51
|
Condori MAM, Condori MM, Gutierrez MEV, Choix FJ, García-Camacho F. Bioremediation potential of the Chlorella and Scenedesmus microalgae in explosives production effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171004. [PMID: 38369159 DOI: 10.1016/j.scitotenv.2024.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
This study explores microalgae-based bioremediation for treating black gunpowder production effluents, an understudied yet environmentally significant stream. Two native microalgae, Chlorella sp. MC18 (CH) and Scenedesmus sp. MJ23-R (SC), were assessed for growth kinetics and nutrient removal capabilities in culture media containing different proportions of untreated raw wastewater. Results show both species thrived in 100 % raw wastewater, displaying robust growth and substantial biomass production in parallelepiped-shaped photobioreactors. SC showed superior performance, with higher maximum specific growth rate (0.549 d-1), biomass yield (454.57 mg L-1) and biomass productivity (64.94 mg L-1 d-1) compared to CH (0.524 d-1, 380.60 mg L-1, 54.37 mg L-1 d-1, respectively). The use of 100 % raw wastewater as a culture medium eliminated the need for additional freshwater input, thus reducing the water footprint. The bioremediation process also resulted in a high removal efficiency in turbidity (>95 % CH, >76 % SC), total suspended solids (>93 % CH, >74 % SC), biochemical oxygen demand (BOD5) (>62 % CH, >93 % SC) and chemical oxygen demand (COD) (>63 % CH, >87 % SC), bringing the effluent into compliance with environmental regulations. Although nitrogen (>45 % CH, >57 % SC) and sulphate (>43 % CH, >35 % SC) removal efficiencies was high, potassium bioremediation was limited (<6 %). The proximate chemical composition of the microalgal biomass revealed different allocations to carbohydrates, lipids and proteins. The results suggest promising applications for biofuel production and aquaculture. This research highlights the potential of microalgae-based bioremediation for sustainable wastewater management in the explosives industry, contributing to the UN Sustainable Development Goals and promoting green industrial practices.
Collapse
Affiliation(s)
| | | | | | - Francisco J Choix
- CONAHCYT - Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, CP 31125, Chihuahua, Chihuahua, Mexico
| | | |
Collapse
|
52
|
Soudagar MEM, Kiong TS, Jathar L, Nik Ghazali NN, Ramesh S, Awasarmol U, Ong HC. Perspectives on cultivation and harvesting technologies of microalgae, towards environmental sustainability and life cycle analysis. CHEMOSPHERE 2024; 353:141540. [PMID: 38423144 DOI: 10.1016/j.chemosphere.2024.141540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The development of algae is seen as a potential and ecologically sound approach to address the increasing demands in multiple sectors. However, successful implementation of processes is highly dependent on effective growing and harvesting methods. The present study provides a complete examination of contemporary techniques employed in the production and harvesting of algae, with a particular emphasis on their sustainability. The review begins by examining several culture strategies, encompassing open ponds, closed photobioreactors, and raceway ponds. The analysis of each method is conducted in a systematic manner, with a particular focus on highlighting their advantages, limitations, and potential for expansion. This approach ensures that the conversation is in line with the objectives of sustainability. Moreover, this study explores essential elements of algae harvesting, including the processes of cell separation, dewatering, and biomass extraction. Traditional methods such as centrifugation, filtration, and sedimentation are examined in conjunction with novel, environmentally concerned strategies including flocculation, electro-coagulation, and membrane filtration. It evaluates the impacts on the environment that are caused by the cultivation process, including the usage of water and land, the use of energy, the production of carbon dioxide, and the runoff of nutrients. Furthermore, this study presents a thorough examination of the current body of research pertaining to Life Cycle Analysis (LCA) studies, presenting a perspective that emphasizes sustainability in the context of algae harvesting systems. In conclusion, the analysis ends up with an examination ahead at potential areas for future study in the cultivation and harvesting of algae. This review is an essential guide for scientists, policymakers, and industry experts associated with the advancement and implementation of algae-based technologies.
Collapse
Affiliation(s)
- Manzoore Elahi M Soudagar
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand - 248002, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| | - Tiong Sieh Kiong
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia.
| | - Laxmikant Jathar
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - S Ramesh
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umesh Awasarmol
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, Jalan Universiti, Bandar Sunway, 47500, Selangor, Malaysia.
| |
Collapse
|
53
|
Ge Y, Chen J, Xue Y, Xing W, Zhang L, Lu X, Liu J, Li F, Yang Q. Elimination of inhibitory effects of dodecyl dimethyl benzyl ammonium chloride on microalgae in wastewater by cocultivation with a newly screened microbial consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170676. [PMID: 38350567 DOI: 10.1016/j.scitotenv.2024.170676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
As one of the most commonly used biocidal cationic surfactants, benzalkonium chlorides (BACs) have been an increasing concern as emerging contaminants. Wastewater has been claimed the main point for BACs to enter into the environment, but to date, it is still largely unknown how the BACs affect the microbes (especially microalgae) in the practical wastewater and how to cost-effectively remove them. In this study, the inhibitory effects of a typical BACs, dodecyl dimethyl benzyl ammonium chloride (DDBAC), on a green microalga Chlorella sp. in oxidation pond wastewater were investigated. The results showed that though a hermetic effect at the first 2 days was observed with the DDBAC at low concentration (<6 mg/L), the algal growth and photosynthesis were significantly inhibited by the DDBAC at all the tested concentrations (3 to 48 mg/L). Fortunately, a new microbial consortium (MC) capable of degrading DDBAC was screened through a gradient domestication method. The MC mainly composed of Wickerhamomyces sp., Purpureocillium sp., and Achromobacter sp., and its maximum removal efficiency and removal rate of DDBAC (48 mg/L) respectively reached 98.1 % and 46.32 mg/L/d. Interestingly, a microbial-microalgal system (MMS) was constructed using the MC and Chlorella sp., and a synergetic effect between the two kinds of microorganisms was proposed: microalga provided oxygen and extracellular polysaccharides as co-metabolic substrates to help the MC to degrade DDBAC, while the MC helped to eliminate the DDBAC-induced inhibition on the alga. Further, by observing the seven kinds of degradation products (mainly including CH5O3P, C6H5CH2-, and C8H11N), two possible chemical pathways of the DDBAC degradation were proposed. In addition, the metagenomic sequencing results showed that the main functional genes of the MMS included antibiotic-resistant genes, ABC transporter genes, quorum sensing genes, two-component regulatory system genes, etc. This study provided some theoretical and application findings for the cost-effective pollution prevention of BACs in wastewater.
Collapse
Affiliation(s)
- Yaming Ge
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Juan Chen
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yu Xue
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Wanchuan Xing
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Liang Zhang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Xinye Lu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Junzhi Liu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Fushan Li
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qiao Yang
- ABI Group, Donghai Laboratory, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
54
|
Li Y, Wu X, Liu Y, Taidi B. Immobilized microalgae: principles, processes and its applications in wastewater treatment. World J Microbiol Biotechnol 2024; 40:150. [PMID: 38548998 DOI: 10.1007/s11274-024-03930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/16/2024] [Indexed: 04/02/2024]
Abstract
Microalgae have emerged as potential candidates for biomass production and pollutant removal. However, expensive biomass harvesting, insufficient biomass productivity, and low energy intensity limit the large-scale production of microalgae. To break through these bottlenecks, a novel technology of immobilized microalgae culture coupled with wastewater treatment has received increasing attention in recent years. In this review, the characteristics of two immobilized microalgae culture technologies are first presented and then their mechanisms are discussed in terms of biofilm formation theories, including thermodynamic theory, Derjaguin-Landau-Verwei-Overbeek theory (DLVO) and its extended theory (xDLVO), as well as ionic cross-linking mechanisms in the process of microalgae encapsulated in alginate. The main factors (algal strains, carriers, and culture conditions) affecting the growth of microalgae are also discussed. It is also summarized that immobilized microalgae show considerable potential for nitrogen and phosphorus removal, heavy metal removal, pesticide and antibiotic removal in wastewater treatment. The role of bacteria in the cultivation of microalgae by immobilization techniques and their application in wastewater treatment are clarified. This is economically feasible and technically superior. The problems and challenges faced by immobilized microalgae are finally presented.
Collapse
Affiliation(s)
- Yanpeng Li
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang`an University, Xi`an, 710054, People's Republic of China.
| | - Xuexue Wu
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China
| | - Yi Liu
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China
| | - Behnam Taidi
- LGPM, CentraleSupélec, Université Paris Saclay, 3 rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| |
Collapse
|
55
|
Prachanurak A, Prachanurak P. Effects of dilution and pretreatment on nutrient removal and biomass production of Chlorella vulgaris in kitchen wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1410-1419. [PMID: 38462818 DOI: 10.1080/15226514.2024.2324364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
This research investigated the effect of kitchen wastewater (KWW) concentrations and pretreatment methods on Chlorella vulgaris biomass production, lipid content and nutrient removal. This study was divided into two separate experiments. The first experiment determined the appropriate dilution rate of KWW for the growth of microalgae, sterilized KWW was varied between 25%, 50%, 75%, and 100%(v/v). The result indicated that 50%(v/v) showed the highest nutrient removal by 90.23%, 85.87%, and 80.64% of sCOD, TKN, and TP, respectively. The highest biomass and lipid content were obtained with 50%(v/v) (1.447 g/L, 37.9%). The second experiment was to find an effective physical pretreatment method, which separated the biotic contaminant, non-sterilized KWW was diluted 50%(v/v) and filtered with different mesh size filters (150 μm, 50 μm, and 30 μm) compared with sterilized KWW as a control sample. The result indicated that pretreatment with 50 μm filtration was found highest nutrient removal by 90.51%, 84.74%, and 77.50% of sCOD, TKN, and TP, respectively. The highest biomass and lipid content were obtained with 50 μm filtration (1.496 g/L, 39.4%). Our results support the hypothesis that the optimal dilution and proper filtration of KWW helps create more favorable environment for microalgal growth.
Collapse
Affiliation(s)
- Akaporn Prachanurak
- Department of Mathematics and Computer Science, Academic Division, Chulachomklao Royal Military Academy, Mueang, Nakhon Nayok, Thailand
| | - Pradthana Prachanurak
- Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Ongkharak, Nakhon Nayok, Thailand
| |
Collapse
|
56
|
Wilawan B, Chan SS, Ling TC, Show PL, Ng EP, Jonglertjunya W, Phadungbut P, Khoo KS. Advancement of Carotenogenesis of Astaxanthin from Haematococcus pluvialis: Recent Insight and Way Forward. Mol Biotechnol 2024; 66:402-423. [PMID: 37270443 DOI: 10.1007/s12033-023-00768-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
The demand for astaxanthin has been increasing for many health applications ranging from pharmaceuticals, food, cosmetics, and aquaculture due to its bioactive properties. Haematococcus pluvialis is widely recognized as the microalgae species with the highest natural accumulation of astaxanthin, which has made it a valuable source for industrial production. Astaxanthin produced by other sources such as chemical synthesis or fermentation are often produced in the cis configuration, which has been shown to have lower bioactivity. Additionally, some sources of astaxanthin, such as shrimp, may denature or degrade when exposed to high temperatures, which can result in a loss of bioactivity. Producing natural astaxanthin through the cultivation of H. pluvialis is presently a demanding and time-consuming task, which incurs high expenses and restricts the cost-effective industrial production of this valuable substance. The production of astaxanthin occurs through two distinct pathways, namely the cytosolic mevalonate pathway and the chloroplast methylerythritol phosphate (MEP) pathway. The latest advancements in enhancing product quality and extracting techniques at a reasonable cost are emphasized in this review. The comparative of specific extraction processes of H. pluvialis biological astaxanthin production that may be applied to large-scale industries were assessed. The article covers a contemporary approach to optimizing microalgae culture for increased astaxanthin content, as well as obtaining preliminary data on the sustainability of astaxanthin production and astaxanthin marketing information.
