51
|
MOTTA JFG, FREITAS BCBD, ALMEIDA AFD, MARTINS GADS, BORGES SV. Use of enzymes in the food industry: a review. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
52
|
Al-Sareji OJ, Meiczinger M, Salman JM, Al-Juboori RA, Hashim KS, Somogyi V, Jakab M. Ketoprofen and aspirin removal by laccase immobilized on date stones. CHEMOSPHERE 2023; 311:137133. [PMID: 36343736 DOI: 10.1016/j.chemosphere.2022.137133] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In recent years, enzymatic remediation/biocatalysis has gained prominence for the bioremediation of recalcitrant chemicals. Laccase is one of the commonly investigated enzymes for bioremediation applications. There is a growing interest in immobilizing this enzyme onto adsorbents for achieving high pollutant removal through simultaneous adsorption and biodegradation. Due to the influence of the biomolecule-support interface on laccase activity and stability, it is crucial to functionalize the solid carrier prior to immobilization. Date stone (PDS), as an eco-friendly, low-cost, and effective natural adsorbent, was utilized as a carrier for laccase (fungus Trametes versicolor). After activating PDS through chemical treatments, the surface area increased by thirty-six-fold, and carbonyl groups became more prominent. Batch experiments were carried out for ketoprofen and aspirin biodegradation in aqueous solutions. After six cycles, the laccase maintained 54% of its original activity confirmed by oxidation tests of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). In addition, the storage, pH, and thermal stability of immobilized laccase on functionalized date stone (LFPDS) were found to be superior to that of free laccase, demonstrating its potential for ongoing applications. In the aqueous batch mode, this immobilized laccase system was used to degrade 25 mg L-1 of ketoprofen and aspirin, resulting in almost complete removal within 4 h of treatment. This study reveals that agricultural wastes such as date stone can successfully be valorized through simple activation techniques, and the final product can be used as an adsorbent and substrate for immobilization enzyme. The high efficiency of the LFPDS in removing ketoprofen and aspirin highlights the potential of this technology for removing pharmaceuticals and merits its continued development.
Collapse
Affiliation(s)
- Osamah J Al-Sareji
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, Iraq; Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary.
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary
| | - Jasim M Salman
- Department of Biology, College of Science, University of Babylon, Al-Hillah, Iraq
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates; Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| | - Khalid S Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, UK; Department of Environmental Engineering, College of Engineering, University of Babylon, Al-Hillah, Iraq
| | - Viola Somogyi
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary
| | - Miklós Jakab
- Research Centre of Engineering Sciences, Department of Materials Sciences and Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary
| |
Collapse
|
53
|
Rodrigues AF, da Silva AF, da Silva FL, dos Santos KM, de Oliveira MP, Nobre MM, Catumba BD, Sales MB, Silva AR, Braz AKS, Cavalcante AL, Alexandre JY, Junior PG, Valério RB, de Castro Bizerra V, do Santos JC. A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
54
|
Application of Nanoparticles: Diagnosis, Therapeutics, and Delivery of Insulin/Anti-Diabetic Drugs to Enhance the Therapeutic Efficacy of Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122078. [PMID: 36556443 PMCID: PMC9783843 DOI: 10.3390/life12122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder of carbohydrates, lipids, and proteins due to a deficiency of insulin secretion or failure to respond to insulin secreted from pancreatic cells, which leads to high blood glucose levels. DM is one of the top four noncommunicable diseases and causes of death worldwide. Even though great achievements were made in the management and treatment of DM, there are still certain limitations, mainly related to the early diagnosis, and lack of appropriate delivery of insulin and other anti-diabetic agents. Nanotechnology is an emerging field in the area of nanomedicine and NP based anti-diabetic agent delivery is reported to enhance efficacy by increasing bioavailability and target site accumulation. Moreover, theranostic NPs can be used as diagnostic tools for the early detection and prevention of diseases owing to their unique biological, physiochemical, and magnetic properties. NPs have been synthesized from a variety of organic and inorganic materials including polysaccharides, dendrimers, proteins, lipids, DNA, carbon nanotubes, quantum dots, and mesoporous materials within the nanoscale size. This review focuses on the role of NPs, derived from organic and inorganic materials, in the diagnosis and treatment of DM.
Collapse
|
55
|
Germano de Sousa I, Valério Chaves A, de Oliveira ALB, da Silva Moreira K, Gonçalves de Sousa Junior P, Simão Neto F, Cristina Freitas de Carvalho S, Bussons Rodrigues Valério R, Vieira Lima G, Sanders Lopes AA, Martins de Souza MC, da Fonseca AM, Fechine PBA, de Mattos MC, dos Santos JCS. A novel hybrid biocatalyst from immobilized Eversa ® Transform 2.0 lipase and its application in biolubricant synthesis. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2144263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Brazil
| | - Anderson Valério Chaves
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | | | | | - Francisco Simão Neto
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Brazil
| | - Simone Cristina Freitas de Carvalho
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Brazil
| | | | - Gledson Vieira Lima
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Ada Amélia Sanders Lopes
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Brazil
| | - Aluísio Marques da Fonseca
- Mestrado Acadêmico em Sociobiodiversidades e Tecnologias Sustentáveis – MASTS, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | | | - Marcos Carlos de Mattos
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Brazil
| |
Collapse
|
56
|
da Rocha TN, Morellon-Sterlling R, Rocha-Martin J, Bolivar JM, Gonçalves LRB, Fernandez-Lafuente R. Immobilization of Penicillin G Acylase on Vinyl Sulfone-Agarose: An Unexpected Effect of the Ionic Strength on the Performance of the Immobilization Process. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217587. [PMID: 36364414 PMCID: PMC9654356 DOI: 10.3390/molecules27217587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Penicillin G acylase (PGA) from Escherichia coli was immobilized on vinyl sulfone (VS) agarose. The immobilization of the enzyme failed at all pH values using 50 mM of buffer, while the progressive increase of ionic strength permitted its rapid immobilization under all studied pH values. This suggests that the moderate hydrophobicity of VS groups is enough to transform the VS-agarose in a heterofunctional support, that is, a support bearing hydrophobic features (able to adsorb the proteins) and chemical reactivity (able to give covalent bonds). Once PGA was immobilized on this support, the PGA immobilization on VS-agarose was optimized with the purpose of obtaining a stable and active biocatalyst, optimizing the immobilization, incubation and blocking steps characteristics of this immobilization protocol. Optimal conditions were immobilization in 1 M of sodium sulfate at pH 7.0, incubation at pH 10.0 for 3 h in the presence of glycerol and phenyl acetic acid, and final blocking with glycine or ethanolamine. This produced biocatalysts with stabilities similar to that of the glyoxyl-PGA (the most stable biocatalyst of this enzyme described in literature), although presenting just over 55% of the initially offered enzyme activity versus the 80% that is recovered using the glyoxyl-PGA. This heterofuncionality of agarose VS beads opens new possibilities for enzyme immobilization on this support.
