51
|
Li Y, Zhen D, Liu F, Zhang X, Gao Z, Wang J. Adsorption of azoxystrobin and pyraclostrobin onto degradable and non-degradable microplastics: Performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169453. [PMID: 38135077 DOI: 10.1016/j.scitotenv.2023.169453] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Microplastics (MPs) exist after agricultural operations and thus present potential hazards to the environment and human health. However, the ecological risks posed by MPs carrying pesticides remain unclear. In this study, the adsorption and desorption behaviors of two pesticides, azoxystrobin and pyraclostrobin, on degradable and non-degradable MPs of poly(butylene adipate-co-terephthalate) (PBAT) and polyethylene (PE) were compared before and after UV aging. Additionally, the bioaccessibility of MPs carrying pesticides within a condition simulating gastrointestinal fluids was evaluated. The results showed that, after UV aging, the adsorption capacity of PBAT for pesticides decreased, while that of PE increased. Moreover, PBAT possessed higher adsorption ability towards both the pesticides due to its higher specific surface area, pore volume, contact angle, and lower crystallinity, as well as stronger van der Waals forces, electrostatic interactions, and hydrogen bonding indicated by theoretical calculation. Bioaccessibility experiments showed that azoxystrobin and pyraclostrobin had a higher risk of desorption from PBAT than PE, which is mainly dependent on the LogKow of pesticides according to the random forest analysis. In brief, the study highlights the potential risks of degradable MPs carrying pesticides to human health and the ecosystem, especially when compared to their non-degradable counterparts, manifesting that the ecological risk posed by degradable MPs should not be ignored.
Collapse
Affiliation(s)
- Yuyan Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Dawei Zhen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Fengmao Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Xianzhao Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Gao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jun Wang
- Department of Applied Statistics, College of Economics and Management, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
52
|
Rafa N, Ahmed B, Zohora F, Bakya J, Ahmed S, Ahmed SF, Mofijur M, Chowdhury AA, Almomani F. Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123190. [PMID: 38142809 DOI: 10.1016/j.envpol.2023.123190] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/25/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Microplastic pollution has emerged as a new environmental concern due to our reliance on plastic. Recent years have seen an upward trend in scholarly interest in the topic of microplastics carrying contaminants; however, the available review studies have largely focused on specific aspects of this issue, such as sorption, transport, and toxicological effects. Consequently, this review synthesizes the state-of-the-art knowledge on these topics by presenting key findings to guide better policy action toward microplastic management. Microplastics have been reported to absorb pollutants such as persistent organic pollutants, heavy metals, and antibiotics, leading to their bioaccumulation in marine and terrestrial ecosystems. Hydrophobic interactions are found to be the predominant sorption mechanism, especially for organic pollutants, although electrostatic forces, van der Waals forces, hydrogen bonding, and pi-pi interactions are also noteworthy. This review reveals that physicochemical properties of microplastics, such as size, structure, and functional groups, and environmental compartment properties, such as pH, temperature, and salinity, influence the sorption of pollutants by microplastic. It has been found that microplastics influence the growth and metabolism of organisms. Inadequate methods for collection and analysis of environmental samples, lack of replication of real-world settings in laboratories, and a lack of understanding of the sorption mechanism and toxicity of microplastics impede current microplastic research. Therefore, future research should focus on filling in these knowledge gaps.
Collapse
Affiliation(s)
- Nazifa Rafa
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, United Kingdom
| | - Bushra Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Fatema Zohora
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Jannatul Bakya
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Samiya Ahmed
- Biological and Biomedical Sciences Department, College of Health and Life sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ashfaque Ahmed Chowdhury
- School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia; Centre for Intelligent Systems, Clean Energy Academy, Central Queensland University, Rockhampton, QLD 4702, Australia
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Doha, Qatar.
| |
Collapse
|
53
|
Lai JL, Li ZG, Han MW, Huang Y, Xi HL, Luo XG. Analysis of environmental biological effects and OBT accumulation potential of microalgae in freshwater systems exposed to tritium pollution. WATER RESEARCH 2024; 250:121013. [PMID: 38118252 DOI: 10.1016/j.watres.2023.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
The ecological risk of tritiated wastewater into the environment has attracted much attention. Assessing the ecological risk of tritium-containing pollution is crucial by studying low-activity tritium exposure's environmental and biological effects on freshwater micro-environment and the enrichment potential of organically bound tritium (OBT) in microalgae and aquatic plants. The impact of tritium-contaminated wastewater on the microenvironment of freshwater systems was analyzed using microcosm experiments to simulate tritium pollution in freshwater systems. Low activity tritium pollution (105 Bq/L) induced differences in microbial abundance, with Proteobacteria, Bacteroidota, and Desulfobacterota occupying important ecological niches in the water system. Low activity tritium (105-107 Bq/L) did not affect the growth of microalgae and aquatic plants, but OBT was significantly enriched in microalgae and two aquatic plants (Pistia stratiotes, Spirodela polyrrhiza), with the enrichment coefficients of 2.08-3.39 and 1.71-2.13, respectively. At the transcriptional level, low-activity tritium (105 Bq/L) has the risk of interfering with gene expression in aquatic plants. Four dominant cyanobacterial strains (Leptolyngbya sp., Synechococcus elongatus, Nostoc sp., and Anabaena sp.) were isolated and demonstrated good environmental adaptability to tritium pollution. Environmental factors can modify the tritium accumulation potential in cyanobacteria and microalgae, theoretically enhancing food chain transfer.
Collapse
Affiliation(s)
- Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhan-Guo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Meng-Wei Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yan Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
54
|
Pastorino P. Sunscreens and micro(nano)plastics: Are we aware of these threats to the Egyptian coral reefs? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168587. [PMID: 37984652 DOI: 10.1016/j.scitotenv.2023.168587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
During a snorkeling trip to Marsa Alam and Hamata (southern Red Sea Riviera, Egypt) I explored the coral reefs and the diverse marine habitats of fish and invertebrate species. The area invites recreational diving and snorkeling, but the beaches are littered with all sorts of solid waste (mainly fragmented plastics). Also, there are no local restrictions on sunscreen use. The development of tourism to the area raises questions about the environmental impact and how its further growth will have on coral reefs. Every year, 1.2 million tourists visit the Red Sea coast (about 3287 tourists per day) and release about 1.7 tons/month of sunscreen into the Red Sea. As an ecologist and editorial board member of Science of the Total Environment, I ask myself how we as scientists can increase public awareness and call for prompt actions to protect the coral reefs. The discussion underlines two major threats to the Egyptian coral reefs: sunscreen use and micro(nano)plastics waste. The discussion closes with possible solutions, future perspectives, and recommendations to protect the coral reefs ecosystem of the Egyptian Red Sea.
Collapse
Affiliation(s)
- Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Torino, Italy.
| |
Collapse
|
55
|
Bansal M, Santhiya D, Sharma JG. Mechanistic understanding on the uptake of micro-nano plastics by plants and its phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8354-8368. [PMID: 38170356 DOI: 10.1007/s11356-023-31680-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Contaminated soil is one of today's most difficult environmental issues, posing serious hazards to human health and the environment. Contaminants, particularly micro-nano plastics, have become more prevalent around the world, eventually ending up in the soil. Numerous studies have been conducted to investigate the interactions of micro-nano plastics in plants and agroecosystems. However, viable remediation of micro-nano plastics in soil remains limited. In this review, a powerful in situ soil remediation technology known as phytoremediation is emphasized for addressing micro-nano-plastic contamination in soil and plants. It is based on the synergistic effects of plants and the microorganisms that live in their rhizosphere. As a result, the purpose of this review is to investigate the mechanism of micro-nano plastic (MNP) uptake by plants as well as the limitations of existing MNP removal methods. Different phytoremediation options for removing micro-nano plastics from soil are also described. Phytoremediation improvements (endophytic-bacteria, hyperaccumulator species, omics investigations, and CRISPR-Cas9) have been proposed to enhance MNP degradation in agroecosystems. Finally, the limitations and future prospects of phytoremediation strategies have been highlighted in order to provide a better understanding for effective MNP decontamination from soil.
Collapse
Affiliation(s)
- Megha Bansal
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
56
|
Le VG, Nguyen MK, Nguyen HL, Lin C, Hadi M, Hung NTQ, Hoang HG, Nguyen KN, Tran HT, Hou D, Zhang T, Bolan NS. A comprehensive review of micro- and nano-plastics in the atmosphere: Occurrence, fate, toxicity, and strategies for risk reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166649. [PMID: 37660815 DOI: 10.1016/j.scitotenv.2023.166649] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Micro- and nano-plastics (MNPs) have received considerable attention over the past 10 years due to their environmental prevalence and potential toxic effects. With the increase in global plastic production and disposal, MNP pollution has become a topic of emerging concern. In this review, we describe MNPs in the atmospheric environment, and potential toxicological effects of exposure to MNPs. Studies have reported the occurrence of MNPs in outdoor and indoor air at concentrations ranging from 0.0065 items m-3 to 1583 items m-3. Findings have identified plastic fragments, fibers, and films in sizes predominantly <1000 μm with polyamide (PA), polyester (PES), polyethylene terephthalate (PET), polypropylene (PP), rayon, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and ethyl vinyl acetate (EVA) as the major compounds. Exposure through indoor air and dust is an important pathway for humans. Airborne MNPs pose health risks to plants, animals, and humans. Atmospheric MNPs can enter organism bodies via inhalation and subsequent deposition in the lungs, which triggers inflammation and other adverse health effects. MNPs could be eliminated through source reduction, policy/regulation, environmental awareness and education, biodegradable materials, bioremediation, and efficient air-filtration systems. To achieve a sustainable society, it is crucial to implement effective strategies for reducing the usage of single-use plastics (SUPs). Further, governments play a pivotal role in addressing the pressing issue of MNPs pollution and must establish viable solutions to tackle this significant challenge.
Collapse
Affiliation(s)
- Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Mohammed Hadi
- Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Norway
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 810000, Viet Nam
| | - Khoi Nghia Nguyen
- Department of Soil Science, College of Agriculture, Can Tho University, Can Tho City 270000, Viet Nam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam.
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
57
|
Fukunaga Y, Zandieh M, Liu Y, Liu J. Salt-Induced Adsorption and Rupture of Liposomes on Microplastics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16395-16403. [PMID: 37934056 DOI: 10.1021/acs.langmuir.3c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Microplastics have attracted considerable attention because of concerns regarding their environmental risks to living systems. The interaction between the lipid bilayer and microplastics is important for examining the potential harm to biological membranes in the presence of microplastics. In addition, membrane coatings may change the surface and colloidal properties of microplastics. Herein, phosphatidylcholine (PC) lipids, whose headgroup is most common in cell membranes, were used as model lipids. The adsorption and rupture of PC liposomes on microplastics were systematically studied. We found that divalent metal ions, such as Mg2+ and Ca2+, facilitate liposome adsorption onto microplastics and induce 40-55% liposome leakage at 2.5 mM. In contrast, to achieve a similar effect, 300 mM Na+ was required. Adsorption and rupture followed the same metal concentration requirements, suggesting that liposome adsorption was the rate-limiting step. After adsorption with liposomes, microplastics became more hydrophilic and were better dispersed in water. A similar behavior was observed for all five types of tested microplastics, including PP, PE, PVC, PET, and PS. Leakage also occurred in ocean water. This study provides fundamental insights into the interactions between liposomes and microplastics and has implications for the colloidal and transport properties of microplastics.