Collapse
Affiliation(s)
- Busakorn Wilawan
- Institut Biologi Sains, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sook Sin Chan
- Institut Biologi Sains, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tau Chuan Ling
- Institut Biologi Sains, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Woranart Jonglertjunya
- Fermentation Technology Laboratory (FerTechLab), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Poomiwat Phadungbut
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| |
Collapse
|
57
|
López-Patiño AM, Cárdenas-Orrego A, Torres AF, Navarrete D, Champagne P, Ochoa-Herrera V. Native microalgal-bacterial consortia from the Ecuadorian Amazon region: an alternative to domestic wastewater treatment. Front Bioeng Biotechnol 2024; 12:1338547. [PMID: 38468686 PMCID: PMC10925762 DOI: 10.3389/fbioe.2024.1338547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
In low-middle income countries (LMIC), wastewater treatment using native microalgal-bacterial consortia has emerged as a cost-effective and technologically-accessible remediation strategy. This study evaluated the effectiveness of six microalgal-bacterial consortia (MBC) from the Ecuadorian Amazon in removing organic matter and nutrients from non-sterilized domestic wastewater (NSWW) and sterilized domestic wastewater (SWW) samples. Microalgal-bacterial consortia growth, in NSWW was, on average, six times higher than in SWW. Removal rates (RR) for NH4 +- N and PO4 3--P were also higher in NSWW, averaging 8.04 ± 1.07 and 6.27 ± 0.66 mg L-1 d-1, respectively. However, the RR for NO3 - -N did not significantly differ between SWW and NSWW, and the RR for soluble COD slightly decreased under non-sterilized conditions (NSWW). Our results also show that NSWW and SWW samples were statistically different with respect to their nutrient concentration (NH4 +-N and PO4 3--P), organic matter content (total and soluble COD and BOD5), and physical-chemical parameters (pH, T, and EC). The enhanced growth performance of MBC in NSWW can be plausibly attributed to differences in nutrient and organic matter composition between NSWW and SWW. Additionally, a potential synergy between the autochthonous consortia present in NSWW and the native microalgal-bacterial consortia may contribute to this efficiency, contrasting with SWW where no active autochthonous consortia were observed. Finally, we also show that MBC from different localities exhibit clear differences in their ability to remove organic matter and nutrients from NSWW and SWW. Future research should focus on elucidating the taxonomic and functional profiles of microbial communities within the consortia, paving the way for a more comprehensive understanding of their potential applications in sustainable wastewater management.
Collapse
Affiliation(s)
- Amanda M. López-Patiño
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ana Cárdenas-Orrego
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés F. Torres
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Danny Navarrete
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Pascale Champagne
- Department of Civil Engineering, Queen’s University, Kingston, ON, Canada
| | - Valeria Ochoa-Herrera
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Escuela de Ingeniería, Ciencia y Tecnología, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
58
|
Song M, Yin D, Zhao J, Li R, Yu J, Chen X. Proteomics reveals toxin tolerance and polysaccharide accumulation in Chlorococcum humicola under high CO 2 concentration. ENVIRONMENTAL RESEARCH 2024; 243:117738. [PMID: 37993048 DOI: 10.1016/j.envres.2023.117738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Algae have great application prospects in excess sludge reclamation and recovery of high-value biomass. Chlorococcum humicola was cultivated in this research, using sludge extract (mixed with SE medium) with additions of 10%, 20%, and 30% CO2 (v/v). Results showed that under 20% CO2, the dry weight and polysaccharide yield reached 1.389 ± 0.070 g/L and 313.49 ± 10.77 mg/L, respectively. 10% and 20% CO2 promoted the production of cellular antioxidant molecules to resist the toxic stress and the toxicity of 20% CO2 group decreased from 62.16 ± 3.11% to 33.02 ± 3.76%. 10% and 20% CO2 accelerated the electron transfer, enhanced carbon assimilation, and promoted the photosynthetic efficiency, while 30% CO2 led to photosystem damage and disorder of antioxidant system. Proteomic analysis showed that 20% CO2 mainly affected energy metabolism and the oxidative stress level on the early stage (10 d), while affected photosynthesis and organic substance metabolism on the stable stage (30 d). The up-regulation of PSII photosynthetic protein subunit 8 (PsbA, PsbO), A0A383W1S5 and A0A383VRI4 promoted the efficiency of PSII and chlorophyll synthesis, and the up-regulation of A0A383WH74 and A0A2Z4THB7 led to the accumulation of polysaccharides. The up-regulation of A0A383VDH1, A0A383VX37 and A0A383VA86 promoted respiration. Collectively, this work discloses the regulatory mechanism of high-concentration CO2 on Chlorococcum humicola to overcome toxicity and accumulate polysaccharides.
Collapse
Affiliation(s)
- Meijing Song
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Danning Yin
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiamin Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Renjie Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiayu Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiurong Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
59
|
Hasan R, Kasera N, Beck AE, Hall SG. Potential of Synechococcus elongatus UTEX 2973 as a feedstock for sugar production during mixed aquaculture and swine wastewater bioremediation. Heliyon 2024; 10:e24646. [PMID: 38314264 PMCID: PMC10837500 DOI: 10.1016/j.heliyon.2024.e24646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
The demand for protein is increasing with an expanding world population and is influencing the rapid growth of fish and animal agriculture. These sectors are becoming a significant source of water pollution and need to develop environmentally sustainable techniques that are cost-effective, ideally with potential for downstream value-added production. This study investigated the potential of one of the fastest-growing cyanobacterial species, Synechococcus elongatus UTEX 2973, for bioremediation of mixed wastewater (combination of sturgeon and swine wastewater). Three different mixing ratios (25:75, 50:50, and 75:25 sturgeon:swine) were compared to find a suitable combination for the growth of S. elongatus as well as carbohydrate accumulation in biomass. The final biomass production was found to be 0.65 ± 0.03 g Dry cell Weight (DW)/L for 75%-25 %, 0.90 ± 0.004 g DW/L for 50%-50 %, and 0.71 ± 0.04 g DW/L for 25%-75 % sturgeon-swine wastewater combination. Cyanobacteria cultivated in 50%-50 % sturgeon-swine wastewater also accumulated 70 % total carbohydrate of DW, whereas 75%-25 % sturgeon-swine and 25%-75 % sturgeon-swine accumulated 53 % and 45 %, respectively. Subsequently, the S. elongatus cells were grown in a separate batch of 50%-50 % sturgeon-swine wastewater and compared with cells grown in BG11 synthetic growth media. Cultivation in BG11 resulted in higher biomass production but lower carbohydrate accumulation than 50%-50 % mixed wastewater. Final biomass production was 0.85 ± 0.08 g DW/L for BG11 and 0.65 ± 0.04 g DW/L for 50%-50 % sturgeon-swine wastewater. Total carbohydrate accumulated was 75 % and 64 % of DW for 50%-50 % sturgeon-swine mixed wastewater and BG11 growth media, respectively, where glycogen was the main carbohydrate component (90 %). The nutrient removal efficiencies of S. elongatus were 67.15 % for orthophosphate, 93.39 % for nitrate-nitrite, and 97.98 % for ammonia. This study suggested that S. elongatus is a promising candidate for enabling simultaneous bioremediation of mixed wastewater and the production of value-added biochemicals.
Collapse
Affiliation(s)
- Rifat Hasan
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, USA
| | - Nitesh Kasera
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, USA
| | - Ashley E. Beck
- Department of Biological and Environmental Sciences, Carroll College, Helena, MT, USA
| | - Steven G. Hall
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
60
|
Rincon SM, Beyenal H, Romero HM. A Response Surface Methodology Study for Chlorella vulgaris Mixotrophic Culture Optimization. Microorganisms 2024; 12:379. [PMID: 38399783 PMCID: PMC10892752 DOI: 10.3390/microorganisms12020379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Glycerol is a carbon source that produces good biomass under mixotrophic conditions. Enhancing the composition of culture media in algae biomass production improves growth rates, biomass yield, nutrient utilization efficiency, and overall cost-effectiveness. Among the key nutrients in the medium, nitrogen plays a pivotal role. Urea can be effectively used as a nitrogen source and is considered a low-cost form of nitrogen compared to other sources. Urea metabolism releases some CO2 in photosynthesis, and magnesium plays a major role in urea uptake. Magnesium is another key nutrient that is key in photosynthesis and other metabolic reactions. To maximize glycerol consumption in the mixotrophic system and to obtain high biomass and lipid productions, the variations in MgSO4·7H2O and urea concentrations were evaluated in the growth medium of the microalgae. A response surface methodology (RSM) using a central composite design (CCD) was designed to maximize glycerol consumption at the initial cellular growth rates (up to four days). The magnesium and urea supply varied from 0.3 to 1.7 g L-1. Response surface methodology was utilized to analyze the results, and the highest glycerol consumption rate, 770.2 mg L-1 d-1, was observed when C. vulgaris was grown at 1.7 g L-1 urea, 1.0 g L-1 MgSO4·7H2O. Using the optimal urea and magnesium concentrations with acetate, glucose, and glycerol as carbon sources, the same lipid content (10% average) was achieved on day 4 of mixotrophic C. vulgaris culture. Overall, the results show that mixotrophic growth of C. vulgaris using urea with an optimum magnesium concentration yields large amounts of fatty acids and that the carbon source greatly influences the profile of the fatty acids.
Collapse
Affiliation(s)
- Sandra Milena Rincon
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA; (S.M.R.); (H.B.)
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA; (S.M.R.); (H.B.)
| | - Hernán Mauricio Romero
- Biology and Breeding Research Program, Colombian OiI Palm Research Center, Bogotá 111121, Colombia
- Department of Biology, Universidad Nacional de Colombia, Bogotá 11132, Colombia
| |
Collapse
|
61
|
Stirk WA, Bálint P, Široká J, Novák O, Rétfalvi T, Berzsenyi Z, Notterpek J, Varga Z, Maróti G, van Staden J, Strnad M, Ördög V. Comparison of plant biostimulating properties of Chlorella sorokiniana biomass produced in batch and semi-continuous systems supplemented with pig manure or acetate. J Biotechnol 2024; 381:27-35. [PMID: 38190851 DOI: 10.1016/j.jbiotec.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
Microalgae-derived biostimulants provide an eco-friendly biotechnology for improving crop productivity. The strategy of circular economy includes reducing biomass production costs of new and robust microalgae strains grown in nutrient-rich wastewater and mixotrophic culture where media is enriched with organic carbon. In this study, Chlorella sorokiniana was grown in 100 l bioreactors under sub-optimal conditions in a greenhouse. A combination of batch and semi-continuous cultivation was used to investigate the growth, plant hormone and biostimulating effect of biomass grown in diluted pig manure and in nutrient medium supplemented with Na-acetate. C. sorokiniana tolerated the low light (sum of PAR 0.99 ± 0.18 mol/photons/(m2/day)) and temperature (3.7-23.7° C) conditions to maintain a positive growth rate and daily biomass productivity (up to 149 mg/l/day and 69 mg/l/day dry matter production in pig manure and Na-acetate supplemented cultures respectively). The protein and lipid content was significantly higher in the biomass generated in batch culture and dilute pig manure (1.4x higher protein and 2x higher lipid) compared to the Na-acetate enriched culture. Auxins indole-3-acetic acid (IAA) and 2-oxindole-3-acetic acid (oxIAA) and salicylic acid (SA) were present in the biomass with significantly higher auxin content in the biomass generated using pig manure (> 350 pmol/g DW IAA and > 84 pmol/g DW oxIAA) compared to cultures enriched with Na-acetate and batch cultures (< 200 pmol/g DW IAA and < 27 pmol/g DW oxIAA). No abscisic acid and jasmonates were detected. All samples had plant biostimulating activity measured in the mungbean rooting bioassay with the Na-acetate supplemented biomass eliciting higher rooting activity (equivalent to 1-2 mg/l IBA) compared to the pig manure (equivalent to 0.5-1 mg/l IBA) and batch culture (equivalent to water control) generated biomass. Thus C. sorokiniana MACC-728 is a robust new strain for biotechnology, tolerating low light and temperature conditions. The strain can adapt to alternative nutrient (pig manure) and carbon (acetate) sources with the generated biomass having a high auxin concentration and plant biostimulating activity detected with the mungbean rooting bioassay.