Collapse
Affiliation(s)
- Thays N. da Rocha
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Chemical Engineering Department, Campus do Pici, Federal University of Ceará, Bloco 709, Fortaleza CEP 60440-900, CE, Brazil
| | - Roberto Morellon-Sterlling
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Departamento de Biología Molecular, Campus UAM-CSIC, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - Juan M. Bolivar
- FQPIMA Group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., 28040 Madrid, Spain
| | - Luciana R. B. Gonçalves
- Chemical Engineering Department, Campus do Pici, Federal University of Ceará, Bloco 709, Fortaleza CEP 60440-900, CE, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +34-91594804
| |
Collapse
|
57
|
Budhiraja M, Chudasama B, Ali A, Tyagi V. Production of a recyclable nanobiocatalyst to synthesize quinazolinone derivatives. RSC Adv 2022; 12:31734-31746. [PMID: 36425315 PMCID: PMC9667765 DOI: 10.1039/d2ra04405f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/06/2022] [Indexed: 09/08/2024] Open
Abstract
Nanobiocatalysts (NBCs) are an emerging innovation that paves the way toward sustainable and eco-friendly endeavors. In the quest for a robust and reusable nanobiocatalyst, herein, we report a nanobiocatalyst, namely CALB@MrGO, developed via immobilizing Candida antarctica lipase B onto the surface of Fe3O4-decorated reduced graphene oxide (MrGO). Next, the enormous potential of the NBC (CALB@MrGO) was checked by employing it to synthesize clinically important quinazolinone derivatives in good to excellent yield (70-95%) using differently substituted aryl aldehydes with 2-aminobenzamide. Further, the synthetic utility and generality of this protocol was proved by setting up a gram-scale reaction, which afforded the product in 87% yield. The green chemistry metrics calculated for the gram-scale reaction those prove the greenness of this protocol.
Collapse
Affiliation(s)
- Meenakshi Budhiraja
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
| | - Bhupendra Chudasama
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Amjad Ali
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Vikas Tyagi
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
58
|
Anchoring lactase in pectin-based hydrogels for lactose hydrolysis reactions. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
59
|
Abdel-Mageed HM, Nada D, Radwan RA, Mohamed SA, Gohary NAEL. Optimization of catalytic properties of Mucor racemosus lipase through immobilization in a biocompatible alginate gelatin hydrogel matrix for free fatty acid production: a sustainable robust biocatalyst for ultrasound-assisted olive oil hydrolysis. 3 Biotech 2022; 12:285. [PMID: 36276456 PMCID: PMC9485409 DOI: 10.1007/s13205-022-03319-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/15/2022] [Indexed: 12/22/2022] Open
Abstract
AbstractImmobilization is a key technology that improves the operational stability of enzymes. In this study, alginate-gelatin (Alg-Gel) hydrogel matrix was synthesized and used as immobilization support for Mucor racemosus lipase (Lip). Enzyme catalyzed ultrasound-assisted hydrolysis of olive oil was also investigated. Alg-Gel matrix exhibited high entrapment efficiency (94.5%) with a degradation rate of 42% after 30 days. The hydrolysis of olive oil using Alg-Gel-Lip increased significantly (P < 0.05) as compared to free Lip. Optimum pH and temperature were determined as pH 5.0 and 40 °C, respectively. The Vmax values for free and immobilized Lip were determined to be 5.5 mM and 5.8 mM oleic acid/min/ml, respectively, and the Km values were 2.2 and 2.58 mM/ml respectively. Thermal stability was highly improved for Alg-Gel-Lip (t1/2 650 min and Ed 87.96 kJ/mol) over free Lip (t1/2 150 min and Ed 23.36 kJ/mol). The enzymatic activity of Alg-Gel-Lip was preserved at 96% after four consecutive cycles and 90% of the initial activity after storage for 60 days at 4 °C. Alg-Gel-Lip catalyzed olive oil hydrolysis using ultrasound showed a significant (P < 0.05) increase in hydrolysis rate compared to free Lip (from 0.0 to 58.2%, within the first 2 h). In contrast to traditional methodology, using ultrasonic improved temperature-dependent enzymatic catalyzed reactions and delivered greater reaction yields. Results suggest that Alg-Gel-Lip biocatalyst has great industrial application potential, particularly for free fatty acid production. In addition, the combined use of enzyme and ultrasound has the potential of eco-friendly technology.
Collapse
Affiliation(s)
| | - Dina Nada
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Rasha Ali Radwan
- Center for Drug Research and Development (CDRD), The British University in Egypt (BUE), Cairo, Egypt
| | - Saleh Ahmed Mohamed
- Molecular Biology Department, National Research Centre (NRC), El Behoth St Dokki, Cairo, Egypt
| | | |
Collapse
|
60
|
Rajendran DS, Venkataraman S, Kumar PS, Rangasamy G, Bhattacharya T, Nguyen Vo DV, Vaithyanathan VK, Cabana H, Kumar VV. Coimmobilized enzymes as versatile biocatalytic tools for biomass valorization and remediation of environmental contaminants - A review. ENVIRONMENTAL RESEARCH 2022; 214:114012. [PMID: 35952747 DOI: 10.1016/j.envres.2022.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Due to stringent regulatory norms, waste processing faces confrontations and challenges in adapting technology for effective management through a convenient and economical system. At the global level, attempts are underway to achieve a green and sustainable treatment for the valorization of lignocellulosic biomass as well as organic contaminants in wastewater. Enzymatic treatment in the environmental aspect thrived on being the promising rapid strategy that appeased the aforementioned predicament. On that account, coimmobilization of various enzymes on single support enhances the catalytic activity ensuing operational stability with industrial applications. This review pivoted towards the coimmobilization of enzymes on diverse supports and their applications in biomass conversion to industrial value-added products and removal of contaminants in wastewater. The limelight of this study chronicles the unique breakthroughs in biotechnology for the production of reusable biocatalysts, which inculcating various enzymes towards the scope of environment application.
Collapse
Affiliation(s)
- Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam- 603 110, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam- 603 110, Chennai, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Trishita Bhattacharya
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Vasanth Kumar Vaithyanathan
- University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Hubert Cabana
- University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India; University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada.
| |
Collapse
|
61
|
P B, JO U, Moropeng RC, Momba MNB. Novel bio-catalytic degradation of endocrine disrupting compounds in wastewater. Front Bioeng Biotechnol 2022; 10:996566. [DOI: 10.3389/fbioe.2022.996566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Against the backdrop of towering ecological health implications of estrogen pollution and the inefficacies associated with cost-intensive treatment techniques, this study recorded the earliest attempt of developing an inexpensive bacterial laccase-based biocatalysts for biodegradation of EDCs (Endocrine disrupting compounds), particularly estrogens. First, a central composite design was used to investigate the interactive effects of pH (6.0–8.0), inoculum size (100–500 U/mL), and copper (Cu) (25–75 mg/L) on laccase activity and estrogen degradation respectively. Thereafter, biocatalysts was synthesized comprising laccase and glass beads or silver impregnated clay granules (SICG), which was further used to treat estrogen infused aquatic matrices under different reaction conditions. Maximum laccase activities and estrogen removal for the two tested laccases were 620 U/mL (85.8–92.9%) and 689.8 U/mL (86.8–94.6%) for Lysinibacillus sp. BP1 and Lysinibacillus sp. BP2, respectively, within 72 h, under conditions of optimal inoculum size and/or Cu concentration. Apart from a higher estrogen removal rate compared to free laccased, the biocatalysts were more resistant to temperature, pH and other environmental perturbations, and had enhanced storage ability and reusability. In comparison to clay, beads had a higher potential for recyclability and were more stable under certain experimental factors such as pH, reuse, and temperature, as well as storage conditions. Immobilized enzymes were able to remove 100% of E2, as well as over 90% of E1 and EE2, in 24 h, indicating that they could be scaled up to benchtop bioreactor levels.
