51
|
Liu Y, Wang JW, Zhang J, Qi TT, Chu GW, Zou HK, Sun BC. NOx removal by non-thermal plasma reduction: experimental and theoretical investigations. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
52
|
Effect of acidic components (SO42- and WO3) on the surface acidity, redox ability and NH3-SCR activity of new CeO2-TiO2 nanoporous aerogel catalysts: A comparative study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
53
|
New insight on N2O formation over MnOx/TiO2 catalysts for selective catalytic reduction of NOx with NH3. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
54
|
Fang X, Qu W, Qin T, Hu X, Chen L, Ma Z, Liu X, Tang X. Abatement of Nitrogen Oxides via Selective Catalytic Reduction over Ce 1-W 1 Atom-Pair Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6631-6638. [PMID: 35500091 DOI: 10.1021/acs.est.2c00482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Environmentally benign CeO2-WO3/TiO2 catalysts are promising alternatives to commercial toxic V2O5-WO3/TiO2 for controlling NOx emission via selective catalytic reduction (SCR), but the insufficient catalytic activity of CeO2-WO3/TiO2 catalysts is one of the obstacles in their applications because of a lack of an in-depth understanding of the CeO2-WO3 interactions. Herein, we design a Ce1-W1/TiO2 model catalyst by anchoring Ce1-W1 atom pairs on anatase TiO2(001) to investigate the synergy between Ce and W in SCR. A series of characterizations combined with density functional theory calculations and in situ diffuse-reflectance infrared Fourier-transform experiments reveal that there exists a strong electronic interaction within Ce1-W1 atom pairs, leading to a much better SCR performance of Ce1-W1/TiO2 compared with that of Ce1/TiO2 and W1/TiO2. The Ce1-W1 synergy not only shifts down the lowest unoccupied states of Ce1 near the Fermi level, thus enhancing the abilities in adsorbing and oxidizing NH3 but also makes the frontier orbital electrons of W1 delocalized, thus accelerating the activation of O2. The deep insight of the Ce-W synergy may assist in the design and development of efficient catalysts with an SCR activity as high as or even higher than V2O5-WO3/TiO2.
Collapse
Affiliation(s)
- Xue Fang
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Weiye Qu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tian Qin
- School of Chemistry and Chemical Engineering, In Situ Center for Physical Science, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Hu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, In Situ Center for Physical Science, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Ma
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In Situ Center for Physical Science, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingfu Tang
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
55
|
Investigation of NOx emission under different burner structures with the optimized combustion model. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.11.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
56
|
Recent progress of Pd/zeolite as passive NOx adsorber: Adsorption chemistry, structure-performance relationships, challenges and prospects. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
57
|
Xu Z, Ao Z, Yang M, Wang S. Recent progress in single-atom alloys: Synthesis, properties, and applications in environmental catalysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127427. [PMID: 34678562 DOI: 10.1016/j.jhazmat.2021.127427] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 05/14/2023]
Abstract
Heterogeneous catalysts have made outstanding advancements in pollutants elimination as well as energy and materials production over the past decades. Single-atom alloys (SAAs) are novel environmental catalysts prepared by dispersing single metal atoms on other metals. Integrating the advantages of single atom and alloys, SAAs can maximize atom utilization, reduce the use of noble metals and enhance catalytic performances. The synergistic, electronic and geometric effects of SAAs are effective to modulate the activation energy and adsorption strength, consequently breaking linear scaling relationship as well as offering an excellent catalytic activity and selectivity. Moreover, SAAs possess clear atomic structure, active sites and reaction mechanisms, providing an opportunity to tailor catalytic properties and develop effective environmental catalysts. In this review, we provide the recent progress on synthetic strategies, catalytic properties and catalyst design of SAAs. Furthermore, the applications of SAAs in environmental catalysis are introduced towards catalytic conversion and elimination of different air pollutants in many important reactions including (electrochemical) oxidation of volatile organic compounds (VOCs), dehydrogenation of VOCs, CO2 conversion, NOx reduction, CO oxidation, SO3 decomposition, etc. Finally, challenges and opportunities of SAAs in a broad environmental field are proposed.
Collapse
Affiliation(s)
- Zhiling Xu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; SINOPEC Maoming Petrochemical Company, Maoming 525011, China
| | - Zhimin Ao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Mei Yang
- SINOPEC Maoming Petrochemical Company, Maoming 525011, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
58
|
Reyna-Cavazos KA, la Cruz AMD, Contreras D, Longoria-Rodríguez FE. Polyol-assisted coprecipitation synthesis of BiOI photocatalyst and its activity to remove NOx. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
59
|
Ratio of adsorptive abilities for NH3 and NOx determined SCR activity of transition-metal catalyst. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
60
|
Ko BH, Hasa B, Shin H, Zhao Y, Jiao F. Electrochemical Reduction of Gaseous Nitrogen Oxides on Transition Metals at Ambient Conditions. J Am Chem Soc 2022; 144:1258-1266. [PMID: 35014265 DOI: 10.1021/jacs.1c10535] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitigating nitrogen oxide (NOx) emissions is critical to tackle global warming and improve air quality. Conventional NOx abatement technologies for emission control suffer from a low efficiency at near ambient temperatures. Herein, we show an electrochemical pathway to reduce gaseous NOx that can be conducted at high reaction rates (400 mA cm-2) under ambient conditions. Various transition metals are evaluated for electrochemical reduction of NO and N2O to reveal the role of electrocatalyst in determining the product selectivity. Specifically, Cu is highly selective toward NH3 formation with >80% Faradaic efficiency in NO electroreduction. Furthermore, the partial pressure study of NO electroreduction revealed that a high NO coverage facilitates the N-N coupling reaction. In acidic electrolytes, the formation of NH3 is greatly favored, whereas the N2 production is suppressed. Additional mechanistic studies were conducted by using flow electrochemical mass spectrometry to gain further insights into reaction pathways. This work provides a promising avenue toward abating gaseous NOx emissions at ambient conditions by using renewable electricity.