Collapse
Affiliation(s)
- Yu Fukunaga
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
58
|
Wu D, Wang W, Yao Y, Li H, Wang Q, Niu B. Microbial interactions within beneficial consortia promote soil health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165801. [PMID: 37499809 DOI: 10.1016/j.scitotenv.2023.165801] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/26/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
By ecologically interacting with various biotic and abiotic agents acting in soil ecosystems, highly diverse soil microorganisms establish complex and stable assemblages and survive in a community context in natural settings. Besides facilitating soil microbiome to maintain great levels of population homeostasis, such microbial interactions drive soil microbes to function as the major engine of terrestrial biogeochemical cycling. It is verified that the regulative effect of microbe-microbe interplay plays an instrumental role in microbial-mediated promotion of soil health, including bioremediation of soil pollutants and biocontrol of soil-borne phytopathogens, which is considered an environmentally friendly strategy for ensuring the healthy condition of soils. Specifically, in microbial consortia, it has been proven that microorganism-microorganism interactions are involved in enhancing the soil health-promoting effectiveness (i.e., efficacies of pollution reduction and disease inhibition) of the beneficial microbes, here defined as soil health-promoting agents. These microbial interactions can positively regulate the soil health-enhancing effect by supporting those soil health-promoting agents utilized in combination, as multi-strain soil health-promoting agents, to overcome three main obstacles: inadequate soil colonization, insufficient soil contaminant eradication and inefficient soil-borne pathogen suppression, all of which can restrict their probiotic functionality. Yet the mechanisms underlying such beneficial interaction-related adjustments and how to efficiently assemble soil health-enhancing consortia with the guidance of microbe-microbe communications remain incompletely understood. In this review, we focus on bacterial and fungal soil health-promoting agents to summarize current research progress on the utilization of multi-strain soil health-promoting agents in the control of soil pollution and soil-borne plant diseases. We discuss potential microbial interaction-relevant mechanisms deployed by the probiotic microorganisms to upgrade their functions in managing soil health. We emphasize the interplay-related factors that should be taken into account when building soil health-promoting consortia, and propose a workflow for assembling them by employing a reductionist synthetic community approach.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Weixiong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yanpo Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hongtao Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
59
|
Li J, Dagnew M, Ray MB. Microfibers in anaerobic digestion: Effect of ozone pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118792. [PMID: 37738723 DOI: 10.1016/j.jenvman.2023.118792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/23/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Wastewater treatment plants receive significant microplastics, which are eventually discharged into the environment. Previous studies indicated that over 90% of microplastics, especially microfibers from laundry wastewater, are retained in primary sludge. The effect of microfibers from household laundry on anaerobic digestion has yet to be fully understood, which is the objective of the present study. The results in this study showed a positive correlation between methane production and the presence of microfibers. Compared to the control, the methane production increased by 2%, 27% and 43% with 20 mg/L, 100 mg/L and 1000 mg/L microfibers spiked into primary sludge, respectively. The present study suggests that microfibers at 20 mg/L insignificantly affected methane production in controlled anaerobic digestion. In contrast, ozone pretreatment of microfibers enhanced gas production by 12% in the same concentration level. Interestingly, ozone pretreatment at a higher concentration (100 mg/L-1000 mg/L) of microfibers did not affect methane production. SEM/EDX results imply that the ozone pretreatment has changed the surface characteristics of the microfibers, which provide more surface area for adsorption. The significant reduction of soluble phosphorus by 58% indicates that microfibers potentially act as a site for adsorption during anaerobic digestion. Overall, the presence of microfibers had a positive effect on anaerobic digestion. However, this work also indicated that the microfibers were not biodegraded during anaerobic digestion. Therefore, microfibers accumulate on biosolids, potentially affecting the final disposal of microfibers.
Collapse
Affiliation(s)
- Juan Li
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A5B9, Canada
| | - Martha Dagnew
- Department of Civil and Environmental Engineering, University of Western Ontario, London, ON, N6A5B9, Canada.
| | - Madhumita B Ray
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A5B9, Canada.
| |
Collapse
|
60
|
Zhuang S, Wang J. Interaction between antibiotics and microplastics: Recent advances and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165414. [PMID: 37429470 DOI: 10.1016/j.scitotenv.2023.165414] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Both microplastics and antibiotics are emerging pollutants, which are ubiquitous in aquatic environments. With small size, high specific surface area, and attached biofilm, microplastics are capable of adsorbing or biodegrading antibiotic pollutants across aquatic environments. However, the interactions between them are poorly understood, especially factors that affect microplastics' chemical vector effects and the mechanisms driving these interactions. In this review, the properties of microplastics and their interaction behavior and mechanisms towards antibiotics were comprehensively summarized. Particularly, the impact of weathering properties of microplastics and the growth of attached biofilm was highlighted. We concluded that compared with virgin microplastics, aged microplastics usually adsorb more types and quantities of antibiotics from aquatic environments, whilst the attached biofilm could further enhance the adsorption capacities and biodegrade some antibiotics. This review can answer the knowledge gaps of the interaction between microplastics and antibiotics (or other pollutants), offer basic information for evaluating their combined toxicity, provide insights into the distribution of both emerging pollutants in the global water chemical cycle, and inform measures to remove microplastic-antibiotic pollution.
Collapse
Affiliation(s)
- Shuting Zhuang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
61
|
Rajendran D, Chandrasekaran N. Journey of micronanoplastics with blood components. RSC Adv 2023; 13:31435-31459. [PMID: 37901269 PMCID: PMC10603568 DOI: 10.1039/d3ra05620a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
The entry of micro- and nanoplastics (MNPs) into the human body is inevitable. They enter blood circulation through ingestion, inhalation, and dermal contact by crossing the gut-lung-skin barrier (the epithelium of the digestive tract, the respiratory tract, and the cutaneous layer). There are many reports on their toxicities to organs and tissues. This paper presents the first thorough assessment of MNP-driven bloodstream toxicity and the mechanism of toxicity from the viewpoint of both MNP and environmental co-pollutant complexes. Toxic impacts include plasma protein denaturation, hemolysis, reduced immunity, thrombosis, blood coagulation, and vascular endothelial damage, among others, which can lead to life-threatening diseases. Protein corona formation, oxidative stress, cytokine alterations, inflammation, and cyto- and genotoxicity are the key mechanisms involved in toxicity. MNPs change the secondary structure of plasma proteins, thereby preventing their transport functions (for nutrients, drugs, oxygen, etc.). MNPs inhibit erythropoiesis by influencing hematopoietic stem cell proliferation and differentiation. They cause red blood cell and platelet aggregation, as well as increased adherence to endothelial cells, which can lead to thrombosis and cardiovascular disease. White blood cells and immune cells phagocytose MNPs, provoking inflammation. However, research gaps still exist, including gaps regarding the combined toxicity of MNPs and co-pollutants, toxicological studies in human models, advanced methodologies for toxicity analysis, bioaccumulation studies, inflammation and immunological responses, dose-response relationships of MNPs, and the effect of different physiochemical characteristics of MNPs. Furthermore, most studies have analyzed toxicity using prepared MNPs; hence, studies must be undertaken using true-to-life MNPs to determine the real-world scenario. Additionally, nanoplastics may further degrade into monomers, whose toxic effects have not yet been explored. The research gaps highlighted in this review will inspire future studies on the toxicity of MNPs in the vascular/circulatory systems utilizing in vivo models to enable more reliable health risk assessment.
Collapse
Affiliation(s)
- Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| |
Collapse
|
62
|
Ayala F, Rangel-Vega A, Quinde E, Reyes E, Zeta-Flores M, Tume-Ruiz J, De-la-Torre GE. Bibliometric review on microplastic contamination in the Pacific Alliance countries. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1369. [PMID: 37880459 DOI: 10.1007/s10661-023-11990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Microplastics, capable of absorbing persistent organic compounds, heavy metals, and emerging pollutants, are of global concern due to their potential to alter the behavior and metabolism of biota. In Latin America, the Pacific Alliance, comprising Mexico, Colombia, Peru, and Chile, stands out for its biological wealth and productive ecosystems, which account for 37% of the region's gross domestic product. The leaders of these countries expressed their concern about microplastic pollution and pledged to take joint action. We conducted an analysis of the scientific production of these countries and the collaborations of their researchers, focused on the period 2015-2023, using Scopus and SCImago. We observed that marine-coastal/wetland ecosystems are the most studied, with a focus on fish, and that Mexico leads in publications, followed by Colombia, Peru, and Chile. In addition, we note the absence of an inter-institutional group dedicated to microplastics research in these countries. We recommend promoting collaboration between academic institutions specialized in microplastic research and government agencies dedicated to the promotion of science and technology in the countries belonging to the Pacific Alliance.
Collapse
Affiliation(s)
- Félix Ayala
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Antia Rangel-Vega
- Facultad de Ingeniería Pesquera, Universidad Nacional de Piura, Piura, Peru
| | - Edgardo Quinde
- Facultad de Ingeniería Pesquera, Universidad Nacional de Piura, Piura, Peru
| | - Eddy Reyes
- Facultad de Ingeniería Pesquera, Universidad Nacional de Piura, Piura, Peru
| | - Martín Zeta-Flores
- Facultad de Ingeniería de Minas, Universidad Nacional de Piura, Piura, Peru
| | - Juan Tume-Ruiz
- Facultad de Ingeniería Pesquera, Universidad Nacional de Piura, Piura, Peru
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
63
|
Li Y, Hou Y, Hou Q, Long M, Wang Z, Rillig MC, Liao Y, Yong T. Soil microbial community parameters affected by microplastics and other plastic residues. Front Microbiol 2023; 14:1258606. [PMID: 37901816 PMCID: PMC10601715 DOI: 10.3389/fmicb.2023.1258606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction The impact of plastics on terrestrial ecosystems is receiving increasing attention. Although of great importance to soil biogeochemical processes, how plastics influence soil microbes have yet to be systematically studied. The primary objectives of this study are to evaluate whether plastics lead to divergent responses of soil microbial community parameters, and explore the potential driving factors. Methods We performed a meta-analysis of 710 paired observations from 48 published articles to quantify the impact of plastic on the diversity, biomass, and functionality of soil microbial communities. Results and discussion This study indicated that plastics accelerated soil organic carbon loss (effect size = -0.05, p = 0.004) and increased microbial functionality (effect size = 0.04, p = 0.003), but also reduced microbial biomass (effect size = -0.07, p < 0.001) and the stability of co-occurrence networks. Polyethylene significantly reduced microbial richness (effect size = -0.07, p < 0.001) while polypropylene significantly increased it (effect size = 0.17, p < 0.001). Degradable plastics always had an insignificant effect on the microbial community. The effect of the plastic amount on microbial functionality followed the "hormetic dose-response" model, the infection point was about 40 g/kg. Approximately 3564.78 μm was the size of the plastic at which the response of microbial functionality changed from positive to negative. Changes in soil pH, soil organic carbon, and total nitrogen were significantly positively correlated with soil microbial functionality, biomass, and richness (R2 = 0.04-0.73, p < 0.05). The changes in microbial diversity were decoupled from microbial community structure and functionality. We emphasize the negative impacts of plastics on soil microbial communities such as microbial abundance, essential to reducing the risk of ecological surprise in terrestrial ecosystems. Our comprehensive assessment of plastics on soil microbial community parameters deepens the understanding of environmental impacts and ecological risks from this emerging pollution.