Collapse
|
62
|
Immobilization of Gelatin on Fibers for Tissue Engineering Applications: A Comparative Study of Three Aliphatic Polyesters. Polymers (Basel) 2022; 14:polym14194154. [PMID: 36236102 PMCID: PMC9572612 DOI: 10.3390/polym14194154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Immobilization of cell adhesive proteins on the scaffold surface has become a widely reported method that can improve the interaction between scaffold and cells. In this study, three nanofibrous scaffolds obtained by electrospinning of poly(caprolactone) (PCL), poly(L-lactide-co-caprolactone) (PLCL) 70:30, or poly(L-lactide) (PLLA) were subjected to chemical immobilization of gelatin based on aminolysis and glutaraldehyde cross-linking, as well as physisorption of gelatin. Two sets of aminolysis conditions were applied to evaluate the impact of amine group content. Based on the results of the colorimetric bicinchoninic acid (BCA) assay, it was shown that the concentration of gelatin on the surface is higher for the chemical modification and increases with the concentration of free NH2 groups. XPS (X-ray photoelectron spectroscopy) analysis confirmed this outcome. On the basis of XPS results, the thickness of the gelatin layer was estimated to be less than 10 nm. Initially, hydrophobic scaffolds are completely wettable after coating with gelatin, and the time of waterdrop absorption was correlated with the surface concentration of gelatin. In the case of all physically and mildly chemically modified samples, the decrease in stress and strain at break was relatively low, contrary to strongly aminolyzed PLCL and PLLA samples. Incubation testing performed on the PCL samples showed that a chemically immobilized gelatin layer is more stable than a physisorbed one; however, even after 90 days, more than 60% of the initial gelatin concentration was still present on the surface of physically modified samples. Mouse fibroblast L929 cell culture on modified samples indicates a positive effect of both physical and chemical modification on cell morphology. In the case of PCL and PLCL, the best morphology, characterized by stretched filopodia, was observed after stronger chemical modification, while for PLLA, there was no significant difference between modified samples. Results of metabolic activity indicate the better effect of chemical immobilization than of physisorption of gelatin.
Collapse
|
63
|
Comparison of Trichoderma longibrachiatum Xyloglucanase Production Using Tamarind (Tamarindus indica) and Jatoba (Hymenaea courbaril) Seeds: Factorial Design and Immobilization on Ionic Supports. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Xyloglucan (XG) is the predominant hemicellulose in the primary cell wall of superior plants. It has a fundamental role in controlling the stretching and expansion of the plant cell wall. There are five types of enzymes known to cleave the linear chain of xyloglucan, and the most well-known is xyloglucanase (XEG). The immobilization process can be used to solve problems related to stability, besides the economic benefits brought by the possibility of its repeated use and recovery. Therefore, this study aims at the optimization of the xyloglucanase production of Trichoderma longibrachiatum using a central composite rotatable design (CCRD) with tamarind and jatoba seeds as carbon sources, as well as XEG immobilization on ionic supports, such as MANAE (monoamine-N-aminoethyl), DEAE (diethylaminoethyl)-cellulose, CM (carboxymethyl)-cellulose, and PEI (polyethyleneimine). High concentrations of carbon sources (1.705%), at a temperature of 30 °C and under agitation for 72 h, were the most favorable conditions for the XEG activity from T. longibrachiatum with respect to both carbon sources. However, the tamarind seeds showed 23.5% higher activity compared to the jatoba seeds. Therefore, this carbon source was chosen to continue the experiments. The scaling up from Erlenmeyer flasks to the bioreactor increased the XEG activity 1.27-fold (1.040 ± 0.088 U/mL). Regarding the biochemical characterization of the crude extract, the optimal temperature range was 50–55 °C, and the optimal pH was 5.0. Regarding the stabilities with respect to pH and temperature, XEG was not stable for prolonged periods, which was crucial to immobilizing it on ionic resins. XEG showed the best immobilization efficiency on CM-cellulose and DEAE-cellulose, with activities of 1.16 and 0.89 U/g of the derivative (enzyme plus support), respectively. This study describes, for the first time in the literature, the immobilization of a fungal xyloglucanase using these supports.
Collapse
|
64
|
Sharifi S, Maleki Dizaj S, Ahmadian E, Karimpour A, Maleki A, Memar MY, Ghavimi MA, Dalir Abdolahinia E, Goh KW. A Biodegradable Flexible Micro/Nano-Structured Porous Hemostatic Dental Sponge. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3436. [PMID: 36234564 PMCID: PMC9565827 DOI: 10.3390/nano12193436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
A biodegradable micro/nano-structured porous hemostatic gelatin-based sponge as a dentistry surgery foam was prepared using a freeze-drying method. In vitro function evaluation tests were performed to ensure its hemostatic effect. Biocompatibility tests were also performed to show the compatibility of the sponge on human fetal foreskin fibroblasts (HFFF2) cells and red blood cells (RBCs). Then, 10 patients who required the extraction of two teeth were selected, and after teeth extraction, for dressing, the produced sponge was placed in one of the extracavities while a commercial sponge was placed in the cavity in the other tooth as a control. The total weight of the absorbed blood in each group was compared. The results showed a porous structure with micrometric and nanometric pores, flexibility, a two-week range for degradation, and an ability to absorb blood 35 times its weight in vitro. The prepared sponge showed lower blood clotting times (BCTs) (243.33 ± 2.35 s) and a lower blood clotting index (BCI) (10.67 ± 0.004%) compared to two commercial sponges that displayed its ability for faster coagulation and good hemostatic function. It also had no toxic effects on the HFFF2 cells and RBCs. The clinical assessment showed a better ability of blood absorption for the produced sponge (p-value = 0.0015). The sponge is recommended for use in dental surgeries because of its outstanding abilities.
Collapse
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Alireza Karimpour
- Kimia Pajuhesh Nanofarnam Compony, Tabriz Medical Equipment Technology Incubator Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Abdollah Maleki
- Non-Destructive Testing Lab, Department of Mechanical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran 15914, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Mohammad Ali Ghavimi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Khang Wen Goh
- Faculty of Data Sciences and Information Technology, INTI International University, Nilai 78100, Malaysia
| |
Collapse
|
65
|
Hetero-modification of halloysite nanoclay to immobilize endoinulinase for the preparation of fructooligosaccharides. Food Res Int 2022; 159:111591. [DOI: 10.1016/j.foodres.2022.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
|
66
|
Rai P, Mehrotra S, Sharma SK. Challenges in assessing the quality of fruit juices: Intervening role of biosensors. Food Chem 2022; 386:132825. [PMID: 35367795 DOI: 10.1016/j.foodchem.2022.132825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
The quality of packaged fruit juices is affected during their processing, packaging and storage that might cause deteriorative biological, chemical and physical alterations. Consumption of spoiled juices, either from biological or non-biological sources can pose a potential health hazard for the consumers. Sensitive and reliable methods are required to ensure the quality of fruit juices. Standard analytical methods such as chromatography, spectrophotometry, electrophoresis and titration, that require sophisticated equipment and expertise, are traditionally used to assess the quality of fruit juices. Using biosensors, that are simple, portable and rapid presents a promising alternative to the tedious analytical methods for the detection of various degradation and spoilage indicators formed in the packaged fruit juices. Here, we review the challenges in maintaining the quality of fruit juices and the recent developments in techniques and biosensors for quick analysis of fruit juice components.