Collapse
Affiliation(s)
- Byung Hee Ko
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Bjorn Hasa
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Haeun Shin
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yaran Zhao
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Feng Jiao
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
61
|
Effects of Ammonia Solution and Pyrolysis Gas on NOx Emission from a 75 t/h Pulverized Coal Boiler. Catalysts 2022. [DOI: 10.3390/catal12020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To explore methods of reducing NOx emission from pulverized coal boilers, the effects of injecting ammonia solution and pyrolysis gas into the furnace on NOx emission were experimentally investigated on a 75 t/h pulverized coal boiler. Results show that the deep air staging with 30% separated over fire air (SOFA) creates a high temperature and strong reducing atmosphere in the reducing zone, providing the prerequisites for NOx reduction by ammonia solution and pyrolysis gas. Compared with deep air staging itself, NOx emission can be reduced by 16.7% when ammonia solution is injected from the reducing zone with a normalized stoichiometric ratio of 2.0. However, NOx reduction efficiency is largely affected by its injection position. Similarly, NOx emission is decreased by 28.2% through injecting pyrolysis gas with its calorific value of 10% into the furnace, while a further increase of pyrolysis gas input will not increase NOx reduction efficiency. When ammonia solution and pyrolysis gas are simultaneously injected into the furnace under deep air staging conditions, the overall NOx reduction efficiency reaches 92.0% and NOx emission is decreased to 39.1 mg/m3. Considering the increasingly strict NOx emission standard, these findings can provide theoretical and practical guides to the future NOx reduction in pulverized coal boilers.
Collapse
|
62
|
Theoretical Studies on the Mechanism of deNOx Process in Cu-Zn Bimetallic System-Comparison of FAU and MFI Zeolites. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010300. [PMID: 35011531 PMCID: PMC8746640 DOI: 10.3390/molecules27010300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022]
Abstract
In the present study we propose a more promising catalyst for the deNOx process to eliminate harmful nitrogen oxides from the environment. The study was performed with a computer calculation using density functional theory (DFT) based on an ab initio method. Two zeolite catalysts, FAU and MFI, were selected with additional Cu-O-Zn bimetallic dimer adsorbed inside the pores of both zeolites. Based on the analysis of preliminary studies, the most probable way of co-adsorption of nitric oxide and ammonia was selected, which became the initial configuration for the reaction mechanism. Two types of mechanisms were proposed: with hydroxyl groups on a bridged position of the dimer or a hydroxyl group on one of the metal atoms of the dimer. Based on the results, it was determined that the FAU zeolite with a bimetallic dimer and an OH group on the zinc atom was the most efficient configuration with a relatively low energy barrier. The real advantage of the Cu-Zn system over FAU and MFI in hydrothermal conditions has been demonstrated in comparison to a conventional Cu-Cu catalyst.
Collapse
|
63
|
Carro P, Choi J, MacFarlane DR, Simonov AN, Doña-Rodríguez JM, Azofra LM. Competition between metal-catalysed electroreduction of dinitrogen, protons, and nitrogen oxides: a DFT perspective. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00389a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metals are common electrocatalysts for N2-into-NH3 reduction. In protic media, H+ competes with N2 to be reduced into H2. NOx, common air pollutants, are predicted to be more selectively converted into NH3 than N2, and even more than H+ into H2.
Collapse
Affiliation(s)
- Pilar Carro
- Área de Química Física, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Instituto de Materiales y Nanotecnología, Avda. Francisco Sánchez, s/n, 38200 La Laguna, Tenerife, Spain
| | - Jaecheol Choi
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Electromaterials Science, School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Douglas R. MacFarlane
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Electromaterials Science, School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Alexandr N. Simonov
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Electromaterials Science, School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - José Miguel Doña-Rodríguez
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Luis Miguel Azofra
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
64
|
Eid A, Rahman MA, Al-Abadleh HA. Mechanistic studies on the conversion of NO gas on urea-iron and copper metal organic frameworks at low temperature conditions: in situ infrared spectroscopy and Monte Carlo investigations. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrogen oxide (NOx) emissions from high-temperature combustion processes under fuel-lean conditions continue to be a challenge for the energy industry. Selective catalytic reduction (SCR) is possible using metal oxides and zeolites. There is still a need to identify catalytic materials that are efficient in reducing NOx to environmentally benign nitrogen gas at temperatures lower than 200 °C. Metal-organic frameworks (MOFs) have emerged as a class of highly porous materials with unique physical and chemical properties. This study is motivated by the lack of systematic investigations on SCR using MOFs under industrially relevant conditions. Here, we investigate the extent of NO conversion with two commercially available MOFs, Basolite F300 (Fe-BTC) and HKUST-1 (Cu-BTC), mixed with solid urea as a source for the reductant, ammonia gas. For comparison, experiments were also conducted using cobalt ferrite (CoFe2O4) as a non-porous counterpart to relate its reactivity to those obtained from MOFs. Fourier-transform infrared spectroscopy (FTIR) was utilized to identify the gas and surface species in the temperature range of 115–180 °C. Computational analysis was performed using Monte Carlo simulations to quantify the adsorption energies of different surface species. The results show that the rate of ammonia production from the in situ solid urea decomposition was higher using CoFe2O4 than Fe-BTC and Cu-BTC and that there was very limited conversion of NO on the mixed solid urea-MOF systems due to site blocking. The main conclusions from this study are that MOFs have limited ability to convert NO under low-temperature conditions and that surface regeneration requires additional experimental steps.
Collapse
Affiliation(s)
- A.M. Eid
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Mohammad A. Rahman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Hind A. Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
65
|
Insight on photocatalytic oxidation of high concentration NO over BiOCl/Bi2WO6 under visible light. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
66
|
Guan Y, Liu Y, Lv Q, Wang B. Fe decorated CeO2 microsphere catalyst with surface oxygen defect for NO reduction by CO. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
67
|
Li Y, Hou Y, Zhang Y, Yang Y, Huang Z. Confinement of MnO x@Fe 2O 3 core-shell catalyst with titania nanotubes: Enhanced N 2 selectivity and SO 2 tolerance in NH 3- SCR process. J Colloid Interface Sci 2021; 608:2224-2234. [PMID: 34772500 DOI: 10.1016/j.jcis.2021.10.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Surface interface regulation is an important research content in the field of heterogeneous catalysis. To improve the interface interaction between the active component and matrix, tremendous efforts have been dedicated to tailoring the morphology, size, and structure of composite catalysts. In this work, we report a confinement strategy to synthesize a series of core-shell catalysts loaded with metal oxides on titania nanotubes (TNTs), which were applied to the selective catalytic reduction of NOx with ammonia. Interestingly, the core-shell catalyst with confinement of TNTs exhibited the remarkable activity at low temperature region, N2 selectivity and sulfur tolerance. Benefiting from the superior interfacial confinement characteristic of TNTs and Fe2O3, strong component interactions, the surface acid sites and strong oxidizability of MnOx were properly regulated, thus obtained the outstanding activity, N2 selectivity and provide chemical protection to effectively prevent SO2 poisoning. As far as the reaction mechanism, we found that the adsorption and reactivity of Lewis acid sites were the dominant factors affecting the activity in the NH3-SCR process by in situ DRIFT spectra. In general, our work provides an innovative strategy for constructing an TNTs-enwrapped nanocomposite with nano-confinement and core-shell structure to improve the low temperature SCR process.