Collapse
Affiliation(s)
- Wendy A Stirk
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, P/Bag X01, Scottsville 3209, South Africa.
| | - Péter Bálint
- Department of Plant Sciences, Albert Kázmér Mosonmagyaróvár Faculty, Széchenyi István University, Vár Square 2, Mosonmagyaróvár H-9200, Hungary
| | - Jitka Široká
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 27, Olomouc 78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 27, Olomouc 78371, Czech Republic
| | - Tamás Rétfalvi
- Institute of Environmental Protection and Nature Conservation, Faculty of Forestry, University of Sopron, Bajcsy-Zsilinszky str., Sopron 4H-9400, Hungary
| | - Zoltán Berzsenyi
- Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár H-7400, Hungary
| | - Jácint Notterpek
- Department of Plant Sciences, Albert Kázmér Mosonmagyaróvár Faculty, Széchenyi István University, Vár Square 2, Mosonmagyaróvár H-9200, Hungary
| | - Zoltán Varga
- Department of Water and Environmental Sciences, Albert Kázmér Mosonmagyaróvár Faculty, Széchenyi István University, Vár Square 2, Mosonmagyaróvár H-9200, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged 6726, Hungary; Faculty of Water Sciences, University of Public Service, Baja 6500, Hungary
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, P/Bag X01, Scottsville 3209, South Africa
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 27, Olomouc 78371, Czech Republic
| | - Vince Ördög
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, P/Bag X01, Scottsville 3209, South Africa; Department of Plant Sciences, Albert Kázmér Mosonmagyaróvár Faculty, Széchenyi István University, Vár Square 2, Mosonmagyaróvár H-9200, Hungary
| |
Collapse
|
62
|
Pundir A, Thakur MS, Radha, Goel B, Prakash S, Kumari N, Sharma N, Parameswari E, Senapathy M, Kumar S, Dhumal S, Deshmukh SV, Lorenzo JM, Kumar M. Innovations in textile wastewater management: a review of zero liquid discharge technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12597-12616. [PMID: 38236573 DOI: 10.1007/s11356-024-31827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
Zero liquid discharge (ZLD) technology emerges as a transformative solution for sustainable wastewater management in the textile industry, emphasizing water recycling and discharge minimization. This review comprehensively explores ZLD's pivotal role in reshaping wastewater management practices within the textile sector. With a primary focus on water recycling and minimized discharge, the review thoroughly examines the economic and environmental dimensions of ZLD. Additionally, it includes a comparative cost analysis against conventional wastewater treatment methods and offers a comprehensive outlook on the global ZLD market. Presently valued at US $0.71 billion, the market is anticipated to reach US $1.76 billion by 2026, reflecting a robust annual growth rate of 12.6%. Despite ZLD's efficiency in wastewater recovery, environmental challenges, such as heightened greenhouse gas emissions, increased carbon footprint, elevated energy consumption, and chemical usage, are discussed. Methodologies employed in this review involve an extensive analysis of existing literature, empirical data, and case studies on ZLD implementation in the textile industry worldwide. While acknowledging existing adoption barriers, the review underscores ZLD's potential to guide the textile industry toward a more sustainable and environmentally responsible future.
Collapse
Affiliation(s)
- Ashok Pundir
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Mohindra Singh Thakur
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Bhaskar Goel
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Niharika Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Ettiyagounder Parameswari
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Sunil Kumar
- Indian Institute of Farming Systems Research, Modipuram, 250110, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, India
| | - Sheetal Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be) University, Yashwantrao Mohite Institute of Management, Karad, India
| | - Jose Manuel Lorenzo
- Centro Tecnológico de La Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia No 4, San Cibrao das Viñas, 32900, Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India.
| |
Collapse
|
63
|
Yan H, Chen Z, Hao Ngo H, Wang QP, Hu HY. Nitrogen and phosphorus removal performance of sequential batch operation for algal cultivation through suspended-solid phase photobioreactor. BIORESOURCE TECHNOLOGY 2024; 393:130143. [PMID: 38042434 DOI: 10.1016/j.biortech.2023.130143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Nitrogen (N) and phosphorus (P) absorbed by algae in the suspended-solid phase photobioreactor (ssPBR) have emerged as an efficient pathway to purify the effluent of wastewater treatment plants (WWTPs). However, the key operational parameters of the ssPBR need to be optimized. In this study, the stability of the system after sequential batch operations and the efficiency under various influent P concentrations were evaluated. The results demonstrated that the ssPBR maintained a high N/P removal efficiency of 96 % and 98 %, respectively, after 5 cycles. When N was kept at 15 mg/L and P ranged from 1.5 to 3.0 mg/L, the system yielded plenty of algae products and guaranteed the effluent quality that met the discharge standards. Notably, the carriers were a key contributor to the high metabolism of algae and high performance. This work provided theoretical ideas and technical guidance for effluent quality improvement in WWTPs.
Collapse
Affiliation(s)
- Han Yan
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Qiu-Ping Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua University, Suzhou 215163, China
| |
Collapse
|
64
|
Gaysina LA. Influence of pH on the Morphology and Cell Volume of Microscopic Algae, Widely Distributed in Terrestrial Ecosystems. PLANTS (BASEL, SWITZERLAND) 2024; 13:357. [PMID: 38337891 PMCID: PMC10857513 DOI: 10.3390/plants13030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Terrestrial algae are a group of photosynthetic organisms that can survive in extreme conditions. pH is one of the most important factors influencing the distribution of algae in both aquatic and terrestrial ecosystems. The impact of different pH levels on the cell volume and other morphological characteristics of authentic and reference strains of Chlorella vulgaris, Bracteacoccus minor, Pseudoccomyxa simplex, Chlorococcum infusionum, and Vischeria magna were studied. Chlorella vulgaris, Pseudoccomyxa simplex, and Vischeria magna were the most resistant species, retaining their morphology in the range of pH 4-11.5 and pH 3.5-11, respectively. The change in pH towards acidic and alkaline levels caused an increase in the volume of Pseudoccomixa simplex and Vischeria magna cells, according to a polynomial regression model. The volume of Chlorella vulgaris cells increased from a low to high pH according to a linear regression model. Changes in pH levels did not have a significant impact on the volume of Bracteacoccus minor and Chlorococcum infusionum cells. Low and high levels of pH caused an increase in oil-containing substances in Vischeria magna and Bracteacoccus minor cells. Our study revealed a high resistance of the studied species to extreme pH levels, which allows for us to recommend these strains for broader use in biotechnology and conservation studies of natural populations.
Collapse
Affiliation(s)
- Lira A. Gaysina
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450008 Ufa, Russia;
- All-Russian Research Institute of Phytopathology, 143050 Bolshye Vyazemy, Russia
| |
Collapse
|
65
|
Zheng J, Cole T, Zhang Y, Bayinqiaoge, Yuan D, Tang SY. An automated and intelligent microfluidic platform for microalgae detection and monitoring. LAB ON A CHIP 2024; 24:244-253. [PMID: 38059468 DOI: 10.1039/d3lc00851g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Microalgae not only play a vital role in the ecosystem but also hold promising commercial applications. Conventional methods of detecting and monitoring microalgae rely on field sampling followed by transportation to the laboratory for manual analysis, which is both time-consuming and laborious. Although machine learning (ML) algorithms have been introduced for microalgae detection in the laboratory, no integrated platform approach has yet emerged to enable real-time, on-site sampling and analysing. To solve this problem, here, we develop an automated and intelligent microfluidic platform (AIMP) that can offer automated system control, intelligent data analysis, and user interaction, providing an economical and portable solution to alleviate the drawbacks of conventional methods for microalgae detection and monitoring. We demonstrate the feasibility of the AIMP by detecting and classifying four microalgal species (Cosmarium, Closterium, Micrasterias, and Haematococcus Pluvialis) that exhibit varying sizes (from a few to hundreds of microns) and morphologies. The trained microalgae species detection network (MSDN, based on YOLOv5 architecture) achieves a high overall mean average precision at 0.5 intersection-over-union (mAP@0.5) of 92.8%. Furthermore, the versatility of the AIMP is demonstrated by long-term monitoring of astaxanthin production from Haematococcus Pluvialis over a period of 30 days. The AIMP achieved 97.5% accuracy in the detection of Haematococcus Pluvialis and 96.3% in further classification based on astaxanthin accumulation. This study opens up a new path towards microalgae detection and monitoring using portable intelligent devices, providing new ideas to accelerate progress in the ecological studies and commercial exploitation of microalgae.
Collapse
Affiliation(s)
- Jiahao Zheng
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tim Cole
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Bayinqiaoge
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Dan Yuan
- School of Mechanical & Mining Engineering, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
66
|
Rossi S, Carecci D, Marazzi F, Di Benedetto F, Mezzanotte V, Parati K, Alberti D, Geraci I, Ficara E. Integrating microalgae growth in biomethane plants: Process design, modelling, and cost evaluation. Heliyon 2024; 10:e23240. [PMID: 38163195 PMCID: PMC10755323 DOI: 10.1016/j.heliyon.2023.e23240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
The integration of microalgae cultivation in anaerobic digestion (AD) plants can take advantage of relevant nutrients (ammonium and ortho-phosphate) and CO2 loads. The proposed scheme of microalgae integration in existing biogas plants aims at producing approximately 250 t·y-1 of microalgal biomass, targeting the biostimulants market that is currently under rapid expansion. A full-scale biorefinery was designed to treat 50 kt·y-1 of raw liquid digestate from AD and 0.45 kt·y-1 of CO2 from biogas upgrading, and 0.40 kt·y-1 of sugar-rich solid by-products from a local confectionery industry. An innovative three-stage cultivation process was designed, modelled, and verified, including: i) microalgae inoculation in tubular PBRs to select the desired algal strains, ii) microalgae cultivation in raceway ponds under greenhouses, and iii) heterotrophic microalgae cultivation in fermenters. A detailed economic assessment of the proposed biorefinery allowed to compute a biomass production cost of 2.8 ± 0.3 €·kg DW-1, that is compatible with current downstream process costs to produce biostimulants, suggesting that the proposed nutrient recovery route is feasible from the technical and economic perspective. Based on the case study analysis, a discussion of process, bioproducts and policy barriers that currently hinder the development of microalgae-based biorefineries is presented.
Collapse
Affiliation(s)
- Simone Rossi
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Davide Carecci
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Francesca Marazzi
- University of Milano – Bicocca, DISAT – Department of Earth and Environmental Sciences, 1, P.zza della Scienza, 20126 Milano, Italy
| | - Francesca Di Benedetto
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Valeria Mezzanotte
- University of Milano – Bicocca, DISAT – Department of Earth and Environmental Sciences, 1, P.zza della Scienza, 20126 Milano, Italy
| | - Katia Parati
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Aquaculture division, 26027 Rivolta d’Adda, Italy
| | | | | | - Elena Ficara
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| |
Collapse
|
67
|
Asaad AA, Amer AS. Evaluation of Chlorella vulgaris biosorption capacity for phosphate and nitrate removal from wastewater. Sci Rep 2024; 14:884. [PMID: 38195608 PMCID: PMC10776767 DOI: 10.1038/s41598-023-50748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024] Open
Abstract
High wastewater production rates during the past few decades are mostly attributable to anthropogenic activities. The main components leading to the nutrient enrichment of natural water bodies are such as nitrogen, phosphorus, and other minerals. The main focus of this research was to assess the ability of using Chlorella vulgaris algae, a potent and environmentally benign material, to eliminate phosphate and nitrate ions from wastewater. FTIR results showed that the biologically active molecules that facilitate the binding of phosphate and nitrate ions unto the C. vulgaris are C=C and N-H amid. The ideal equilibrium time for adsorption was 24 h with an optimum pH of 7 and the mass ratio of algae and different anions concentration was 80%. Freundlich isotherm model was the best-fitted isotherm. Moreover, the results of the experiment fit more closely with the pseudo-second-order kinetic model than other models. Elovich kinetic model data for both ions showed that the adsorption rate was much higher than the desorption rate. The growing popularity of biosorbents in treating wastewater has led to an improvement in their affordability and availability, and C. vulgaris may now represent an environmentally friendly choice from an environmental, and economic standpoint.
