51
|
Mi Y, Dong M, Zuo X, Cao Q, Gu X, Mi H, Xiao F. Genome-wide identification and analysis of epithelial-mesenchymal transition-related RNA-binding proteins and alternative splicing in a human breast cancer cell line. Sci Rep 2024; 14:11753. [PMID: 38783078 PMCID: PMC11116388 DOI: 10.1038/s41598-024-62681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Exploring the mechanism of breast cancer metastasis and searching for new drug therapeutic targets are still the focuses of current research. RNA-binding proteins (RBPs) may affect breast cancer metastasis by regulating alternative splicing (AS) during epithelial-mesenchymal transition (EMT). We hypothesised that during EMT development in breast cancer cells, the expression level of RBPs and the gene AS pattern in the cell were significantly changed on a genome-wide scale. Using GEO database, this study identified differentially expressed RBPs and differential AS events at different stages of EMT in breast cancer cells. By establishing the correlation network of differential RBPs and differential AS events, we found that RBM47, PCBP3, FRG1, SRP72, RBMS3 and other RBPs may regulate the AS of ITGA6, ADGRE5, TNC, COL6A3 and other cell adhesion genes. By further analysing above EMT-related RBPs and AS in breast cancer tissues in TCGA, it was found that the expression levels of ADAT2, C2orf15, SRP72, PAICS, RBMS3, APOBEC3G, NOA1, ACO1 and the AS of TNC and COL6A3 were significantly correlated with the prognosis of breast cancer patients. The expression levels of all 8 RBPs were significantly different in breast cancer tissues without metastasis compared with normal breast tissues. Conclusively, eight RBPs such as RBMS3 and AS of TNC and COL6A3 could be used as predictors of breast cancer prognosis. These findings need to be further explored as possible targets for breast cancer treatment.
Collapse
Affiliation(s)
- Yin Mi
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, China.
| | - Meilian Dong
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, China
| | - Xiaoxiao Zuo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, China
| | - Qinchen Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, China
| | - Xiaobin Gu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, China
| | - Hailong Mi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fankai Xiao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
52
|
Dheeraj A, Garcia Marques FJ, Tailor D, Bermudez A, Resendez A, Pandrala M, Grau B, Kumar P, Haley CB, Honkala A, Kujur P, Jeffrey SS, Pitteri S, Malhotra SV. Inhibition of protein translational machinery in triple-negative breast cancer as a promising therapeutic strategy. Cell Rep Med 2024; 5:101552. [PMID: 38729158 PMCID: PMC11148772 DOI: 10.1016/j.xcrm.2024.101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/11/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Y-box binding protein-1 (YB-1) is a proto-oncogenic protein associated with protein translation regulation. It plays a crucial role in the development and progression of triple-negative breast cancer (TNBC). In this study, we describe a promising approach to inhibit YB-1 using SU056, a small-molecule inhibitor. SU056 physically interacts with YB-1 and reduces its expression, which helps to restrain the progression of TNBC. Proteome profiling analysis indicates that the inhibition of YB-1 by SU056 can alter the proteins that regulate protein translation, an essential process for cancer cell growth. Preclinical studies on human cells, mice, and patient-derived xenograft tumor models show the effectiveness of SU056. Moreover, toxicological studies have shown that SU056 treatment and dosing are well tolerated without any adverse effects. Overall, our study provides a strong foundation for the further development of SU056 as a potential treatment option for patients with TNBC by targeting YB-1.