Collapse
Affiliation(s)
- Yifan Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaqin Hou
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| | - Yongzhao Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yatao Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhanggen Huang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
68
|
Xu Z, Zheng Q, Wang S, Zhang Z, Liu Z, Zhang G, Jin W. Fabrication of molten nitrate/nitrite dual-phase four-channel hollow fiber membranes for nitrogen oxides separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
69
|
Yu W, Li X, Yuan F. Effects of Operating and Structural Parameters on Removal of Nitric Oxide by Oxidation in a Ceramic Hollow Fiber Membrane Contactor. MEMBRANES 2021; 11:membranes11090704. [PMID: 34564522 PMCID: PMC8470615 DOI: 10.3390/membranes11090704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
A numerical study on the oxidation removal of nitric oxide in a ceramic hollow fiber membrane contactor was performed. To represent the transport and absorption process, the model was created by combining multiphase, species, reaction, and porous models. The numerical results were verified by comparing them with experimental data. The tube and lumen sides both have laminar parabolic velocity distributions. The nitric oxide concentration decreases gradually from the membrane wall to axis at the cross-section except on the inner and outer sides of the membrane tube. The equivalent diffusion length was proved useful for evaluating the entrance effect. At low concentrations, the reduction efficiency was proportional to the absorbent concentration, and at large concentrations, it neared a maximum value. The reduction efficiency was positively affected by elevated operating temperature and pressure. With a gas channel width of 13 mm, the reduction flow rate achieves its maximum. The efficiency of NO reduction per area decreases as the effective membrane length increases. Increasing the operating temperature and membrane length are recommended as design priorities due to high relative enhancements. It is not recommended to improve reduction efficiency by increasing membrane tube diameter and operating pressure in design. Changing the gas flow rate, absorbent concentration and gas channel width are moderate recommended as well.
Collapse
Affiliation(s)
- Wei Yu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China; (W.Y.); (X.L.)
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoyin Li
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China; (W.Y.); (X.L.)
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Fangyang Yuan
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China; (W.Y.); (X.L.)
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
70
|
Abstract
The use of titania-based composite materials in the field of heterogeneous catalysis and photocatalysis has a long and rich history. Hybrid structures combining titania nanoparticles with clay minerals have been extensively investigated for nearly four decades. The attractiveness of clay minerals as components of functional materials stems primarily from their compositional versatility and the possibility of using silicate lamellae as prefabricated building blocks ready to be fitted into the desired nanoconstruction. This review focuses on the evolution over the years of synthetic strategies employed for the manufacturing of titania–clay mineral composites with particular attention to the role of the adopted preparative approach in shaping the physical and chemical characteristics of the materials and enabling, ultimately, tuning of their catalytic and/or photocatalytic performance.
Collapse
|
71
|
Sun S, Liu W, Guan W, Zhu S, Jia J, Wu X, Lei R, Jia T, He Y. Effects of air pollution control devices on volatile organic compounds reduction in coal-fired power plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146828. [PMID: 33839653 DOI: 10.1016/j.scitotenv.2021.146828] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Air pollution control devices (APCDs) have been fitted to many coal-fired power plants to decrease the impacts of pollutants generated during coal combustion. APCDs remove conventional pollutants but also decrease volatile organic compound (VOC) emissions. In this study, flue gas samples were collected from different points in seven typical coal-fired power and two industrial boilers, and the VOC concentrations in the flue gas samples were determined by gas chromatography-mass spectrometry (GC-MS). Selective catalytic reduction (SCR) systems and electrostatic precipitators (ESP) can synergistically remove VOCs, the mean removal rate of VOCs by ESP was 42% ± 9%. This was caused by the catalyst in SCR systems and the condensation process in the ESP. Wet flue gas desulfurization (WFGD) affected different VOCs in different ways, increasing the halogenated hydrocarbons and aromatic hydrocarbons concentrations but decreasing the oxygenated VOCs concentrations by 12%. Wet electrostatic precipitators (WESP) increased VOC emissions. By calculating Ozone formation potential (OFP), aromatic hydrocarbons are important contributors to ozone production. The emission factor of the power plant was 0.69 g/GJ, and the Chinese annual emission was about 1.2 × 104 t. VOCs emissions in different regions were affected by factors such as the economy and population. VOC emissions can be decreased by using the most appropriate unit load and improving the VOC removal efficiencies of the APCDs.
Collapse
Affiliation(s)
- Shurui Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Water Resources and Environment, Chang'an University, Xi'an 710054, China
| | - Wenbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weisheng Guan
- College of Water Resources and Environment, Chang'an University, Xi'an 710054, China
| | - Shuai Zhu
- National Research Center for Geoanalysis, Beijing 100037, China
| | - Jing Jia
- National Research Center for Geoanalysis, Beijing 100037, China
| | - Xiaolin Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongrong Lei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunchen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
72
|
Zeng Y, Zhang S. Revealing active species of CePO4 catalyst for selective catalytic reduction of NO with NH3. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
73
|
Yang J, Liu S, Fu Q, Li-Chao N, Chen L. Hydrochloric Acid‐Assisted Regeneration of Cobalt Ethylenediamine for NO
x
Remediation in Flue Gas. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jie Yang
- Chengdu University of Information Technology College of Resources and Environment 610225 Chengdu Sichuan China
| | - Shengyu Liu
- Chengdu University of Information Technology College of Resources and Environment 610225 Chengdu Sichuan China
| | - Qianwen Fu
- Chengdu University of Information Technology College of Resources and Environment 610225 Chengdu Sichuan China
| | - Nengzi Li-Chao
- Xichang University Academy of Economics and Environmental Sciences 615013 Xichang Sichuan China
| | - Li Chen
- Chengdu University of Information Technology College of Resources and Environment 610225 Chengdu Sichuan China
| |
Collapse
|
74
|
Cai J, Zheng W, Wang Q. Effects of hydrogen peroxide, sodium carbonate, and ethanol additives on the urea-based SNCR process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145551. [PMID: 33578169 DOI: 10.1016/j.scitotenv.2021.145551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/09/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The issue of secondary pollutants represents a classic problem in the urea-based selective non-catalytic reduction (SNCR) process. Therefore, this study took to investigate the evolutions of secondary pollutants when including additives during the urea-based SNCR process. Results indicated that additives, namely hydrogen peroxide, sodium carbonate, and ethanol, clear improved denitration efficiency between 750 °C - 925 °C due to the increase of OH groups. Compared to rates without any additives, the "temperature window" width of hydrogen peroxide, sodium carbonate, and ethanol increased by 30%, 30%, and 52%, respectively. The temperature at the maximum denitration efficiency was decreased by 25 °C with the addition of ethanol. The addition of hydrogen peroxide, sodium carbonate, and ethanol decreased the amount of ammonia leakage at 725 °C - 900 °C. Besides, the emissions of HNCO and N2O were decreased by adding sodium carbonate during 725 °C - 900 °C. Therefore, the addition of sodium carbonate proved to be beneficial for reducing the secondary pollutant emissions in SNCR. This study aims to provide a deeper understanding of the urea-based SNCR process in combustion.