Collapse
Affiliation(s)
- Yüze Li
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yuting Hou
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Quanming Hou
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Mei Long
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Ziting Wang
- College of Agronomy, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China
| | - Matthias C. Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yuncheng Liao
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Taiwen Yong
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
64
|
Gupta S, Kumar R, Rajput A, Gorka R, Gupta A, Bhasin N, Yadav S, Verma A, Ram K, Bhagat M. Atmospheric Microplastics: Perspectives on Origin, Abundances, Ecological and Health Risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107435-107464. [PMID: 37452254 DOI: 10.1007/s11356-023-28422-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Microplastic (MP) pollution has aroused a tremendous amount of public and scientific interest worldwide. MPs are found widely ranging from terrestrial to aquatic ecosystems primarily due to the over-exploitation of plastic products and unscientific disposal of plastic waste. There is a large availability of scientific literature on MP pollution in the terrestrial and aquatic ecosystems, especially the marine environments; however, only recently has greater scientific attention been focused on the presence of MPs in the air and its retrospective health implications. Besides, atmospheric transport has been reported to be an important pathway of transport of MPs to the pristine regions of the world. From a health perspective, existing studies suggest that airborne MPs are priority pollutant vectors, that may penetrate deep into the body through inhalation leading to adverse health impacts such as neurotoxicity, cancer, respiratory problems, cytotoxicity, and many more. However, their effects on indoor and outdoor air quality, and on human health are not yet clearly understood due to the lack of enough research studies on that and the non-availability of established scientific protocols for their characterization. This scientific review entails important information concerning the abundance of atmospheric MPs worldwide within the existing literature. A thorough comparison of existing sampling and analytical protocols has been presented. Besides, this review has unveiled the areas of scientific concern especially air quality monitoring which requires immediate attention, with the information gaps to be filled have been addressed.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
| | - Rakesh Kumar
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006.
| | - Akanksha Rajput
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
| | - Ruby Gorka
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
| | - Antima Gupta
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
| | - Nazuk Bhasin
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
- IESD, Banaras Hindu University, Varanasi, India, 221005
| | - Sudesh Yadav
- Jawaharlal Nehru University, New Delhi, India, 110067
| | - Anju Verma
- Jawaharlal Nehru University, New Delhi, India, 110067
| | - Kirpa Ram
- IESD, Banaras Hindu University, Varanasi, India, 221005
| | - Madulika Bhagat
- Department of Biotechnology, University of Jammu (J&K), Jammu, India, 180006
| |
Collapse
|
65
|
da Costa ID, Costa LL, Zalmon IR. Microplastics in water from the confluence of tropical rivers: Overall review and a case study in Paraiba do Sul River basin. CHEMOSPHERE 2023; 338:139493. [PMID: 37451634 DOI: 10.1016/j.chemosphere.2023.139493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Rivers are known for carrying out a fundamental role in the transportation of human debris from continental areas to the marine environment and have been identified as hotspots for plastic pollution. We characterized microplastics (MPs) along confluence areas in the Paraíba do Sul River basin, the biggest river in southeastern Brazil. This water body crosses highly industrialized areas, with the highest population density, and the major water demand in South America. Considering the important ecological function of this extensive watershed and the implications of MP pollution, we evaluate the spatial variation of MP concentration in the confluence areas and upstream from the confluence. Samples were taken from the superficial layer of the water column in February and June 2022, using manta net with 300 μm mesh size. A total of 19 categories and 2870 plastic particles were determined. The confluences areas of rivers showed the highest concentration of MPs, highlighting the confluences of the Paraiba do Sul and Muriaé rivers (0.71 ± 0.25 MP/m3), followed by Paraíba do Sul and Dois Rios rivers (0.42 ± 0.23 MP/m3) and Paraíba do Sul and Pomba rivers (0.38 ± 0.14 MP/m3). Black fibers were the main category, followed by blue fibers and blue fragments. The MPs in the surface waters of Paraíba do Sul River is significantly influenced by the sampling points spatiality. This result corroborates other studies around the world and reinforces the argument that affluents are important sources for the introduction of MPs in larger rivers. Nevertheless, our results provide a better understanding of the different contributing factors and occurrence of MPs in river basins.
Collapse
Affiliation(s)
- Igor David da Costa
- Departamento de Ciências Exatas, Biológicas e da Terra, Universidade Federal Fluminense, Santo Antônio de Pádua, 28470-000, Rio de Janeiro, Brazil; Programa de Mestrado Profissional em Gestão e Regulação de Recursos Hídricos, Universidade Federal de Rondônia, 76900-726, Rondônia, Brazil; Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil.
| | - Leonardo Lopes Costa
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil; Instituto Solar Brasil de Desenvolvimento Saúde e Pesquisa, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Ilana Rosental Zalmon
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil.
| |
Collapse
|
66
|
Prinz Setter O, Jiang X, Segal E. Rising to the surface: capturing and detecting bacteria by rationally-designed surfaces. Curr Opin Biotechnol 2023; 83:102969. [PMID: 37494819 DOI: 10.1016/j.copbio.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Analytical microbiology has made substantial progress since its conception, starting from potato slices, through selective agar media, to engineered surfaces modified with capture probes. While the latter represents the dominant approach in designing sensors for bacteria detection, the importance of sensor surface properties is frequently ignored. Herein, we highlight their significant role in the complex process of bacterial transition from planktonic to sessile, representing the first and critical step in bacteria detection. We present the main surface features and discuss their effect on the bio-solid interface and the resulting sensing capabilities for both flat and particulate systems. The concepts of rationally-designed surfaces for enhanced bacterial detection are presented with recent examples of sensors (capture probe-free) relying solely on surface cues.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel; The Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
67
|
Choroszy-Król I, Futoma-Kołoch B, Kuźnik K, Wojnicz D, Tichaczek-Goska D, Frej-Mądrzak M, Jama-Kmiecik A, Sarowska J. Exposing Salmonella Senftenberg and Escherichia coli Strains Isolated from Poultry Farms to Formaldehyde and Lingonberry Extract at Low Concentrations. Int J Mol Sci 2023; 24:14579. [PMID: 37834022 PMCID: PMC10572950 DOI: 10.3390/ijms241914579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
European Union (EU) countries strive to improve the quality and safety of food of animal origin. Food production depends on a good microbiological quality of fodder. However, feed can be a reservoir or vector of pathogenic microorganisms, including Salmonella or Escherichia coli bacteria. Salmonella spp. and E. coli are the two most important food-borne pathogens of public health concern. Contamination with these pathogens, mainly in the poultry sector, can lead to serious food-borne diseases. Both microorganisms can form biofilms on abiotic and biotic surfaces. The cells that form biofilms are less sensitive to disinfectants, which in turn makes it difficult to eliminate them from various surfaces. Because the usage of formaldehyde in animal feed is prohibited in European countries, the replacement of this antibacterial with natural plant products seems very promising. This study aimed to assess the inhibitory effectiveness of Vaccinium vitis-idaea extract against biofilm produced by model Salmonella enterica and E. coli strains. We found that formaldehyde could effectively kill both species of bacterial cells in biofilm, while the lingonberry extract showed some antibiofilm effect on S. enterica serovar Senftenberg. In conclusion, finding natural plant products that are effective against biofilms formed by Gram-negative bacteria is still challenging.
Collapse
Affiliation(s)
- Irena Choroszy-Król
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| | - Bożena Futoma-Kołoch
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63–77, 51-148 Wroclaw, Poland;
| | - Klaudia Kuźnik
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63–77, 51-148 Wroclaw, Poland;
| | - Dorota Wojnicz
- Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland; (D.W.); (D.T.-G.)
| | - Dorota Tichaczek-Goska
- Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland; (D.W.); (D.T.-G.)
| | - Magdalena Frej-Mądrzak
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| | - Agnieszka Jama-Kmiecik
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| | - Jolanta Sarowska
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| |
Collapse
|
68
|
da Costa ID, Costa LL, Cordeiro CAMM, Zalmon IR. Ecological traits do not predict the uptake of microplastics by fishes in a Neotropical River. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94850-94864. [PMID: 37540415 DOI: 10.1007/s11356-023-29013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Pollution by synthetic polymers is even more problematic to the environment when this material is fragmented into small portions, forming microplastics (MPs). We analyzed the contamination of ichthyofauna by MPs in an important river of the Atlantic Rainforest in regard to abundance, diversity of morphotypes, polymers, colors, and sizes of the synthetic particles in 20 species of fish. Fish were collected in November 2019 and in March 2020 in five sites along the Pomba River. Of the 101 fish analyzed, 49 (49%) presented MPs in at least one organ. Of the 20 species of fish collected 13 included individuals with at least one MP in their analyzed organs. The organs, trophic categories and feeding areas did not affect the general abundance of MPs types. Blue MPs were predominant, followed by the colors black, red, and white. MP fibers represented 91% of total MPs. Most MPs were between 2 and 3 mm in size. Polyethylene terephthalate (PET), polypropylene (PP), polyamide (PA), polyvinylidene chloride "Nylon" (PVDC), and high-density polyethylene (HDPE) were detected in the fishes. The exposure of the fish species to MPs was associated mainly with individual size and species-specific aspects, regardless of ecological traits. Considering that 55% of the fish species studied are consumed by humans, it is necessary to study the potential impact of MP ingestion on human health and to understand to what extent we may be consuming both plastic particles and contaminants that are adsorbed to MPs.
Collapse
Affiliation(s)
- Igor David da Costa
- Departamento de Ciências Exatas, Biológicas e da Terra, Universidade Federal Fluminense, Santo Antônio de Pádua, Rio de Janeiro, 28470-000, Brazil.
