51
|
Kalynovska N, Diallo M, Sotakova-Kasparova D, Palecek J. Losartan attenuates neuroinflammation and neuropathic pain in paclitaxel-induced peripheral neuropathy. J Cell Mol Med 2020; 24:7949-7958. [PMID: 32485058 PMCID: PMC7348151 DOI: 10.1111/jcmm.15427] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/15/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
Paclitaxel-induced peripheral neuropathy (PIPN) is often associated with neuropathic pain and neuroinflammation in the central and peripheral nervous system. Antihypertensive drug losartan, an angiotensin II receptor type 1 (AT1R) blocker, was shown to have anti-inflammatory and neuroprotective effects in disease models, predominantly via activation of peroxisome proliferator-activated receptor gamma (PPARγ). Here, the effect of systemic losartan treatment (100 mg/kg/d) on mechanical allodynia and neuroinflammation was evaluated in rat PIPN model. The expression of pro-inflammatory markers protein and mRNA levels in dorsal root ganglia (DRGs) and spinal cord dorsal horn (SCDH) were measured with Western blot, ELISA and qPCR 10 and 21 days after PIPN induction. Losartan treatment attenuated mechanical allodynia significantly. Paclitaxel induced overexpression of C-C motif chemokine ligand 2 (CCL2), tumour necrosis alpha (TNFα) and interleukin-6 (IL-6) in DRGs, where the presence of macrophages was demonstrated. Neuroinflammatory changes in DRGs were accompanied with glial activation and pro-nociceptive modulators production in SCDH. Losartan significantly attenuated paclitaxel-induced neuroinflammatory changes and induced expression of pro-resolving markers (Arginase 1 and IL-10) indicating a possible shift in macrophage polarization. Considering the safety profile of losartan, acting also as partial PPARγ agonist, it may be considered as a novel treatment strategy for PIPN patients.
Collapse
Affiliation(s)
- Nataliia Kalynovska
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Mickael Diallo
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Dita Sotakova-Kasparova
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Palecek
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
52
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Losartan improves visceral sensation and gut barrier in a rat model of irritable bowel syndrome. Neurogastroenterol Motil 2020; 32:e13819. [PMID: 32056324 DOI: 10.1111/nmo.13819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/03/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lipopolysaccharide (LPS) or repeated water avoidance stress (WAS) induces visceral allodynia and colonic hyperpermeability via corticotropin-releasing factor (CRF) and proinflammatory cytokines, which is considered to be a rat irritable bowel syndrome (IBS) model. As losartan is known to inhibit proinflammatory cytokine release, we hypothesized that it improves these visceral changes. METHODS The threshold of visceromotor response (VMR), that is, abdominal muscle contractions induced by colonic balloon distention was electrophysiologically measured in rats. Colonic permeability was determined in vivo by quantifying the absorbed Evans blue in colonic tissue for 15 minutes spectrophotometrically. KEY RESULTS Lipopolysaccharide (1 mg kg-1 ) subcutaneously (s.c.) reduced the threshold of VMR and increased colonic permeability. Losartan (5-25 mg kg-1 s.c.) for 3 days inhibited these changes in a dose-dependent manner. Moreover, repeated WAS (1 hour daily for 3 days) or intraperitoneal injection of CRF (50 µg kg-1 ) induced the similar visceral changes as LPS, which were also eliminated by losartan. These effects by losartan in LPS model were reversed by GW9662 (a peroxisome proliferator-activated receptor-γ [PPAR-γ] antagonist), NG -nitro-L-arginine methyl ester (a nitric oxide [NO] synthesis inhibitor), or naloxone (an opioid receptor antagonist). Moreover, it also inhibited by sulpiride (a dopamine D2 receptor antagonist) or domperidone (a peripheral dopamine D2 antagonist). CONCLUSION & INFERENCES Losartan prevented visceral allodynia and colonic hyperpermeability in rat IBS models. These actions may be PPAR-γ-dependent and also mediated by the NO, opioid, and dopamine D2 pathways. Losartan may be useful for IBS treatment.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan.,Center for Medical Education, Asahikawa Medical University, Asahikawa, Japan
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.,Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
53
|
Rusek M, Czuczwar SJ. A review of clinically significant drug-drug interactions involving angiotensin II receptor antagonists and antiepileptic drugs. Expert Opin Drug Metab Toxicol 2020; 16:507-515. [PMID: 32397766 DOI: 10.1080/17425255.2020.1763955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Angiotensin II receptor blockers are widely used for the treatment of arterial hypertension and heart failure. However, recent studies on animal models of seizures showed that in the brain, the renin-angiotensin-aldosterone system might be involved in neuroinflammation; therefore, the administration of angiotensin II receptor blockers that cross the blood/brain barrier, reduces not only blood pressure but reduces neuroinflammation-induced neuronal injury. Apart from this neuroprotective effect, these drugs exhibit anticonvulsant activity in animal models of seizures, and losartan is associated with a probable anti-epileptogenic activity. AREAS COVERED In this review, we intended to highlight the role of drug-drug interactions involving angiotensin II receptor antagonists with antiepileptic drugs accompanied by a brief characteristic of the role of RAS in neuroinflammation. EXPERT OPINION Some combinations of antiepileptic drugs (lamotrigine or valproate) with sartans are particularly effective in terms of enhanced seizure control. Considering a possible anti-epileptogenic activity of losartan, its combinations with antiepileptic drugs may prove especially beneficial in epileptogenesis inhibition.
Collapse
Affiliation(s)
- Marta Rusek
- Department of Pathophysiology, Medical University of Lublin , Lublin, Poland.,Department of Dermatology, Venereology and Pediatric Dermatology, Laboratory for Immunology of Skin Diseases, Medical University of Lublin , Lublin, Poland
| | | |
Collapse
|
54
|
He MC, Shi Z, Qin M, Sha NN, Li Y, Liao DF, Lin FH, Shu B, Sun YL, Yuan TF, Wang YJ, Zhang Y. Muscone Ameliorates LPS-Induced Depressive-Like Behaviors and Inhibits Neuroinflammation in Prefrontal Cortex of Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:559-577. [PMID: 32345030 DOI: 10.1142/s0192415x20500287] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Depression is partially caused by inflammation in the central nervous system. Early study demonstrated that musk, glandular secretion from male musk deer, exerted an antidepressant-like effect. The aim of this study was to investigate if muscone, a bioactive ingredient in musk, could ameliorate neuroinflammation and depressive-like behaviors as well as explore the potential action mechanism. Mice were intraperitoneally (i.p.) injected with muscone for 2 weeks prior to administration of lipopolysaccharides (LPS, 1mg/kg, i.p.). Pre-treatment with muscone reversed the LPS-induced decrease in body weight within 24h and ameliorated depressive-like behaviors shown by sucrose preference, tail suspension test, and forced swimming test. LPS-induced activation of microglial cells and elevation in expression of inflammatory cytokines including IL-1β, RANTES, and MCP-1 in the prefrontal cortex of mice were effectively abrogated by muscone, which significantly down-regulated expression of TLR4, MyD88, Caspase-1, NLRP3, renin, and Ang II. In addition, treatment of BV2 microglia cells with muscone markedly attenuated the LPS-induced rise in protein expression of TLR4, Ang II, and IL-1β. This study revealed that muscone could ameliorate LPS-induced depressive-like behaviors by repressing neuroinflammation in the prefrontal cortex of mice caused by its suppression on microglia activation and production of inflammatory cytokines via acting on TLR4 pathway and RAS cascade.
Collapse
Affiliation(s)
- Ming-Chao He
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| | - Zhe Shi
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, P. R. China.,Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Nan-Nan Sha
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Yue Li
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Fu-Hui Lin
- Department of Orthopaedic, Shenzhen Pingle Orthopaedic Hospital, Shenzhen 518000, P. R. China
| | - Bing Shu
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| | - Yue-Li Sun
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, P. R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, P. R. China
| | - Yong-Jun Wang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| |
Collapse
|
55
|
Köhler-Forsberg O, Petersen L, Berk M, Gasse C, Østergaard SD. The effect of combined treatment with SSRIs and renin-angiotensin system (RAS) drugs: A propensity score matched cohort study. Eur Neuropsychopharmacol 2020; 32:120-130. [PMID: 32001138 DOI: 10.1016/j.euroneuro.2020.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
Drugs acting on the renin-angiotensin system (RAS) may have beneficial effects on mental health. We investigated whether use of drugs acting on the RAS, as add-on to selective serotonin reuptake inhibitors (SSRIs), was associated with a reduced risk of psychiatric hospital contacts. We identified all individuals initiating treatment with an SSRI between 1997 and 2012. Individuals using an SSRI without concomitant use of a RAS drug (SSRI-only users) were propensity score matched 1:1 to individuals using both an SSRI and a drug acting on the RAS (SSRI+RAS users). The SSRI-only and SSRI+RAS users were followed for up to three years or until December 31, 2013. We performed Cox proportional hazard regression analyses to calculate risks for psychiatric hospital contacts, hospital contacts due to depression, suicidal behavior, and all-cause mortality. We followed 30,311 SSRI-only users and 30,311 SSRI+RAS users for a total of 49,327 person-years. Compared to SSRI-only users, concomitant use of SSRI+RAS was associated with a significantly reduced risk for psychiatric hospital contacts (hazard rate ratio (HRR)=0.91; 95%-confidence intervals (95%-CI)=0.84-0.98) and lower mortality rate (HRR=0.70; 95%-CI=0.66-0.75). The associations between SSRI+RAS use and psychiatric hospital contacts for depression (HRR=0.92; 95%-CI=0.80-1.05) and suicidal behavior (HRR=1.06; 95%-CI=0.79-1.42) were not statistically significant. In this observational cohort study, concomitant use of an SSRI and a drug acting on the RAS was associated with a slightly reduced risk for psychiatric hospital contacts, when compared to use of an SSRI alone.