Collapse
Affiliation(s)
- Jianjun Cai
- School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Wenheng Zheng
- School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Quan Wang
- School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
75
|
Sharif HMA, Mahmood N, Wang S, Hussain I, Hou YN, Yang LH, Zhao X, Yang B. Recent advances in hybrid wet scrubbing techniques for NO x and SO 2 removal: State of the art and future research. CHEMOSPHERE 2021; 273:129695. [PMID: 33524756 DOI: 10.1016/j.chemosphere.2021.129695] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Recently, the discharge of flue gas has become a global issue due to the rapid development in industrial and anthropogenic activities. Various dry and wet treatment approaches including conventional and hybrid hybrid wet scrubbing have been employing to combat against these toxic exhaust emissions. However, certain issues i.e., large energy consumption, generation of secondary pollutants, low regeneration of scrubbing liquid and high efficieny are hindering their practical applications on industrial level. Despite this, the hybrid wet scrubbing technique (advanced oxidation, ionic-liquids and solid engineered interface hybrid materials based techniques) is gaining great attention because of its low installation costs, simultaneous removal of multi-air pollutants and low energy requirements. However, the lack of understanding about the basic principles and fundamental requirements are great hurdles for its commercial scale application, which is aim of this review article. This review article highlights the recent developments, minimization of GHG, sustainable improvements for the regeneration of used catalyst via green and electron rich donors. It explains, various hybrid wet scrubbing techniques can perform well under mild condition with possible improvements such as development of stable, heterogeneous catalysts, fast and in-situ regeneration for large scale applications. Finally, it discussed recovery of resources i.e., N2O, NH3 and N2, the key challenges about several competitive side products and loss of catalytic activity over time to treat toxic gases via feasible solutions by hybrid wet scrubbing techniques.
Collapse
Affiliation(s)
| | - Nasir Mahmood
- School of Engineering, RMIT University, 124 La Trobe Street, 3001, Melbourne, Victoria, Australia
| | - Shengye Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ijaz Hussain
- Faculty of Science, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Malaysia
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, PR China
| | - Li-Hui Yang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
76
|
Huang Z, Wei Z, Tang M, Yu S, Jiao H. Biological treatments of mercury and nitrogen oxides in flue gas: biochemical foundations, technological potentials, and recent advances. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:133-168. [PMID: 34353503 DOI: 10.1016/bs.aambs.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nitrogen oxides (NOx) and mercury (Hg) are commonly found coexistent pollutants in combustion flue gas. Ever-increasing emission of atmospheric Hg and NOx has caused considerable environmental risks. Traditional flue gas demercuration and denitration techniques have many socioeconomic, technological and environmental drawbacks. Biotechnologies can be a promising and prospective alternative strategy. This article discusses theoretical foundation (biochemistry and genomic basis) and technical potentials (Hg0 bio-oxidation coupled to denitrification) of bioremoval of Hg and NOx in flue gas and summarized recent experimental and technological advances. Finally, several specific technical perspectives have been put forward to better guide future researches.
Collapse
Affiliation(s)
- Zhenshan Huang
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Zaishan Wei
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.
| | - Meiru Tang
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Shan Yu
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Huaiyong Jiao
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| |
Collapse
|
77
|
Nguyen DB, Matyakubov N, Saud S, Heo I, Kim SJ, Kim YJ, Lee JH, Mok YS. High-Throughput NO x Removal by Two-Stage Plasma Honeycomb Monolith Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6386-6396. [PMID: 33787245 DOI: 10.1021/acs.est.1c00750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A two-stage plasma catalyst system for high-throughput NOx removal was investigated. Herein, the plasma stage involved the large-volume plasma discharge of humidified gas and was carried out in a sandwich-type honeycomb monolith reactor consisting of a commercial honeycomb catalyst (50 mm high; 93 mm in diameter) located between two parallel perforated disks that formed the electrodes. The results demonstrated that, in the plasma stage, the reduction of NOx did not occur at room temperature; instead, NO was only oxidized to NO2 and n-heptane to oxygenated hydrocarbons. The oxidation of NO and n-heptane in the honeycomb plasma discharge state was largely affected by the humidity of the feed gas. Furthermore, the oxidation of NO to NO2 occurs preferably to that of n-heptane with a tendency of the NO oxidation to decrease with increasing feed gas humidity. The reason is that the generation of O3 decreases as the amount of water vapor in the feed gas increases. Compared to the catalyst alone, the two-stage plasma catalyst system increased NOx removal by 29% at a temperature of 200 °C and an energy density of 25 J/L.
Collapse
Affiliation(s)
- Duc Ba Nguyen
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Nosir Matyakubov
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea
| | - Shirjana Saud
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea
| | - Iljeong Heo
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sang-Joon Kim
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Young Jin Kim
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jin Hee Lee
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Young Sun Mok
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
78
|
Martínez-Ahumada E, Díaz-Ramírez ML, Velásquez-Hernández MDJ, Jancik V, Ibarra IA. Capture of toxic gases in MOFs: SO 2, H 2S, NH 3 and NO x. Chem Sci 2021; 12:6772-6799. [PMID: 34123312 PMCID: PMC8153083 DOI: 10.1039/d1sc01609a] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
MOFs are promising candidates for the capture of toxic gases since their adsorption properties can be tuned as a function of the topology and chemical composition of the pores. Although the main drawback of MOFs is their vulnerability to these highly corrosive gases which can compromise their chemical stability, remarkable examples have demonstrated high chemical stability to SO2, H2S, NH3 and NO x . Understanding the role of different chemical functionalities, within the pores of MOFs, is the key for accomplishing superior captures of these toxic gases. Thus, the interactions of such functional groups (coordinatively unsaturated metal sites, μ-OH groups, defective sites and halogen groups) with these toxic molecules, not only determines the capture properties of MOFs, but also can provide a guideline for the desigh of new multi-functionalised MOF materials. Thus, this perspective aims to provide valuable information on the significant progress on this environmental-remediation field, which could inspire more investigators to provide more and novel research on such challenging task.