- Mestrado Profissional em Gestão e Regulação de Recursos Hídricos, Universidade Federal de Rondônia, Ji-Paraná, Rondônia, 76900-726, Brazil.
| | - Leonardo Lopes Costa
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | | | - Ilana Rosental Zalmon
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| |
Collapse
|
69
|
Aydın RB, Yozukmaz A, Şener İ, Temiz F, Giannetto D. Occurrence of Microplastics in Most Consumed Fruits and Vegetables from Turkey and Public Risk Assessment for Consumers. Life (Basel) 2023; 13:1686. [PMID: 37629543 PMCID: PMC10455475 DOI: 10.3390/life13081686] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Microplastics are transferred to humans through the food chain by consuming food contaminated with microplastics. However, the knowledge about the risks of dietary exposure for humans to these particles is very limited. Moreover, only a few studies on microplastic pollution in fruit and vegetables have been carried on. Thus, this study aims to investigate the presence of microplastics in some of the most consumed fruits and vegetables (pear (Pyrus communis), apple (Malus domestica), tomato (Solanum lycopersicum), onion (Allium cepa), potatoes (Solanum tuberosum), and cucumber (Cucumis sativus)) from Turkey and to evaluate the potential risk for consumers. Fruits and vegetable samples were purchased from different markets and fruiterer (two of each) in Muğla province, Southwest of Turkey. Microplastic extraction processes were carried out on the edible parts of the samples. According to the results obtained, a total of 210 particles (2.9 ± 1.6 particle g-1) were detected in all samples. Any significant difference occurred among the different markets. The maximum average amount of microplastic was determined in tomato samples (3.63 ± 1.39 particle g-1). The highest microplastic intake was with tomato (398,520 particles individual-1 year-1 for Estimated Annual Intake (EAI) and Estimated Daily Intake (EDI) for children 68.24 particles kg-1 day-1). The occurrence of microplastics of big size, that are not allowed to pass by plant xylem transport, suggests that fresh vegetables and fruits can be contaminated with plastic, especially during the production phase, during agricultural activities and during the marketing process (transport to the market and purchasing process).
Collapse
Affiliation(s)
- Rana Berfin Aydın
- Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (R.B.A.); (F.T.)
| | - Aykut Yozukmaz
- Department of Aquatic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (A.Y.); (İ.Ş.)
| | - İdris Şener
- Department of Aquatic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (A.Y.); (İ.Ş.)
| | - Funda Temiz
- Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (R.B.A.); (F.T.)
| | - Daniela Giannetto
- Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (R.B.A.); (F.T.)
| |
Collapse
|
70
|
Zhao Z, Wang X, Jiang J, Dong Y, Pan Y, Guan X, Wang B, Gao S, Chen Z, Zhou Z. Adverse effects of polystyrene nanoplastics on sea cucumber Apostichopus japonicus and their association with gut microbiota dysbiosis. CHEMOSPHERE 2023; 330:138568. [PMID: 37019397 DOI: 10.1016/j.chemosphere.2023.138568] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 05/14/2023]
Abstract
The mariculture environment is a sink of microplastics (MPs) due to its enclosed nature and mass use of plastics. Nanoplastics (NPs) are MPs with a diameter <1 μm that have a more toxic effect on aquatic organisms than other MPs. However, little is known about the underlying mechanisms of NP toxicity on mariculture species. Here, we performed a multi-omics investigation to explore gut microbiota dysbiosis and associated health problems induced by NPs in juvenile sea cucumber Apostichopus japonicus, a commercially and ecologically important marine invertebrate. We observed significant differences in gut microbiota composition after 21 days of NP exposure. Ingestion of NPs significantly increased core gut microbes, especially Rhodobacteraceae and Flavobacteriaceae families. Additionally, gut gene expression profiles were altered by NPs, especially those related to neurological diseases and movement disorders. Correlation and network analyses indicated close relationships between transcriptome changes and gut microbiota variation. Furthermore, NPs induced oxidative stress in sea cucumber intestines, which may be associated with intraspecies variation in Rhodobacteraceae in the gut microbiota. The results suggested that NPs were harmful to the health of sea cucumbers, and they highlighted the importance of the gut microbiota in the responses to NP toxicity in marine invertebrates.
Collapse
Affiliation(s)
- Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xuda Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yongjia Pan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Bai Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhong Chen
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
71
|
Chen Y, Ni L, Liu Q, Deng Z, Ding J, Zhang L, Zhang C, Ma Z, Zhang D. Photo-aging promotes the inhibitory effect of polystyrene microplastics on microbial reductive dechlorination of a polychlorinated biphenyl mixture (Aroclor 1260). JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131350. [PMID: 37030223 DOI: 10.1016/j.jhazmat.2023.131350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Polychlorinated biphenyls (PCBs) and microplastics (MPs) commonly co-exist in various environments. MPs inevitably start aging once they enter environment. In this study, the effect of photo-aged polystyrene MPs on microbial PCB dechlorination was investigated. After a UV aging treatment, the proportion of oxygen-containing groups in MPs increased. Photo-aging promoted the inhibitory effect of MPs on microbial reductive dechlorination of PCBs, mainly attributed to the inhibition of meta-chlorine removal. The inhibitory effects on hydrogenase and adenosine triphosphatase activity by MPs increased with increasing aging degree, which may be attributed to electron transfer chain inhibition. PERMANOVA showed significant differences in microbial community structure between culturing systems with and without MPs (p < 0.05). Co-occurrence network showed a simpler structure and higher proportion of negative correlation in the presence of MPs, especially for biofilms, resulting in increased potential for competition among bacteria. MP addition altered microbial community diversity, structure, interactions, and assembly processes, which was more deterministic in biofilms than in suspension cultures, especially regarding the bins of Dehalococcoides. This study sheds light on the microbial reductive dechlorination metabolisms and mechanisms where PCBs and MPs co-exist and provides theoretical guidance for in situ application of PCB bioremediation technology.
Collapse
Affiliation(s)
- Youhua Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Lingfang Ni
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Qing Liu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Zhaochao Deng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Jiawei Ding
- Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, PR China
| | - Li Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai 536000, PR China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Zhongjun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, PR China.
| |
Collapse
|
72
|
Li YQ, Zhang CM, Yuan QQ, Wu K. New insight into the effect of microplastics on antibiotic resistance and bacterial community of biofilm. CHEMOSPHERE 2023:139151. [PMID: 37290506 DOI: 10.1016/j.chemosphere.2023.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Microplastics (MPs) could serve as substrates for microbial colonization and biofilm formation. However, research on the effects of different types of microplastics and natural substrates on biofilm formation and community structure in the presence of antibiotic-resistant bacteria (ARB) is limited. In this study, we employed by means of microcosm experiments to analyze the situation of biofilms conditions, bacterial resistance patterns, antibiotic resistance genes (ARGs) distribution, and bacterial community on different substrates using microbial cultivation, high throughtput sequencing and PCR. The result showed that biofilms on different substrates markedly increased with time, with MPs surfaces formed more biofilm than stone. Analyses of antibiotic resistant showed negligible differences in the resistance rate to the same antibiotic at 30 d, but tetB would be selectively enriched on PP and PET. The microbial communities associated with biofilms on MPs and stones exhibited variations during different stages of formation. Notably, phylum WPS-2 and Epsilonbacteraeota were identified as the dominant microbiomes of biofilms on MPs and stones at 30 d, respectively. Correlation analysis suggested that WPS-2 could potentially be a tetracycline-resistant bacterium, while Epsilonbacteraeota did not correlate with any detected ARB. Our results emphasized the potential threat posed by MPs as attachment carriers for bacteria, particularly ARB, in aquatic environments.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Qiao-Qiao Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kai Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
73
|
Behera S, Das S. Environmental impacts of microplastic and role of plastisphere microbes in the biodegradation and upcycling of microplastic. CHEMOSPHERE 2023; 334:138928. [PMID: 37211165 DOI: 10.1016/j.chemosphere.2023.138928] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/12/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Increasing usage of plastic has led to the deposition of plastic in the environment which later become microplastic, a pollutant of global concern. These polymeric particles affect the ecosystem bestowing toxicity and impede the biogeochemical cycles. Besides, microplastic particles have been known for their role in aggravating the effect of various other environmental pollutants including organic pollutants and heavy metals. These microplastic surfaces are often colonized by the microbial communities also known as "plastisphere microbes" forming biofilms. These microbes include cyanobacteria like Nostoc, Scytonema, etc., and diatoms like Navicula, Cyclotella, etc. Which become the primary colonizer. In addition to the autotrophic microbes, Gammaproteobacteria and Alphaproteobacteria dominate the plastisphere microbial community. These biofilm-forming microbes can efficiently degrade the microplastic in the environment by secreting various catabolic enzymes such as lipase, esterase, hydroxylase, etc. Besides, these microbes have shown great potential for the bioconversion of microplastic to polyhydroxyalkanoates (PHA), an energy efficient and sustainable alternative to the petroleum based plastics. Thus, these microbes can be used for the creation of a circular economy using waste to wealth strategy. This review provides a deeper insight into the distribution, transportation, transformation, and biodegradation of microplastic in the ecosystem. The formation of plastisphere by the biofilm-forming microbes has been described in the article. In addition, the microbial metabolic pathways and genetic regulations involved in the biodegradation have been discussed in detail. The article suggests the microbial bioremediation and upcycling of microplastic along with various other strategies for effectively mitigate the microplastic pollution.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
74
|
Tuvo B, Scarpaci M, Bracaloni S, Esposito E, Costa AL, Ioppolo M, Casini B. Microplastics and Antibiotic Resistance: The Magnitude of the Problem and the Emerging Role of Hospital Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105868. [PMID: 37239594 DOI: 10.3390/ijerph20105868] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
The role of microplastics (MPs) in the spread of antibiotic resistance genes (ARGs) is increasingly attracting global research attention due to their unique ecological and environmental effects. The ubiquitous use of plastics and their release into the environment by anthropic/industrial activities are the main sources for MP contamination, especially of water bodies. Because of their physical and chemical characteristics, MPs represent an ideal substrate for microbial colonization and formation of biofilm, where horizontal gene transfer is facilitated. In addition, the widespread and often injudicious use of antibiotics in various human activities leads to their release into the environment, mainly through wastewater. For these reasons, wastewater treatment plants, in particular hospital plants, are considered hotspots for the selection of ARGs and their diffusion in the environment. As a result, the interaction of MPs with drug-resistant bacteria and ARGs make them vectors for the transport and spread of ARGs and harmful microorganisms. Microplastic-associated antimicrobial resistance is an emerging threat to the environment and consequently for human health. More studies are required to better understand the interaction of these pollutants with the environment as well as to identify effective management systems to reduce the related risk.