Collapse
Affiliation(s)
- Ole Köhler-Forsberg
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Palle Juul-Jensens Boulevard 175, 8200 Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark.
| | - Liselotte Petersen
- National Centre for Register-Based Research (NCRR), Aarhus University, Aarhus, Denmark; iPSYCH, The Lundbeck Initiative for Integrated Research in Psychiatry, Aarhus, Denmark; Centre for Integrated Register-based Research (CIRRAU), Aarhus University, Aarhus, Denmark
| | - Michael Berk
- Deakin University, School of Medicine, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Geelong, Victoria, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, Victoria, Australia
| | - Christiane Gasse
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Palle Juul-Jensens Boulevard 175, 8200 Aarhus, Denmark; iPSYCH, The Lundbeck Initiative for Integrated Research in Psychiatry, Aarhus, Denmark; Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
| | - Søren Dinesen Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; iPSYCH, The Lundbeck Initiative for Integrated Research in Psychiatry, Aarhus, Denmark; Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
| |
Collapse
|
56
|
Steventon JJ, Rosser AE, Hart E, Murphy K. Hypertension, Antihypertensive Use and the Delayed-Onset of Huntington's Disease. Mov Disord 2020; 35:937-946. [PMID: 32017180 PMCID: PMC7317197 DOI: 10.1002/mds.27976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/15/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Background Hypertension is a modifiable cardiovascular risk factor implicated in neurodegeneration and dementia risk. In Huntington's disease, a monogenic neurodegenerative disease, autonomic and vascular abnormalities have been reported. This study's objective was to examine the relationship between hypertension and disease severity and progression in Huntington's disease. Methods Using longitudinal data from the largest worldwide observational study of Huntington's disease (n = 14,534), we assessed the relationship between hypertension, disease severity, and rate of clinical progression in Huntington's disease mutation carriers. Propensity score matching was used to statistically match normotensive and hypertensive participants for age, sex, body mass index, ethnicity, and CAG length. Results Huntington's disease patients had a lower prevalence of hypertension compared with age‐matched gene‐negative controls. Huntington's disease patients with hypertension had worse cognitive function, a higher depression score, and more marked motor progression over time compared with Huntington's disease patients without hypertension. However, hypertensive patients taking antihypertensive medication had less motor, cognitive, and functional impairment than Huntington's disease patients with untreated hypertension and a later age of clinical onset compared with untreated hypertensive patients and normotensive individuals with Huntington's disease. Conclusions We report the novel finding that hypertension and antihypertensive medication use are associated with altered disease severity, progression, and clinical onset in patients with Huntington's disease. These findings have implications for the management of hypertension in Huntington's disease and suggest that prospective studies of the symptomatic or disease‐modifying potential of antihypertensives in neurodegenerative diseases are warranted. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jessica J Steventon
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Maindy Road, Cardiff University, Cardiff, Wales, UK
| | - Anne E Rosser
- Neuroscience and Mental Health Research Institute and Brain Research and Intracerebral Neurotherapeutic (BRAIN) unit, School of Medicine, Cardiff University, Cardiff, Wales, UK.,Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Emma Hart
- Bristol Heart Institute (BHI), Clinical Research and Imaging Centre, School of Physiology, Pharmacology and Neuroscience, Bristol University, Bristol, UK
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Maindy Road, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
57
|
Costa R, Tamascia ML, Sanches A, Moreira RP, Cunha TS, Nogueira MD, Casarini DE, Marcondes FK. Tactile stimulation of adult rats modulates hormonal responses, depression-like behaviors, and memory impairment induced by chronic mild stress: Role of angiotensin II. Behav Brain Res 2020; 379:112250. [DOI: 10.1016/j.bbr.2019.112250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022]
|
58
|
Role of brain renin angiotensin system in neurodegeneration: An update. Saudi J Biol Sci 2020; 27:905-912. [PMID: 32127770 PMCID: PMC7042626 DOI: 10.1016/j.sjbs.2020.01.026] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/12/2023] Open
Abstract
Renin angiotensin system (RAS) is an endocrine system widely known for its physiological roles in electrolyte homeostasis, body fluid volume regulation and cardiovascular control in peripheral circulation. However, brain RAS is an independent form of RAS expressed locally in the brain, which is known to be involved in brain functions and disorders. There is strong evidence for a major involvement of excessive brain angiotensin converting enzyme (ACE)/Angiotensin II (Ang II)/Angiotensin type-1 receptor (AT-1R) axis in increased activation of oxidative stress, apoptosis and neuroinflammation causing neurodegeneration in several brain disorders. Numerous studies have demonstrated strong neuroprotective effects by blocking AT1R in these brain disorders. Additionally, the angiotensin converting enzyme 2 (ACE2)/Angiotensin (1–7)/Mas receptor (MASR), is another axis of brain RAS which counteracts the damaging effects of ACE/Ang II/AT1R axis on neurons in the brain. Thus, angiotensin II receptor blockers (ARBs) and activation of ACE2/Angiotensin (1–7)/MASR axis may serve as an exciting and novel method for neuroprotection in several neurodegenerative diseases. Here in this review article, we discuss the expression of RAS in the brain and highlight how altered RAS level may cause neurodegeneration. Understanding the pathophysiology of RAS and their links to neurodegeneration has enormous potential to identify potentially effective pharmacological tools to treat neurodegenerative diseases in the brain.
Collapse
|
59
|
Gupta V, Dhull DK, Joshi J, Kaur S, Kumar A. Neuroprotective potential of azilsartan against cerebral ischemic injury: Possible involvement of mitochondrial mechanisms. Neurochem Int 2020; 132:104604. [DOI: 10.1016/j.neuint.2019.104604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 01/01/2023]
|
60
|
Chávez-Castillo M, Nava M, Ortega Á, Rojas M, Núñez V, Salazar J, Bermúdez V, Rojas-Quintero J. Depression as an Immunometabolic Disorder: Exploring Shared Pharmacotherapeutics with Cardiovascular Disease. Curr Neuropharmacol 2020; 18:1138-1153. [PMID: 32282306 PMCID: PMC7709154 DOI: 10.2174/1570159x18666200413144401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/04/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Modern times have seen depression and cardiovascular disease (CVD) become notorious public health concerns, corresponding to alarming proportions of morbidity, mortality, decreased quality of life, and economic costs. Expanding comprehension of the pathogenesis of depression as an immunometabolic disorder has identified numerous pathophysiologic phenomena in common with CVD, including chronic inflammation, insulin resistance, and oxidative stress. These shared components could be exploited to offer improved alternatives in the joint management of these conditions. Abundant preclinical and clinical data on the impact of established treatments for CVD in the management of depression have allowed for potential candidates to be proposed for the joint management of depression and CVD as immunometabolic disorders. However, a large proportion of the clinical investigation currently available exhibits marked methodological flaws which preclude the formulation of concrete recommendations in many cases. This situation may be a reflection of pervasive problems present in clinical research in psychiatry, especially pertaining to study homogeneity. Therefore, further high-quality research is essential in the future in this regard.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Salazar
- Address correspondence to this author at the Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 20th Avenue 4004, Venezuela; Tel/Fax: ++582617597279; E-mail:
| | | | | |
Collapse
|
61
|
Losartan modulates brain inflammation and improves mood disorders and memory impairment induced by innate immune activation: The role of PPAR-γ activation. Cytokine 2020; 125:154860. [PMID: 31574424 DOI: 10.1016/j.cyto.2019.154860] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
|
62
|
Hajmohammadi M, Khaksari M, Soltani Z, Shahrokhi N, Najafipour H, Abbasi R. The Effect of Candesartan Alone and Its Combination With Estrogen on Post-traumatic Brain Injury Outcomes in Female Rats. Front Neurosci 2019; 13:1043. [PMID: 31849571 PMCID: PMC6901902 DOI: 10.3389/fnins.2019.01043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/13/2019] [Indexed: 01/31/2023] Open
Abstract
Aim: The aim of this study was to evaluate the effect of candesartan (angiotensin II type I receptor blocker) alone and its combination with estrogen on the changes in brain edema, intracranial pressure (ICP), and cerebral perfusion pressure (CPP) following diffuse traumatic brain injury (TBI) in female rats. Methods: TBI was induced in ovariectomized female rats using Marmarou's method. The treatment groups received low-dose (LC) and high-dose (HC) candesartan, estrogen (E2), a combination of estrogen vehicle and candesartan vehicle (oil + vehicle), or a combination of estrogen with low-dose (E2 + LC), or with high-dose (E2 + HC) candesartan. ICP and CPP were measured before and several times after TBI, and the brain water content (brain edema) was measured 24 h after TBI. Results: After the TBI, brain edema and ICP in the estrogen group were lower than in the vehicle and TBI groups. Brain edema and ICP in the HC group were lower than in the vehicle group after TBI. Although there was no significant difference in brain edema and ICP between the LC and vehicle groups, significant differences in these variables were observed when the E2 + LC and E2 + HC groups were compared with the oil + vehicle group after TBI. A significant increase in CPP was observed in the estrogen group 4 and 24 h post-TBI, while this increase was found in the HC and E2 + LC groups 24 h post-TBI. Conclusions: A low dose of candesartan did not exert a protective effect on TBI outcomes, but such an effect did appear after combination with estrogen. This finding suggests that interaction between low-dose candesartan and estrogen improves TBI-induced consequences.