Collapse
Affiliation(s)
- Pawankumar Rai
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Srishti Mehrotra
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandeep K Sharma
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
67
|
dos Santos PM, Baruque JR, de Souza Lira RK, Leite SGF, do Nascimento RP, Borges CP, Wojcieszak R, Itabaiana I. Corn Cob as a Green Support for Laccase Immobilization-Application on Decolorization of Remazol Brilliant Blue R. Int J Mol Sci 2022; 23:ijms23169363. [PMID: 36012620 PMCID: PMC9409158 DOI: 10.3390/ijms23169363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The high demand for food and energy imposed by the increased life expectancy of the population has driven agricultural activity, which is reflected in the larger quantities of agro-industrial waste generated, and requires new forms of use. Brazil has the greatest biodiversity in the world, where corn is one of the main agricultural genres, and where over 40% of the waste generated is from cobs without an efficient destination. With the aim of the valorization of these residues, we proposed to study the immobilization of laccase from Aspergillus spp. (LAsp) in residual corn cob and its application in the degradation of Remazol Brilliant Blue R (RBBR) dye. The highest yields in immobilized protein (75%) and residual activity (40%) were obtained at pH 7.0 and an enzyme concentration of 0.1 g.mL−1, whose expressed enzyme activity was 1854 U.kg−1. At a temperature of 60 °C, more than 90% of the initial activity present in the immobilized biocatalyst was maintained. The immobilized enzyme showed higher efficiency in the degradation (64%) of RBBR dye in 48 h, with improvement in the process in 72 h (75%). The new biocatalyst showed operational efficiency during three cycles, and a higher degradation rate than the free enzyme, making it a competitive biocatalyst and amenable to industrial applications.
Collapse
Affiliation(s)
- Priscila M. dos Santos
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Julia R. Baruque
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Regiane K. de Souza Lira
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Selma G. F. Leite
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Rodrigo P. do Nascimento
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Cristiano P. Borges
- COPPE/Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro 21941-972, Brazil
| | - Robert Wojcieszak
- CNRS, Centrale Lille, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, University Lille, University Artois, F-59000 Lille, France
| | - Ivaldo Itabaiana
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- CNRS, Centrale Lille, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, University Lille, University Artois, F-59000 Lille, France
- Correspondence: ; Tel.: +55-2139-387-580
| |
Collapse
|
68
|
Shi Y, Jiao H, Sun J, Lu X, Yu S, Cheng L, Wang Q, Liu H, Biranje S, Wang J, Liu J. Functionalization of nanocellulose applied with biological molecules for biomedical application: A review. Carbohydr Polym 2022; 285:119208. [DOI: 10.1016/j.carbpol.2022.119208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 01/21/2023]
|
69
|
Ölçücü G, Baumer B, Küsters K, Möllenhoff K, Oldiges M, Pietruszka J, Jaeger KE, Krauss U. Catalytically Active Inclusion Bodies─Benchmarking and Application in Flow Chemistry. ACS Synth Biol 2022; 11:1881-1896. [PMID: 35500299 DOI: 10.1021/acssynbio.2c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In industries, enzymes are often immobilized to obtain stable preparations that can be utilized in batch and flow processes. In contrast to traditional immobilization methods that rely on carrier binding, various immobilization strategies have been recently presented that enable the simultaneous production and in vivo immobilization of enzymes. Catalytically active inclusion bodies (CatIBs) are a promising example for such in vivo enzyme immobilizates. CatIB formation is commonly induced by fusion of aggregation-inducing tags, and numerous tags, ranging from small synthetic peptides to protein domains or whole proteins, have been successfully used. However, since these systems have been characterized by different groups employing different methods, a direct comparison remains difficult, which prompted us to benchmark different CatIB-formation-inducing tags and fusion strategies. Our study highlights that important CatIB properties like yield, activity, and stability are strongly influenced by tag selection and fusion strategy. Optimization enabled us to obtain alcohol dehydrogenase CatIBs with superior activity and stability, which were subsequently applied for the first time in a flow synthesis approach. Our study highlights the potential of CatIB-based immobilizates, while at the same time demonstrating the robust use of CatIBs in flow chemistry.
Collapse
Affiliation(s)
- Gizem Ölçücü
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
| | - Benedikt Baumer
- Institute of Biorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
| | - Kira Küsters
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
| | - Kathrin Möllenhoff
- Mathematical Institute, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Marco Oldiges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Jörg Pietruszka
- Institute of Biorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
| |
Collapse
|
70
|
Pose-Boirazian T, Martínez-Costas J, Eibes G. 3D Printing: An Emerging Technology for Biocatalyst Immobilization. Macromol Biosci 2022; 22:e2200110. [PMID: 35579179 DOI: 10.1002/mabi.202200110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Indexed: 11/10/2022]
Abstract
Employment of enzymes as biocatalysts offers immense benefits across diverse sectors in the context of green chemistry, biodegradability, and sustainability. When compared to free enzymes in solution, enzyme immobilization proposes an effective means of improving functional efficiency and operational stability. The advance of printable and functional materials utilized in additive manufacturing, coupled with the capability to produce bespoke geometries, has sparked great interest towards the 3D printing of immobilized enzymes. Printable biocatalysts represent a new generation of enzyme immobilization in a more customizable and adaptable manner, unleashing their potential functionalities for countless applications in industrial biotechnology. This review provides an overview of enzyme immobilization techniques and 3D printing technologies, followed by illustrations of the latest 3D printed enzyme-immobilized industrial and clinical applications. The unique advantages of harnessing 3D printing as an enzyme immobilization technique will be presented, alongside a discussion on its potential limitations. Finally, the future perspectives of integrating 3D printing with enzyme immobilization will be considered, highlighting the endless possibilities that are achievable in both research and industry. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Jose Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Gemma Eibes
- CRETUS, Dept. of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
71
|
Vassiliadi E, Aridas A, Schmitt V, Xenakis A, Zoumpanioti M. (Hydroxypropyl)methyl cellulose-chitosan film as a matrix for lipase immobilization: Operational and morphological study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
72
|
Zhu CY, Li FL, Zhang YW, Gupta RK, Patel SKS, Lee JK. Recent Strategies for the Immobilization of Therapeutic Enzymes. Polymers (Basel) 2022; 14:polym14071409. [PMID: 35406282 PMCID: PMC9003532 DOI: 10.3390/polym14071409] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Therapeutic enzymes play important roles in modern medicine due to their high affinity and specificity. However, it is very expensive to use them in clinical medicine because of their low stability and bioavailability. To improve the stability and effectiveness of therapeutic enzymes, immobilization techniques have been employed to enhance the applications of therapeutic enzymes in the past few years. Reported immobilization techniques include entrapment, adsorption, and covalent attachment. In addition, protein engineering is often used to improve enzyme properties; however, all methods present certain advantages and limitations. For carrier-bound immobilization, the delivery and release of the immobilized enzyme depend on the properties of the carrier and enzyme. In this review, we summarize the advantages and challenges of the current strategies developed to deliver therapeutic enzymes and provide a future perspective on the immobilization technologies used for therapeutic enzyme delivery.