Collapse
Affiliation(s)
- Amany A Asaad
- Inorganic Department, Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt.
| | - Amany S Amer
- Biology and Environmental Indicators Department, Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt
| |
Collapse
|
68
|
Li M, Zhang R, Zou Z, Zhang L, Ma H. Optimizing physico-chemical properties of hierarchical ZnO/TiO 2 nano-film by the novel heating method for photocatalytic degradation of antibiotics and dye. CHEMOSPHERE 2024; 346:140392. [PMID: 37852380 DOI: 10.1016/j.chemosphere.2023.140392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
The design of semiconductor catalysts with excellent photocatalytic properties, stability, recyclability, and good separation for the treatment of polluted water is still challenging. In this paper, the ZnO/TiO2 nano-thin films were fabricated using the magnetron sputtering technique and then heating the underlying ZnO layer and the upper TiO2 layer for their respective optimal heating time, i. e. heating ZnO for 3 h and heating TiO2 for 2 h. The as-prepared films were characterized. The results show that the preferred growth of TiO2 grains along the [001] axis, relatively large specific surface area, and increased amounts of surface oxygen vacancies (OVs) were induced to the heterojunction catalysts through this optimized heating strategy, which boosts the photocatalytic activity of ZnO/TiO2 nano-film. The degradation experiment inndicates that the ciprofloxacin (CIP) removal efficiency can reach 97.3% in 2 h duration, which was higher than that of the samples annealed for the same periods. Meanwhile, the prepared ZnO/TiO2 photocatalytic film exhibited favorable stability of 95.5% degradation efficiency after the fourth run and general applicability for the photodegradation of various contantains, whih removed 99.5% of ofloxacin (OFX) and 77.6% of tetracycline (TC) in 2 h and 94.1% of Rhodamine B (RhB) in 1 h. This work is expected to yields a novel insight into the production of heterojunction photocatalysts with excellen ability for photocatalytic degradation of pollutants in the practical industry.
Collapse
Affiliation(s)
- Min Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiyang Zhang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
| | - Zhipeng Zou
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
| | - Lan Zhang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China.
| | - Huizhong Ma
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
69
|
Fariz-Salinas EA, Limón-Rodríguez B, Beltrán-Rocha JC, Guajardo-Barbosa C, Cantú-Cárdenas ME, Martínez-Ávila GCG, Castillo-Zacarías C, López-Chuken UJ. Effect of light stress on lutein production with associated phosphorus removal from a secondary effluent by the autoflocculating microalgae consortium BR-UANL-01. 3 Biotech 2024; 14:23. [PMID: 38156038 PMCID: PMC10751278 DOI: 10.1007/s13205-023-03810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/07/2023] [Indexed: 12/30/2023] Open
Abstract
Microalgae have become promising microorganisms for generating high-value commercial products and removing pollutants in aquatic systems. This research evaluated the impact of sunlight intensity on intracellular pigment generation and phosphorus removal from secondary effluents by autoflocculating microalgae consortium BR-UANL-01 in photobioreactor culture. Microalgae were grown in a secondary effluent from a wastewater treatment plant, using a combination of low and high light conditions (photon irradiance; 44 μmol m-2 s-1 and ≈ 1270 μmol m-2 s-1, respectively) and 16:8 h light:dark and 24:0 h light:dark (subdivided into 18:6 LED:sunlight) photoperiods. The autoflocculant rate by consortium BR-UANL-01 was not affected by light intensity and achieved 98% in both treatments. Microalgae produced significantly more lutein, (2.91 mg g-1) under low light conditions. Phosphate removal by microalgae resulted above 85% from the secondary effluent, due to the fact that phosphorus is directly associated with metabolic and replication processes and the highest antioxidant activity was obtained in ABTS•+ assay by the biomass under low light condition (51.71% μmol ET g-1). In conclusion, the results showed that the autoflocculating microalgae consortium BR-UANL-01 is capable of synthesizing intracellular lutein, which presents antioxidant activity, using secondary effluents as a growth medium, without losing its autoflocculating activity and assimilating phosphorus.
Collapse
Affiliation(s)
- Edwin Alexis Fariz-Salinas
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Ciudad Universitaria S/N, 66455 San Nicolás de los Garza, Nuevo León Mexico
| | - Benjamín Limón-Rodríguez
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Ciudad Universitaria S/N, 66455 San Nicolás de los Garza, Nuevo León Mexico
| | - Julio Cesar Beltrán-Rocha
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Col. Ex-Hacienda, El Canadá, 66050 General Escobedo, Nuevo León Mexico
| | - Claudio Guajardo-Barbosa
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, 66450 San Nicolás de los Garza, Nuevo León Mexico
| | - María Elena Cantú-Cárdenas
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista Al Aeropuerto Internacional Mariano Escobedo, 66629 Apodaca, Nuevo León Mexico
| | | | - Carlos Castillo-Zacarías
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Ciudad Universitaria S/N, 66455 San Nicolás de los Garza, Nuevo León Mexico
| | - Ulrico Javier López-Chuken
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista Al Aeropuerto Internacional Mariano Escobedo, 66629 Apodaca, Nuevo León Mexico
| |
Collapse
|
70
|
Zhao X, Lu S, Guo X, Wang R, Li M, Fan C, Wu H. Effects of disturbance modes and carbon sources on the physiological traits and nutrient removal performance of microalgae (S. obliquus) for treating low C/N ratio wastewater. CHEMOSPHERE 2024; 347:140672. [PMID: 37963498 DOI: 10.1016/j.chemosphere.2023.140672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Wastewater treatment with microalgae is an ecologically sustainable process. In this study, the growth characteristics, nutrient removal, and spectral changes of dissolved organic matter (DOM) in microalgae bioreactors were investigated for treating low C/N ratio wastewater under different disturbance modes (agitation and aeration) and carbon sources (sucrose and humic acid). The results showed that the biomass and chlorophyll-a contents of Scenedesmus obliquus in the aeration condition (725.32-811.16 × 104 cells mL-1, 1.58-1.69 mg L-1) were higher than those in the agitation condition (426.06-465.14 × 104 cells mL-1, 1.48-1.61 mg L-1). The better removal of nutrients (TN, 29.62-36.39 mg L-1, TP, 1.84-2.30 mg L-1) by microalgae in sucrose-containing wastewater under agitation conditions occurred on the second day, with removal efficiencies of 21.33-30.67% and 44.84-58.51%, respectively; while it was on the fifth day both in sucrose and humic acid-containing wastewater under aeration conditions (TN, 19.56-31.20 mg L-1, TP, 0.26-0.30 mg L-1), with removal efficiencies of 13.92-46.75% and 88.36-90.50%, respectively. The wastewater DOM primarily consisted of humic-like substances under agitation and aeration conditions characterized by high levels of aromaticity, molecular weight and humification. Furthermore, the aromatization and humification properties of DOM in humic acid wastewater were higher than those in sucrose wastewater, which was corresponding with the lower removal and availability of pollutants by algae. Microalgae showed good biomass accumulation and nutrients removal at incubation time of 2 days (agitation condition) and 5 days (aeration condition), respectively. Consequently, a technical reference is provided for the microalgae coupled with other treatment processes.
Collapse
Affiliation(s)
- Xin Zhao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| | - Shaoyong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaochun Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ruigang Wang
- Shanxi Laboratory for Yellow River, College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China
| | - Ming Li
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunzhen Fan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
71
|
Su H, Wang K, Lian J, Wang L, He Y, Li M, Han D, Hu Q. Advanced treatment and Resource recovery of brewery wastewater by Co-cultivation of filamentous microalga Tribonema aequale and autochthonous Bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119285. [PMID: 37862895 DOI: 10.1016/j.jenvman.2023.119285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
To use unicellular microalgae to remove waste nutrients from brewery wastewater while converting them into algal biomass has been explored but high-cost treatment and low-value biomass associated with current technologies have prevented this concept from further attempts. In this study, a filamentous microalga Tribonema aequale was introduced and the alga can grow vigorously in brewery wastewater and algal biomass concentration could be as high as 6.45 g L-1 which can be harvested by a cost-effective filtration method. The alga together with autochthonous bacteria removed majority of waste nutrients from brewery wastewater. Specifically, 85.39% total organic carbon (TOC), 79.53% total dissolved nitrogen (TN), 93.38% ammonia nitrogen (NH3-N) and 71.33% total dissolved phosphorus (TP) in brewery wastewater were rapidly removed by co-cultivation of T. aequale and autochthonous bacteria. Treated wastewater met the national wastewater discharge quality, and resulting algal biomass contained large amounts of high-value products chrysolaminarin, palmitoleic acid (PLA) and eicosapentaenoic acid (EPA). It is anticipated that reduced cost of algal harvesting coupled with value-added biomass could make T. aequale as a promising candidate for brewery wastewater treatment and resource utilization.
Collapse
Affiliation(s)
- Hang Su
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
| | - Kui Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Lian
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Lan Wang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yuqing He
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiang Hu
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| |
Collapse
|
72
|
Di Costanzo F, Di Dato V, Romano G. Diatom-Bacteria Interactions in the Marine Environment: Complexity, Heterogeneity, and Potential for Biotechnological Applications. Microorganisms 2023; 11:2967. [PMID: 38138111 PMCID: PMC10745847 DOI: 10.3390/microorganisms11122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Diatom-bacteria interactions evolved during more than 200 million years of coexistence in the same environment. In this time frame, they established complex and heterogeneous cohorts and consortia, creating networks of multiple cell-to-cell mutualistic or antagonistic interactions for nutrient exchanges, communication, and defence. The most diffused type of interaction between diatoms and bacteria is based on a win-win relationship in which bacteria benefit from the organic matter and nutrients released by diatoms, while these last rely on bacteria for the supply of nutrients they are not able to produce, such as vitamins and nitrogen. Despite the importance of diatom-bacteria interactions in the evolutionary history of diatoms, especially in structuring the marine food web and controlling algal blooms, the molecular mechanisms underlying them remain poorly studied. This review aims to present a comprehensive report on diatom-bacteria interactions, illustrating the different interplays described until now and the chemical cues involved in the communication and exchange between the two groups of organisms. We also discuss the potential biotechnological applications of molecules and processes involved in those fascinating marine microbial networks and provide information on novel approaches to unveiling the molecular mechanisms underlying diatom-bacteria interactions.
Collapse
Affiliation(s)
| | - Valeria Di Dato
- Stazione Zoologica Anton Dohrn Napoli, Ecosustainable Marine Biotechnology Department, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (F.D.C.); (G.R.)
| | | |
Collapse
|
73
|
Chen C, Shi Q, Tong A, Sun L, Fan J. Screening of microalgae strains for efficient biotransformation of small molecular organic acids from dark fermentation biohydrogen production wastewater. BIORESOURCE TECHNOLOGY 2023; 390:129872. [PMID: 37839645 DOI: 10.1016/j.biortech.2023.129872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Dark fermentation biohydrogen production is a rapidly advancing and well-established field. However, the accumulation of volatile organic acid (VFAs) byproducts hinder its practical applications. Microalgae have demonstrated the ability to efficiently utilize VFAs while also treating waste gases and other nutrient elements. Integrating microalgae cultivation with dark fermentation is a promising approach. However, low VFAs tolerance and slow VFAs consumption restrict their application. To find suitable wastewater treatment microalgae, this work screened eight microalgae strains from five family. The results demonstrated that Chlamydomonas reinhardtii exhibited significant advantages in VFAs utilization, achieving a maximum removal of 100% for acetate and 52.5% for butyrate. Among the tested microalgae strains, CW15 outperformed in terms of photobioreactor adaptability, VFAs utilization, biomass productivity, and nutrient removal, making it the most promising microalgae for practical applications. This research demonstrates the feasibility of integrating microalgae cultivation with dark fermentation and providing a viable technical solution for integrated-biorefining.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Qianwen Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Akang Tong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Liyun Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, P.R. China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P.R. China.