Collapse
Affiliation(s)
- Mojdeh Hajmohammadi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Abbasi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
63
|
Ivanova N, Tchekalarova J. The Potential Therapeutic Capacity of Inhibiting the Brain Renin-Angiotensin System in the Treatment of Co-Morbid Conditions in Epilepsy. CNS Drugs 2019; 33:1101-1112. [PMID: 31680223 DOI: 10.1007/s40263-019-00678-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Epilepsy is one of the most prevalent neurological diseases and although numerous novel anticonvulsants have been approved, the proportion of patients who are refractory to medical treatment of seizures and have progressive co-morbidities such as cognitive impairment and depression remains at about 20-30%. In the last decade, extensive research has identified a therapeutic capacity of the components of the brain renin-angiotensin system (RAS) in seizure- and epilepsy-related phenomena. Alleviating the activity of RAS in the central nervous system is considered to be a potential adjuvant strategy for the treatment of numerous detrimental consequences of epileptogenesis. One of the main advantages of RAS is associated with its modulatory influence on different neurotransmitter systems, thereby exerting a fine-tuning control mechanism for brain excitability. The most recent scientific findings regarding the involvement of the components of brain RAS show that angiotensin II (Ang II), angiotensin-converting enzyme (ACE), Ang II type 1 (AT1) and type 2 (AT2) receptors are involved in the control of epilepsy and its accompanying complications, and therefore they are currently of therapeutic interest in the treatment of this disease. However, data on the role of different components of brain RAS on co-morbid conditions in epilepsy, including hypertension, are insufficient. Experimental and clinical findings related to the involvement of Ang II, ACE, AT1, and AT2 receptors in the control of epilepsy and accompanying complications may point to new therapeutic opportunities and adjuvants for the treatment of common co-morbid conditions of epilepsy.
Collapse
Affiliation(s)
- Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria.
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria
| |
Collapse
|
64
|
Hypertension and Its Impact on Stroke Recovery: From a Vascular to a Parenchymal Overview. Neural Plast 2019; 2019:6843895. [PMID: 31737062 PMCID: PMC6815533 DOI: 10.1155/2019/6843895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the first modifiable vascular risk factor accounting for 10.4 million deaths worldwide; it is strongly and independently associated with the risk of stroke and is related to worse prognosis. In addition, hypertension seems to be a key player in the implementation of vascular cognitive impairment. Long-term hypertension, complicated or not by the occurrence of ischemic stroke, is often reviewed on its vascular side, and parenchymal consequences are put aside. Here, we sought to review the impact of isolated hypertension or hypertension associated to stroke on brain atrophy, neuron connectivity and neurogenesis, and phenotype modification of microglia and astrocytes. Finally, we discuss the impact of antihypertensive therapies on cell responses to hypertension and functional recovery. This attractive topic remains a focus of continued investigation and stresses the relevance of including this vascular risk factor in preclinical investigations of stroke outcome.
Collapse
|
65
|
Sharifi F, Reisi P, Malek M. Angiotensin 1 receptor antagonist attenuates acute kidney injury-induced cognitive impairment and synaptic plasticity via modulating hippocampal oxidative stress. Life Sci 2019; 234:116775. [DOI: 10.1016/j.lfs.2019.116775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 01/13/2023]
|
66
|
Szczurkowska PJ, Polonis K, Becari C, Hoffmann M, Narkiewicz K, Chrostowska M. Epilepsy and hypertension: The possible link for sudden unexpected death in epilepsy? Cardiol J 2019; 28:330-335. [PMID: 31565791 PMCID: PMC8078946 DOI: 10.5603/cj.a2019.0095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 11/25/2022] Open
Abstract
Epilepsy affects about 50 million people worldwide. Sudden unexpected death in epilepsy (SUDEP) is the main cause of death in epilepsy accounting for up to 17% of all deaths in epileptic patients, and therefore remains a major public health problem. SUDEP likely arises from a combination and interaction of multiple risk factors (such as being male, drug resistance, frequent generalized tonic-clonic seizures) making risk prediction and mitigation challenging. While there is a general understanding of the physiopathology of SUDEP, mechanistic hypotheses linking risk factors with a risk of SUDEP are still lacking. Identifying cross-talk between biological systems implicated in SUDEP may facilitate the development of improved models for SUDEP risk assessment, treatment and clinical management. In this review, the aim was to explore an overlap between the pathophysiology of hypertension, cardiovascular disease and epilepsy, and discuss its implication for SUDEP. Presented herein, evidence in literature in support of a cross-talk between the renin-angiotensin system (RAS) and sympathetic nervous system, both known to be involved in the development of hypertension and cardiovascular disease, and as one of the underlying mechanisms of SUDEP. This article also provides a brief description of local RAS in brain neuroinflammation and the role of centrally acting RAS inhibitors in epileptic seizure alleviation.
Collapse
Affiliation(s)
| | - Katarzyna Polonis
- Center for Individualized Medicine - Biomarker Discovery, Mayo Clinic, Rochester, MN, USA
| | - Christiane Becari
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, Ribeirão Preto-SP, Brazil
| | - Michał Hoffmann
- Department of Hypertension and Diabetology, Medical University of Gdansk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, Poland
| | - Marzena Chrostowska
- Department of Hypertension and Diabetology, Medical University of Gdansk, Poland.
| |
Collapse
|
67
|
Xue B, Yu Y, Wei SG, Beltz TG, Guo F, Felder RB, Johnson AK. Stress-Induced Sensitization of Angiotensin II Hypertension Is Reversed by Blockade of Angiotensin-Converting Enzyme or Tumor Necrosis Factor-α. Am J Hypertens 2019; 32:909-917. [PMID: 31063551 DOI: 10.1093/ajh/hpz075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is characterized by a disordered stress response and associated with increased cardiovascular disease risk. The present study investigated whether angiotensin (Ang) II-elicited hypertensive response is sensitized in a model of PTSD and whether inhibition of angiotensin-converting enzyme (ACE) or tumor necrosis factor (TNF)-α prior to PTSD blocks this sensitization of Ang II hypertension. METHODS The resident-intruder paradigm was used to model PTSD. Each intruder rat (male Sprague-Dawley) was given normal drinking water or was pretreated with either an ACE inhibitor (captopril) or a TNF-α inhibitor (pentoxifylline) in the drinking water for 2 weeks. Subsequently, they were exposed to a different resident (male Long-Evans) for 2 hours on 3 days with each session separated by 1 day and then received a subcutaneous infusion of Ang II for 2 weeks. RESULTS The stressed rats had a significantly enhanced hypertensive response to the Ang II infusion (stressed Δ40.2 ± 3.9 mm Hg vs. unstressed Δ20.5 ± 4.5 mm Hg) and an upregulation of mRNA or protein expression of renin-angiotensin system (RAS) and proinflammatory cytokine (PIC) components and of a microglial marker in the lamina terminalis and hypothalamic paraventricular nucleus when compared with unstressed control rats. Both the sensitized hypertensive response and enhanced gene and protein expression were blocked by pretreatment with either ACE (Δ21.3 ± 3.9 mm Hg) or TNF-α inhibitor (Δ21.4 ± 2.6 mm Hg). CONCLUSIONS The results indicate that upregulation of the brain RAS and PICs produced by severe stress contributes to traumatic-induced sensitization of hypertensive response to Ang II, and disorders such as PTSD may predispose individuals to development of hypertension.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
- The Franҫois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa, USA
| | - Yang Yu
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shun-Guang Wei
- The Franҫois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Terry G Beltz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Fang Guo
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Robert B Felder
- The Franҫois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
- The Franҫois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa, USA
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, USA
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
68
|
Trotta MC, Ferraro B, Messina A, Panarese I, Gulotta E, Nicoletti GF, D'Amico M, Pieretti G. Telmisartan cardioprotects from the ischaemic/hypoxic damage through a miR-1-dependent pathway. J Cell Mol Med 2019; 23:6635-6645. [PMID: 31369209 PMCID: PMC6787508 DOI: 10.1111/jcmm.14534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate whether telmisartan protects the heart from the ischaemia/reperfusion damage through a local microRNA‐1 modulation. Studies on the myocardial ischaemia/reperfusion injury in vivo and on the cardiomyocyte hypoxia/reoxygenation damage in vitro were done. In vivo, male Sprague‐Dawley rats administered for 3 weeks with telmisartan 12 mg/kg/d by gastric gavage underwent ischaemia/reperfusion of the left descending coronary artery. In these rats, infarct size measurement, ELISA, immunohistochemistry (IHC) and reverse transcriptase real‐time polymerase chain reaction showed that expressions of connexin 43, potassium voltage‐gated channel subfamily Q member 1 and the protein Bcl‐2 were significantly increased by telmisartan in the reperfused myocardium, paralleled by microRNA‐1 down‐regulation. In vitro, the transfection of cardiomyocytes with microRNA‐1 reduced the expressions of connexin 43, potassium voltage‐gated channel subfamily Q member 1 and Bcl‐2 in the cells. Telmisartan (50 µmol/L) 60 minutes before hypoxia/reoxygenation, while not affecting the levels of miR‐1 in transfected cells in normoxic condition, almost abolished the increment of miR‐1 induced by the hypoxia/reoxygenation to transfected cells. All together, telmisartan cardioprotected against the myocardial damage through the microRNA‐1 modulation, and consequent modifications of its downstream target connexin 43, potassium voltage‐gated channel subfamily Q member 1 and Bcl‐2.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Bartolo Ferraro
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Iacopo Panarese
- Department of Mental and Physical Health and Preventive Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Eliana Gulotta
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, Palermo, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Surgical and Dental Specialties, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Gorizio Pieretti
- Multidisciplinary Department of Surgical and Dental Specialties, University of Campania 'Luigi Vanvitelli', Naples, Italy
| |
Collapse
|
69
|
Akbari Z, Reisi P, Torkaman-Boutorabi A, Farahmandfar M. The Effect of Pentoxifylline on Passive Avoidance Learning and Expression of Tumor Necrosis Factor-Alpha and Caspase-3 in the Rat Hippocampus Following Lipopolysaccharide-Induced Inflammation. Adv Biomed Res 2019; 8:39. [PMID: 31360680 PMCID: PMC6621342 DOI: 10.4103/abr.abr_33_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Peripheral inflammation is effective in the development of neurodegenerative diseases. Pentoxifylline (PTX) has an inhibitory effect on inflammatory cytokines; therefore, we aimed to evaluate the effect of PTX on passive avoidance learning and the expression of tumor necrosis factor-alpha (TNF-α) and caspase-3 in the rat hippocampus, following systemic lipopolysaccharide (LPS) injection. Materials and Methods: Male Wistar rats were randomly divided into five groups: control, LPS, and LPS + PTX, receiving doses of 10, 25, and 50 mg/kg of PTX, respectively. The animals received daily injections of PTX (i.p.) 1 week before and 2 weeks after the LPS injection (5 mg/kg; i.p.). Learning and memory were evaluated by passive avoidance learning. Then, the expression of the associated genes was measured in the hippocampus. Results: The results showed that the peripheral LPS injection had no significant effect on learning and memory. PTX only with a dose of 10 mg/kg shows an improvement (P < 0.05). Results from reverse transcription polymerase chain reaction showed that LPS had no significant effect on the expression of caspase-3 and TNF-α. PTX with a dose of 10 mg/kg decreased the caspase-3 expression in the LPS + PTX group (P < 0.001), but the expression of both genes increased, using other concentrations. Conclusions: Findings showed that systemic application of LPS after 2 weeks had no effect on learning and memory and the expression of inflammatory genes in the hippocampus, but PTX led to an increase in the expression of these genes, which could be due to its direct effects or possible exacerbation of LPS effects.