Collapse
Affiliation(s)
- Eva Martínez-Ahumada
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán, 04510 Ciudad de México Mexico +52(55) 5622-4595
| | | | | | - Vojtech Jancik
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria Ciudad de México Mexico
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM Carr. Toluca-Atlacomulco Km 14.5 Toluca Estado de México 50200 Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán, 04510 Ciudad de México Mexico +52(55) 5622-4595
| |
Collapse
|
79
|
Hu X, Chen J, Qu W, Liu R, Xu D, Ma Z, Tang X. Sulfur-Resistant Ceria-Based Low-Temperature SCR Catalysts with the Non-bulk Electronic States of Ceria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5435-5441. [PMID: 33724009 DOI: 10.1021/acs.est.0c08736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although ceria-based catalysts serve as an appealing alternative to traditional V2O5-based catalysts for selective catalytic reduction (SCR) of NOx with NH3, the inevitable deactivation caused by SO2 at low temperatures severely hampers the ceria-based catalysts to efficiently control NOx emissions from SO2-containing stack gases. Here, we rationally design a strong sulfur-resistant ceria-based catalyst by tuning the electronic structures of ceria highly dispersed on acidic MoO3 surfaces. By using Ce L3-edge X-ray absorption near edge structure spectra in conjunction with various surface and bulk structural characterizations, we report that the sulfur resistance of the catalysts is closely associated with the electronic states of ceria, particularly expressed by the Ce3+/Ce4+ ratio related to the size of the ceria particles. As the Ce3+/Ce4+ ratio increases up to or over 50%, corresponding to CeO2/MoO3(x %, x ≤ 2.1) with the particle size of approximately 4 nm or less, the non-bulk electronic states of ceria appear, where the catalysts start to show strong sulfur resistance. This work could provide a new strategy for designing sulfur-resistant ceria-based SCR catalysts for controlling NOx emissions at low temperatures.
Collapse
Affiliation(s)
- Xiaolei Hu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Junxiao Chen
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Weiye Qu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Rui Liu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dongrun Xu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhen Ma
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xingfu Tang
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
80
|
Liu Y, You Y, Li Z, Yang X, Wu X, Zhao C, Xing Y, Yang RT. NO x removal with efficient recycling of NO 2 from iron-ore sintering flue gas: A novel cyclic adsorption process. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124380. [PMID: 33223311 DOI: 10.1016/j.jhazmat.2020.124380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Conventional flue gas nitrogen oxides (NOx) abatement technologies commonly convert NOx into harmless compounds, while less effort has been made to recycle NO2 as a profitable chemical in many industries. Towards this end, adsorption is a promising technology for which an advanced technique for NO2 desorption and efficient sorbent regeneration provides the key step for success in practical applications. This work reports a novel cyclic adsorption process for NOx removal with recycling of NO2 from iron-ore sintering flue gas of a steel plant. This process using self-prepared and validated pelletized Na-ZSM-5 zeolites as low-cost sorbents involves NOx catalytic adsorption and reversible desorption using multiple hot gas circulations (GC) within the enclosed fixed bed followed by scavenging and purge at mild conditions. In comparison to conventional cyclic processes, greater amount of recyclable NO2 was obtained, rendering the NOx recovery of >92% and the mean NO2 concentration of >2% significantly enriched from original 20 ppm in feed gas. A robust adsorption-desorption performance with appreciable NOx working capacity was achieved for up to 16 cycles. The key role of the segmentation of GC in boosting NOx regenerability was addressed, providing an economical three-tower strategy for continuous NO2 production for practical use.
Collapse
Affiliation(s)
- Yingshu Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yang You
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Ziyi Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Xiong Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xiaoyong Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Chunyu Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Ralph T Yang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|
81
|
Cruz-Martínez H, Rojas-Chávez H, Montejo-Alvaro F, Peña-Castañeda YA, Matadamas-Ortiz PT, Medina DI. Recent Developments in Graphene-Based Toxic Gas Sensors: A Theoretical Overview. SENSORS (BASEL, SWITZERLAND) 2021; 21:1992. [PMID: 33799914 PMCID: PMC8001952 DOI: 10.3390/s21061992] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/18/2022]
Abstract
Detecting and monitoring air-polluting gases such as carbon monoxide (CO), nitrogen oxides (NOx), and sulfur oxides (SOx) are critical, as these gases are toxic and harm the ecosystem and the human health. Therefore, it is necessary to design high-performance gas sensors for toxic gas detection. In this sense, graphene-based materials are promising for use as toxic gas sensors. In addition to experimental investigations, first-principle methods have enabled graphene-based sensor design to progress by leaps and bounds. This review presents a detailed analysis of graphene-based toxic gas sensors by using first-principle methods. The modifications made to graphene, such as decorated, defective, and doped to improve the detection of NOx, SOx, and CO toxic gases are revised and analyzed. In general, graphene decorated with transition metals, defective graphene, and doped graphene have a higher sensibility toward the toxic gases than pristine graphene. This review shows the relevance of using first-principle studies for the design of novel and efficient toxic gas sensors. The theoretical results obtained to date can greatly help experimental groups to design novel and efficient graphene-based toxic gas sensors.
Collapse
Affiliation(s)
- Heriberto Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (H.C.-M.); (F.M.-A.)
| | - Hugo Rojas-Chávez
- Tecnológico Nacional de México, Instituto Tecnológico de Tláhuac II, Camino Real 625, Tláhuac, Ciudad de México 13508, Mexico;
| | - Fernando Montejo-Alvaro
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (H.C.-M.); (F.M.-A.)
| | - Yesica A. Peña-Castañeda
- Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, Av. Fray Servando Teresa de Mier 92, Cuauhtémoc, Ciudad de México 06080, Mexico;
| | - Pastor T. Matadamas-Ortiz
- Instituto Politécnico Nacional, CIIDIR-OAXACA, Hornos No. 1003, Noche Buena, Santa Cruz Xoxocotlán 71230, Mexico
| | - Dora I. Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de México 52926, Mexico
| |
Collapse
|
82
|
Shi X, Zhao F, Cao C, Zhang H, Dang X, Huang T. Nitrogen oxide gas purification using carbon in water as reducing reagent with the aid of microbial fuel cell. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124169. [PMID: 33127189 DOI: 10.1016/j.jhazmat.2020.124169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Microbial Fuel Cell (MFC) can degrade the organic matter (OM) in wastewater at the anode and transfer electrons to the cathode. In this work, the harmful NOX gas was used as electron acceptor in MFC and converted to harmless N2. The OM in water was indirectly used as a zero-cost reducing agent for NOx removal. More than 80% of NOX was removed continuously by MFC at room temperature. The NOX was directly reduced to N2 at MFC cathode and the cathode activity played a key role on enhancing the NOX removal. The NOX removal efficiency by the cathode of high potential was 1.37 times that by the cathode of low potential. When O2 coexisting with NO as the electron acceptor, not only the NOX removal but also the power output of MFC was improved greatly. The presence of NOX did not decrease the power generation of MFC under the same O2 concentration. The MFCs showed good stability for NOX treatment and power output. Moreover, the possible pathways and advantages of NOX removal by MFC were discussed in detail. These results indicated that the MFC system has the potential to treat wastewater, purify flue gas and recover energy simultaneously.