| |
Collapse
|
74
|
Singh S, Singh L, Kumar V, Ali W, Ramamurthy PC, Singh Dhanjal D, Sivaram N, Angurana R, Singh J, Chandra Pandey V, Khan NA. Algae-based approaches for Holistic wastewater management: A low-cost paradigm. CHEMOSPHERE 2023; 345:140470. [PMID: 37858768 DOI: 10.1016/j.chemosphere.2023.140470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/22/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Aquatic algal communities demonstrated their appeal for diverse industrial applications due to their vast availability, ease of harvest, lower production costs, and ability to biosynthesize valuable molecules. Algal biomass is promising because it can multiply in water and on land. Integrated algal systems have a significant advantage in wastewater treatment due to their ability to use phosphorus and nitrogen, simultaneously accumulating heavy metals and toxic substances. Several species of microalgae have adapted to thrive in these harsh environmental circumstances. The potential of algal communities contributes to achieving the United Nations' sustainable development goals in improving aquaculture, combating climate change, reducing carbon dioxide (CO2) emissions, and providing biomass as a biofuel feedstock. Algal-based biomass processing technology facilitates the development of a circular bio-economy that is both commercially and ecologically viable. An integrated bio-refinery process featuring zero waste discharge could be a sustainable solution. In the current review, we will highlight wastewater management by algal species. In addition, designing and optimizing algal bioreactors for wastewater treatment have also been incorporated.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Lav Singh
- Department of Botany, University of Lucknow, Uttar Pradesh, India
| | - Vijay Kumar
- Department of Chemistry, CCRAS-CARI, Jhansi, U.P., 284003, India
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Nikhita Sivaram
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, USA
| | - Ruby Angurana
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India; Department of Botany, Nagaland University, Lumami, Nagaland 798627, India
| | - Vimal Chandra Pandey
- CSIR-National Botanical Research Institute Lucknow, 226001, Uttar Pradesh, India.
| | - Nadeem A Khan
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
75
|
Selvaraj D, Dhayabaran NK, Mahizhnan A. An insight on pollutant removal mechanisms in phycoremediation of textile wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124714-124734. [PMID: 35708812 DOI: 10.1007/s11356-022-21307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Pollutants, including dyes and heavy metals from textile industrial discharge, adversely affect the surface and groundwater resources, and pose a severe risk to the living organisms in the ecosystem. Phycoremediation of wastewater is now an emerging trend, as it is colossally available, inexpensive, eco-friendly, and has many other benefits, with high removal efficiency for undesirable substances, when compared to conventional treatment methods. Algae have a good binding affinity toward nutrients and toxic compounds because of various functional groups on its cell surface by following the mechanisms such as biosorption, bioaccumulation, or alternate biodegradation pathway. Algae-based treatments generate bioenergy feedstock as sludge, mitigate CO2, synthesize high-value-added products, and release oxygenated effluent. Algae when converted into activated carbon also show good potential against contaminants, because of its higher binding efficiency and surface area. This review provides an extensive analysis of different mechanisms involved in removal of undesirable and hazardous substances from textile wastewater using algae as green technology. It could be founded that both biosorption and biodegradation mechanisms were responsible for the removal of dye, organic, and inorganic pollutants. But for the heavy metals removal, biosorption results in higher removal efficiency. Overall, phycoremediation is a convenient technique for substantial conserving of energy demand, reducing greenhouse gas emissions, and removing pollutants.
Collapse
Affiliation(s)
- Durgadevi Selvaraj
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India
| | - Navamani Kartic Dhayabaran
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India
| | - Arivazhagan Mahizhnan
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India.
| |
Collapse
|
76
|
Elangovan B, Detchanamurthy S, Senthil Kumar P, Rajarathinam R, Deepa VS. Biotreatment of Industrial Wastewater using Microalgae: A Tool for a Sustainable Bioeconomy. Mol Biotechnol 2023:10.1007/s12033-023-00971-0. [PMID: 37999921 DOI: 10.1007/s12033-023-00971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Fresh water is one of the essential sources of life, and its requirement has increased in the past years due to population growth and industrialization. Industries use huge quantities of fresh water for their processes, and generate high quantities of wastewater rich in organic matter, nitrates, and phosphates. These effluents have contaminated the freshwater sources and there is a need to recycle this wastewater in an ecologically harmless manner. Microalgae use the nutrients in the wastewater as a medium for growth and the biomass produced are rich in nutrition that can cater growing food and energy needs. The primary and secondary metabolites of microalgae are utilized as biofuel and as active ingredients in cosmetics, animal feed, therapeutics, and pharmaceutical products. In this review, we explore food processing industries like dairy, meat, aquaculture, breweries, and their wastewater for the microalgal growth. Current treatment methods are expensive and energy demanding, which indirectly leads to higher greenhouse gas emissions. Microalgae acts as a potential biotreatment tool and mitigates carbon dioxide due to their high photosynthetic efficiency. This review aims to address the need to recycle wastewater generated from such industries and potentiality to use microalgae for biotreatment. This will help to build a circular bioeconomy by using wastewater as a valuable resource to produce valuable products.
Collapse
Affiliation(s)
- Balaji Elangovan
- R&D, Seagrass Tech Pvt. Ltd, Karaikal, 609604, Puducherry, India
| | | | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, 605014, Puducherry, India.
| | - Ravikumar Rajarathinam
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sakunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamilnadu, 600062, India
| | - Vijaykumar Sudarshana Deepa
- Department of Biotechnology, National Institute of Technology, Tadepalligudem, 534101, Andhra Pradesh, India.
| |
Collapse
|
77
|
Kumar N, Shukla P. Microalgal-based bioremediation of emerging contaminants: Mechanisms and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122591. [PMID: 37739258 DOI: 10.1016/j.envpol.2023.122591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Emerging contaminants (ECs) in different ecosystems have consistently been acknowledged as a global issue due to toxicity, human health implications, and potential role in generating and disseminating antimicrobial resistance. The existing wastewater treatment system is incompetent at eliminating ECs since the effluent water contains significant concentrations of ECs, viz., antibiotics (0.03-13.0 μg L-1), paracetamol (50 μg L-1), and many others in varying concentrations. Microalgae are considered as a prospective and sustainable candidate for mitigating of ECs owing to some peculiar features. In addition, the microalgal-based processes also offer cost and energy-efficient solutions for the bioremediation of ECs than conventional treatment systems. It is pertinent that, microalgal-based processes also provides waste valorization benefits as microalgal biomass obtained after ECs treatment can be potentially applied to generate biofuels. Moreover, microalgae can effectively utilize alternative metabolic (cometabolism) routes for enhanced degradation of ECs. Additionally, the ECs removal via the microalgal biodegradation route is highly promising as it can transform the ECs into less toxic compounds. The present review comprehensively discusses different mechanisms involved in removing ECs and various factors that affect their removal. Also, the technoeconomic feasibility of microalgae than other conventional wastewater treatment methods is summarised. The review also highlighted the different molecular and genetic tools that can augment the activity and robustness of microalgae for better removal of organic contaminants. Finally, we have summarised the challenges and future research required towards microalgal-based bioremediation of emerging contaminants (ECs) as a holistic approach.
Collapse
Affiliation(s)
- Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
78
|
Adamu Ugya Y, Chen H, Sheng Y, Ajibade FO, Wang Q. A review of microalgae biofilm as an eco-friendly approach to bioplastics, promoting environmental sustainability. ENVIRONMENTAL RESEARCH 2023; 236:116833. [PMID: 37543134 DOI: 10.1016/j.envres.2023.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
In this comprehensive review, we delve into the challenges hindering the large-scale production of microalgae-based bioplastics, primarily focusing on economic feasibility and bioplastic quality. To address these issues, we explore the potential of microalgae biofilm cultivation as a sustainable and highly viable approach for bioplastic production. We present a proposed method for producing bioplastics using microalgae biofilm and evaluate its environmental impact using various tools such as life cycle analysis (LCA), ecological footprint analysis, resource flow analysis, and resource accounting. While pilot-scale and large-scale LCA data are limited, we utilize alternative indicators such as energy efficiency, carbon footprint, materials management, and community acceptance to predict the environmental implications of commercializing microalgae biofilm-based bioplastics. The findings of this study indicate that utilizing microalgae biofilm for bioplastic production offers significant environmental sustainability benefits. The system exhibits low energy requirements and a minimal carbon footprint. Moreover, it has the potential to address the issue of wastewater by utilizing it as a carbon source, thereby mitigating associated problems. However, it is important to acknowledge certain limitations associated with the method proposed in this review. Further research is needed to explore and engineer precise techniques for manipulating microalgae biofilm structure to optimize the accumulation of desired metabolites. This could involve employing chemical triggers, metabolic engineering, and genetic engineering to achieve the intended goals. In conclusion, this review highlights the potential of microalgae biofilm as a viable and sustainable solution for bioplastic production. While acknowledging the advantages, it also emphasizes the need for continued synthetic studies to enhance the efficiency and reliability of this approach. By addressing the identified drawbacks and maximizing the utilization of advanced techniques, we can further harness the potential of microalgae biofilm in contributing to a more environmentally friendly and economically feasible bioplastic industry.
Collapse
Affiliation(s)
- Yunusa Adamu Ugya
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China; Department of Environmental Management, Kaduna State University, Kaduna State, Nigeria
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Yangyang Sheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology Akure, PMB 704, Nigeria
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China.
| |
Collapse
|
79
|
Kadri MS, Singhania RR, Haldar D, Patel AK, Bhatia SK, Saratale G, Parameswaran B, Chang JS. Advances in Algomics technology: Application in wastewater treatment and biofuel production. BIORESOURCE TECHNOLOGY 2023; 387:129636. [PMID: 37544548 DOI: 10.1016/j.biortech.2023.129636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Advanced sustainable bioremediation is gaining importance with rising global pollution. This review examines microalgae's potential for sustainable bioremediation and process enhancement using multi-omics approaches. Recently, microalgae-bacterial consortia have emerged for synergistic nutrient removal, allowing complex metabolite exchanges. Advanced bioremediation requires effective consortium design or pure culture based on the treatment stage and specific roles. The strain potential must be screened using modern omics approaches aligning wastewater composition. The review highlights crucial research gaps in microalgal bioremediation. It discusses multi-omics advantages for understanding microalgal fitness concerning wastewater composition and facilitating the design of microalgal consortia based on bioremediation skills. Metagenomics enables strain identification, thereby monitoring microbial dynamics during the treatment process. Transcriptomics and metabolomics encourage the algal cell response toward nutrients and pollutants in wastewater. Multi-omics role is also summarized for product enhancement to make algal treatment sustainable and fit for sustainable development goals and growing circular bioeconomy scenario.
Collapse
Affiliation(s)
- Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 804201, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 805029, Republic of Korea
| | - Ganesh Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan.
| |
Collapse
|
80
|
Shahi Khalaf Ansar B, Kavusi E, Dehghanian Z, Pandey J, Asgari Lajayer B, Price GW, Astatkie T. Removal of organic and inorganic contaminants from the air, soil, and water by algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116538-116566. [PMID: 35680750 DOI: 10.1007/s11356-022-21283-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Rapid increases in human populations and development has led to a significant exploitation of natural resources around the world. On the other hand, humans have come to terms with the consequences of their past mistakes and started to address current and future resource utilization challenges. Today's primary challenge is figuring out and implementing eco-friendly, inexpensive, and innovative solutions for conservation issues such as environmental pollution, carbon neutrality, and manufacturing effluent/wastewater treatment, along with xenobiotic contamination of the natural ecosystem. One of the most promising approaches to reduce the environmental contamination load is the utilization of algae for bioremediation. Owing to their significant biosorption capacity to deactivate hazardous chemicals, macro-/microalgae are among the primary microorganisms that can be utilized for phytoremediation as a safe method for curtailing environmental pollution. In recent years, the use of algae to overcome environmental problems has advanced technologically, such as through synthetic biology and high-throughput phenomics, which is increasing the likelihood of attaining sustainability. As the research progresses, there is a promise for a greener future and the preservation of healthy ecosystems by using algae. They might act as a valuable tool in creating new products.
Collapse
Affiliation(s)
- Behnaz Shahi Khalaf Ansar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Elaheh Kavusi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Janhvi Pandey
- Division of Agronomy and Soil Science, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Gordon W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
81
|
Su M, Bastiaens L, Verspreet J, Hayes M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023; 12:3878. [PMID: 37893770 PMCID: PMC10606004 DOI: 10.3390/foods12203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Microalgae are a rich resource of lipids, proteins, carbohydrates and pigments with nutritional and health benefits. They increasingly find use as ingredients in functional foods and feeds as well as in cosmetics and agricultural products including biostimulants. One of their distinct advantages is their ability to grow on wastewaters and other waste streams, and they are considered an environmentally friendly and cheap method to recover nutrients and remove pollutants from the environment. However, there are limits concerning their applications if grown on certain waste streams. Within, we collate an overview of existing algal applications and current market scenarios for microalgal products as foods and feeds along with relevant legislative requirements concerning their use in Europe and the United States. Microalgal compounds of interest and their extraction and processing methodologies are summarized, and the benefits and caveats of microalgae cultivated in various waste streams and their applications are discussed.