Collapse
Affiliation(s)
- Benedetta Tuvo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Michela Scarpaci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Sara Bracaloni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Enrica Esposito
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Anna Laura Costa
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Martina Ioppolo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Beatrice Casini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
75
|
Lee S, Kim D, Kang KK, Sung SE, Choi JH, Sung M, Shin CH, Jeon E, Kim D, Kim D, Lee S, Kim HK, Kim K. Toxicity and Biodistribution of Fragmented Polypropylene Microplastics in ICR Mice. Int J Mol Sci 2023; 24:ijms24108463. [PMID: 37239816 DOI: 10.3390/ijms24108463] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Currently, polypropylene (PP) is used in various products, thus leading to high daily exposure in humans. Thus, it is necessary to evaluate the toxicological effects, biodistribution, and accumulation of PP microplastics in the human body. In this study, administration of two particle sizes of PP microplastics (approximately 5 and 10-50 µm) did not lead to any significant changes in several toxicological evaluation parameters, including body weight and pathological examination, compared with the control group in ICR mice. Therefore, the approximate lethal dose and no-observed-adverse-effect level of PP microplastics in ICR mice were established as ≥2000 mg/kg. Furthermore, we manufactured cyanine 5.5 carboxylic acid (Cy5.5-COOH)-labeled fragmented PP microplastics to monitor real-time in vivo biodistribution. After oral administration of the Cy5.5-COOH-labeled microplastics to the mice, most of the PP microplastics were detected in the gastrointestinal tract and observed to be out of the body after 24 h in IVIS Spectrum CT. Therefore, this study provides a new insight into the short-term toxicity, distribution, and accumulation of PP microplastics in mammals.
Collapse
Affiliation(s)
- Sijoon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Dongseon Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Dahakro, Buk-gu, Daegu 41566, Republic of Korea
| | - Kyung-Ku Kang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Soo-Eun Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Joo-Hee Choi
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Minkyoung Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Chang-Hoon Shin
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 80 Dahakro, Buk-gu, Daegu 41566, Republic of Korea
| | - Eunyoung Jeon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Dongkyu Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Dongmin Kim
- Korea Institute of Industrial Technology, Chenan 31056, Republic of Korea
| | - Sunjong Lee
- Korea Institute of Industrial Technology, Chenan 31056, Republic of Korea
| | - Hee-Kyung Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Kilsoo Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- College of Veterinary Medicine, Kyungpook National University, 80 Dahakro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
76
|
Rahman MN, Shozib SH, Akter MY, Islam ARMT, Islam MS, Sohel MS, Kamaraj C, Rakib MRJ, Idris AM, Sarker A, Malafaia G. Microplastic as an invisible threat to the coral reefs: Sources, toxicity mechanisms, policy intervention, and the way forward. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131522. [PMID: 37146332 DOI: 10.1016/j.jhazmat.2023.131522] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Microplastic (MP) pollution waste is a global macro problem, and research on MP contamination has been done in marine, freshwater, and terrestrial ecosystems. Preventing MP pollution from hurting them is essential to maintaining coral reefs' ecological and economic benefits. However, the public and scientific communities must pay more attention to MP research on the coral reef regions' distribution, effects, mechanisms, and policy evaluations. Therefore, this review summarizes the global MP distribution and source within the coral reefs. Current knowledge extends the impacts of MP on coral reefs, existing policy, and further recommendations to mitigate MPs contamination on corals are critically analyzed. Furthermore, mechanisms of MP on coral and human health are also highlighted to pinpoint research gaps and potential future studies. Given the escalating plastic usage and the prevalence of coral bleaching globally, there is a pressing need to prioritize research efforts on marine MPs that concentrate on critical coral reef areas. Such investigations should encompass an extensive and crucial understanding of the distribution, destiny, and effects of the MPs on human and coral health and the potential hazards of those MPs from an ecological viewpoint.
Collapse
Affiliation(s)
- Md Naimur Rahman
- Department of Geography and Environmental Science, Begum Rokeya University, Rangpur 5400, Bangladesh
| | | | - Mst Yeasmin Akter
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Salman Sohel
- Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Aniruddha Sarker
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
77
|
Shahsavaripour M, Abbasi S, Mirzaee M, Amiri H. Human occupational exposure to microplastics: A cross-sectional study in a plastic products manufacturing plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163576. [PMID: 37086995 DOI: 10.1016/j.scitotenv.2023.163576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Microplastics are ubiquitous in the natural environment, and their potential impact on health is a key issue of concern. Investigating exposure routes in humans and other living organisms is among the major challenges of microplastics. This study aims to examine the exposure level of plastic factory staff to microplastic particles before and after work shifts through body receptors (hand and facial skin, saliva and hair) in Sirjan, southeast of Iran. Moreover, the effect of face masks, gloves, cosmetics (e.g: face powder cream, lipstick and eye makeup products) and appearance on the exposure level is investigated. In total, 19 individuals are selected during six working days. Then, the collected samples are transferred to the laboratory for filtration, extraction, identification and counting of microplastic particles. Moreover, 4802 microplastic particles (100-5000 μm in size) in strand, polyhedral and spherical shapes and color spectra of white/transparent, black, blue/green, red and purple are observed. The nature of most of the observed samples is fiber with a size ≥1000 μm. Analyzing the selected samples using micro-Raman spectroscopy indicate polyester and nylon are the main identified fibers. Hair and saliva samples have the highest and lowest number of microplastics, respectively. Using gloves and sunscreen among all the participants, wearing a scarf and hair size among women and having a beard and mustache among men could have an effective role in the exposure level to microplastics. Results of this study could reveal the exposure route to microplastic particles in the human body and highlight the importance of providing higher protection to reduce exposure.
Collapse
Affiliation(s)
- Maryam Shahsavaripour
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjad Abbasi
- Department of Earth Sciences, School of Science, Shiraz University, Shiraz 71454, Iran; Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz 714545, Iran
| | - Moghaddameh Mirzaee
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran; Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
78
|
Hu J, Lim FY, Hu J. Characteristics and behaviors of microplastics undergoing photoaging and Advanced Oxidation Processes (AOPs) initiated aging. WATER RESEARCH 2023; 232:119628. [PMID: 36774752 DOI: 10.1016/j.watres.2023.119628] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/13/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
The fact that 94% of microplastics (MPs) ubiquitous in the environment are subject to natural weathering makes the aging study currently a research hotspot. This review summarized the physicochemical characteristics of MPs undergoing natural and artificial aging and evaluated current analytical methods used in aging studies. Besides, the differences in photoaging and aging induced by advanced oxidation processes (AOPs) were discussed, leading to a conclusion that AOPs composed of oxidant and ultraviolet (UV) irradiation can better facilitate the alteration of MPs compared to UV irradiation alone. In addition, the environmental behavior of aged MPs was outlined and their adsorption properties for organics and metals were highlighted as a result of combined effects of hydrophobic, π-π, diffusion, and hydrogen bond interaction. Furthermore, the mechanisms of photoaging and AOPs-initiated aging were analyzed, mainly the role of reactive oxygen species (ROS) and environmentally persistent free radicals (EPFRs). Finally, the applications of two-dimensional correlation spectroscopy (2D-COS) and three-dimensional fluorescence spectra using excitation emission matrix-parallel factor analysis (EEM-PARAFAC) were discussed for the aging process analysis. This overview plays an important role in explaining the aging characteristics of MPs and provides a theoretical foundation for further investigations into their toxicity and removal.
Collapse
Affiliation(s)
- Jinyuan Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Fang Yee Lim
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
79
|
Urli S, Corte Pause F, Crociati M, Baufeld A, Monaci M, Stradaioli G. Impact of Microplastics and Nanoplastics on Livestock Health: An Emerging Risk for Reproductive Efficiency. Animals (Basel) 2023; 13:ani13071132. [PMID: 37048387 PMCID: PMC10093235 DOI: 10.3390/ani13071132] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Pollution due to microplastics and nanoplastics is one of the major environmental issues of the last decade and represents a growing threat to human and animal health. In aquatic species, there is a large amount of information regarding the perturbation of marine organisms; instead, there are only a few studies focusing on the pathophysiological consequences of an acute and chronic exposure to micro- and nanoplastics in mammalian systems, especially on the reproductive system. There are several studies that have described the damage caused by plastic particles, including oxidative stress, apoptosis, inflammatory response, dysregulation of the endocrine system and accumulation in various organs. In addition to this, microplastics have recently been found to influence the evolution of microbial communities and increase the gene exchange, including antibiotic and metal resistance genes. Special attention must be paid to farm animals, because they produce food such as milk, eggs and meat, with the consequent risk of biological amplification along the food chain. The results of several studies indicate that there is an accumulation of microplastics and nanoplastics in human and animal tissues, with several negative effects, but all the effects in the body have not been ascertained, especially considering the long-term consequences. This review provides an overview of the possible adverse effects of the exposure of livestock to micro- and nanoplastics and assesses the potential risks for the disruption of reproductive physiological functions.
Collapse
Affiliation(s)
- Susy Urli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| | - Francesca Corte Pause
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Anja Baufeld
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Maurizio Monaci
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Giuseppe Stradaioli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
80
|
da Costa ID, Costa LL, da Silva Oliveira A, de Carvalho CEV, Zalmon IR. Microplastics in fishes in amazon riverine beaches: Influence of feeding mode and distance to urban settlements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160934. [PMID: 36539082 DOI: 10.1016/j.scitotenv.2022.160934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Microplastic (MP) pollution is a global problem and has affected several biological levels even in protected areas. In the present study, MP contamination was investigated in fish associated with sandy beaches in a permanent environmental protection area in the Amazon. In order to achieve this goal, the shape, color, abundance, richness, and chemical composition of MPs in the digestive tract of 29 fish species in 24 beaches of the Machado River, western Brazilian Amazon, were evaluated. Linear mixed models (LMMs) were adjusted to test the effects of local human modification (HMc), distance from urban settlements, distance from the closest affluent, and trophic categories of fish species on microplastic abundance and richness in their digestive tracts. From the 1082 fish analyzed, 332 (30 %) presented MPs in their digestive tracts. A total of 617 MPs was found (1.8 ± 1.6 MPs; 4.5 ± 1.9 MPs/g fish). Omnivorous and insectivorous fish presented more MPs in sandy beaches located closer to urban settlements. However, carnivorous fish presented a higher abundance of MPs in their digestive tracts compared with the other trophic guilds. This is the first study to analyze plastic contamination in fish associated with sandy beaches in the Amazon (Brazil), and it revealed contamination of the ichthyofauna mainly related to the distance from urban settlements. Our results reinforce the need for better management of landscape surrounding protected areas to mitigate MP pollution.