Collapse
Affiliation(s)
- Zahra Akbari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,International Campuses, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
70
|
Costa-Ferreira W, Morais-Silva G, Gomes-de-Souza L, Marin MT, Crestani CC. The AT1 Receptor Antagonist Losartan Does Not Affect Depressive-Like State and Memory Impairment Evoked by Chronic Stressors in Rats. Front Pharmacol 2019; 10:705. [PMID: 31293424 PMCID: PMC6598205 DOI: 10.3389/fphar.2019.00705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
The present study investigated the effect of the treatment with the angiotensin II type 1 receptor (AT1) antagonist losartan in the depressive-like state and memory impairment evoked by exposure to either homotypic (i.e., repeated exposure to the same type of stressor) or heterotypic (i.e., exposure to different aversive stimuli) chronic stressors in rats. For this, male Wistar rats were subjected to a 10 days regimen of repeated restraint stress (RRS, homotypic stressor) or chronic variable stress (CVS, heterotypic stressor) while being concurrently treated daily with losartan (30 mg/kg/day, p.o.). Depressive-like state was evaluated by analysis of the alterations considered as markers of depression (decreased sucrose preference and body weight and coat state deterioration), whereas cognitive non-emotional performance was tested using the novel object recognition (NOR) test. Locomotor activity was also evaluated in the open field test. Both RRS and CVS impaired sucrose preference and caused coat state deterioration, whereas only CVS impaired body weight gain. Besides, RRS impaired short-term memory (but not long-term memory) in the NOR test. Neither depressive-like state nor memory impairment evoked by the chronic stressors was affected by the treatment with losartan. Nevertheless, CVS increased the locomotion, which was inhibited by losartan. Taken together, these results provide evidence that the chronic treatment with losartan does not affect the depressive-like state and memory impairment evoked by either homotypic or heterotypic chronic stress regimens in rats.
Collapse
Affiliation(s)
- Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Gessynger Morais-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Lucas Gomes-de-Souza
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Marcelo T Marin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, Brazil
| |
Collapse
|
71
|
Purkayastha S, Stokes M, Bell KR. Autonomic nervous system dysfunction in mild traumatic brain injury: a review of related pathophysiology and symptoms. Brain Inj 2019; 33:1129-1136. [DOI: 10.1080/02699052.2019.1631488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sushmita Purkayastha
- Department of Applied Physiology and Wellness, Simmons School of Education and Human Development, Southern Methodist University, Dallas, TX, USA
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mathew Stokes
- Department of Pediatrics/Division of Pediatric Neurology & Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kathleen R Bell
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
72
|
Oh SJ, Fan X. The Possible Role of the Angiotensin System in the Pathophysiology of Schizophrenia: Implications for Pharmacotherapy. CNS Drugs 2019; 33:539-547. [PMID: 30993607 DOI: 10.1007/s40263-019-00632-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A growing body of literature has elucidated the involvement of the central renin-angiotensin system (RAS) in various neuropsychiatric diseases. While consensus on the exact mechanism of the central RAS in schizophrenia pathophysiology does not currently exist, increasing evidence reveals promise in harnessing the therapeutic potential of RAS modulation in the treatment of schizophrenia. In this review, we examine how the central RAS affects inflammation, glutamate, dopamine, gamma-aminobutyric acid (GABA), and peroxisome proliferator-activated receptor (PPAR)-γ, all of which are associated with schizophrenia etiology. In addition, a recent study has demonstrated the therapeutic potential of RAS modulators, especially angiotensin II type 1 receptor blockers (ARBs), as adjunctive therapy to the currently available antipsychotic medications for schizophrenia treatment. With a greater understanding of how RAS inhibition directly modulates neurotransmitter balance in the brain, it is possible that compounds with RAS-inhibiting properties could be used to optimize physiological levels of glutamate, dopamine, and GABA, and the balance among the three neurotransmitters, analogously to how antipsychotic medications mediate the dopaminergic pathways. It can be hoped that a novel approach based on this concept, such as adjunctive telmisartan therapy, may offer practical interventional strategies to address currently unmet therapeutic needs in patients with schizophrenia, especially those with treatment-resistant schizophrenia.
Collapse
Affiliation(s)
| | - Xiaoduo Fan
- Psychotic Disorders Program, UMASS Memorial Medical Center, Biotech One, Suite 100, 365 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
73
|
Gong X, Hu H, Qiao Y, Xu P, Yang M, Dang R, Han W, Guo Y, Chen D, Jiang P. The Involvement of Renin-Angiotensin System in Lipopolysaccharide-Induced Behavioral Changes, Neuroinflammation, and Disturbed Insulin Signaling. Front Pharmacol 2019; 10:318. [PMID: 31001119 PMCID: PMC6454872 DOI: 10.3389/fphar.2019.00318] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Brain insulin signaling is accounted for the development of a variety of neuropsychiatric disorders, such as anxiety and depression, whereas both inflammation and the activated renin-angiotensin system (RAS) are two major contributors to insulin resistance. Intriguingly, inflammation and RAS can activate each other, forming a positive feedback loop that would result in exacerbated unwanted tissue damage. To further examine the interrelationship among insulin signaling, neuroinflammation and RAS in the brain, the effect of repeated lipopolysaccharide (LPS) exposure and co-treatment with the angiotensin II (Ang II) receptor type 1 (AT1) blocker, candesartan (Cand), on anxiety and depression-like behaviors, RAS, neuroinflammation and insulin signaling was explored. Our results demonstrated that prolonged LPS challenge successfully induced the rats into anxiety and depression-like state, accompanied with significant neural apoptosis and neuroinflammation. LPS also activated RAS as evidenced by the enhanced angiotensin converting enzyme (ACE) expression, Ang II generation and AT1 expression. However, blocking the activated RAS with Cand co-treatment conferred neurobehavioral protective properties. The AT1 blocker markedly ameliorated the microglial activation, the enhanced gene expression of the proinflammatory cytokines and the overactivated NF-κB signaling. In addition, Cand also mitigated the LPS-induced disturbance of insulin signaling with the normalized phosphorylation of serine 307 and tyrosine 896 of insulin receptor substrate-1 (IRS-1). Collectively, the present study, for the first time, provided the direct evidence indicating that the inflammatory condition may interact with RAS to impede brain insulin pathway, resulting in neurobehavioral damage, and inhibiting RAS seems to be a promising strategy to block the cross-talk and cut off the vicious cycle between RAS and immune system.
Collapse
Affiliation(s)
- Xiaoxue Gong
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Hui Hu
- Department of Cardiology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Yi Qiao
- Department of Public Health, Jining Medical University, Jining, China
| | - Pengfei Xu
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Mengqi Yang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Ruili Dang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Wenxiu Han
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Yujin Guo
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Dan Chen
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
74
|
Terock J, Hannemann A, Janowitz D, Freyberger HJ, Felix SB, Dörr M, Nauck M, Völzke H, Grabe HJ. Associations of trauma exposure and post-traumatic stress disorder with the activity of the renin-angiotensin-aldosterone-system in the general population. Psychol Med 2019; 49:843-851. [PMID: 29909779 DOI: 10.1017/s0033291718001496] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Previous studies suggested that exposure to traumatic events during childhood and adulthood and post-traumatic stress disorder (PTSD) are associated with a dysregulation of different neuroendocrine systems. However, the activity of the renin-angiotensin-aldosterone-system (RAAS) in relation to trauma/PTSD has been largely neglected. METHODS Traumatization, PTSD, and plasma concentrations of renin and aldosterone were measured in 3092 individuals from the general population. Subgroups according to the status of traumatization ('without trauma'; 'trauma, without PTSD', 'PTSD') were formed and compared regarding renin and aldosterone concentrations. Additionally, we calculated the associations between the number of traumata, renin, and aldosterone concentrations. Finally, associations of PTSD with renin/aldosterone levels were controlled for the number of traumata ('trauma load'). RESULTS Levels of renin, but not aldosterone, were increased in traumatized persons without PTSD (p = 0.02) and, even stronger, with PTSD (p < 0.01). Moreover, we found a dose-response relation between the number of traumata and renin levels (β = 0.065; p < 0.001). Regression analyses showed PTSD as a significant predictor of renin (β = 0.38; p < 0.01). This effect was only slightly attenuated when controlled for trauma load (β = 0.32; p < 0.01). CONCLUSIONS Our results suggest that traumatization has lasting and cumulative effects on RAAS activity. Finding elevated renin levels in PTSD independent from trauma load supports the concept of PTSD as a disorder with specific neuroendocrine characteristics. Alternatively, elevated renin levels in traumatized persons may increase the risk for developing PTSD. Our findings contribute to explain the relationship between traumatic stress/PTSD and physical disorders.