Collapse
Affiliation(s)
- Min Su
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Joran Verspreet
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Maria Hayes
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| |
Collapse
|
82
|
Ricky R, Shanthakumar S. A pilot-scale study on the removal of binary mixture (ciprofloxacin and norfloxacin) by Scenedesmus obliquus: Optimization, biotransformation, and biofuel profile. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118388. [PMID: 37354597 DOI: 10.1016/j.jenvman.2023.118388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
Ciprofloxacin (CIP) and norfloxacin (NOR) belong to the organic contaminants of emerging concern (OCECs) that are frequently detected in wastewater matrices at ng/L to mg/L concentrations. This study investigates the potential of Scenedesmus obliquus in the treatment of CIP and NOR as a binary mixture from raw wastewater. Optimization of inoculum was done to find the required cell density concentration that has less inhibition and high removal. The optimum inoculum (cell density: 200 × 105 cells/mL and OD680: 1.0) has shown 75% removal with no inhibition of growth. A pilot scale study was conducted in controlled environment using high-rate algal pond to investigate the contribution of abiotic and biotic removal. Abiotic removal is negligible in comparison with the biotic contribution of removal. The order of removal efficiency is observed as COD (88%) > NOR (84.8%) > CIP (84.6%) > NH4+ (71.7%) with biodegradation as the major removal mechanism. Biotransformed products of CIP + NOR were identified inside the Scenedesmus obliquus. During the pilot-scale study, Biomass (3.70 ± 0.07 g/L) was harvested with carbohydrates (17.85 ± 0.1%), lipids (38.36 ± 0.13%), and proteins (28.18 ± 1.63%). Lipid productivity in binary mixture was 2.6 times higher than the lipid production in control condition. Transesterification of these lipids yielded good biofuel composition of 32.72% of saturated fatty acids and 21.7% of unsaturated fatty acids.
Collapse
Affiliation(s)
- R Ricky
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - S Shanthakumar
- Centre for Clean Environment, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
83
|
Carbone DA, Melkonian M. Potential of Porous Substrate Bioreactors for Removal of Pollutants from Wastewater Using Microalgae. Bioengineering (Basel) 2023; 10:1173. [PMID: 37892903 PMCID: PMC10604345 DOI: 10.3390/bioengineering10101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Porous substrate bioreactors (PSBRs) are a new technology to grow microalgae immobilized in a dense culture and solve some problems linked to suspended cultivation. During recent years, this technology has been used in laboratory and pilot setups in different fields of environmental biotechnology, such as wastewater treatment. The aim of this short review is to introduce the PSBR technology, summarize the results obtained in removing some pollutants from wastewater, provide an assessment of the potential of PSBRs for wastewater treatment, and the subsequent use of the algal biomass for other purposes.
Collapse
Affiliation(s)
- Dora Allegra Carbone
- Laboratory of Biological Oceanography, Stazione Zoologica “A. Dohrn”, Villa Comunale, 80121 Naples, Italy
| | - Michael Melkonian
- Integrative Bioinformatics, Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
84
|
Ali A, Khalid Z, Ahmed A A, Ajarem JS. Wastewater treatment by using microalgae: Insights into fate, transport, and associated challenges. CHEMOSPHERE 2023; 338:139501. [PMID: 37453525 DOI: 10.1016/j.chemosphere.2023.139501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The remediation of wastewater with microalgae is a new topic that concentrates on devising a cost-effective and environmentally beneficial method. Multiple microalgae and bacterial consortiums have recently been evaluated to determine if they can purify effluent from various sources. Critical to a system's efficacy is its ability to remove nutrients such as nitrogen (N) and phosphorus (P) and heavy metals such as arsenic (As), lead (Pb), and copper (Cu). This study compared traditional wastewater treatment systems to microalgae-based systems for treating different types of wastewater. The research investigates the potential for microalgae to cleanse wastewater. The research also evaluates wastewater parameters, methods, and scientific techniques for extracting nutrients and heavy metals from polluted water. According to the literature, Microalgae can remove between 98.7% and 100% of nitrogen (N), phosphorous (P), and heavy metals from various effluents. The paper concludes by discussing the difficulties of using microalgae to remediate wastewater. The elimination of nutrients from the effluent is influenced by biomass production, osmotic capacity, temperature, pH, and O2 concentration. Therefore, a "pilot" study is recommended to investigate contaminants.
Collapse
Affiliation(s)
- Atif Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Zunera Khalid
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Allam Ahmed A
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Jamaan S Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
85
|
Sun J, Benavente V, Jansson S, Mašek O. Comparative characterisation and phytotoxicity assessment of biochar and hydrochar derived from municipal wastewater microalgae biomass. BIORESOURCE TECHNOLOGY 2023; 386:129567. [PMID: 37506941 DOI: 10.1016/j.biortech.2023.129567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Microalgae, originating from a tertiary treatment of municipal wastewater, is considered a sustainable feedstock for producing biochar and hydrochar, offering great potential for agricultural use due to nutrient content and carbon storage ability. However, there are risks related to contamination and these need to be carefully assessed to ensure safe use of material from wastewater microalgae. Therefore, this study compared the properties and phototoxicity of biochar and hydrochar produced via pyrolysis and hydrothermal carbonisation (HTC) of microalgae under different temperatures and residence times. While biochar promoted germination and seedling growth by up to 11.0% and 70.0%, respectively, raw hydrochar showed strong phytotoxicity, due to the high content of volatile matter. Two post-treatments, dichloromethane (DCM) washing and further pyrolysis, proved to be effective methods for mitigating phytotoxicity of hydrochar. Additionally, biochar had 35.8-38.6% fixed carbon, resulting in higher carbon sequestration potential compared to hydrochar.
Collapse
Affiliation(s)
- Jiacheng Sun
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK.
| | - Veronica Benavente
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden; RISE Processum AB, SE-89122 Örnsköldsvik, Sweden
| | - Stina Jansson
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| |
Collapse
|
86
|
Kolesovs S, Semjonovs P. Microalgal conversion of whey and lactose containing substrates: current state and challenges. Biodegradation 2023; 34:405-416. [PMID: 37329398 DOI: 10.1007/s10532-023-10033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
Currently dairy processing by-products, such as whey, still propose a significant threat to the environment if unproperly disposed. Microalgal bioconversion of such lactose containing substrates can be used for production of valuable microalgae-derived bio-products as well as for significant reduction of environmental risks. Moreover, it could significantly reduce microalgae biomass production costs, being a significant obstacle in commercialization of many microalgae species. This review summarizes current knowledge on the use of lactose containing substrates, e.g. whey, for the production of value-added products by microalgae, including information on producer cultures, fermentation methods and cultivation conditions, bioprocess productivity and ability of microalgal cultures to produce β-galactosidases. It can be stated, that despite several limitations lactose-containing substrates can be successfully used for both-the production of microalgal biomass and removal of high amounts of excess nutrients from the cultivation media. Moreover, co-cultivation of microalgae and other microorganisms can further increase the removal of nutrients and the production of biomass. Further investigations on lactose metabolism by microalgae, selection of suitable strains and optimisation of the cultivation process is required in order to enable large-scale microalgae production on these substrates.
Collapse
Affiliation(s)
- Sergejs Kolesovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa Street 4, Riga, LV-1004, Latvia
| | - Pavels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa Street 4, Riga, LV-1004, Latvia.
| |
Collapse
|
87
|
Jarungkeerativimol P, Tareen AK, Sultan IN, Khan MW, Parakulsuksatid P. Effect of phosphorus and sodium acetate on lipid accumulation from Ankistrodesmus sp. IFRPD 1061 in an open pond. Heliyon 2023; 9:e19778. [PMID: 37809504 PMCID: PMC10559119 DOI: 10.1016/j.heliyon.2023.e19778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Ankistrodesmus sp, has been comprehensively studied for their potential in the production of biodiesel due to their biomass productivity and high lipid content. This study examined the biomass productivity, and concentration, lipid productivity, and concentration, and lipid contents of Ankistrodesmus sp. IFRPD 1061 under several phosphorus concentrations. The optimum conditions were attained at 0.12 g/L KH2PO4. The highest lipid content reached to 35.950 ± 4.253% (w/w) in 22 days cultivation. An open pond cultivation system was used with the addition of 10 mM sodium acetate on every fourth day (0, 4, 8 and 12) of cultivation and KH2PO4 on twelfth day of cultivation. The obtained biomass productivity and concentration, lipid productivity and concentration and lipid content were 0.709 ± 0.027 g/L, 48.304 ± 1.894 mg/L/day, 0.214 ± 0.004 g/L 14.550 ± 0.215 mg/L/day and 30.154 ± 1.627% (w/w) in 14 days of cultivation, respectively. The results exhibited that addition of 10 mM sodium acetate and KH2PO4 may enhance lipid accumulation within algae cells in an open pond cultivation system.
Collapse
Affiliation(s)
- Paninee Jarungkeerativimol
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
| | - Afrasiab Khan Tareen
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta, 87300, Balochistan, Pakistan
| | - Imrana Niaz Sultan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta, 87300, Balochistan, Pakistan
| | - Muhammad Waseem Khan
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta, 87300, Balochistan, Pakistan
| | - Pramuk Parakulsuksatid
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
88
|
Danaee S, Ofoghi H, Heydarian SM, Badali Varzaghani N. Multi response surface optimization, Pareto analysis and kinetics study of microalgal post-treatment systems. ENVIRONMENTAL TECHNOLOGY 2023; 44:3592-3604. [PMID: 35416123 DOI: 10.1080/09593330.2022.2066480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
High concentrations of nutrients are observed in the effluent of different wastewater treatment plants, while additional costs of post-treatment systems and low-value sludge are the main reasons for releasing such effluents. The present study aims to introduce an increased procedure for simultaneous nutrient recovery and biomass production using an algae-based post-treatment technique. The procedure has been utilized by two well-known strains (Scenedesmus dimorphus and Chlorella vulgaris) cultivated in different N/P ratios (16, 62, and 108) and trace metals (0, 50%, and 100%) in a synthetic meat processing wastewater as a model to investigate effects of the factors on microalgal cultivation and nutrient removal. Pareto statistical analysis and Multi Response Surface methodology were applied to determine the priority of factors and their optimum values, respectively. The unbalanced N/P ratio and lack of trace metals were introduced as two main reasons for the significant decrease of about 60% and 120% in nutrient removal and biomass production. The optimized procedure resulted in significant increases in the removal efficiencies where 90%, 83%, and 65% were achieved for ammonium, nitrate, and phosphate, respectively. Moreover, a 72% increase in biomass production was reported in the optimal points. The results of the Pareto analysis highlighted the significant superiority (about two times) of the trace metals in removal efficiencies. Finally, experimental data has also been modelled by Verhulst logistic model that successfully described the microalgae growth. This procedure showed promising results of microalgal systems to supersede the conventional post-treatment systems.
Collapse
Affiliation(s)
- Soroosh Danaee
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Hamideh Ofoghi
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Seyed Mohammad Heydarian
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Neda Badali Varzaghani
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
89
|
Saddique Z, Imran M, Javaid A, Latif S, Kim TH, Janczarek M, Bilal M, Jesionowski T. Bio-fabricated bismuth-based materials for removal of emerging environmental contaminants from wastewater. ENVIRONMENTAL RESEARCH 2023; 229:115861. [PMID: 37062477 DOI: 10.1016/j.envres.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023]
Abstract
Although rapid industrialization has made life easier for humans, several associated issues are emerging and harming the environment. Wastewater is regarded as one of the key problems of the 21st century due to its massive production every year and requires immediate attention from all stakeholders to protect the environment. Since the introduction of nanotechnology, bismuth-based nanomaterials have been used in variety of applications. Various techniques, such as hydrothermal, solvo-thermal and biosynthesis, have been reported for synthesizing these materials, etc. Among these, biosynthesis is eco-friendly, cost-effective, and less toxic than conventional chemical methods. The prime focuses of this review are to elaborate biosynthesis of bismuth-based nanomaterials via bio-synthetic agents such as plant, bacteria and fungi and their application in wastewater treatment as anti-pathogen/photocatalyst for pollutant degradation. Besides this, future perspectives have been presented for the upcoming research in this field, along with concluding remarks.
