistance to toxic compounds released during the pretreatment of lignocellulosic biomass. Researchers have focused on either engineering naturally cellulolytic microorganisms to improve product-related properties or modifying non-cellulolytic organisms with high product yields to become cellulolytic. This article reviews recent advances in the development of microorganisms for the production of renewable chemicals and advanced biofuels, as well as ethanol, from lignocellulosic materials through consolidated bioprocessing.
Collapse
Affiliation(s)
- Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
83
|
Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. J Biotechnol 2013; 163:50-60. [DOI: 10.1016/j.jbiotec.2012.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/24/2012] [Accepted: 10/26/2012] [Indexed: 11/22/2022]
|
84
|
Matano Y, Hasunuma T, Kondo A. Simultaneous improvement of saccharification and ethanol production from crystalline cellulose by alleviation of irreversible adsorption of cellulase with a cell surface-engineered yeast strain. Appl Microbiol Biotechnol 2012. [DOI: 10.1007/s00253-012-4587-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|