Collapse
Affiliation(s)
- Chen-Yuan Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (C.-Y.Z.); (F.-L.L.)
| | - Fei-Long Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (C.-Y.Z.); (F.-L.L.)
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (C.-Y.Z.); (F.-L.L.)
- Correspondence: (Y.-W.Z.); (S.K.S.P.); (J.-K.L.); Tel.: +82-2-450-3505 (J.-K.L.)
| | - Rahul K. Gupta
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea;
| | - Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea;
- Correspondence: (Y.-W.Z.); (S.K.S.P.); (J.-K.L.); Tel.: +82-2-450-3505 (J.-K.L.)
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea;
- Correspondence: (Y.-W.Z.); (S.K.S.P.); (J.-K.L.); Tel.: +82-2-450-3505 (J.-K.L.)
| |
Collapse
|
73
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
74
|
Chauhan V, Kaushal D, Dhiman VK, Kanwar SS, Singh D, Dhiman VK, Pandey H. An Insight in Developing Carrier-Free Immobilized Enzymes. Front Bioeng Biotechnol 2022; 10:794411. [PMID: 35309979 PMCID: PMC8924610 DOI: 10.3389/fbioe.2022.794411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022] Open
Abstract
Enzymes play vital roles in all organisms. The enzymatic process is progressively at its peak, mainly for producing biochemical products with a higher value. The immobilization of enzymes can sometimes tremendously improve the outcome of biocatalytic processes, making the product(s) relatively pure and economical. Carrier-free immobilized enzymes can increase the yield of the product and the stability of the enzyme in biocatalysis. Immobilized enzymes are easier to purify. Due to these varied advantages, researchers are tempted to explore carrier-free methods used for the immobilization of enzymes. In this review article, we have discussed various aspects of enzyme immobilization, approaches followed to design a process used for immobilization of an enzyme and the advantages and disadvantages of various common processes used for enzyme immobilization.
Collapse
Affiliation(s)
- Vivek Chauhan
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | - Diksha Kaushal
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | | | - Shamsher Singh Kanwar
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
- *Correspondence: Shamsher Singh Kanwar,
| | - Devendra Singh
- B.N. College of Engineering and Technology, Lucknow, India
| | - Vinay Kumar Dhiman
- Dr. Y. S. Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Himanshu Pandey
- Dr. Y. S. Parmar University of Horticulture and Forestry Nauni, Solan, India
| |
Collapse
|
75
|
Remonatto D, Miotti Jr. RH, Monti R, Bassan JC, de Paula AV. Applications of immobilized lipases in enzymatic reactors: A review. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
76
|
Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10030494] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Enzymes are outstanding (bio)catalysts, not solely on account of their ability to increase reaction rates by up to several orders of magnitude but also for the high degree of substrate specificity, regiospecificity and stereospecificity. The use and development of enzymes as robust biocatalysts is one of the main challenges in biotechnology. However, despite the high specificities and turnover of enzymes, there are also drawbacks. At the industrial level, these drawbacks are typically overcome by resorting to immobilized enzymes to enhance stability. Immobilization of biocatalysts allows their reuse, increases stability, facilitates process control, eases product recovery, and enhances product yield and quality. This is especially important for expensive enzymes, for those obtained in low fermentation yield and with relatively low activity. This review provides an integrated perspective on (multi)enzyme immobilization that abridges a critical evaluation of immobilization methods and carriers, biocatalyst metrics, impact of key carrier features on biocatalyst performance, trends towards miniaturization and detailed illustrative examples that are representative of biocatalytic applications promoting sustainability.
Collapse
|
77
|
Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
78
|
The combination of covalent and ionic exchange immobilizations enables the coimmobilization on vinyl sulfone activated supports and the reuse of the most stable immobilized enzyme. Int J Biol Macromol 2022; 199:51-60. [PMID: 34973984 DOI: 10.1016/j.ijbiomac.2021.12.148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
The coimmobilization of lipases from Rhizomucor miehei (RML) and Candida antarctica (CALB) has been intended using agarose beads activated with divinyl sulfone. CALB could be immobilized on this support, while RML was not. However, RML was ionically exchanged on this support blocked with ethylendiamine. Therefore, both enzymes could be coimmobilized on the same particle, CALB covalently using the vinyl sulfone groups, and RML via anionic exchange on the aminated blocked support. However, immobilized RML was far less stable than immobilized CALB. To avoid the discarding of CALB (that maintained 90% of the initial activity after RML inactivation), a strategy was developed. Inactivated RML was desorbed from the support using ammonium sulfate and 1% Triton X-100 at pH 7.0. That way, 5 cycles of RML thermal inactivation, discharge of the inactivated enzyme and re-immobilization of a fresh sample of RML could be performed. In the last cycle, immobilized CALB activity was still over 90% of the initial one. Thus, the strategy permits that enzymes can be coimmobilized on vinyl sulfone supports even if one of them cannot be immobilized on it, and also permits the reuse of the most stable enzyme (if it is irreversibly attached to the support).
Collapse
|
79
|
Hamid A, Zafar A, Liaqat I, Afzal MS, Peng L, Rauf MK, Ul Haq I, Ur-Rehman A, Ali S, Aftab MN. Effective utilization of magnetic nano-coupled cloned β-xylanase in saccharification process. RSC Adv 2022; 12:6463-6475. [PMID: 35424589 PMCID: PMC8982049 DOI: 10.1039/d1ra09275h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The β-xylanase gene (DCE06_04615) with 1041 bp cloned from Thermotoga naphthophila was expressed into E. coli BL21 DE3. The cloned β-xylanase was covalently bound to iron oxide magnetic nanoparticles coated with silica utilizing carbodiimide. The size of the immobilized MNPs (50 nm) and their binding with β-xylanase were characterized by Fourier-transform electron microscopy (FTIR) (a change in shift particularly from C-O to C-N) and transmission electron microscopy (TEM) (spherical in shape and 50 nm in diameter). The results showed that enzyme activity (4.5 ± 0.23 U per mL), thermo-stability (90 °C after 4 hours, residual activity of enzyme calculated as 29.89% ± 0.72), pH stability (91% ± 1.91 at pH 7), metal ion stability (57% ± 1.08 increase with Ca2+), reusability (13 times) and storage stability (96 days storage at 4 °C) of the immobilized β-xylanase was effective and superior. The immobilized β-xylanase exhibited maximal enzyme activity at pH 7 and 90 °C. Repeated enzyme assay and saccharification of pretreated rice straw showed that the MNP-enzyme complex exhibited 56% ± 0.76 and 11% ± 0.56 residual activity after 8 times and 13 times repeated usage. The MNP-enzyme complex showed 17.32% and 15.52% saccharification percentage after 1st and 8th time usage respectively. Immobilized β-xylanase exhibited 96% residual activity on 96 days' storage at 4 °C that showed excellent stability.