Collapse
Affiliation(s)
- Jan Terock
- Department of Psychiatry and Psychotherapy,University Medicine Greifswald,Greifswald,Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald,Greifswald,Germany
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy,University Medicine Greifswald,Greifswald,Germany
| | - Harald J Freyberger
- Department of Psychiatry and Psychotherapy,University Medicine Greifswald,Greifswald,Germany
| | - Stephan B Felix
- Department of Internal Medicine B,University Medicine Greifswald,Greifswald,Germany
| | - Marcus Dörr
- Department of Internal Medicine B,University Medicine Greifswald,Greifswald,Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald,Greifswald,Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald,Greifswald,Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy,University Medicine Greifswald,Greifswald,Germany
| |
Collapse
|
75
|
Losartan treatment attenuates the development of neuropathic thermal hyperalgesia induced by peripheral nerve injury in rats. Life Sci 2019; 220:147-155. [DOI: 10.1016/j.lfs.2019.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 12/19/2022]
|
76
|
Estradiol modulation of the renin-angiotensin system and the regulation of fear extinction. Transl Psychiatry 2019; 9:36. [PMID: 30696810 PMCID: PMC6351608 DOI: 10.1038/s41398-019-0374-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 01/31/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is more prevalent in women than men, yet much remains to be determined regarding the mechanism underlying this sex difference. Clinical and preclinical studies have shown that low estradiol levels during extinction of fear conditioning in rodents (i.e., cue exposure therapy in humans) leads to poor extinction consolidation and increased fear during extinction recall. The renin-angiotensin system (RAS) is also associated with stress-related pathologies, and RAS antagonists can enhance extinction consolidation in males. However, less is known about how estradiol and the RAS converge to alter fear extinction consolidation in females. Since estradiol downregulates the RAS, we determined the role of surgically (via ovariectomy [OVX]) and pharmacologically (via the hormonal contraceptive [HC], levonorgestrel) clamping estradiol at low levels in female rats on fear-related behavior, serum estradiol and angiotensin II (Ang II) levels, and angiotensin II type I receptor (AT1R) binding in the brain. We then tested whether the AT1R antagonist losartan would alter fear-related behavior in an estradiol-dependent manner. We found that both OVX and HC treatment produced extinction consolidation deficits relative to intact female rats in proestrus (when estradiol levels are high), and that losartan treatment mitigated these deficits and reduced freezing. OVX, but not HC, altered AT1R ligand binding, though HC reduced estradiol and increased Ang II levels in plasma. These findings have significant clinical implications, indicating that administration of an AT1R antagonist, especially if estradiol levels are low, prior to an exposure therapy session may improve treatment outcomes in females.
Collapse
|
77
|
Østergaard L, Jørgensen MB, Knudsen GM. Low on energy? An energy supply-demand perspective on stress and depression. Neurosci Biobehav Rev 2018; 94:248-270. [DOI: 10.1016/j.neubiorev.2018.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
|
78
|
Li J, Yang R, Xia K, Wang T, Nie B, Gao K, Chen J, Zhao H, Li Y, Wang W. Effects of stress on behavior and resting-state fMRI in rats and evaluation of Telmisartan therapy in a stress-induced depression model. BMC Psychiatry 2018; 18:337. [PMID: 30333002 PMCID: PMC6192217 DOI: 10.1186/s12888-018-1880-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The etiology of depression and its effective therapeutic treatment have not been clearly identified. Using behavioral phenotyping and resting-state functional magnetic resonance imaging (r-fMRI), we investigated the behavioral impact and cerebral alterations of chronic unpredictable mild stress (CUMS) in the rat. We also evaluated the efficacy of telmisartan therapy in this rodent model of depression. METHODS Thirty-two rats were divided into 4 groups: a control group(C group), a stress group(S group), a stress + telmisartan(0.5 mg/kg)group (T-0.5 mg/kg group) and a stress + telmisartan(1 mg/kg) group (T-1 mg/kg group). A behavioral battery, including an open field test (OFT), a sucrose preference test (SPT), and an object recognition test (ORT), as well as r-fMRI were conducted after 4 weeks of CUMS and telmisartan therapy. The r-fMRI data were analyzed using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) approach. The group differences in the behavior and r-fMRI test results as well as the correlations between these 2 approaches were examined. RESULTS CUMS reduced the number of rearings and the total moved distance in OFT, the sucrose preference in SPT, and novel object recognition ability in ORT. The telmisartan treatment (1 mg/kg) significantly improved B-A/B + A in the ORT and improved latency scores in the OFT and SPT. The S group exhibited a decreased ReHo in the motor cortex and pons, but increased ReHo in the thalamus, visual cortex, midbrain, cerebellum, hippocampus, hypothalamus, and olfactory cortex compared to the C group. Telmisartan (1 mg/kg)reversed or attenuated the stress-induced changes in the motor cortex, midbrain, thalamus, hippocampus, hypothalamus, visual cortex, and olfactory cortex. A negative correlation was found between OFT rearing and ReHo values in the thalamus. Two positive correlations were found between ORT B-A and the ReHo values in the olfactory cortexand pons. CONCLUSIONS Telmisartan may be an effective complementary drug for individuals with depression who also exhibit memory impairments. Stress induced widespread regional alterations in the cerebrum in ReHo measures while telmissartan can reverse part of theses alterations. These data lend support for future research on the pathology of depression and provide a new insight into the effects of telmisartan on brain function in depression.
Collapse
Affiliation(s)
- Junling Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069 China
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Ran Yang
- Cardiovascular department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Kai Xia
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Tian Wang
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Binbin Nie
- Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Kuo Gao
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Huihui Zhao
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yubo Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Wei Wang
- Beijing University of Chinese Medicine, Beijing, 100029 China
| |
Collapse
|
79
|
Tashev R, Ivanova M. Involvement of hippocampal angiotensin 1 receptors in anxiety-like behaviour of olfactory bulbectomized rats. Pharmacol Rep 2018; 70:847-852. [DOI: 10.1016/j.pharep.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
|
80
|
Nestor J, Arinuma Y, Huerta TS, Kowal C, Nasiri E, Kello N, Fujieda Y, Bialas A, Hammond T, Sriram U, Stevens B, Huerta PT, Volpe BT, Diamond B. Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors. J Exp Med 2018; 215:2554-2566. [PMID: 30185634 PMCID: PMC6170183 DOI: 10.1084/jem.20180776] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/06/2018] [Accepted: 08/02/2018] [Indexed: 02/03/2023] Open
Abstract
Cognitive impairment occurs in 40-90% of patients with systemic lupus erythematosus (SLE), which is characterized by autoantibodies to nuclear antigens, especially DNA. We discovered that a subset of anti-DNA antibodies, termed DNRAbs, cross reacts with the N-methyl-d-aspartate receptor (NMDAR) and enhances NMDAR signaling. In patients, DNRAb presence associates with spatial memory impairment. In a mouse model, DNRAb-mediated brain pathology proceeds through an acute phase of excitotoxic neuron loss, followed by persistent alteration in neuronal integrity and spatial memory impairment. The latter pathology becomes evident only after DNRAbs are no longer detectable in the brain. Here we investigate the mechanism of long-term neuronal dysfunction mediated by transient exposure to antibody. We show that activated microglia and C1q are critical mediators of neuronal damage. We further show that centrally acting inhibitors of angiotensin-converting enzyme (ACE) can prevent microglial activation and preserve neuronal function and cognitive performance. Thus, ACE inhibition represents a strong candidate for clinical trials aimed at mitigating cognitive dysfunction.
Collapse
Affiliation(s)
- Jacquelyn Nestor
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Yoshiyuki Arinuma
- Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Tomás S Huerta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Czeslawa Kowal
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Elham Nasiri
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Nina Kello
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology Faculty of Medicine and Graduate School of Medicine Hokkaido University, Sapporo, Japan
| | - Alison Bialas
- Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Tim Hammond
- Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Beth Stevens
- Kirby Neurobiology Center Boston Children's Hospital, Boston, MA
| | - Patricio T Huerta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Bruce T Volpe
- Center for Biomedical Sciences, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Betty Diamond
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
| |
Collapse
|
81
|
Elkahloun AG, Rodriguez Y, Alaiyed S, Wenzel E, Saavedra JM. Telmisartan Protects a Microglia Cell Line from LPS Injury Beyond AT1 Receptor Blockade or PPARγ Activation. Mol Neurobiol 2018; 56:3193-3210. [PMID: 30105672 DOI: 10.1007/s12035-018-1300-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/02/2018] [Indexed: 01/12/2023]
Abstract
The Angiotensin II Receptor Blocker (ARB) Telmisartan reduces inflammation through Angiotensin II AT1 receptor blockade and peroxisome proliferator-activated receptor gamma (PPARγ) activation. However, in a mouse microglia-like BV2 cell line, imitating primary microglia responses with high fidelity and devoid of AT1 receptor gene expression or PPARγ activation, Telmisartan reduced gene expression of pro-injury factors, enhanced that of anti-inflammatory genes, and prevented LPS-induced increase in inflammatory markers. Using global gene expression profiling and pathways analysis, we revealed that Telmisartan normalized the expression of hundreds of genes upregulated by LPS and linked with inflammation, apoptosis and neurodegenerative disorders, while downregulating the expression of genes associated with oncological, neurodegenerative and viral diseases. The PPARγ full agonist Pioglitazone had no neuroprotective effects. Surprisingly, the PPARγ antagonists GW9662 and T0070907 were neuroprotective and enhanced Telmisartan effects. GW9226 alone significantly reduced LPS toxic effects and enhanced Telmisartan neuroprotection, including downregulation of pro-inflammatory TLR2 gene expression. Telmisartan and GW9662 effects on LPS injury negatively correlated with pro-inflammatory factors and upstream regulators, including TLR2, and positively with known neuroprotective factors and upstream regulators. Gene Set Enrichment Analysis (GSEA) of the Telmisartan and GW9662 data revealed negative correlations with sets of genes associated with neurodegenerative and metabolic disorders and toxic treatments in cultured systems, while demonstrating positive correlations with gene sets associated with neuroprotection and kinase inhibition. Our results strongly suggest that novel neuroprotective effects of Telmisartan and GW9662, beyond AT1 receptor blockade or PPARγ activation, include downregulation of the TLR2 signaling pathway, findings that may have translational relevance.