Collapse
Affiliation(s)
- Igor David da Costa
- Departamento de Ciências Exatas, Biológicas e da Terra, Universidade Federal Fluminense, Santo Antônio de Pádua, 28470-000 Rio de Janeiro, Brazil; Mestrado Profissional em Gestão e Regulação de Recursos Hídricos, Universidade Federal de Rondônia, 76900-726 Rondônia, Brazil.
| | - Leonardo Lopes Costa
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil
| | - Ariane da Silva Oliveira
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil
| | - Carlos Eduardo Veiga de Carvalho
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil
| | - Ilana Rosental Zalmon
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil.
| |
Collapse
|
81
|
Xin X, Chen B, Yang M, Gao S, Wang H, Gu W, Li X, Zhang B. A critical review on the interaction of polymer particles and co-existing contaminants: Adsorption mechanism, exposure factors, effects on plankton species. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130463. [PMID: 36463745 DOI: 10.1016/j.jhazmat.2022.130463] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This review considers the interaction of microplastics (MPs)/nanoplastics (NPs) and co-existing contaminants, including organic contaminants, potentially toxic elements (PTEs), and metal/metal-oxide nanoparticles. Stronger adsorption between plastic particles and co-existing contaminants can either facilitate or prevent more contaminants to enter plankton. The characteristics of MPs/NPs, such as polymer type, size, functional groups, and weathering, affect combined effects. Mixture toxicity is affected by those factors simultaneously and also affected by the type of co-existing contaminants, their concentrations, exposure time, dissolved organic matter, and surfactant. For co-exposure involving organics and metal nanoparticles, marine Skeletonema costatum generally had antagonistic effects, while marine Chlorella pyrenoidosa, Platymonas subcordiformis, and Tetraselmis chuii, showed synergistic effects. For co-exposure involving organics and PTEs, both Chlorella sp. and Microcystis aeruginosa generally demonstrated antagonistic effects. Freshwater Chlorella reinhardtii and Scenedesmus obliquus had synergistic effects for co-exposure involving metal/metal oxide nanoparticles. Zooplankton shows more unpredicted sensitivity towards the complex system. Different co-existing contaminants have different metabolism pathways. Organic contaminants could be biodegraded, which may enhance or alleviate mixture toxicity. PTEs could be adsorbed and desorbed under changing environments, and further affect the combined effects. The presence of metal/metal-oxide nanoparticles is more complicated, since some may release ion metals, increasing contaminant composition.
Collapse
Affiliation(s)
- Xiaying Xin
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Min Yang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Sichen Gao
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina S4S 0A2, Canada
| | - Hongjie Wang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Wenwen Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xixi Li
- Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
82
|
Khanashyam AC, Anjaly Shanker M, Nirmal NP. Nano/micro-plastics: Sources, trophic transfer, toxicity to the animals and humans, regulation, and assessment. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:141-174. [PMID: 36863834 DOI: 10.1016/bs.afnr.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Being in an era of revolutionized production, consumption, and poor management of plastic waste, the existence of these polymers has resulted in an accumulation of plastic litter in nature. With macro plastics themselves being a major issue, the presence of their derivatives like microplastics which are confined to the size limitations of less than 5mm has ascended as a recent type of emergent contaminant. Even though there is size confinement, their occurrence is not narrowed and is extensively seen in both aquatic and terrestrial extents. The vast incidence of these polymers causing harmful effects on various living organisms through diverse mechanisms such as entanglement and ingestion have been reported. The risk of entanglement is mainly limited to smaller animals, whereas the risk associated with ingestion concerns even humans. Laboratory findings indicate the alignment of these polymers toward detrimental physical and toxicological effects on all creatures including humans. Supplementary to the risk involved with their presence, plastics also proceed as carters of certain toxic contaminants complemented during their industrial production process, which is injurious. Nevertheless, the assessment regarding the severity of these components to all creatures is comparatively restricted. This chapter focuses on the sources, complications, and toxicity associated with the presence of micro and nano plastics in the environment along with evidence of trophic transfer, and quantification methods.
Collapse
Affiliation(s)
- Anandu Chandra Khanashyam
- Department of Food Science and Technology, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand
| | - M Anjaly Shanker
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | | |
Collapse
|
83
|
Zink L, Pyle GG. A proposed reporting framework for microplastic-metal mixtures research, with emphasis on environmental considerations known to influence metals. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:273-280. [PMID: 36746841 DOI: 10.1007/s10646-023-02634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
In recent years, there has been an increase in research to understand the consequences of microplastic contamination. A subset of this research assesses the interaction of microplastics with metals and the subsequent effects of the resulting microplastic-metal complexes in freshwater environments. While our understanding of how microplastics behave in freshwater remains largely unknown, our knowledge of metal behavior in those same environments is well-established. The behavior (partitioning, speciation, bioavailability) of metals is highly dependent on environmental characteristics, including water quality variables such as hardness, pH, and dissolved organic matter. This study reveals that despite our understanding of metal behavior, there is little consideration for these influential factors in the current body of microplastic-metal research. Multiple instances highlighted throughout this study show that even when similar plastic, metal, and biota are utilized, there are conflicting observations as to whether the mixture is toxic; we stress that without adequate reporting of environmental conditions, these contradictions are likely to persist without explanation. Through justification of water quality characteristics known to influence metal behavior, this study proposes a framework of reporting requirements for all future microplastic-metal research.
Collapse
Affiliation(s)
- Lauren Zink
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
84
|
Abad López AP, Trilleras J, Arana VA, Garcia-Alzate LS, Grande-Tovar CD. Atmospheric microplastics: exposure, toxicity, and detrimental health effects. RSC Adv 2023; 13:7468-7489. [PMID: 36908531 PMCID: PMC9993231 DOI: 10.1039/d2ra07098g] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Microplastics (MPs) are micro-particulate pollutants present in all environments whose ubiquity leads humans to unavoidable exposure. Due to low density, MPs also accumulate in the atmosphere, where they are easily transported worldwide and come into direct contact with the human body by inhalation or ingestion, causing detrimental health effects. This literature review presents the sources of atmospheric MPs pollution, transport routes, physicochemical characteristics, and environmental interactions. The document also explains the implications for human health and analyzes the risk of exposure based on the potential toxicity and the concentration in the atmosphere. MPs' toxicity lies in their physical characteristics, chemical composition, environmental interactions, and degree of aging. The abundance and concentration of these microparticles are associated with nearby production sources and their displacement in the atmosphere. The above elements are presented in an integrated way to facilitate a better understanding of the associated risk. The investigation results encourage the development of future research that delves into the health implications of exposure to airborne MPs and raises awareness of the risks of current plastic pollution to promote the establishment of relevant mitigation policies and procedures.
Collapse
Affiliation(s)
- Angela Patricia Abad López
- Grupo de Investigación de Fotoquímica y Fotobiología, Programa de Maestría en Ciencias Químicas. Universidad del Atlántico Carrera 30 Número 8-49 Puerto Colombia 081008 Colombia +57-5-3599-484
| | - Jorge Trilleras
- Grupo de Investigación en Compuestos Heterocíclicos, Programa de Doctorado en Ciencias Químicas, Universidad del Atlántico Carrera 30 No 8-49 Puerto Colombia 081007 Colombia
| | - Victoria A Arana
- Grupo de Investigación Ciencias, Educación y Tecnología-CETIC, Programa de Doctorado en Ciencias Químicas, Universidad del Atlántico Carrera 30 No 8-49 Puerto Colombia 081007 Colombia
| | - Luz Stella Garcia-Alzate
- Grupo de Investigación Ciencias, Educación y Tecnología-CETIC, Programa de Doctorado en Ciencias Químicas, Universidad del Atlántico Carrera 30 No 8-49 Puerto Colombia 081007 Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Programa de Maestría en Ciencias Químicas. Universidad del Atlántico Carrera 30 Número 8-49 Puerto Colombia 081008 Colombia +57-5-3599-484
| |
Collapse
|
85
|
Xu N, Zhu Z, Li S, Ouyang X, Zhu Q, Gao W, Cai Y, Yang Z. The role of bio-geomorphic feedbacks in shaping microplastic burial in blue carbon habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160220. [PMID: 36427713 DOI: 10.1016/j.scitotenv.2022.160220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Coastal sediments are considered as hotspots of microplastics (MPs), with substantial MPs stocks found in blue carbon habitats such as mangroves and tidal marshes, where wave-damping vegetation reduces sediment erosion and enhances accretion. Here, we examined the effects of such bio-geomorphic feedbacks in shaping MPs burial, through a year-round field study in a mangrove habitat along the coast of South China. The results revealed that MPs abundance decreased significantly with the increase of cumulative sediment erosion as the strength of bio-geomorphic feedbacks declined. More shapes and colors of MPs were found at locations with weaker waves and less sediment erosion, where the average particle size was also higher. Our findings highlight the importance of bio-geomorphic feedbacks in affecting both the abundance and characteristics of the buried MPs. Such knowledge extends our understanding of MPs transport and burial from the perspective of bio-geomorphology, which is essential to assess and predict MPs accumulation patterns as well as its impacts on ecosystem functioning of the blue carbon habitats.
Collapse
Affiliation(s)
- Nanhao Xu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenchang Zhu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Shaorui Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoguang Ouyang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qin Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Weilun Gao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
86
|
Avazzadeh Samani F, Meunier L. Interactions of microplastics with contaminants in freshwater systems: a review of characteristics, bioaccessibility, and environmental factors affecting sorption. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:222-235. [PMID: 36803513 DOI: 10.1080/10934529.2023.2177458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs), plastic particles of 1 nm to <5 mm, have been identified in the atmosphere, soil, and aquatic environments across the globe. MPs may act as vectors to transport environmental contaminants to sensitive receptors, including humans. In this review, the capability of MPs to sorb persistent organic pollutants (POPs) and metals is investigated, along with how sorption is affected by factors, such as pH, salinity, and temperature. Sensitive receptors may take up MPs through incidental ingestion. In the gastrointestinal tract (GIT), contaminants may desorb from MPs, and this desorbed portion is then considered bioaccessible. Understanding the sorption and bioaccessibility of such contaminants is important in determining potential risks of exposure to MPs. Thus, a review is presented on the bioaccessibility of contaminants sorbed to MPs in the human and avian GIT s. The current state of knowledge on MP-contaminant interactions in freshwater systems is limited; these interactions can differ considerably from those in marine environments. The bioaccessibility of contaminants sorbed to MPs can vary significantly, from near zero to 100%, depending on MP type, contaminant characteristics, and the digestive phase. Further research is needed to characterize the bioaccessibility and the potential risks, especially for POPs associated with MPs.
Collapse
Affiliation(s)
| | - Louise Meunier
- Department of Chemical Engineering, Queen's University, Kingston, Canada
| |
Collapse
|
87
|
Zhang J, Zhan S, Zhong LB, Wang X, Qiu Z, Zheng YM. Adsorption of typical natural organic matter on microplastics in aqueous solution: Kinetics, isotherm, influence factors and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130130. [PMID: 36265379 DOI: 10.1016/j.jhazmat.2022.130130] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
With rapid urbanization, microplastics and natural organic matters (NOMs) are ubiquitous in aquatic environment, and microplastics could act as carriers for organic matters in the aqueous solution and may pose a potential risk. In this study, the adsorption behaviors and mechanism of typical NOM, humic acid (HA), on polyvinyl chloride (PVC) and polystyrene (PS) microplastics were investigated. Various influence factors such as solution pH, ions species and concentrations, particle size, and coexisting surfactants were studied. The results suggested that HA adsorption onto PVC and PS was low pH-dependent, and ion species and concentrations have a significant impact on the adsorption capacity. In addition, the particle size of PVC and PS microplastics exhibited a significant correlation with HA adsorption, and the adsorption process was influenced by the surfactant species and concentrations. Moreover, the adsorption behaviors of HA in different real water environments were tested, and UV aging exhibited the opposite effects on adsorption capacity of PVC and PS. Furthermore, the adsorption mechanisms of HA onto PVC and PS were explored, indicating halogen bonding, hydrogen bonding, and π-π interaction play important roles in the adsorption process.