Collapse
Affiliation(s)
- Attia Hamid
- Institute of Industrial Biotechnology, Government College University Lahore Pakistan +92-3444704190
| | - Asma Zafar
- Faculty of Life Sciences, University of Central Punjab Lahore Pakistan
| | - Iram Liaqat
- Department of Zoology, Government College University Lahore Pakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT) Lahore Pakistan
| | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture University Wuhan China
| | | | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University Lahore Pakistan +92-3444704190
| | - Asad Ur-Rehman
- Institute of Industrial Biotechnology, Government College University Lahore Pakistan +92-3444704190
| | - Sikander Ali
- Institute of Industrial Biotechnology, Government College University Lahore Pakistan +92-3444704190
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University Lahore Pakistan +92-3444704190
| |
Collapse
|
80
|
Abstract
Enzymes are renowned for their catalytic efficiency and selectivity. Despite the wealth of carbon-carbon bond forming transformations in traditional organic chemistry and nature, relatively few C-C bond forming enzymes have found their way into the biocatalysis toolbox. Here we show that the enzyme UstD performs a highly selective decarboxylative aldol addition with diverse aldehyde substrates to make non-standard, γ-hydroxy amino acids. We increased the activity of UstD through three rounds of classic directed evolution and an additional round of computationally-guided engineering. The enzyme that emerged, UstDv2.0, is efficient in a whole-cell biocatalysis format. The products are highly desirable, functionally rich bioactive γ-hydroxy amino acids that we demonstrate can be prepared stereoselectively on gram-scale. The X-ray crystal structure of UstDv2.0 at 2.25 Å reveals the active site and provides a foundation for probing the mechanism of UstD.
Collapse
|
81
|
Carli S, Salgado JCS, Meleiro LP, Ward RJ. Covalent Immobilization of Chondrostereum purpureum Endopolygalacturonase on Ferromagnetic Nanoparticles: Catalytic Properties and Biotechnological Application. Appl Biochem Biotechnol 2022; 194:848-861. [PMID: 34553326 DOI: 10.1007/s12010-021-03688-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022]
Abstract
Pectinases are widely used in a variety of industrial processes. However, their application is limited by low catalytic processivity, reduced stability, high cost, and poor re-use compatibility. These drawbacks may be overcome by enzyme immobilization with ferromagnetic nanoparticles, which are easily recovered by a magnetic field. In this work, an endopolygalacturonase from Chondrostereum purpureum (EndoPGCp) expressed in Pichia pastoris was immobilized on glutaraldehyde-activated chitosan ferromagnetic nanoparticles (EndoPGCp-MNP) and used to supplement a commercial enzyme cocktail. No significant differences in biochemical and kinetic properties were observed between EndoPGCp-MNP and EndoPGCp, although the EndoPGCp-MNP showed slightly increased thermostability. Cocktail supplementation with EndoPGCp-MNP increased reducing sugar release from orange wastes by 1.8-fold and showed a synergistic effect as compared to the free enzyme. Furthermore, EndoPGCp-MNP retained 65% of the initial activity after 7 cycles of re-use. These properties suggest that EndoPGCp-MNP may find applications in the processing of pectin-rich agroindustrial residues.
Collapse
Affiliation(s)
- Sibeli Carli
- Departamento de Química, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Jose Carlos Santos Salgado
- Departamento de Química, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Luana Parras Meleiro
- Departamento de Química, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil.
| |
Collapse
|
82
|
Hussain A, Rafeeq H, Afsheen N, Jabeen Z, Bilal M, Iqbal HMN. Urease-Based Biocatalytic Platforms―A Modern View of a Classic Enzyme with Applied Perspectives. Catal Letters 2022; 152:414-437. [DOI: 10.1007/s10562-021-03647-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023]
|
83
|
A parameter study of ultrasound assisted enzymatic esterification. Sci Rep 2022; 12:1421. [PMID: 35082368 PMCID: PMC8792013 DOI: 10.1038/s41598-022-05551-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
This work is focused on the study of the esterification parameters for the ultrasound assisted synthesis of isoamyl acetate catalyzed by lipase Lipozyme 435 in a continuous loop reactor. Investigating the influence of different parameters shows that a higher concentration of ester (462 mg/g mixture) can be obtained at a temperature of 50 °C, flow rate 0.16 mL/min. The best ultrasonication conditions are: sonication applied continuously for a short time (20 min), ultrasound power 32 mW and amplitude 20%. The enzyme can be successfully reused tree times without loss of enzyme activity. Reaction kinetics for isoamyl acetate ultrasound assisted production showed that satisfactory reaction concentration (close to the equilibrium concentrations) could be reached in short reaction times (2 h). Ultrasound assisted enzymatic esterification is consequently a cleaner and a faster process.
Collapse
|
84
|
Exploration of a three-dimensional matrix as micro-reactor in the form of reactive polyaminosaccharide hydrogel beads using multipoint covalent interaction approach. Biotechnol Lett 2022; 44:299-319. [DOI: 10.1007/s10529-022-03223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/11/2022] [Indexed: 11/02/2022]
|
85
|
Yin M, Chen H. Unveiling the dual faces of chitosan in anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2022; 344:126182. [PMID: 34710600 DOI: 10.1016/j.biortech.2021.126182] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, the roles of chitosan (CTS) in anaerobic digestion of Waste activated sludge (WAS) were investigated. The results show that the methane production potential of WAS is positively correlated with the CTS content. The presence of 30 g/kg total suspended solids CTS increased the cumulative methane production from 215 ± 1.52 to 272 ± 1.83 mL/g volatile suspended solids. The positively charged amino groups in CTS neutralize the hydroxyl and carboxyl groups of extracellular polymeric substances, which reduces the negative charge on the surface of sludge and promotes sludge agglomeration, thereby inhibiting the release of organic matter. CTS also inhibits hydrolysis and acidification by immobilizing hydrolases and acidulase enzymes. However, CTS flocculates humus to avoid its interference with electron transfer, thereby enhancing the activity of coenzyme F420 and methanogenesis. In addition, CTS increases the abundance of methanogens, which also contributes to methane production.
Collapse
Affiliation(s)
- Mengyu Yin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
86
|
Sato R, Amao Y. Carbonic anhydrase/formate dehydrogenase bienzymatic system for CO 2 capture, utilization and storage. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00405k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In order to establish carbon capture, utilization, and storage (CCUS) technology, a system consisting of two different biocatalysts (formate dehydrogenase from Candida boidinii; CbFDH and carbonic anhydrase from bovine erythrocytes; CA) is developed.