Collapse
Affiliation(s)
- Zohaib Saddique
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan.
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Marcin Janczarek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
90
|
Amaro HM, Salgado EM, Nunes OC, Pires JCM, Esteves AF. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117678. [PMID: 36948147 DOI: 10.1016/j.jenvman.2023.117678] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Water is the most valuable resource on the planet. However, massive anthropogenic activities generate threatening levels of biological, organic, and inorganic pollutants that are not efficiently removed in conventional wastewater treatment systems. High levels of conventional pollutants (carbon, nitrogen, and phosphorus), emerging chemical contaminants such as antibiotics, and pathogens (namely antibiotic-resistant ones and related genes) jeopardize ecosystems and human health. Conventional wastewater treatment systems entail several environmental issues: (i) high energy consumption; (ii) high CO2 emissions; and (iii) the use of chemicals or the generation of harmful by-products. Hence, the use of microalgal systems (entailing one or several microalgae species, and in consortium with bacteria) as environmental agents towards wastewater treatment has been seen as an environmentally friendly solution to remove conventional pollutants, antibiotics, coliforms and antibiotic resistance genes. In recent years, several authors have evaluated the use of microalgal systems for the treatment of different types of wastewater, such as agricultural, municipal, and industrial. Generally, microalgal systems can provide high removal efficiencies of: (i) conventional pollutants, up to 99%, 99%, and 90% of total nitrogen, total phosphorus, and/or organic carbon, respectively, through uptake mechanisms, and (ii) antibiotics frequently found in wastewaters, such as sulfamethoxazole, ciprofloxacin, trimethoprim and azithromycin at 86%, 65%, 42% and 93%, respectively, through the most desirable microalgal mechanism, biodegradation. Although pathogens removal by microalgal species is complex and very strain-specific, it is also possible to attain total coliform and Escherichia coli removal of 99.4% and 98.6%, respectively. However, microalgal systems' effectiveness strongly relies on biotic and abiotic conditions, thus the selection of operational conditions is critical. While the combination of selected species (microalgae and bacteria), ratios and inoculum concentration allow the efficient removal of conventional pollutants and generation of high amounts of biomass (that can be further converted into valuable products such as biofuels and biofertilisers), abiotic factors such as pH, hydraulic retention time, light intensity and CO2/O2 supply also have a crucial role in conventional pollutants and antibiotics removal, and wastewater disinfection. However, some rationale must be considered according to the purpose. While alkaline pH induces the hydrolysis of some antibiotics and the removal of faecal coliforms, it also decreases phosphates solubility and induces the formation of ammonium from ammonia. Also, while CO2 supply increases the removal of E. coli and Pseudomonas aeruginosa, as well as the microalgal growth (and thus the conventional pollutants uptake), it decreases Enterococcus faecalis removal. Therefore, this review aims to provide a critical review of recent studies towards the application of microalgal systems for the efficient removal of conventional pollutants, antibiotics, and pathogens; discussing the feasibility, highlighting the advantages and challenges of the implementation of such process, and presenting current case-studies of different applications of microalgal systems.
Collapse
Affiliation(s)
- Helena M Amaro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Eva M Salgado
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
91
|
Singh V, Srivastava P, Mishra A. Design and modelling of photobioreactor for the treatment of carpet and textile effluent using Diplosphaera mucosa VSPA. 3 Biotech 2023; 13:235. [PMID: 37323856 PMCID: PMC10264336 DOI: 10.1007/s13205-023-03655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
The current study investigated the potential of one less explored microalgae species, Diplosphaera mucosa VSPA, for treating carpet and textile effluent in a conventionally designed 10 L bubble column photobioreactor. To the best of our knowledge, this is the first study to evaluate COD (chemical oxygen demand) removal efficiency by microalgae in carpet effluent. To evaluate D. mucosa VSPA's potential, its growth and bioremediation efficacy were compared to those of a well-known strain, Chlorella pyrenoidosa. D. mucosa VSPA outperformed C. pyrenoidosa in both effluents, with the highest biomass concentration reaching 4.26 and 3.98 g/L in carpet and textile effluent, respectively. D. mucosa VSPA also remediated 94.0% of ammonium nitrogen, 71.6% of phosphate phosphorus, and 91.9% of chemical oxygen demand in carpet effluent, approximately 10% greater than that of C. pyrenoidosa. Both species also removed more than 65% of colour from both effluents, meeting the standard set by governing bodies. Microalgae growth and substrate removal patterns in the photobioreactor were simulated using photobiotreatment and the Gompertz model. Simulation results revealed that photobiotreatment was the better-fit model, concluded based on the coefficient of regression value and the second-order Akaike information criterion test. Modelling studies can assist in increasing the performance and scale-up of the photobioreactor. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03655-3.
Collapse
Affiliation(s)
- Virendra Singh
- School of Biochemical Engineering, IIT(BHU), Varanasi, India
| | | | - Abha Mishra
- School of Biochemical Engineering, IIT(BHU), Varanasi, India
| |
Collapse
|
92
|
Devi A, Verma M, Saratale GD, Saratale RG, Ferreira LFR, Mulla SI, Bharagava RN. Microalgae: A green eco-friendly agents for bioremediation of tannery wastewater with simultaneous production of value-added products. CHEMOSPHERE 2023:139192. [PMID: 37353172 DOI: 10.1016/j.chemosphere.2023.139192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Tannery wastewater (TWW) has high BOD, COD, TS and variety of pollutants like chromium, formaldehydes, biocides, oils, chlorophenols, detergents and phthalates etc. Besides these pollutants, TWW also rich source of nutrients like nitrogen, phosphorus, carbon and sulphur etc. that can be utilized by microalgae during their growth. Direct disposal of TWW into the environment may lead severe environmental and health threats, therefore it needs to be treated adequately. Microalgae are considered as an efficient microorganisms (fast growing, adaptability and strain robustness, high surface to volume ratio, energy saving) for remediation of wastewaters with simultaneous biomass recovery and generation of value added products (VAPs) such as biofuels, biohydrogen, biopolymer, biofertilizer, pigments, bioethanol, bioactive compounds, nutraceutical etc. Most microalgae are photosynthetic and use CO2 and light energy to synthesise carbohydrate and reduces the emission of greenhouse gasses. Microalgae are also reported to remove heavy metals and antibiotics from wastewaters by bioaccumulation, biodegradation and biosorption. Microalgal treatment can be an alternative of conventional processes with generation of VAPs. The use of biotechnology in wastewater remediation with simultaneous generation of VAPs is trending. The validation of economic viability and environmental sustainability, life cycle assessment studies and techno-economic analysis is undergoing. Thus, in this review, the characteristics of TWW and microalgae are summarized, which manifest microalgae as potential candidates for wastewater remediation with simultaneous production of VAPs. Further, the treatment mechanisms, various factors (physical, chemical, mechanical and biological etc.) affecting treatment efficiency as well as challenges associated with microalgal remediation are also discussed.
Collapse
Affiliation(s)
- Anuradha Devi
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226 025 (U.P.), India
| | - Meenakshi Verma
- University Centre of Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali 140413, Panjab, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Luiz Fernando R Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), Tiradentes University, Farolândia, Aracaju, SE 49032-490, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, India
| | - Ram Naresh Bharagava
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226 025 (U.P.), India.
| |
Collapse
|
93
|
Zribi I, Zili F, Ben Ali R, Masmoudi MA, Sayadi S, Ben Ouada H, Chamkha M. Trends in microalgal-based systems as a promising concept for emerging contaminants and mineral salt recovery from municipal wastewater. ENVIRONMENTAL RESEARCH 2023:116342. [PMID: 37290616 DOI: 10.1016/j.envres.2023.116342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
In the context of climate change leading to water scarcity for many people in the world, the treatment of municipal wastewater becomes a necessity. However, the reuse of this water requires secondary and tertiary treatment processes to reduce or eliminate a load of dissolved organic matter and various emerging contaminants. Microalgae have shown hitherto high potential applications of wastewater bioremediation thanks to their ecological plasticity and ability to remediate several pollutants and exhaust gases from industrial processes. However, this requires appropriate cultivation systems allowing their integration into wastewater treatment plants at appropriate insertion costs. This review aims to present different open and closed systems currently used in the treatment of municipal wastewater by microalgae. It provides an exhaustive approach to wastewater treatment systems using microalgae, integrating the most suitable used microalgae species and the main pollutants present in the treatment plants, with an emphasis on emerging contaminants. The remediation mechanisms as well as the capacity to sequester exhaust gases were also described. The review examines constraints and future perspectives of microalgae cultivation systems in this line of research.
Collapse
Affiliation(s)
- Ines Zribi
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, B.P 1177, Sfax, 3018, Tunisia.
| | - Fatma Zili
- Laboratory of Blue Biotechnology and Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000, Monastir, Tunisia
| | - Rihab Ben Ali
- Laboratory of Blue Biotechnology and Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000, Monastir, Tunisia
| | - Mohamed Ali Masmoudi
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, B.P 1177, Sfax, 3018, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Hatem Ben Ouada
- Laboratory of Blue Biotechnology and Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000, Monastir, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, B.P 1177, Sfax, 3018, Tunisia.
| |
Collapse
|
94
|
Lan Chi NT, Thu Hương ĐT, Đạo P, Lapcik V. Multi-pollutants (organic and inorganic) removal potential of scenedesmus species on municipal sewage water and analyzed their phycoremediation mechanisms. ENVIRONMENTAL RESEARCH 2023:116301. [PMID: 37268203 DOI: 10.1016/j.envres.2023.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Municipal sledge water is a combination of residential wastewater, industrial effluent, and precipitation water. The water quality parameters analyses results demonstrated that most of the parameters (pH: 5.6 ± 0.3, Turbidity: 102.31 ± 2.8 mg L-1, TH: 946.38 ± 3.7 mg L-1, BOD: 295.63 ± 5.4 mg L-1, COD: 482.41 ± 4.9 mg L-1, Ca: 278.74 ± 1.8 mg L-1, SO42-: 559.64 ± 11.4 mg L-1, Cd: 18.56 ± 1.37 mg L-1, Cr: 31.25 ± 1.49 mg L-1, Pb: 21.45 ± 1.12 mg L-1, and Zn: 48.65 ± 1.56 mg L-1) were considerably increased in quantities with slightly acidic in condition. The in-vitro phycoremediation study was carried out for two weeks with pre-identified Scenedesmus sp. Biomass in different groups of treatments (A, B, C, and D). Interestingly, most of the physicochemical parameters were significantly reduced in group C (4 × 103 cells mL-1) treated municipal sledge water in a shorter treatment period than in the other treatment groups. The phycoremediation percentage of group C were found as pH: 32.85%, EC:52.81%, TDS: 31.32%, TH: 25.58%, BOD:34.02%, COD:26.47%, Ni: 58.94%, Ca:44.75%, K: 42.74%, Mg:39.52%, Na: 36.55%, Fe: 68%, Cl: 37.03%, SO42-: 16.77%, PO43-: 43.15%, F: 55.55%, Cd:44.88%, Cr:37.21%, Pb:43.8%, and Zn:33.17%. These findings suggest that increased biomass from Scenedesmus sp. Can be used to significantly remediate municipal sledge water and that the obtained biomass and treated sledge can be used as feedstock's for bio fuel as well as bio fertilizer, respectively.
Collapse
Affiliation(s)
- Nguyen Thuy Lan Chi
- Faculty of Safety Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Mining and Geology Technical University of Ostrava, Czech Republic.
| | - Đinh Thị Thu Hương
- Faculty of Safety Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Phan Đạo
- Faculty of Mining and Geology Technical University of Ostrava, Czech Republic
| | - Vladimir Lapcik
- Faculty of Mining and Geology Technical University of Ostrava, Czech Republic
| |
Collapse
|
95
|
Rezvani F, Rostami K. Photobioreactors for utility-scale applications: effect of gas-liquid mass transfer coefficient and other critical parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27644-4. [PMID: 37247144 DOI: 10.1007/s11356-023-27644-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Cultivation of microalgae and controlling its growth and performance in closed photobioreactors (PBRs) are easier than open pond systems for wastewater treatment. The performance of PBRs is influenced by geometry, hydrodynamic behavior, and mass transfer. Horizontal and vertical configurations as common designs of PBR are reviewed based on their features, advantages, and disadvantages. However, vertically operated PBRs like bubble columns are preferably used for utility-scale applications of microalgae-based processes. Moreover, an appropriate reactor design reduces the inhibitory effect of dissolved oxygen concentration produced by microalgae and consequently increases the level of available CO2 in the medium. Medium properties, superficial gas velocity, gas holdup, bubble sizes, shear stress, mixing time, sparger design, and the ratio of inner diameter to effective height are shown to influence the overall volumetric mass transfer coefficient (KLa) and PBR's performance. The vertical PBRs like bubble columns provide a high mass transfer, a short liquid circulation time, and a long frequency of light/dark cycle for utility application of microalgae. Different flow regimes are obtained in PBRs based on the gas flow rate, inner diameter, and medium properties. Hydraulic retention time as the main operational parameter is determined in a batch mode for continuous wastewater treatment.