Collapse
Affiliation(s)
- Abdel G Elkahloun
- Microarray Core, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, 50 South Dr, MSC 4435, Bethesda, MD, 20892-4435, USA
| | - Yara Rodriguez
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Seham Alaiyed
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Erin Wenzel
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Juan M Saavedra
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA.
| |
Collapse
|
82
|
Thomas TC, Stockhausen EM, Law LM, Khodadad A, Lifshitz J. Rehabilitation modality and onset differentially influence whisker sensory hypersensitivity after diffuse traumatic brain injury in the rat. Restor Neurol Neurosci 2018; 35:611-629. [PMID: 29036852 DOI: 10.3233/rnn-170753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND As rehabilitation strategies advance as therapeutic interventions, the modality and onset of rehabilitation after traumatic brain injury (TBI) are critical to optimize treatment. Our laboratory has detected and characterized a late-onset, long-lasting sensory hypersensitivity to whisker stimulation in diffuse brain-injured rats; a deficit that is comparable to visual or auditory sensory hypersensitivity in humans with an acquired brain injury. OBJECTIVE We hypothesize that the modality and onset of rehabilitation therapies will differentially influence sensory hypersensitivity in response to the Whisker Nuisance Task (WNT) as well as WNT-induced corticosterone (CORT) stress response in diffuse brain-injured rats and shams. METHODS After midline fluid percussion brain injury (FPI) or sham surgery, rats were assigned to one of four rehabilitative interventions: (1) whisker sensory deprivation during week one or (2) week two or (3) whisker stimulation during week one or (4) week two. At 28 days following FPI and sham procedures, sensory hypersensitivity was assessed using the WNT. Plasma CORT was evaluated immediately following the WNT (aggravated levels) and prior to the pre-determined endpoint 24 hours later (non-aggravated levels). RESULTS Deprivation therapy during week two elicited significantly greater sensory hypersensitivity to the WNT compared to week one (p < 0.05), and aggravated CORT levels in FPI rats were significantly lower than sham levels. Stimulation therapy during week one resulted in low levels of sensory hypersensitivity to the WNT, similar to deprivation therapy and naïve controls, however, non-aggravated CORT levels in FPI rats were significantly higher than sham. CONCLUSION These data indicate that modality and onset of sensory rehabilitation can differentially influence FPI and sham rats, having a lasting impact on behavioral and stress responses to the WNT, emphasizing the necessity for continued evaluation of modality and onset of rehabilitation after TBI.
Collapse
Affiliation(s)
- Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital - Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, AZ, USA.,Phoenix VA Healthcare System - Phoenix, AZ, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky Chandler Medical Center - Lexington, KY, USA
| | - Ellen Magee Stockhausen
- Core Medical Group, Manchester, NH, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky Chandler Medical Center - Lexington, KY, USA
| | - L Matthew Law
- Barrow Neurological Institute at Phoenix Children's Hospital - Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, AZ, USA
| | - Aida Khodadad
- Barrow Neurological Institute at Phoenix Children's Hospital - Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, AZ, USA
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital - Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, AZ, USA.,Phoenix VA Healthcare System - Phoenix, AZ, USA.,Neuroscience Program, Arizona State University - Tempe, AZ, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky Chandler Medical Center - Lexington, KY, USA
| |
Collapse
|
83
|
Salmani H, Hosseini M, Beheshti F, Baghcheghi Y, Sadeghnia HR, Soukhtanloo M, Shafei MN, Khazaei M. Angiotensin receptor blocker, losartan ameliorates neuroinflammation and behavioral consequences of lipopolysaccharide injection. Life Sci 2018; 203:161-170. [PMID: 29684446 DOI: 10.1016/j.lfs.2018.04.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/11/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023]
|
84
|
Justin A, Divakar S, Ramanathan M. Cerebral ischemia induced inflammatory response and altered glutaminergic function mediated through brain AT 1 and not AT 2 receptor. Biomed Pharmacother 2018; 102:947-958. [PMID: 29710550 DOI: 10.1016/j.biopha.2018.03.164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 11/28/2022] Open
Abstract
In the present study, we investigated the effects of angiotensin (Ang II) receptor blockers in cerebral ischemia by administration of telmisartan (AT1 blocker) and/or PD123319 (AT2 blocker) in global ischemic mice model. The neuroprotective effect of AT antagonists was evaluated through monitoring muscle co-ordination and cerebral blood perfusion in ischemic mice. Gene expression studies (NF-κB, GSK-3β, EAAT-2, AT1 & AT2 receptors) and staining of brain regions with cresyl violet, GFAP, synaptophysin and NSE methods were carried out in to understand the molecular mechanisms. Further, the brain glutamate, cytokines, and Ang II peptide levels were evaluated and their correlation with EAAT-2 mRNA expression was performed. Our results indicate that the induction of ischemia elevates brain Ang II, cytokines, and glutamate levels and reduced muscle co-ordination and cerebral blood perfusion. The expressions of NF-κB, GSK-3β and AT1 were significantly increased, whereas, EAAT-2 expression was decreased. Blocking of AT1 receptors by telmisartan (TM) reversed the detrimental responses of cerebral ischemia and restored the cerebral blood flow denoting blockade of Ang II/AT1 pathway is beneficial in ischemia, whereas, blockade of AT2 receptors by PD123319 (PD) increased the ischemic injury in mice. This vulnerable effect of PD may be attributed through augmenting the Ang II/AT1 dependent cytokines mediated glutamate transporter (EAAT-2) dysfunction. Interestingly, the beneficial effects of AT1 blocker was remarkably antagonized by AT2 blocker in most of the parameters studied in ischemic conditions. Also, the expression of AT2 receptors was significantly increased compared to that of AT1 receptors upon ischemic induction. It denotes that the endogenous Ang II predominantly acts on AT2 receptor, thereby promoting its own mRNA transcription. Hence, the increased expression of AT2 receptors in ischemic condition could be used as target protein for therapeutic benefit.
Collapse
Affiliation(s)
- A Justin
- PSG College of Pharmacy, Peelamedu, Coimbatore, TN, 641004, India
| | - S Divakar
- PSG College of Pharmacy, Peelamedu, Coimbatore, TN, 641004, India
| | - M Ramanathan
- PSG College of Pharmacy, Peelamedu, Coimbatore, TN, 641004, India.
| |
Collapse
|
85
|
Torika N, Asraf K, Apte RN, Fleisher-Berkovich S. Candesartan ameliorates brain inflammation associated with Alzheimer's disease. CNS Neurosci Ther 2018; 24:231-242. [PMID: 29365370 DOI: 10.1111/cns.12802] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/05/2017] [Accepted: 12/24/2017] [Indexed: 01/08/2023] Open
Abstract
AIMS Alzheimer's disease (AD) pathology is associated with brain inflammation involving microglia and astrocytes. The renin-angiotensin system contributes to brain inflammation associated with AD pathology. This study aimed to investigate the role of candesartan, an angiotensin II type 1 receptor blocker, in modulation of glial functions associated with AD. METHODS Focusing on the role of candesartan in glial inflammation, we evaluated inflammatory mediators' levels, secreted by lipopolysaccharide-induced microglia following candesartan treatment. Also, short-term intranasal candesartan effects on amyloid burden and microglial activation were investigated in 5 familial AD mice. RESULTS Candesartan showed anti-inflammatory effects and shifted microglial activation toward a more neuroprotective phenotype. Candesartan decreased the lipopolysaccharide-induced nitric oxide synthase and cyclooxygenase-2 expression levels, which was accompanied by an induction of arginase-1 expression levels and enhanced Aβ1-42 uptake by microglia. Moreover, intranasally administered candesartan to AD mice model significantly reduced the amyloid burden and microglia activation in the hippocampus. CONCLUSIONS These results thus shed light on the neuroprotective role of candesartan in the early stage of AD, which might relate to modulation of microglial activation states.
Collapse
Affiliation(s)
- Nofar Torika
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Keren Asraf
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ron N Apte
- Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Sigal Fleisher-Berkovich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
86
|
Saavedra JM, Armando I. Angiotensin II AT2 Receptors Contribute to Regulate the Sympathoadrenal and Hormonal Reaction to Stress Stimuli. Cell Mol Neurobiol 2018; 38:85-108. [PMID: 28884431 PMCID: PMC6668356 DOI: 10.1007/s10571-017-0533-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
Angiotensin II, through AT1 receptor stimulation, mediates multiple cardiovascular, metabolic, and behavioral functions including the response to stressors. Conversely, the function of Angiotensin II AT2 receptors has not been totally clarified. In adult rodents, AT2 receptor distribution is very limited but it is particularly high in the adrenal medulla. Recent results strongly indicate that AT2 receptors contribute to the regulation of the response to stress stimuli. This occurs in association with AT1 receptors, both receptor types reciprocally influencing their expression and therefore their function. AT2 receptors appear to influence the response to many types of stressors and in all components of the hypothalamic-pituitary-adrenal axis. The molecular mechanisms involved in AT2 receptor activation, the complex interactions with AT1 receptors, and additional factors participating in the control of AT2 receptor regulation and activity in response to stressors are only partially understood. Further research is necessary to close this knowledge gap and to clarify whether AT2 receptor activation may carry the potential of a major translational advance.