Collapse
Affiliation(s)
- Jian Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Resources Environmental and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Siyan Zhan
- School of Resources Environmental and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Lu-Bin Zhong
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Ximo Wang
- School of Resources Environmental and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Zumin Qiu
- School of Resources Environmental and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China.
| | - Yu-Ming Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
88
|
Okeke ES, Chukwudozie KI, Addey CI, Okoro JO, Chidike Ezeorba TP, Atakpa EO, Okoye CO, Nwuche CO. Micro and nanoplastics ravaging our agroecosystem: A review of occurrence, fate, ecological impacts, detection, remediation, and prospects. Heliyon 2023; 9:e13296. [PMID: 36816258 PMCID: PMC9929314 DOI: 10.1016/j.heliyon.2023.e13296] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Micro-and nanoplastics (MNPs) are particles that are smaller than a millimeter in size and have infiltrated both terrestrial and aquatic ecosystems. MNPs pollution have become a widespread problem causing severe adverse effects on human health and the environment worldwide. Once in the environment, these polymers are not easily degradable due to their recalcitrant nature and small size and are easily consumed by aquatic organisms and transported through the food chain, at great risk to human health. Substantial evidence demonstrates the negative effects of MNPs residues on aquatic organisms' reproductive and developmental defects. Similarly, soil flora, soil quality, and plant height have been severely impacted by their presence in the agroecosystem. This is evident in the inhibition of water absorption by blocked seed pores, delayed germination, and the dramatic decline in transpiration rates and growth of plant roots, inevitably leading to drop in biomass and crop production, posing an overall threat to global food security. In this review, we present the impact of MNPs in agroecosystems around the globe, including their sources, occurrence, distribution, transport, and ultimate fate. We recommend using bio-based plastics, eco-friendly remediation strategies, reformed agricultural practices, non-single-use synthetic plastic legislation, and increased plastic waste disposal awareness campaigns as effective tools to mitigate this problem.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 41000, Enugu State, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 41000, Enugu State, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | - Kingsley Ikechukwu Chukwudozie
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
- Department of Clinical Medicine, School of Medicine, Jiangsu University, China
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | - Charles Izuma Addey
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, USA
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | - Joseph Onyekwere Okoro
- Department of Zoology & Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | | | - Edidiong Okokon Atakpa
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
- Department of Animal & Environmental Biology, University of Uyo, Akwa Ibom State, 1017, Nigeria
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | - Charles Obinwanne Okoye
- Department of Zoology & Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | | |
Collapse
|
89
|
Roy Chowdhury P, Medhi H, Bhattacharyya KG, Hussain CM. Emerging plastic litter variants: A perspective on the latest global developments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159859. [PMID: 36349627 DOI: 10.1016/j.scitotenv.2022.159859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Plastic litter is one of key reasons of environmental concern due to its adverse effect on ecosystem and health. Exposure of plastic litter to anthropogenic and ecological conditions results in a variety of emerging litter variants that fluctuate in composition, mechanical, and chemical properties. Considering the properties of these plastic litter variants, it is anticipated that the transportation of foreign species or microbial pathogens together with these litter variants is most likely to affect the marine ecosystem. Moreover the plastic litter may enter the plastic cycle or marine biota and can spread across the ocean. Very recently several emerging plastic litter variants such as anthropoquinas, plasticrust, pyroplastic, plastitar, and plastiglomerate have been reported along the coastal areas across the oceans. The purpose of this perspective is to comprehend these emerging plastic litter variants, integrate the latest developments and highlight their adverse effects on the coastal ecosystem. Further, it details the make-up, place of origin, and management strategies for these plastic litter variants.
Collapse
Affiliation(s)
| | - Himani Medhi
- Department of Chemistry, Eastern Karbi Anglong College, Sarihajan 782480, Assam, India.
| | | | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
90
|
Wang L, Zhu Y, Gu J, Yin X, Guo L, Qian L, Shi L, Guo M, Ji G. The toxic effect of bisphenol AF and nanoplastic coexposure in parental and offspring generation zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114565. [PMID: 36682183 DOI: 10.1016/j.ecoenv.2023.114565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) and bisphenol AF (BPAF) are two environmental pollutants that usually coexist in the natural environment. Studies of MPs or BPAF have gradually increased in recent years, but few studies have focused on the combination toxic effects. In this study, the subchronic model of adult zebrafish was exposed to 1 mg/L nanolevel microplastics and 200 μg/L BPAF for 45 days; the parental zebrafish were spawning every 3 days during exposure, and the effects of continuous poisoning were examined on the offspring after 1-9 spawns. The results showed that single BPAF exposure or BPAF and nanoplastic coexposure can both decrease the number of eggs laid and the locomotor behavior of parental zebrafish and impact the hatching rate, mortality, body length and locomotor behavior of offspring zebrafish, especially in 7-9 spawn. BPAF were accumulated in parental zebrafish intestinal in 334.62 ng/g in BPAF group and 594.52 ng/g in nm+BPAF group, and accumulated in whole offspring zebrafish for 281.6 ng/g in BPAF group and 321.46 ng/g in nm+BPAF group. Neurodevelopmental, inflammation, apoptosis and oxidative stress-related genes were also significantly increased after 7-9 spawn. In addition, the exacerbated accumulation in the BPAF+nm group in parental and offspring zebrafish may be the reason for the accelerated toxic effect in the present research. In this study, we investigated the combined effects of nanoplastics and BPAF on parental and offspring zebrafish in the aquatic environment to identify the accumulative toxic effects and provide new experimental support for assessing the effects of coexposure on aquatic organisms.
Collapse
Affiliation(s)
- Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuanhui Zhu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaogang Yin
- Co-Innovation Center for Sustainable Forestry in Southen China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Liguo Guo
- Co-Innovation Center for Sustainable Forestry in Southen China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Lingling Qian
- Co-Innovation Center for Sustainable Forestry in Southen China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
91
|
Al Naggar Y, Sayes CM, Collom C, Ayorinde T, Qi S, El-Seedi HR, Paxton RJ, Wang K. Chronic Exposure to Polystyrene Microplastic Fragments Has No Effect on Honey Bee Survival, but Reduces Feeding Rate and Body Weight. TOXICS 2023; 11:toxics11020100. [PMID: 36850975 PMCID: PMC9963634 DOI: 10.3390/toxics11020100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/25/2023]
Abstract
Microplastics (MPs), in the form of fragments and fibers, were recently found in honey samples collected in Ecuador as well as in honey bees collected from Denmark and China. However, little is known about how MPs impact bee health. To fill this knowledge gap, we investigated the potential toxicity of irregularly shaped polystyrene (PS)-MP fragments on honey bee health. In the first experiment of its kind with honey bees, we chronically exposed bees with a well-established gut microbiome to small (27 ± 17 µm) or large (93 ± 25 µm) PS-MP fragments at varying concentrations (1, 10, 100 µg mL-1) for 14 days. Bee mortality, food consumption, and body weight were all studied. We found that chronic exposure to PS-MP fragments has no effect on honey bee survival, but reduced the feeding rate and body weight, particularly at 10 µg PS-MP fragments per mL, which may have long-term consequences for honey bee health. The findings of this study could assist in the risk assessment of MPs on pollinator health.
Collapse
Affiliation(s)
- Yahya Al Naggar
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| | - Clancy Collom
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| | - Taiwo Ayorinde
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
92
|
El Kholy S, Al Naggar Y. Exposure to polystyrene microplastic beads causes sex-specific toxic effects in the model insect Drosophila melanogaster. Sci Rep 2023; 13:204. [PMID: 36604504 PMCID: PMC9814852 DOI: 10.1038/s41598-022-27284-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The toxicity of MPs on aquatic creatures has been extensively studied, but little attention was paid to terrestrial organisms. To fill this gab, we conducted a series of experiments using Drosophila as a model organism to understand whether exposure to different concentrations (0.005, 0.05, 0.5 µg/ml) of polystyrene microplastics (PS-MPs) beads (2 µm in size) can impact flies feeding activity, digestion and excretion. The ability of flies to distinguish between normal and PS-MPs treated food media was tested first, and then we evaluated the effects of a 7-day short-term exposure to PS-MPs on food intake, mortality, starvation resistance, fecal pellet count, and the cellular structure of mid gut cells. The results revealed that flies can really differentiate and ignore MPs-treated food. We discovered sex-specific effects, with male flies being more sensitive to PS-MPs, with all males dying after 14 days when exposed to 0.5 µg/ml of PS-MPs, whereas female flies survived more. All male flies exposed to PS-MPs died after 24 h of starvation. Midgut cells showed concentration-dependent necrosis and apoptosis in response to PS-MPs. Our findings provide new insights into MPs toxicity on terrestrial organisms and giving a warning that management measures against MPs emission must be taken.
Collapse
Affiliation(s)
- Samar El Kholy
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
93
|
Jiménez‐Arroyo C, Tamargo A, Molinero N, Moreno‐Arribas MV. The gut microbiota, a key to understanding the health implications of micro(nano)plastics and their biodegradation. Microb Biotechnol 2023; 16:34-53. [PMID: 36415969 PMCID: PMC9803334 DOI: 10.1111/1751-7915.14182] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
The effects of plastic debris on the environment and plant, animal, and human health are a global challenge, with micro(nano)plastics (MNPs) being the main focus. MNPs are found so often in the food chain that they are provoking an increase in human intake. They have been detected in most categories of consumed foods, drinking water, and even human feces. Therefore, oral ingestion becomes the main source of exposure to MNPs, and the gastrointestinal tract, primarily the gut, constantly interacts with these small particles. The consequences of human exposure to MNPs remain unclear. However, current in vivo studies and in vitro gastrointestinal tract models have shown that MNPs of several types and sizes impact gut intestinal bacteria, affecting gut homeostasis. The typical microbiome signature of MNP ingestion is often associated with dysbiosis and loss of resilience, leads to frequent pathogen outbreaks, and local and systemic metabolic disorders. Moreover, the small micro- and nano-plastic particles found in animal tissues with accumulated evidence of microbial degradation of plastics/MNPs by bacteria and insect gut microbiota raise the issue of whether human gut bacteria make key contributions to the bio-transformation of ingested MNPs. Here, we discuss these issues and unveil the complex interplay between MNPs and the human gut microbiome. Therefore, the elucidation of the biological consequences of this interaction on both host and microbiota is undoubtedly challenging. It is expected that microbial biotechnology and microbiome research could help decipher the extent to which gut microorganisms diversify and MNP-determinant species, mechanisms, and enzymatic systems, as well as become important to understand our response to MNP exposure and provide background information to inspire future holistic studies.