Collapse
Affiliation(s)
- Xinxin Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Fan Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chi Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoqing Dang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
83
|
Improving the Performance of Gd Addition on Catalytic Activity and SO2 Resistance over MnOx/ZSM-5 Catalysts for Low-Temperature NH3-SCR. Catalysts 2021. [DOI: 10.3390/catal11030324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
SO2 poisoning is a great challenge for the practical application of Mn-based catalysts in low-temperature selective catalytic reduction (SCR) reactions of NOx with NH3. A series of Gadolinium (Gd)-modified MnOx/ZSM-5 catalysts were synthesized via a citric acid–ethanol dispersion method and evaluated by low-temperature NH3-SCR. Among them, the GdMn/Z-0.3 catalyst with the molar ratio of Gd/Mn of 0.3 presented the highest catalytic activity, in which a 100% NO conversion could be obtained in the temperature range of 120–240 °C. Furthermore, GdMn/Z-0.3 exhibited good SO2 resistance compared with Mn/Z in the presence of 100 ppm SO2. The results of Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction of H2 (H2-TPR) and temperature-programmed desorption of NH3 (NH3-TPD) illustrated that such catalytic performance was mainly caused by large surface area, abundant Mn4+ and surface chemisorbed oxygen species, strong reducibility and the suitable acidity of the catalyst. The in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS) results revealed that the addition of Gd greatly inhibited the reaction between the SO2 and MnOx active sites to form bulk manganese sulfate, thus contributing to high SO2 resistance. Moreover, in situ DRIFTS experiments also shed light on the mechanism of low-temperature SCR reactions over Mn/Z and GdMn/Z-0.3, which both followed the Langmuir–Hinshelwood (L–H) and Eley–Rideal (E–R) mechanism.
Collapse
|
84
|
Zhu X, Dou L, Wu J, Yue Y, Zhang J, Qian G. Carbon deposition enhanced selective catalytic reduction of nitric oxide by a new catalytic process as well as increasing reducibility of catalyst. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143834. [PMID: 33280880 DOI: 10.1016/j.scitotenv.2020.143834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/09/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Carbon deposition usually hinders catalytic activity in one catalysis. In this work, carbon-deposition influence was investigated on selective catalytic reduction (SCR) of nitric oxide (NO) by a theoretical-experimental method. Density-functional-theory calculations showed that carbon deposition increased adsorption energy of NO on oxide. For example, adsorption energy on Fe2O3 increased from 1.70 to 5.27 eV. Carbon deposition increased activity by following processes: NO adsorption, NO dissociation, oxygen transmittance, CO-group formation, and N2/CO2 evolutions. Among these stages, CO-group formation was a key step. Based on these computational predictions, an experimental SCR was carried out for the verification. As a result, a carbon-deposited catalyst had a better SCR activity (20% higher) than the corresponding oxide catalyst. Characterizations showed that carbon deposition increased the amounts of medium/strong acidic sites as well as the reducibility of the catalytic center. The main result of this article helps to understand the interface behavior of carbon on a catalyst during SCR. Above results are also in favor of designing a more effective SCR reactor to ensure a more stable running.
Collapse
Affiliation(s)
- Xiaolei Zhu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| | - Li Dou
- China National Heavy Duty Truck Group Co., Ltd, Sinotruk Tower, No. 777 Hua'ao Road, Innovation Zone, Jinan, Shandong Province 25010, PR China
| | - Jianzhong Wu
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi 337022, PR China.
| | - Yang Yue
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi 337022, PR China.
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China.
| | - Guangren Qian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China.
| |
Collapse
|
85
|
Liu Y, Gao F, Yi H, Yang C, Zhang R, Zhou Y, Tang X. Recent advances in selective catalytic oxidation of nitric oxide (NO-SCO) in emissions with excess oxygen: a review on catalysts and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2549-2571. [PMID: 33105009 DOI: 10.1007/s11356-020-11253-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxides (NOx, which mainly include more than 90% NO) are one of the major air pollutants leading to a series of environmental problems, such as acid rain, haze, photochemical smog, etc. The selective catalytic oxidation of NO to NO2 (NO-SCO) is regarded as a key process for the development of selective catalytic reduction of NOx by ammonia (via fast selective catalytic reduction reaction) and also the simultaneous removal of multipollutant (pre-oxidation and post-absorption). Until now, scholars have developed various types of NO-SCO catalysts, dividing the main groups into noble metals (Pt, Pd, Ru, etc.), metal oxides (Mn-, Co-, Cr-, Ce-based, etc.), perovskite-type oxides (LaMnO3, LaCoO3, LaCeCoO3, etc.), carbon materials (activated carbon, carbon fiber, carbon nanotube, graphene, etc.), and zeolites (ion-exchanged ZSM-5, CHA, SAPO, MCM-41, etc.) in this review. This paper summarizes the recent progress of the above typical catalysts and mostly analyzes the catalytic performance for NO oxidation in terms of the H2O and/or SO2 resistances and also the influencing factors, and their reaction mechanisms are described in detail. Finally, this review points out the key problems and possible solutions of the current researches and presents the application prospects and future development directions of NO-SCO technology using the above typical catalysts.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Chen Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Runcao Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuansong Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
86
|
Zhang W, Qian Y, Li Y, He Z, Zhao J. Efficient NO reduction by carbon-deposited CaO in the carbonation step of calcium looping for the CO2 capture. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00182e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbon-deposited CaO realizes efficient NO removal and CO2 capture in carbonator of calcium looping.
Collapse
Affiliation(s)
- Wan Zhang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Yuqi Qian
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Yingjie Li
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Zirui He
- Institute of Mechanics, Materials and Civil Engineering (iMMC), Materials & Process Engineering (IMAP), Université Catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-la-Neuve, Belgium
| | - Jianli Zhao
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
87
|
Abstract
The purification of diesel exhaust gas is of great importance to prevent the atmospheric emission of major pollutants such as diesel particulate matter and nitrogen oxides and meet the environmental regulations. The atmospheric-pressure plasma is attracting increasing interest and is a promising after-treatment technology for purifying diesel emission at low temperatures. However, when compared with the numerous publications on nitrogen oxides reduction by non-thermal plasma, using non-thermal plasma to particulate matter treatment have relatively limited. This work provides a comprehensive review of the plasma applications for diesel particulate matter treatment, including self-regenerating diesel particulate filter, diesel particulate matter removal, and simultaneous removal of diesel particulate matter and nitrogen oxides. The treatment of particulate matter from both simulated particulate matter sources and actual diesel engines also discussed in this comprehensive review. The challenge to this technology is limited energy consumption for plasma, which should be less than 5% (~30 J/L) of the overall fuel consumption. Until now, the atmospheric-pressure plasma has been no commercial implementation in diesel exhaust gas treatment, so more research is needed to be done in this field.