Collapse
Affiliation(s)
- J M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road, Bldg. D, Room 287, Washington, DC, 20007, USA.
| | - I Armando
- The George Washington University School of Medicine and Health Sciences, Ross Hall Suite 738 2300 Eye Street, Washington, DC, USA
| |
Collapse
|
87
|
Atanasova D, Tchekalarova J, Ivanova N, Nenchovska Z, Pavlova E, Atanassova N, Lazarov N. Losartan suppresses the kainate-induced changes of angiotensin AT 1 receptor expression in a model of comorbid hypertension and epilepsy. Life Sci 2017; 193:40-46. [PMID: 29223539 DOI: 10.1016/j.lfs.2017.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022]
Abstract
AIMS Experimental and clinical studies have demonstrated that components of renin-angiotensin system are elevated in the hippocampus in epileptogenic conditions. In the present work, we explored the changes in the expression of angiotensin II receptor, type 1 (AT1 receptor) in limbic structures, as well as the effect of the AT1 receptor antagonist losartan in a model of comorbid hypertension and epilepsy. MAIN METHODS The expression of AT1 receptors was compared between spontaneously hypertensive rats (SHRs) and Wistar rats by using immunohistochemistry in the kainate (KA) model of temporal lobe epilepsy (TLE). The effect of losartan was studied on AT1 receptor expression in epileptic rats that were treated for a period of 4weeks after status epilepticus. KEY FINDINGS The naive and epileptic SHRs were characterized by stronger protein expression of AT1 receptor than normotensive Wistar rats in the CA1, CA3a, CA3b, CA3c field and the hilus of the dentate gyrus of the dorsal hippocampus but fewer cells were immunostained in the piriform cortex. Increased AT1 immunostaining was observed in the basolateral amygdala of epileptic SHRs but not of epileptic Wistar rats. Losartan exerted stronger and structure-dependent suppression of AT1 receptor expression in SHRs compared to Wistar rats. SIGNIFICANCE Our results confirm the important role of AT1 receptor in epilepsy and suggest that the AT1receptor antagonists could be used as a therapeutic strategy for treatment of comorbid hypertension and epilepsy.
Collapse
Affiliation(s)
- Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora 6003, Bulgaria; Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Göttingen 37077, Germany.
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Zlatina Nenchovska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Ekaterina Pavlova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nina Atanassova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikolai Lazarov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; Department of Anatomy and Histology, Medical University of Sofia, Sofia 1431, Bulgaria
| |
Collapse
|
88
|
Saavedra J. Beneficial effects of Angiotensin II receptor blockers in brain disorders. Pharmacol Res 2017; 125:91-103. [DOI: 10.1016/j.phrs.2017.06.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/17/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
|
89
|
Affiliation(s)
- Vikas Menon
- Department of Psychiatry, JIPMER, Puducherry, India
| | - Shahul Ameen
- Department of Psychiatry, St. Thomas Hospital, Changanacherry, Kerala, India E-mail:
| |
Collapse
|
90
|
Li Y, Cheng KC, Liu KF, Peng WH, Cheng JT, Niu HS. Telmisartan Activates PPARδ to Improve Symptoms of Unpredictable Chronic Mild Stress-Induced Depression in Mice. Sci Rep 2017; 7:14021. [PMID: 29070884 PMCID: PMC5656622 DOI: 10.1038/s41598-017-14265-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/09/2017] [Indexed: 11/09/2022] Open
Abstract
Major depression is a common mental disorder that has been established to be associated with a decrease in serotonin and/or serotonin transporters in the brain. Peroxisome proliferator-activated receptor δ (PPARδ) has been introduced as a potential target for depression treatment. Telmisartan was recently shown to activate PPARδ expression; therefore, the effectiveness of telmisartan in treating depression was investigated. In unpredictable chronic mild stress (UCMS) model, treatment with telmisartan for five weeks notably decrease in the time spent in the central and the reduced frequency of grooming and rearing in open filed test (OFT) and the decreased sucrose consumption in sucrose preference test (SPT) compared with the paradigms. Telmisartan also reversed the decrease in PPARδ and 5-HTT levels in the hippocampus of depression-like mice. Administration of PPARδ antagonist GSK0660 and direct infusion of sh-PPARδ into the brain blocked the effects of telmisartan on the improvement of depression-like behavior in these mice. Moreover, telmisartan enhanced the expression of PPARδ and 5HTT in H19-7 cells. In conclusion, the obtained results suggest that telmisartan improves symptoms of stress-induced depression in animals under chronic stress through activation of PPARδ. Therefore, telmisartan may be developed as a potential anti-depressant in the future.
Collapse
Affiliation(s)
- Yingxiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890, Japan
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, 71003, Taiwan
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890, Japan
| | - Keng-Fan Liu
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung City, 40401, Taiwan
| | - Wen-Huang Peng
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung City, 40401, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, 71003, Taiwan.
- Institute of Medical Sciences, Chang Jung Christian University, Gueiren, Tainan City, 71101, Taiwan.
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City, 97005, Taiwan.
| |
Collapse
|
91
|
Fu Q, Song R, Yang Z, Shan Q, Chen W. 6-Hydroxydopamine induces brain vascular endothelial inflammation. IUBMB Life 2017; 69:887-895. [PMID: 29048735 DOI: 10.1002/iub.1685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Qizhi Fu
- Department of Neurology; The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology; Luoyang Henan China
| | - Runluo Song
- Department of Neurology; The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology; Luoyang Henan China
| | - Zhongxi Yang
- Department of Neurosurgery; The First Hospital of Jilin University; Changchun Jilin China
| | - Qi Shan
- Department of Neurology; The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology; Luoyang Henan China
| | - Wenna Chen
- Department of Neurology; The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology; Luoyang Henan China
| |
Collapse
|
92
|
Müller N. Immunological aspects of the treatment of depression and schizophrenia. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28566947 PMCID: PMC5442364 DOI: 10.31887/dcns.2017.19.1/nmueller] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Schizophrenia and major depression (MD) have been associated with immune system dysfunction. One example of this is the altered level of cytokines—important inflammatory mediators—in blood, and a proinflammatory immune state has been described in some subgroups of patients. A knock to the immune system in early life might trigger a life-long increased immune reactivity, and infections and autoimmune disorders are now known to be risk factors for development of schizophrenia and MD. Pro- and anti-inflammatory cytokines mediate indoleamine 2,3-dioxygenase activity; this enzyme drives metabolism of tryptophan and kynurenin in the central nervous system and degrades serotonin. Alterations of serotonergic, noradrenergic, and glutamatergic neurotransmission have been associated with low-level neuroinflammation, and anti-inflammatory compounds have a therapeutic benefit in MD and schizophrenia, as shown in meta-analyses. Moreover, antidepressants and antipsychotics have intrinsic immunomodulatory effects. With evidence pointing to the role inflammatory processes play in the pathogenesis of major psychiatric disorders, this review will look at various immunological aspects of treatment of such disorders.
Collapse
Affiliation(s)
- Norbert Müller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University Munich, Munich, Germany
| |
Collapse
|
93
|
Abstract
Depression remains a debilitating condition with an uncertain aetiology. Recently, attention has been given to the renin-angiotensin system. In the central nervous system, angiotensin II may be important in multiple pathways related to neurodevelopment and regulation of the stress response. Studies of drugs targeting the renin-angiotensin system have yielded promising results. Here, we review the potential beneficial effects of angiotensin blockers in depression and their mechanisms of action. Drugs blocking the angiotensin system have efficacy in several animal models of depression. While no randomised clinical trials were found, case reports and observational studies showed that angiotensin-converting enzyme inhibitors or angiotensin receptor blockers had positive effects on depression, whereas other antihypertensive agents did not. Drugs targeting the renin-angiotensin system act on inflammatory pathways implicated in depression. Both preclinical and clinical data suggest that these drugs possess antidepressant properties. In light of these results, angiotensin system-blocking agents offer new horizons in mood disorder treatment.
Collapse
|
94
|
Trofimiuk E, Wielgat P, Braszko JJ. Candesartan, angiotensin II type 1 receptor blocker is able to relieve age-related cognitive impairment. Pharmacol Rep 2017; 70:87-92. [PMID: 29331792 DOI: 10.1016/j.pharep.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Candesartan is one of the standard antihypertensive drug belonging to AT1R angiotensin receptor blockers (ARBs) group. Beneficial effects of this drug in the treatment of hypertension are well recognized. In this study we tested a hypothesis that candesartan could alleviate age-related memory decline. METHODS Aged and young rats have been treated with candesartan (0.1mg kg-1) for 21days and then underwent a battery of behavioral tests: for assessment of long-term memory (Passive avoidance test - PA), recognition memory (Object recognition test - OR), locomotor functions (Open field - OF) and anxiety behavior (Elevated plus maze - EPM). RESULTS Aged rats (2-years-old) displayed clear declining tendency in the retrieval of passive avoidance behavior showing thus increased forgetting. Prolonged administration of candesartan significantly (p<0.01) reversed this phenomenon causing recall measured as the avoidance latency, and surprisingly also showed the tendency to recall deterioration observed in the young rats. More optimistic results were achieved in the OR, where candesartan significantly improved recognition memory (p<0.001) of aged rats who performed even better than the young ones (p<0.05). CONCLUSIONS It appears that candesartan potently abolishes some kinds of aging-induced memory impairments and cognitive declines in aged rats, but in some circumstances it may even could increase the damage of memory. It seems that the use of sartans in the treatment of hypertension for patients with associated cognitive impairment, or for people in risk groups for such disorders can be an interesting alternative.