Collapse
Affiliation(s)
- Fariba Rezvani
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran.
| | - Khosrow Rostami
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran
| |
Collapse
|
96
|
Guo J, Guo X, Yang H, Zhang D, Jiang X. Construction of Bio-TiO 2/Algae Complex and Synergetic Mechanism of the Acceleration of Phenol Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103882. [PMID: 37241509 DOI: 10.3390/ma16103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Microalgae have been widely employed in water pollution treatment since they are eco-friendly and economical. However, the relatively slow treatment rate and low toxic tolerance have seriously limited their utilization in numerous conditions. In light of the problems above, a novel biosynthetic titanium dioxide (bio-TiO2 NPs)-microalgae synergetic system (Bio-TiO2/Algae complex) has been established and adopted for phenol degradation in the study. The great biocompatibility of bio-TiO2 NPs ensured the collaboration with microalgae, improving the phenol degradation rate by 2.27 times compared to that with single microalgae. Remarkably, this system increased the toxicity tolerance of microalgae, represented as promoted extracellular polymeric substances EPS secretion (5.79 times than single algae), and significantly reduced the levels of malondialdehyde and superoxide dismutase. The boosted phenol biodegradation with Bio-TiO2/Algae complex may be attributed to the synergetic interaction of bio-TiO2 NPs and microalgae, which led to the decreased bandgap, suppressed recombination rate, and accelerated electron transfer (showed as low electron transfer resistance, larger capacitance, and higher exchange current density), resulting in increased light energy utilization rate and photocatalytic rate. The results of the work provide a new understanding of the low-carbon treatment of toxic organic wastewater and lay a foundation for further remediation application.
Collapse
Affiliation(s)
- Jinxin Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xiaoman Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Haiyan Yang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Daohong Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xiaogeng Jiang
- School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
97
|
Eilertsen HC, Strømholt J, Bergum JS, Eriksen GK, Ingebrigtsen R. Mass Cultivation of Microalgae: II. A Large Species Pulsing Blue Light Concept. BIOTECH 2023; 12:biotech12020040. [PMID: 37218757 DOI: 10.3390/biotech12020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023] Open
Abstract
If mass cultivation of photoautotrophic microalgae is to gain momentum and find its place in the new "green future", exceptional optimizations to reduce production costs must be implemented. Issues related to illumination should therefore constitute the main focus, since it is the availability of photons in time and space that drives synthesis of biomass. Further, artificial illumination (e.g., LEDs) is needed to transport enough photons into dense algae cultures contained in large photobioreactors. In the present research project, we employed short-term O2 production and 7-day batch cultivation experiments to evaluate the potential to reduce illumination light energy by applying blue flashing light to cultures of large and small diatoms. Our results show that large diatom cells allow more light penetration for growth compared to smaller cells. PAR (400-700 nm) scans yielded twice as much biovolume-specific absorbance for small biovolume (avg. 7070 μm3) than for large biovolume (avg. 18,703 μm3) cells. The dry weight (DW) to biovolume ratio was 17% lower for large than small cells, resulting in a DW specific absorbance that was 1.75 times higher for small cells compared to large cells. Blue 100 Hz square flashing light yielded the same biovolume production as blue linear light in both the O2 production and batch experiments at the same maximum light intensities. We therefore suggest that, in the future, more focus should be placed on researching optical issues in photobioreactors, and that cell size and flashing blue light should be central in this.
Collapse
Affiliation(s)
- Hans Chr Eilertsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
- Finnfjord AS, N-9305 Finnsnes, Norway
| | | | | | - Gunilla Kristina Eriksen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Richard Ingebrigtsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
98
|
Roy N, Kannabiran K, Mukherjee A. Integrated adsorption and photocatalytic degradation based removal of ciprofloxacin and sulfamethoxazole antibiotics using Fc@rGO-ZnO nanocomposite in aqueous systems. CHEMOSPHERE 2023; 333:138912. [PMID: 37182714 DOI: 10.1016/j.chemosphere.2023.138912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Ferrocene functionalized rGO-ZnO nanocomposite was synthesized via the facile hydrothermal method. ZnO was reduced over the 3-dimensional rGO framework (3D-Fc@rGO) using Camellia sinensis extract. The Fc@rGO-ZnO nanocomposite was employed for pharmaceutical degradation (sulfamethoxazole (SMX) and ciprofloxacin (CIP)) in an aqueous solution under UV C light. The physicochemical properties of the as-prepared photocatalyst were characterized using FTIR, XRD, FESEM, EDS mapping, HR-TEM, XPS, and DR-UV Vis. The as-synthesized Fc@rGO-ZnO photocatalyst performed remarkably against pristine ZnO, with a fivefold increase in removal efficiency. This superior activity was attributed to its improved light harvesting, charge carrier interface, and enhanced charge separation. Additionally, the photocatalyst obeyed the Lagergen model for pseudo-first-order kinetics. Congruously, the integrated approach of Fc@rGO and ZnO as oxidizing agents was proficient in removing >95% of antibiotics (CIP and SMX) within 180 min. Furthermore, the heterostructure configuration developed between Fc@rGO and ZnO helps in charge migration and generation of abundant •OH and •O2- radicals for photodegradation activities. The toxicity assessment of the treated solutions showed improved cell viability in the algal strains of Scenedesmus and Chlorella sp. Moreover, this novel approach for the synthesis of a photoactive nanocomposite is found to be low-cost and reusable for three cycles. The nanocomposite is environmentally sustainable paving the way for practical applications in the treatment of different classes of antibiotics.
Collapse
Affiliation(s)
- Namrata Roy
- Centre for Nanobiotechnology, VIT, Vellore, India; School of Biosciences and Technology, VIT, India
| | | | | |
Collapse
|
99
|
Méndez-Ancca S, Pepe-Victoriano R, Gonzales HHS, Zambrano-Cabanillas AW, Marín-Machuca O, Rojas JCZ, Maquera MM, Huanca RF, Aguilera JG, Zuffo AM, Ratke RF. Physicochemical Evaluation of Cushuro ( Nostoc sphaericum Vaucher ex Bornet & Flahault) in the Region of Moquegua for Food Purposes. Foods 2023; 12:1939. [PMID: 37238756 PMCID: PMC10217000 DOI: 10.3390/foods12101939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
The cyanobacterium Nostoc sp. contains considerable amounts of protein, iron, and calcium that could mitigate the problems of anemia and malnutrition in humans. However, the nutritional value of the edible species Nostoc sphaericum Vaucher ex Bornet & Flahault, which grows in the Moquegua region, is unknown. Descriptive research was developed, and samples were obtained from the community of Aruntaya, located in the region of Moquegua. Water samples were taken at two different points (spring and reservoir), and samples of the cyanobacteria were taken in the reservoir. The design used was completely randomized, with three repetitions. Sixteen characteristics associated with the water collected at two points were evaluated, and from the nutritional point of view, seven characteristics were evaluated in the collected algae. The physicochemical characteristics were determined using methods established in the Codex Alimentarius. For the morphological characterization at the macroscopic level, it was observed that the seaweed collected was spherical in shape, grayish-green in color, soft to the touch, and palatable. After carrying out the physicochemical and morphological characterization of the collected samples, it was verified that all were of N. sphaericum. When comparing the sixteen characteristics related to water at the two collection sites, highly significant differences (p < 0.01) were observed for most of the variables evaluated. The average data of the characteristics of the algae showed protein values of 28.18 ± 0.33%, carbohydrates of 62.07 ± 0.69%, fat of 0.71 ± 0.02%, fiber of 0.91 ± 0.02%, ash of 7.68 ± 0.10%, and moisture of 0.22 ± 0.01%. Likewise, calcium reported an average value of 377.80 ± 1.43 mg/100 g and iron of 4.76 ± 0.08 mg/100 g. High correlations (positive and negative) were obtained by evaluating seven characteristics associated with the reservoir water where the algae grew in relation to eight nutritional characteristics of the algae. In relation to the nutritional value, the amounts of protein, iron, and calcium exceed the main foods of daily intake. Therefore, it could be considered a nutritious food to combat anemia and malnutrition.
Collapse
Affiliation(s)
- Sheda Méndez-Ancca
- Area of Marine Biology and Aquaculture, Faculty of Renewable Natural Resources, Arturo Prat University, Arica 1000000, Chile;
- Master’s Program in Aquaculture, Mention in Aquaculture of Hydrobiological Resources, Mention in Aquaponics, Arturo Prat University, Arica 1000000, Chile
- National University of Moquegua (UNAM), Ilo 18601, Peru; (H.H.S.G.); (M.M.M.); (R.F.H.)
| | - Renzo Pepe-Victoriano
- Area of Marine Biology and Aquaculture, Faculty of Renewable Natural Resources, Arturo Prat University, Arica 1000000, Chile;
| | | | - Abel Walter Zambrano-Cabanillas
- Faculty of Oceanography, Fisheries, Food Science and Aquaculture, Academic Departments of Aquaculture and Food Science, Universidad Nacional Federico Villarreal, Lima 15001, Peru; (A.W.Z.-C.); (O.M.-M.)
| | - Olegario Marín-Machuca
- Faculty of Oceanography, Fisheries, Food Science and Aquaculture, Academic Departments of Aquaculture and Food Science, Universidad Nacional Federico Villarreal, Lima 15001, Peru; (A.W.Z.-C.); (O.M.-M.)
| | | | | | | | - Jorge González Aguilera
- Department of Agronomy, Universidad Estadual de Mato Grosso do Sul (UEMS), Cassilândia 79540-000, MS, Brazil;
| | - Alan Mario Zuffo
- Department of Agronomy, State University of Maranhão, Campus de Balsas, Balsas 65800-000, MA, Brazil;
| | - Rafael Felippe Ratke
- Department of Agronomy, Universidade Federal de Mato Grosso do Sul, Chapadão do Sul 79650-000, MS, Brazil
| |
Collapse
|
100
|
Mao X, Zhou X, Fan X, Jin W, Xi J, Tu R, Naushad M, Li X, Liu H, Wang Q. Proteomic analysis reveals mechanisms of mixed wastewater with different N/P ratios affecting the growth and biochemical characteristics of Chlorella pyrenoidosa. BIORESOURCE TECHNOLOGY 2023; 381:129141. [PMID: 37169198 DOI: 10.1016/j.biortech.2023.129141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Effects of different nutrient ratios on the biochemical compositions of microalgae and the changes were rarely studied at the molecular level. In this study, the impacts of various nitrogen to phosphorus (N/P) ratios on growing of C. pyrenoidosa, as well as biochemical compositions and the metabolic regulation mechanism in mixed sewage, were investigated. The results suggested that 18 was optimal N/P ratio, while the dry weight (1.0 g/L), chlorophyll-a (Chla) (3.63 mg/L), and lipid production (0.28 g/L) were all the highest comparing with other groups. In contrast, the protein production (0.37 g/L) was the least. The nature of the regulatory mechanisms inthe metabolic pathways of these biochemical compositions was revealed by proteomic results, and there were 62 different expression proteins (DEPs) taken part in fatty acid and lipid biosynthesis metabolism (FA), amino acid biosynthesis metabolism (AA), photosynthesis (PHO), carbon fixation in photosynthetic organisms (CFP), and central carbon metabolism (CCM).
Collapse
Affiliation(s)
- Xinrui Mao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Xiumin Fan
- Shenzhen ecological and environmental intelligent management and control center, Shenzhen, 518034, China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Jingjing Xi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Renjie Tu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|