Collapse
|
88
|
Man H, Wen C, Luo W, Bian J, Wang W, Li C. Simultaneous deSOx and deNOx of marine vessels flue gas on ZnO-CuO/rGO: Photocatalytic oxidation kinetics. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
89
|
Ko BH, Hasa B, Shin H, Jeng E, Overa S, Chen W, Jiao F. The impact of nitrogen oxides on electrochemical carbon dioxide reduction. Nat Commun 2020; 11:5856. [PMID: 33203886 PMCID: PMC7672067 DOI: 10.1038/s41467-020-19731-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
The electroreduction of carbon dioxide offers a promising avenue to produce valuable fuels and chemicals using greenhouse gas carbon dioxide as the carbon feedstock. Because industrial carbon dioxide point sources often contain numerous contaminants, such as nitrogen oxides, understanding the potential impact of contaminants on carbon dioxide electrolysis is crucial for practical applications. Herein, we investigate the impact of various nitrogen oxides, including nitric oxide, nitrogen dioxide, and nitrous oxide, on carbon dioxide electroreduction on three model electrocatalysts (i.e., copper, silver, and tin). We demonstrate that the presence of nitrogen oxides (up to 0.83%) in the carbon dioxide feed leads to a considerable Faradaic efficiency loss in carbon dioxide electroreduction, which is caused by the preferential electroreduction of nitrogen oxides over carbon dioxide. The primary products of nitrogen oxides electroreduction include nitrous oxide, nitrogen, hydroxylamine, and ammonia. Despite the loss in Faradaic efficiency, the electrocatalysts exhibit similar carbon dioxide reduction performances once a pure carbon dioxide feed is restored, indicating a negligible long-term impact of nitrogen oxides on the catalytic properties of the model catalysts.
Collapse
Affiliation(s)
- Byung Hee Ko
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Bjorn Hasa
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Haeun Shin
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Emily Jeng
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Sean Overa
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Wilson Chen
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Feng Jiao
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
90
|
Hou H, Zhou J, Ji M, Yue Y, Qian G, Zhang J. Mechanochemical activation of titanium slag for effective selective catalytic reduction of nitric oxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140733. [PMID: 32673916 DOI: 10.1016/j.scitotenv.2020.140733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Ti-bearing blast furnace slag was usually recycled by acid leaching. For the first time, a catalyst was synthesized from the slag by wet ball-milling. During this process, no waste was produced. When the activated slag was used in selective catalytic reduction of nitric oxide (NO), 80.5 ± 1.2% of NO (990 ppm) was removed at 350 °C. The catalyst steadily removed 91.0 ± 1.3% of NO for 900 min at 400 °C. On the contrary, the slag without activation showed almost no catalytic activity at these temperatures. The enhanced activity was mainly attributed to the following characterizations. After wet ball-milling, specific surface area of the slag was increased from 2.595 to 26.497 m2/g; surface acid sites were amplified by 15 times; Fe/Ti ratio on surface was enhanced from 0.20 to 1.10. At the same time, surface Fe2+/Fe3+ was regulated from 0.43 to 0.53. The above enhanced properties were attributed to the mechanochemical activation, which dissolved and re-deposited active species on particle surface as well as reinforced the effect between Fe and Ti species. The main result of this work put forward a green method for the direct utilization of industrial waste without generating by-products.
Collapse
Affiliation(s)
- Hao Hou
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai 200444, PR China
| | - Jizhi Zhou
- School of Economics, Shanghai University, No. 333 Nanchen Road., Shanghai 200444, PR China.
| | - Meiting Ji
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai 200444, PR China
| | - Yang Yue
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi 337022, PR China
| | - Guangren Qian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai 200444, PR China; MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi 337022, PR China,.
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai 200444, PR China; MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi 337022, PR China,.
| |
Collapse
|
91
|
Promotional Effect of Manganese on Selective Catalytic Reduction of NO by CO in the Presence of Excess O2 over M@La–Fe/AC (M = Mn, Ce) Catalyst. Catalysts 2020. [DOI: 10.3390/catal10111322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The catalytic performance of a series of La-Fe/AC catalysts was studied for the selective catalytic reduction (SCR) of NO by CO. With the increase in La content, the Fe2+/Fe3+ ratio and amount of surface oxygen vacancies (SOV) in the catalysts increased; thus the catalytic activity improved. Incorporating the promoters to La3-Fe1/active carbon (AC) catalyst could affect the catalyst activity by changing the electronic structure. The increase in Fe2+/Fe3+ ratio after the promoter addition is possibly due to the extra synergistic interaction of M (Mn and Ce) and Fe through the redox equilibrium of M3+ + Fe3+ ↔ M4+ + Fe2+. This phenomenon could have improved the redox cycle, enhanced the SOV formation, facilitated NO decomposition, and accelerated the CO-SCR process. The presence of O2 enhanced the formation of the C(O) complex and improved the activation of the metal site. Mn@La3-Fe1/AC catalyst revealed an excellent NO conversion of 93.8% at 400 °C in the presence of 10% oxygen. The high catalytic performance of MnOx and double exchange behavior of Mn3+ and Mn4+ can increase the number of SOV and improve the catalytic redox properties.
Collapse
|
92
|
Zeng Y, Haw K, Wang Y, Zhang S, Wang Z, Zhong Q, Kawi S. Recent Progress of CeO
2
−TiO
2
Based Catalysts for Selective Catalytic Reduction of NO
x
by NH
3. ChemCatChem 2020. [DOI: 10.1002/cctc.202001307] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yiqing Zeng
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117582 Singapore
| | - Kok‐Giap Haw
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117582 Singapore
| | - Yanan Wang
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Shule Zhang
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Zhigang Wang
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117582 Singapore
| | - Qin Zhong
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117582 Singapore
| |
Collapse
|
93
|
Li Q, Hou Y, Xiang N, Liu Y, Huang Z. A new insight into the promotional effect of nitrogen-doping in activated carbon for selective catalytic reduction of NO X with NH 3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140158. [PMID: 32563884 DOI: 10.1016/j.scitotenv.2020.140158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
A series of N-doped carbons were prepared to investigate the effect of different N-containing groups on selective catalytic reduction (SCR) of NOx with NH3. Combined the SCR activity with the results of porosity analysis and X-ray photoelectron spectroscopy, it's deduced that the pyridinic N (N-6) rather than the surface area or doped total N was mainly responsible for the promoted SCR activity. The electron paramagnetic resonance and O2-temperature programmed desorption (O2-TPD) experiments indicated that N-6 created numerous of oxygen vacancy. The NO+O2-TPD and transient response of NH3 further demonstrated that the increased oxygen vacancy enhanced the absorbability and reactivity of NOx, therefore the SCR reaction was elevated by accelerating the reaction in the Langmuir-Hinshelwood (L-H) mechanism. Furthermore, the NH3-TPD suggested that N-6 was conductive to the NH3 adsorption. In situ DRIFTs of NH3 adsorption and reaction illustrated that the increased NH3 mainly existed as NH2 species, which were quickly consumed by NO+O2, further elevated the reaction between gaseous NO and adsorbed NH3 in the Eley-Rideal (E-R) mechanism. The N-6 groups doped in the activated carbons facilitated the L-H and E-R reactions and thus promoted the SCR activity.