Collapse
Affiliation(s)
| | - Alba Tamargo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL)CSIC‐UAMMadridSpain
| | - Natalia Molinero
- Instituto de Investigación en Ciencias de la Alimentación (CIAL)CSIC‐UAMMadridSpain
| | | |
Collapse
|
94
|
Nayrac N, Bellenger JP, Segura PA. Screening of polymer types and chemical weathering in macro- and meso-plastics found on lake and river beaches using a combined chemometric approach. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4977-4989. [PMID: 36441619 DOI: 10.1039/d2ay01201d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the environment, synthetic polymers, commonly known as "plastics", are well-known to undergo various chemical weathering processes, which modify their surface chemistry by introducing new functional groups. Such changes are important to monitor, as they can severely influence the toxicity caused by plastic debris. Therefore, in this study, two chemometric models are proposed to accelerate the chemical classification of macro- and meso-plastics found in the environment. For this purpose, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied on preprocessed infrared spectra of 83 plastic fragments found on public lake and river beaches. HCA associated all beach samples with a known plastic, whereas PCA enabled the association of only 39.8% (33 out of 83) of the beach samples with a known plastic. However, both techniques agreed on 93.9% of the samples identified. According to PCA and HCA results, polypropylene and polyethylene were the most frequently identified polymers in the samples. PCA turned out to be a very promising tool for fast screening of weathered plastics, since the distance of samples from the polypropylene cluster in the PCA plot was correlated with weathering. This was later confirmed by employing other characterization techniques such as micro-Raman, X-ray photoelectron spectroscopy and scanning electron microscopy. Finally, future experiments should focus on the applicability of the proposed combined chemometric approach for very small microplastics (<100 μm), as they have more important effects than larger plastics on aquatic ecosystems.
Collapse
Affiliation(s)
- Nicolas Nayrac
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | | | - Pedro A Segura
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
95
|
Li M, Hou Z, Meng R, Hao S, Wang B. Unraveling the potential human health risks from used disposable face mask-derived micro/nanoplastics during the COVID-19 pandemic scenario: A critical review. ENVIRONMENT INTERNATIONAL 2022; 170:107644. [PMID: 36413926 PMCID: PMC9671534 DOI: 10.1016/j.envint.2022.107644] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/09/2023]
Abstract
With the global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), disposable face masks (DFMs) have caused negative environmental impacts. DFMs will release microplastics (MPs) and nanoplastics (NPs) during environmental degradation. However, few studies reveal the release process of MPs/NPs from masks in the natural environment. This review presents the current knowledge on the abiotic and biotic degradation of DFMs. Though MPs and NPs have raised serious concerns about their potentially detrimental effects on human health, little attention was paid to their impacts on human health from DFM-derived MPs and NPs. The potential toxicity of mask-derived MPs/NPs, such as gastrointestinal toxicity, pneumotoxicity, neurotoxicity, hepatotoxicity, reproductive and transgenerational toxicity, and the underlying mechanism will be discussed in the present study. MPs/NPs serve as carriers of toxic chemicals and pathogens, leading to their bioaccumulation and adverse effects of biomagnification by food chains. Given human experiments are facing ethical issues and animal studies cannot completely reveal human characteristics, advanced human organoids will provide promising models for MP/NP risk assessment. Moreover, in-depth investigations are required to identify the release of MPs/NPs from discarded face masks and characterize their transportation through the food chains. More importantly, innovative approaches and eco-friendly strategies are urgently demanded to reduce DFM-derived MP/NP pollution.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
96
|
Udovicki B, Andjelkovic M, Cirkovic-Velickovic T, Rajkovic A. Microplastics in food: scoping review on health effects, occurrence, and human exposure. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00093-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractWith most of the plastics ever produced now being waste, slowly degrading and fragmenting in the environment, microplastics (MPs) have become an emerging concern regarding their presence in food and influence on human health. While many studies on marine ecotoxicology and the occurrence of MPs in fish and shellfish exist, research on the occurrence of MPs in other foods and their effect on human health is still in early-stage, but the attention is increasing. This review aimed to provide relevant information on the possible health effect of ingested MPs, the occurrence, and levels of MPs contamination in various foods and estimated exposure to MPs through food. Potential toxic consequences from exposure to MPs through food can arise from MPs themselves, diffused monomers and additives but also from sorbed contaminants or microorganisms that colonise MPs. Recent publications have confirmed widespread contamination of our food with MPs including basic and life-essential constituents such as water and salt providing the basis for chronic exposure. Available exposure assessments indicate that we ingest up to several hundred thousand MPs particles yearly.
Collapse
|
97
|
Zhao Y, Zhu S, Fan X, Zhang X, Ren H, Huang H. Precise portrayal of microscopic processes of wastewater biofilm formation: Taking SiO 2 as the model carrier. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157776. [PMID: 35926593 DOI: 10.1016/j.scitotenv.2022.157776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Precise characterization of the microscopic processes of wastewater biofilm formation is essential for regulating biofilm behavior. Nevertheless, it remains a great challenge. This study investigated biofilm formation on SiO2 carriers under gradually increasing shear force combining the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory in a Couette-Taylor reactor, and precisely revealed the micro-interface interaction and species colonization during biofilm formation. The results indicated that bacterial reversible adhesion distance on SiO2 carrier surface was 3.06 ± 0.48 nm. Meanwhile, the secondary minimum of total XDLVO interaction energy could be used as a novel indicator to distinguish biofilm formation stages. The revealed biofilm formation stages were also confirmed by the electrochemical analysis. Additionally, the pioneer species that colonized at first were Comamonadaceae, Azospira, Flavobacterium and Azonexus, while keystone species such as Hydrogenophaga, AKYH767, Aquimonas and Ignavibacterium determined the stability of microbial community. In conclusion, this study provided a methodological example to study wastewater biofilm micro-interface behavior through the integration of an experimental platform as well as multiple monitoring and analysis methods, which opened up new perspectives for biofilm research and provided useful guidance for the regulation of biofilm-related treatment processes and new technology development.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Shanshan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xuan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
98
|
Wang Q, He X, Xiong H, Chen Y, Huang L. Structure, mechanism, and toxicity in antibiotics metal complexation: Recent advances and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157778. [PMID: 35926602 DOI: 10.1016/j.scitotenv.2022.157778] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic-metal complexes (AMCs) formed by antibiotics and metal ions have attracted considerable attentions in recent years. Although different removal methods for AMCs have been reported in the literature, very few investigations have focused on the mechanisms and toxic effects of antibiotic-metal coordination. This review briefly describes the structural characteristics of various commonly used antibiotics and the coordination mechanisms with metal ions. Considering the complexity of the real environment, various environmental factors affecting AMC formation are highlighted. The effects of AMCs on microbial community structure and the role of metal ions in influencing resistant genes from the molecular perspective are of interest within this work. The toxicities and mechanisms of AMCs on different species of biota are also discussed. These findings underline the need for more targeted detection and analysis methods and more suitable toxicity markers to verify the combination of antibiotics with metal ions and reveal environmental toxicities in future. This review presents an innovative idea that antibiotics combined with metal ions will change the toxicity and environmental behavior of antibiotics.
Collapse
Affiliation(s)
- Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Xi He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Haifeng Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| |
Collapse
|
99
|
Tripathy B, Dash A, Das AP. Detection of Environmental Microfiber Pollutants through Vibrational Spectroscopic Techniques: Recent Advances of Environmental Monitoring and Future Prospects. Crit Rev Anal Chem 2022; 54:1925-1935. [PMID: 36370114 DOI: 10.1080/10408347.2022.2144994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A robust environmental monitoring system is highly essential for the instant detection of environmental microfiber pollutants for the sustainable management of the environment and human health. The extent of microfiber pollution is growing exponentially across the globe in both terrestrial and marine environments. An immediate and accurate environmental monitoring system is crucial to investigate the composition and distribution of these micropollutants. Fourier Transform Infrared Spectroscopy and Raman Spectroscopy are vibrational spectroscopic techniques that have the novel ability to detect microfibers within a minute concentration from diverse environmental samples. The major micropollutants which have been analyzed are polyethylene, polypropylene, nylon 6, polystyrene, and polyethylene terephthalate. After a detailed and critical study of the various aspects of spectroscopic analysis, the review is concluded with a comprehensive discussion of the significance of these robust methods and their application in future aspects for further preventing microfiber pollution in the marine environment. This study highlights the utilities and significance of vibrational spectroscopic detection techniques for the immediate and accurate identification of synthetic microfibers. This review also evaluated the implementation of spectroscopic methods as a precise tool for the characterization and monitoring of microfiber pollutants in the environment.
Collapse
Affiliation(s)
- Banismita Tripathy
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | - Akankshya Dash
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | - Alok Prasad Das
- Department of Life Sciences, Rama Devi Women's University, Bhubaneswar, Odisha, India
| |
Collapse
|
100
|
Chang J, Fang W, Liang J, Zhang P, Zhang G, Zhang H, Zhang Y, Wang Q. A critical review on interaction of microplastics with organic contaminants in soil and their ecological risks on soil organisms. CHEMOSPHERE 2022; 306:135573. [PMID: 35797912 DOI: 10.1016/j.chemosphere.2022.135573] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The pollution of microplastics (MPs) in soil has become a global environmental problem. Due to high sorption capacity and persistence in environment, the MPs exhibit combined effects with organic pollutants in soil, thereby posing a potential risk to soil ecology and human health. However, limited reviews are available on this subject. Therefore, in response to this issue, this review provides an in-depth account of interaction of MPs with organic contaminants in soil and the combined risks to soil environment. The sorption of organic contaminants onto MPs is mainly through hydrophobic and π-π interactions, hydrogen bonding, pore filling and electrostatic and van der Waals forces. The intrinsic characteristics of MPs, organic contaminants and soil are the key factors influencing the sorption of organic pollutants onto MPs. Importantly, the presence of MPs changes the sorption, degradation and transport behaviors of organic contaminants in soil, and affects the toxic effects of organic contaminants on soil organisms including animals, plants and soil microorganisms through synergistic or antagonistic effects. Source control, policy implementation and plastic removal are the main preventive and control measures to reduce soil MPs pollution. Finally, priorities for future research are proposed, such as field investigations of co-pollution, contribution of plastisphere to organic contaminant degradation, and mechanisms of MPs effects on organic contaminant toxicity.
Collapse
Affiliation(s)
- Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China.
| | - Yajie Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|