Collapse
Affiliation(s)
- Emil Trofimiuk
- Department of Clinical Pharmacology, Medical University of Bialystok, Białystok, Poland.
| | - Przemysław Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Białystok, Poland
| | - Jan J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
95
|
Park J, Marvar PJ, Liao P, Kankam ML, Norrholm SD, Downey RM, McCullough SA, Le NA, Rothbaum BO. Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder. J Physiol 2017; 595:4893-4908. [PMID: 28503726 DOI: 10.1113/jp274269] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Patients with post-traumatic stress disorder (PTSD) are at a significantly higher risk of developing hypertension and cardiovascular disease. The mechanisms underlying this increased risk are not known. Studies have suggested that PTSD patients have an overactive sympathetic nervous system (SNS) that could contribute to cardiovascular risk; however, sympathetic function has not previously been rigorously evaluated in PTSD patients. Using direct measurements of sympathetic nerve activity and pharmacological manipulation of blood pressure, we show that veterans with PTSD have augmented SNS and haemodynamic reactivity during both combat-related and non-combat related mental stress, impaired sympathetic and cardiovagal baroreflex sensitivity, and increased inflammation. Identifying the mechanisms contributing to increased cardiovascular (CV) risk in PTSD will pave the way for developing interventions to improve sympathetic function and reduce CV risk in these patients. ABSTRACT Post-traumatic stress disorder (PTSD) is associated with increased cardiovascular (CV) risk. We tested the hypothesis that PTSD patients have augmented sympathetic nervous system (SNS) and haemodynamic reactivity during mental stress, as well as impaired arterial baroreflex sensitivity (BRS). Fourteen otherwise healthy Veterans with combat-related PTSD were compared with 14 matched Controls without PTSD. Muscle sympathetic nerve activity (MSNA), continuous blood pressure (BP) and electrocardiography were measured at baseline, as well as during two types of mental stress: combat-related mental stress using virtual reality combat exposure (VRCE) and non-combat related stress using mental arithmetic (MA). A cold pressor test (CPT) was administered for comparison. BRS was tested using pharmacological manipulation of BP via the Modified Oxford technique at rest and during VRCE. Blood samples were analysed for inflammatory biomarkers. Baseline characteristics, MSNA and haemodynamics were similar between the groups. In PTSD vs. Controls, MSNA (+8.2 ± 1.0 vs. +1.2 ± 1.3 bursts min-1 , P < 0.001) and heart rate responses (+3.2 ± 1.1 vs. -2.3 ± 1.0 beats min-1 , P = 0.003) were significantly augmented during VRCE. Similarly, in PTSD vs. Controls, MSNA (+21.0 ± 2.6 vs. +6.7 ± 1.5 bursts min-1 , P < 0.001) and diastolic BP responses (+6.3 ± 1.0 vs. +3.5 ± 1.0 mmHg, P = 0.011) were significantly augmented during MA but not during CPT (P = not significant). In the PTSD group, sympathetic BRS (-1.2 ± 0.2 vs. -2.0 ± 0.3 burst incidence mmHg-1 , P = 0.026) and cardiovagal BRS (9.5 ± 1.4 vs. 23.6 ± 4.3 ms mmHg-1 , P = 0.008) were significantly blunted at rest. PTSD patients had significantly higher highly sensitive-C-reactive protein levels compared to Controls (2.1 ± 0.4 vs. 1.0 ± 0.3 mg L-1 , P = 0.047). Augmented SNS and haemodynamic responses to mental stress, blunted BRS and inflammation may contribute to an increased CV risk in PTSD.
Collapse
Affiliation(s)
- Jeanie Park
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Research Service Line, Atlanta VA Medical Center, Decatur, GA, USA
| | - Paul J Marvar
- Department of Pharmacology and Physiology, Institute for Neuroscience, George Washington University, Washington, DC, USA
| | - Peizhou Liao
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Melanie L Kankam
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Research Service Line, Atlanta VA Medical Center, Decatur, GA, USA
| | - Seth D Norrholm
- Mental Health Service Line, Atlanta VA Medical Center, Decatur, GA, USA.,Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Ryan M Downey
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Research Service Line, Atlanta VA Medical Center, Decatur, GA, USA
| | - S Ashley McCullough
- Mental Health Service Line, Atlanta VA Medical Center, Decatur, GA, USA.,Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Ngoc-Anh Le
- Biomarker Core Laboratory, Atlanta VA Medical Center, Decatur, GA, USA
| | | |
Collapse
|
96
|
Castelo-Branco RC, Leite-Dellova DCA, Fernandes FB, Malnic G, de Mello-Aires M. The effects of angiotensin-(1-7) on the exchanger NHE3 and on [Ca 2+] i in the proximal tubules of spontaneously hypertensive rats. Am J Physiol Renal Physiol 2017; 313:F450-F460. [PMID: 28490531 DOI: 10.1152/ajprenal.00557.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 11/22/2022] Open
Abstract
The acute effects of angiotensin-1-7 [ANG-(1-7)] on the reabsorptive bicarbonate flow (J[Formula: see text]) were evaluated using stationary microperfusion in vivo in the proximal tubules of spontaneously hypertensive rats (SHR) and their normotensive controls, Wistar-Kyoto (WKY) rats, using a microelectrode sensitive to H+ In WKY rats, the control J[Formula: see text] was 2.40 ± 0.10 nmol·cm-2·s-1 (n = 120); losartan (10-7 M) or A779 (10-6 M, a specific Mas antagonist), alone or in combination with losartan, decreased the J[Formula: see text] ANG-(1-7) had biphasic effects on J[Formula: see text]: at 10-9 M, it inhibited, and at 10-6, it stimulated the flow. S3226 [10-6 M, a specific Na+-H+ exchanger 3 (NHE3) antagonist] decreased J[Formula: see text] and changed the stimulatory effect of ANG-(1-7) to an inhibitory one but did not alter the inhibitory action of ANG-(1-7). In SHR, the control J[Formula: see text] was 2.04 ± 0.13 nmol·cm-2·s-1 (n = 56), and A779 and/or losartan reduced the flow. ANG-(1-7) at 10-9 M increased J[Formula: see text], and ANG-(1-7) at 10-6 M reduced it. The effects of A779, losartan, and S3226 on the J[Formula: see text] were similar to those found in WKY rats, which indicated that in SHR, the ANG-(1-7) action on the NHE3 was via Mas and ANG II type 1. The cytosolic calcium in the WKY or SHR rats was ~100 nM and was increased by ANG-(1-7) at 10-9 or 10-6 M. In hypertensive animals, a high plasma level of ANG-(1-7) inhibited NHE3 in the proximal tubule, which mitigated the hypertension caused by the high plasma level of ANG II.
Collapse
Affiliation(s)
| | - Deise C A Leite-Dellova
- Department of Basic Sciences, Faculdade de Zootecnia e Engenharia de Alimentos, University of São Paulo, Pirassununga, Brazil; and
| | - Fernanda Barrinha Fernandes
- Presbiteriana Mackenzie University of São Paulo and Department of Nephrology, Federal University of São Paulo-Universidade Estadual Paulista, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Margarida de Mello-Aires
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
97
|
Intermittent fasting combined with supplementation with Ayurvedic herbs reduces anxiety in middle aged female rats by anti-inflammatory pathways. Biogerontology 2017; 18:601-614. [DOI: 10.1007/s10522-017-9706-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022]
|
98
|
Spasov AA, Yakovlev DS, Brigadirova AA. Angiotensin AT1 Receptors and Their Ligands (Review). Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1546-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
99
|
Liu MY, Li N, Li WA, Khan H. Association between psychosocial stress and hypertension: a systematic review and meta-analysis. Neurol Res 2017; 39:573-580. [PMID: 28415916 DOI: 10.1080/01616412.2017.1317904] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mei-Yan Liu
- Department of Cardiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Na Li
- Department of Cardiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - William A. Li
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hajra Khan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
100
|
Mauricio Del Rio J, Nicoara A, Swaminathan M. Neuroendocrine stress response: implications for cardiac surgery-associated acute kidney injury. Rom J Anaesth Intensive Care 2017; 24:57-63. [PMID: 28913500 DOI: 10.21454/rjaic.7518.241.hav] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Surgical stress causes biochemical and physiologic perturbations of every homeostatic axis. These alterations include volume/baroreceptor regulation, sympathetic activation, parasympathetic suppression, neuroendocrine activation, acute phase response protein synthesis and secretion, immune response modulation and long-term behavioral adaptation. The kidney is central to the stress response because of its main role in the maintenance of water, electrolyte balance and hence, intracellular and extracellular compartments, including the intravascular volume. Acute kidney injury after cardiac surgery occurs as a result of numerous factors including ischemia-reperfusion, inflammation, oxidative stress, neurohormonal activation, metabolic factors, and nephrotoxicity or pigment nephropathy. The neuroendocrine stress response has a central role in initiating renal injury during cardiac surgery through an increased release of arginine-vasopressin and activation of the sympathetic nervous system and the intrarenal and systemic renin-angiotensin-aldosterone system. The contribution of an exaggerated neuroendocrine stress response to cardiac surgery and cardiopulmonary bypass as key pathophysiologic mechanism for acute kidney injury after cardiac surgery represents an opportunity for scientific exploration.
Collapse
Affiliation(s)
- J Mauricio Del Rio
- Department of Anesthesiology, Division of Cardiothoracic Anesthesiology and Critical Care Medicine, Duke University Health System, Durham, NC, USA
| | - Alina Nicoara
- Department of Anesthesiology, Division of Cardiothoracic Anesthesiology and Critical Care Medicine, Duke University Health System, Durham, NC, USA
| | - Madhav Swaminathan
- Department of Anesthesiology, Division of Cardiothoracic Anesthesiology and Critical Care Medicine, Duke University Health System, Durham, NC, USA
| |
Collapse
|