Collapse
Affiliation(s)
- Qiaoyan Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaqin Hou
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ning Xiang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongjin Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhanggen Huang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| |
Collapse
|
94
|
Experimental Investigation of the Hydrate-Based Gas Separation of Synthetic Flue Gas with 5A Zeolite. ENERGIES 2020. [DOI: 10.3390/en13174556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coal combustion flue gas contains CO2, a greenhouse gas and driver of climate change. Therefore, CO2 separation and removal is necessary. Fortunately, 5A zeolites are highly porous and can be used as a CO2 adsorbent. In addition, they act as nuclei for hydrate formation. In this work, a composite technology, based on the physical adsorption of CO2 by 5A zeolite and hydrate-based gas separation, was used to separate CO2/N2 gas mixtures. The influence of water content, temperature, pressure, and particle size on gas adsorption and CO2 separation was studied, revealing that the CO2 separation ability of zeolite particles sized 150–180 μm was better than that of those sized 380–830 μm at 271.2 K and 273.2 K. When the zeolite particles were 150–180 μm (type-B zeolite) with a water content of 35.3%, the gas consumption per mole of water (ngas/nH2O ) reached the maximum, 0.048, and the CO2 separation ratio reached 14.30%. The CO2 molar concentration in the remaining gas phase (xCO2gas) was lowest at 271.2 K in the type-B zeolite system with a water content of 47.62%. Raman analysis revealed that CO2 preferentially occupied the small hydrate cages and there was a competitive relationship between N2 and CO2.
Collapse
|
95
|
Palma V, Cortese M, Renda S, Ruocco C, Martino M, Meloni E. A Review about the Recent Advances in Selected NonThermal Plasma Assisted Solid-Gas Phase Chemical Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1596. [PMID: 32823944 PMCID: PMC7466689 DOI: 10.3390/nano10081596] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/12/2023]
Abstract
Plasma science has attracted the interest of researchers in various disciplines since the 1990s. This continuously evolving field has spawned investigations into several applications, including industrial sterilization, pollution control, polymer science, food safety and biomedicine. nonthermal plasma (NTP) can promote the occurrence of chemical reactions in a lower operating temperature range, condition in which, in a conventional process, a catalyst is generally not active. The aim, when using NTP, is to selectively transfer electrical energy to the electrons, generating free radicals through collisions and promoting the desired chemical changes without spending energy in heating the system. Therefore, NTP can be used in various fields, such as NOx removal from exhaust gases, soot removal from diesel engine exhaust, volatile organic compound (VOC) decomposition, industrial applications, such as ammonia production or methanation reaction (Sabatier reaction). The combination of NTP technology with catalysts is a promising option to improve selectivity and efficiency in some chemical processes. In this review, recent advances in selected nonthermal plasma assisted solid-gas processes are introduced, and the attention was mainly focused on the use of the dielectric barrier discharge (DBD) reactors.
Collapse
Affiliation(s)
| | | | | | | | | | - Eugenio Meloni
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy; (V.P.); (M.C.); (S.R.); (C.R.); (M.M.)
| |
Collapse
|
96
|
Experimental Investigation of Primary De-NOx Methods Application Effects on NOx and CO Emissions from a Small-Scale Furnace. Processes (Basel) 2020. [DOI: 10.3390/pr8080940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nitrogen oxides (NOx) from combustion contribute significantly to atmospheric pollution. An experimental setup was employed to investigate the application of three primary denitrification methods, i.e., reburning (staged combustion), overfiring air (OFA), and flue-gas recirculation (FGR), individually and in combination, combusting natural gas (NG) and propane–butane gas (PBG). Fuel heat inputs of 16 and 18 kW and air excess coefficients of 1.1 and 1.2, respectively, were tested. The highest individual denitrification efficiency of up to 74% was obtained for FGR, followed by reburning and OFA. A denitrification efficiency between 8.9% (reburning + OFA) and 72% (reburning + OFA + FGR) with NG combustion was observed. Using a 20% FGR rate yielded denitrification efficiency of 74% for NG and 65% for PBG and also led to a significant decrease in carbon monoxide (CO) emissions, so this can be recommended as the most efficient denitrification and de-CO method in small-scale furnaces. Reburning alone led to a sharp, more than 12-fold increase in CO emissions compared to the amount without any other method application. The presented results and the difference between our experimental data and the literature data acquired in some other studies indicate the need for further research.
Collapse
|
97
|
Arfaoui J, Ghorbel A, Petitto C, Delahay G. A new V 2O 5–MoO 3–TiO 2–SO 42−nanostructured aerogel catalyst for diesel DeNO xtechnology. NEW J CHEM 2020. [DOI: 10.1039/d0nj03747h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new V2O5–MoO3–TiO2–SO42−nanostructured aerogel catalyst exhibits superior SCR activity compared to the V2O5–WO3/TiO2commercial catalyst (EUROCAT) at high temperatures (375–500 °C).
Collapse
Affiliation(s)
- Jihene Arfaoui
- Université Tunis El Manar
- Laboratoire de Chimie des Matériaux et Catalyse
- Département de Chimie
- Faculté des Sciences de Tunis
- Campus Universitaire Farhat Hached d'El Manar
| | - Abdelhamid Ghorbel
- Université Tunis El Manar
- Laboratoire de Chimie des Matériaux et Catalyse
- Département de Chimie
- Faculté des Sciences de Tunis
- Campus Universitaire Farhat Hached d'El Manar
| | - Carolina Petitto
- ICGM, University of Montpellier
- ENSCM (MACS)
- CNRS
- Montpellier
- France
| | - Gerard Delahay
- ICGM, University of Montpellier
- ENSCM (MACS)
- CNRS
- Montpellier
- France
| |
Collapse
|