Collapse
Affiliation(s)
- Arpit Dheeraj
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fernando Jose Garcia Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Dhanir Tailor
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Angel Resendez
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mallesh Pandrala
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Benedikt Grau
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Praveen Kumar
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Carrsyn B Haley
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Alexander Honkala
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Praveen Kujur
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sharon Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sanjay V Malhotra
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
53
|
Wang Z, Zhang C, Guo J, Yang Y, Li P, Wang Z, Liu S, Zhang L, Zeng X, Zhai J, Wang X, Zhao Q, Chen Z, Zhu P, He Q. CRISPR-Cas9 screening identifies INTS3 as an anti-apoptotic RNA-binding protein and therapeutic target for colorectal cancer. iScience 2024; 27:109676. [PMID: 38665208 PMCID: PMC11043890 DOI: 10.1016/j.isci.2024.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/17/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Growing evidences indicate that RNA-binding proteins (RBPs) play critical roles in regulating the RNA splicing, polyadenylation, stability, localization, translation, and turnover. Abnormal expression of RBPs can promote tumorigenesis. Here, we performed a CRISPR screen using an RBP pooled CRISPR knockout library and identified 27 potential RBPs with role in supporting colorectal cancer (CRC) survival. We found that the deletion/depletion of INTS3 triggered apoptosis in CRC. The in vitro experiments and RNA sequencing revealed that INTS3 destabilized pro-apoptotic gene transcripts and contributed to the survival of CRC cells. INTS3 loss delayed CRC cells growth in vivo. Furthermore, delivery of DOTAP/cholesterol-mshINTS3 nanoparticles inhibited CRC tumor growth. Collectively, our work highlights the role of INTS3 in supporting CRC survival and provides several novel therapeutic targets for treatment.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Cheng Zhang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jing Guo
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Yanmei Yang
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peixian Li
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Ziyan Wang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Sijia Liu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Lulu Zhang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Xiaoyu Zeng
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jincheng Zhai
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Xinyong Wang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Qi Zhao
- Department of oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Qiankun He
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| |
Collapse
|
54
|
Liu X, Wu L, Wang L, Li Y. Identification and classification of glioma subtypes based on RNA-binding proteins. Comput Biol Med 2024; 174:108404. [PMID: 38582000 DOI: 10.1016/j.compbiomed.2024.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Glioma is a common and aggressive primary malignant cancer known for its high morbidity, mortality, and recurrence rates. Despite this, treatment options for glioma are currently restricted. The dysregulation of RBPs has been linked to the advancement of several types of cancer, but their precise role in glioma evolution is still not fully understood. This study sought to investigate how RBPs may impact the development and prognosis of glioma, with potential implications for prognosis and therapy. METHODS RNA-seq profiles of glioma and corresponding clinical data from the CGGA database were initially collected for analysis. Unsupervised clustering was utilized to identify crucial tumor subtypes in glioma development. Subsequent time-series analysis and MS model were employed to track the progression of these identified subtypes. RBPs playing a significant role in glioma progression were then pinpointed using WGCNA and Lasso Cox regression models. Functional analysis of these key RBP-related genes was conducted through GSEA. Additionally, the CIBERSORT algorithm was utilized to estimate immune infiltrating cells, while the STRING database was consulted to uncover potential mechanisms of the identified biomarkers. RESULTS Six tumor subgroups were identified and found to be highly homogeneous within each subgroup. The progression stages of these tumor subgroups were determined using time-series analysis and a MS model. Through WGCNA, Lasso Cox, and multivariate Cox regression analysis, it was confirmed that BCLAF1 is correlated with survival in glioma patients and is closely linked to glioma progression. Functional annotation suggests that BCLAF1 may impact glioma progression by influencing RNA splicing, which in turn affects the cell cycle, Wnt signaling pathway, and other cancer development pathways. CONCLUSIONS The study initially identified six subtypes of glioma progression and assessed their malignancy ranking. Furthermore, it was determined that BCLAF1 could serve as an RBP-related prognostic marker, offering significant implications for the clinical diagnosis and personalized treatment of glioma.