Collapse
Affiliation(s)
- Ryohei Sato
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yutaka Amao
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Research Centre for Artificial Photosynthesis (ReCAP), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
87
|
Ren C, Wang H, Cheng Y, Ma X, Wang Y. Cyclodextrin polymer-confined urease for the fast and efficient removal of urea. NEW J CHEM 2022. [DOI: 10.1039/d2nj03303h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient urease immobilized material was synthesized for fast and efficient urea removal with high pH and temperature tolerance.
Collapse
Affiliation(s)
- Cui Ren
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 30072, China
| | - He Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 30072, China
| | - Yue Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 30072, China
| | - Xiaofei Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 30072, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 30072, China
| |
Collapse
|
88
|
Maleki H, Khoshnevisan K, Baharifar H. Random and Positional Immobilization of Multi-enzyme Systems. Methods Mol Biol 2022; 2487:133-150. [PMID: 35687233 DOI: 10.1007/978-1-0716-2269-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, three key techniques including random co-immobilization, positional co-immobilization, and compartmentalization for multi-enzyme immobilization were extensively considered. Herein, we investigate random co-immobilization and positional co-immobilization techniques for multi-enzyme systems in detail. We describe randomly co-immobilized glucose oxidase (GOx) and horseradish peroxidase (HRP) on reduced graphene oxide (rGO) as the most used methods. Materials and methods are presented in terms of preparation of GO and rGO as well as enzyme immobilization procedure. Moreover, the principles of positional co-immobilization have been reviewed, and the relevant methods based on microfluidic systems and DNA structure considering HRP and GOx enzymes have been individually studied. It is believed that the benefits of using the methods associated with random and specifically positional immobilized multi-enzyme systems include not only enhanced cascade enzymatic activity via manipulated surface such as microfluidic systems (including porous materials) and DNA structure but also improved enzyme stability and ease of recovery for recycle.
Collapse
Affiliation(s)
- Hassan Maleki
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
89
|
Kadir NHA, Mohammad M, Alam M, Torkashvand M, Silvaragi TGB, Gururuloo SL. Utilization of nanocellulose fibers, nanocrystalline cellulose and bacterial cellulose in biomedical and pharmaceutical applications. NANOTECHNOLOGY IN PAPER AND WOOD ENGINEERING 2022:409-470. [DOI: 10.1016/b978-0-323-85835-9.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
90
|
Budhiraja M, Ali A, Tyagi V. First biocatalytic synthesis of piperidine derivatives via an immobilized lipase-catalyzed multicomponent reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj06232h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A robust and reusable biocatalyst was constructed via immobilization of lipase onto magnetic halloysite nanotubes for the synthesis of piperidine derivatives.
Collapse
Affiliation(s)
- Meenakshi Budhiraja
- School of chemistry and Biochemistry Thapar institute of engineering and technology (TIET), Patiala, Punjab, India
| | - Amjad Ali
- School of chemistry and Biochemistry Thapar institute of engineering and technology (TIET), Patiala, Punjab, India
| | - Vikas Tyagi
- School of chemistry and Biochemistry Thapar institute of engineering and technology (TIET), Patiala, Punjab, India
| |
Collapse
|
91
|
Pragya, Sharma KK, Kumar A, Singh D, Kumar V, Singh B. Immobilized phytases: an overview of different strategies, support material, and their applications in improving food and feed nutrition. Crit Rev Food Sci Nutr 2021; 63:5465-5487. [PMID: 34965785 DOI: 10.1080/10408398.2021.2020719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phytases are the most widely used food and feed enzymes, which aid in nutritional improvement by reducing anti-nutritional factor. Despite the benefits, enzymes usage in the industry is restricted by several factors such as their short life-span and poor reusability, which result in high costs for large-scale utilization at commercial scale. Furthermore, under pelleting conditions such as high temperatures, pH, and other factors, the enzyme becomes inactive due to lesser stability. Immobilization of phytases has been suggested as a way to overcome these limitations with improved performance. Matrices used to immobilize phytases include inorganic (Hydroxypatite, zeolite, and silica), organic (Polyacrylamide, epoxy resins, alginate, chitosan, and starch agar), soluble matrix (Polyvinyl alcohol), and nanomaterials including nanoparticles, nanofibers, nanotubes. Several surface analysis methods, including thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and FTIR analysis, have been used to characterize immobilized phytase. Immobilized phytases have been used in a broad range of biotechnological applications such as animal feed, biodegradation of food phytates, preparations of myo-inositol phosphates, and sulfoxidation by vanadate-substituted peroxidase. This article provides information on different matrices used for phytase immobilization from the last two decades, including the process of immobilization and support material, surface analysis techniques, and multifarious biotechnological applications of the immobilized phytases.
Collapse
Affiliation(s)
- Pragya
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Anil Kumar
- Department of Botany, Pt. N.R.S. Govt. College, Rohtak, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Mahendergarh, India
| | - Vijay Kumar
- Department of Botany, Shivaji College, University of Delhi, New Delhi, India
| | - Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Department of Biotechnology, Central University of Haryana, Jant-Pali, India
| |
Collapse
|
92
|
Badoei-Dalfard A, Monemi F, Hassanshahian M. One-pot synthesis and biochemical characterization of a magnetic collagenase nanoflower and evaluation of its biotechnological applications. Colloids Surf B Biointerfaces 2021; 211:112302. [PMID: 34954517 DOI: 10.1016/j.colsurfb.2021.112302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Recently, hierarchical magnetic enzyme nanoflowers have been found extensive attention for efficient enzyme immobilization due to high surface area, low mass transfer limitations, active site accessibility, promotion of the enzymatic performance, and facile reusing. Herein, we report the purification of the Bacillus collagenase and then synthesis of magnetic cross-linked collagenase-metal hybrid nanoflowers (mcCNFs). The catalytic efficiency (kcat/Km) value of the immobilized collagenase was 2.2 times more than that of the free collagenase. The collagenase activity of mcCNFs enhanced about 2.9 and 4.6 at 85 and 90 °C, respectively, compared to free collagenase. Thermal stability of mcCNFs increased about 31% and 24% after 3 h of incubation at 50 and 60 °C, respectively. After 10 cycles of reusing, the mCNFs collagenase showed 83% of its initial activity. Results showed that the mcCNFs revealed 1.4 times more activity than the free collagenase in 0.16% protein waste. Furthermore, the hydrolysis value of chicken pie protein wastes by the immobilized enzyme obtained 4 times more than the free collagenase after 240 min incubation at 40 °C. Finally, our results showed that the construction of mcCNFs is an efficient method to increase the enzymatic performance and has excessive potential for the hydrolysis of protein wastes in the food industry.
Collapse
Affiliation(s)
- Arastoo Badoei-Dalfard
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Farzaneh Monemi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
93
|
Kujawa J, Głodek M, Li G, Al-Gharabli S, Knozowska K, Kujawski W. Highly effective enzymes immobilization on ceramics: Requirements for supports and enzymes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149647. [PMID: 34467928 DOI: 10.1016/j.scitotenv.2021.149647] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Enzyme immobilization is a well-known method for the improvement of enzyme reusability and stability. To achieve very high effectiveness of the enzyme immobilization, not only does the method of attachment need to be optimized, but the appropriate support must be chosen. The essential necessities addressed to the support applied for enzyme immobilization can be focused on the material features as well as on the stability and resistances in certain conditions. Ceramic membranes and nanoparticles are the most widespread supports for enzyme immobilization. Hence, the immobilization of enzymes on ceramic membrane and nanoparticles are summarized and discussed. The important properties of the supports are particle size, pore structure, active surface area, volume to surface ratio, type and number of reactive available groups, as well as thermal, mechanical, and chemical stability. The modifiers and the crosslinkers are crucial to the enzyme loading amount, the chemical and physical stability, and the reusability and catalytical activity of the immobilized enzymes. Therefore, the chemical and physical methods of modification of ceramic materials are presented. The most popular and used modifiers (e.g. APTES, CPTES, VTES) as well as activating agents (GA, gelatin, EDC and/or NHS) applied to the grafting process are discussed. Moreover, functional groups of enzymes are presented and discussed since they play important roles in the enzyme immobilization via covalent bonding. The enhanced physical, chemical, and catalytical properties of immobilized enzymes are discussed revealing the positive balance between the effectiveness of the immobilization process, preservation of high enzyme activity, its good stability, and relatively low cost.
Collapse
Affiliation(s)
- Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Marta Głodek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Guoqiang Li
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Samer Al-Gharabli
- Pharmaceutical and Chemical Engineering Department, German-Jordanian University, Amman 11180, Jordan
| | - Katarzyna Knozowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland.
| |
Collapse
|
94
|
Adamian Y, Lonappan L, Alokpa K, Agathos SN, Cabana H. Recent Developments in the Immobilization of Laccase on Carbonaceous Supports for Environmental Applications - A Critical Review. Front Bioeng Biotechnol 2021; 9:778239. [PMID: 34938721 PMCID: PMC8685458 DOI: 10.3389/fbioe.2021.778239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
Τhe ligninolytic enzyme laccase has proved its potential for environmental applications. However, there is no documented industrial application of free laccase due to low stability, poor reusability, and high costs. Immobilization has been considered as a powerful technique to enhance laccase's industrial potential. In this technology, appropriate support selection for laccase immobilization is a crucial step since the support could broadly affect the properties of the resulting catalyst system. Through the last decades, a large variety of inorganic, organic, and composite materials have been used in laccase immobilization. Among them, carbon-based materials have been explored as a support candidate for immobilization, due to their properties such as high porosity, high surface area, the existence of functional groups, and their highly aromatic structure. Carbon-based materials have also been used in culture media as supports, sources of nutrients, and inducers, for laccase production. This study aims to review the recent trends in laccase production, immobilization techniques, and essential support properties for enzyme immobilization. More specifically, this review analyzes and presents the significant benefits of carbon-based materials for their key role in laccase production and immobilization.
Collapse
Affiliation(s)
- Younes Adamian
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Linson Lonappan
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Komla Alokpa
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Spiros N. Agathos
- Laboratory of Bioengineering, Earth and Life Institute, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Hubert Cabana
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
95
|
Shahriari S, Sastry M, Panjikar S, Singh Raman RK. Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors. Nanotechnol Sci Appl 2021; 14:197-220. [PMID: 34815666 PMCID: PMC8605898 DOI: 10.2147/nsa.s334487] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/02/2021] [Indexed: 01/21/2023] Open
Abstract
Graphene and graphene oxide have become the base of many advanced biosensors due to their exceptional characteristics. However, lack of some properties, such as inertness of graphene in organic solutions and non-electrical conductivity of graphene oxide, are their drawbacks in sensing applications. To compensate for these shortcomings, various methods of modifications have been developed to provide the appropriate properties required for biosensing. Efficient modification of graphene and graphene oxide facilitates the interaction of biomolecules with their surface, and the ultimate bioconjugate can be employed as the main sensing part of the biosensors. Graphene nanomaterials as transducers increase the signal response in various sensing applications. Their large surface area and perfect biocompatibility with lots of biomolecules provide the prerequisite of a stable biosensor, which is the immobilization of bioreceptor on transducer. Biosensor development has paramount importance in the field of environmental monitoring, security, defense, food safety standards, clinical sector, marine sector, biomedicine, and drug discovery. Biosensor applications are also prevalent in the plant biology sector to find the missing links required in the metabolic process. In this review, the importance of oxygen functional groups in functionalizing the graphene and graphene oxide and different types of functionalization will be explained. Moreover, immobilization of biomolecules (such as protein, peptide, DNA, aptamer) on graphene and graphene oxide and at the end, the application of these biomaterials in biosensors with different transducing mechanisms will be discussed.
Collapse
Affiliation(s)
- Shiva Shahriari
- Department of Mechanical & Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | - Murali Sastry
- Department of Materials Science and Engineering, Monash University, Melbourne, Victoria, Australia
| | - Santosh Panjikar
- ANSTO, Australian Synchrotron, Melbourne, Victoria, Australia
- Department of Molecular Biology and Biochemistry, Monash University, Melbourne, Victoria, Australia
| | - R K Singh Raman
- Department of Mechanical & Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
96
|
Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 2021; 52:107821. [PMID: 34455028 DOI: 10.1016/j.biotechadv.2021.107821] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
The use of enzymes in industrial processes requires the improvement of their features in many instances. Enzyme immobilization, a requirement to facilitate the recovery and reuse of these water-soluble catalysts, is one of the tools that researchers may utilize to improve many of their properties. This review is focused on how enzyme immobilization may improve enzyme stability. Starting from the stabilization effects that an enzyme may experience by the mere fact of being inside a solid particle, we detail other possibilities to stabilize enzymes: generation of favorable enzyme environments, prevention of enzyme subunit dissociation in multimeric enzymes, generation of more stable enzyme conformations, or enzyme rigidification via multipoint covalent attachment. In this last point, we will discuss the features of an "ideal" immobilization protocol to maximize the intensity of the enzyme-support interactions. The most interesting active groups in the support (glutaraldehyde, epoxide, glyoxyl and vinyl sulfone) will be also presented, discussing their main properties and uses. Some instances in which the number of enzyme-support bonds is not directly related to a higher stabilization will be also presented. Finally, the possibility of coupling site-directed mutagenesis or chemical modification to get a more intense multipoint covalent immobilization will be discussed.
Collapse
Affiliation(s)
- Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre, RS, Brazil
| | | | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
97
|
Almeida FLC, Castro MPJ, Travália BM, Forte MBS. Erratum to “Trends in lipase immobilization: Bibliometric review and patent analysis” [Process Biochem. 110 (2021) 37–51]. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
98
|
Singh RS, Singh T. Fructooligosaccharides Production from Inulin by Immobilized Endoinulinase on 3-Aminopropyltriethoxysilane Functionalized Halloysite Nanoclay. Catal Letters 2021. [DOI: 10.1007/s10562-021-03803-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
99
|
Shamna I, Kwan Jeong S, Margandan B. Covalent immobilization of carbonic anhydrase on amine functionalized alumino-Siloxane aerogel beads for biomimetic sequestration of CO2. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
100
|
Polyvinyl alcohol as a crucial omissible polymer to fabricate an impedimetric glucose biosensor based on hierarchical 3D-NPZnO/chitosan. Carbohydr Polym 2021; 266:118105. [DOI: 10.1016/j.carbpol.2021.118105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/04/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
|