Collapse
Affiliation(s)
- Xudong Liu
- School of Medicine, Chongqing University, Chongqing, 400044, China; Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lei Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
55
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
56
|
Li J, Yang P, Hong L, Xiao W, Zhang L, Yu Z, Zhang J, Pei M, Peng Y, Wei X, Wu X, Tang W, Zhao Y, Yang J, Lin Z, Jiang P, Xiang L, Zhang H, Lin J, Wang J. BST2 promotes gastric cancer metastasis under the regulation of HOXD9 and PABPC1. Mol Carcinog 2024; 63:663-676. [PMID: 38197534 DOI: 10.1002/mc.23679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Gastric cancer (GC) constitutes substantial cancer mortality worldwide. Several cancer types aberrantly express bone marrow stromal cell antigen 2 (BST2), yet its functional and underlying mechanisms in GC progression remain unknown. In our study, RNA sequencing data revealed that BST2 was transcriptionally activated by homeobox D9 (HOXD9). BST2 was significantly upregulated in GC tissues and promoted epithelial-mesenchymal transition and metastasis of GC. BST2 knockdown reversed HOXD9's oncogenic effect on GC metastasis. Moreover, BST2 messenger RNA stability could be enhanced by poly(A) binding protein cytoplasmic 1 (PABPC1) through the interaction between BST2 3'-UTR and PABPC1 in GC cells. PABPC1 promoted GC metastasis, which BST2 silencing attenuated in vitro and in vivo. In addition, positive correlations among HOXD9, BST2, and PABPC1 were established in clinical samples. Taken together, increased expression of BST2 induced by HOXD9 synergizing with PABPC1 promoted GC cell migration and invasion capacity.
Collapse
Affiliation(s)
- Jiaying Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wushuang Xiao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Luyu Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Yu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jieming Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miaomiao Pei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Ying Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangyang Wei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingying Zhao
- Department of Gastroenterology, Panyu District Central Hospital, Guangzhou, China
| | - Juanying Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhizhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Jiang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xiang
- Department of Gastroenterology, Longgang District People's Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Hui Zhang
- Department of Gastroenterology, Hexian Memorial Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jianjiao Lin
- Department of Gastroenterology, Longgang District People's Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Longgang District People's Hospital, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
57
|
Chen SY, Zhang FL, Zhang YL, Liao L, Deng L, Shao ZM, Liu GY, Li DQ. Spermatid perinuclear RNA-binding protein promotes UBR5-mediated proteolysis of Dicer to accelerate triple-negative breast cancer progression. Cancer Lett 2024; 586:216672. [PMID: 38280476 DOI: 10.1016/j.canlet.2024.216672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/17/2023] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer with no targeted therapy. Spermatid perinuclear RNA binding protein (STRBP), a poorly characterized RNA-binding protein (RBP), has an essential role in normal spermatogenesis and sperm function, but whether and how its dysregulation contributing to cancer progression has not yet been explored. Here, we report that STRBP functions as a novel oncogene to drive TNBC progression. STRBP expression was upregulated in TNBC tissues and correlated with poor disease prognosis. Functionally, STRBP promoted TNBC cell proliferation, migration, and invasion in vitro, and enhanced xenograft tumor growth and lung colonization in mice. Mechanistically, STRBP interacted with Dicer, a core component of the microRNA biogenesis machinery, and promoted its proteasomal degradation through enhancing its interaction with E3 ubiquitin ligase UBR5. MicroRNA-sequencing analysis identified miR-200a-3p as a downstream effector of STRBP, which was regulated by Dicer and affected epithelial-mesenchymal transition. Importantly, the impaired malignant phenotypes of TNBC cells caused by STRBP depletion were largely rescued by knockdown of Dicer, and these effects were compromised by transfection of miR-200a-3p mimics. Collectively, these findings revealed a previously unrecognized oncogenic role of STRBP in TNBC progression and identified STRBP as a promising target against TNBC.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Fang-Lin Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yin-Ling Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Deng
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhi-Min Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Guang-Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
58
|
Tang C, Zhuang H, Wang W, Wang Q, Ma X, Wang B, Zhang Z, Jiang J, Xie Z, Tan W, Yang L, Liu S, Hua Y, Xiao Y, Ding B, Chen Y, Shang C. CircNUP54 promotes hepatocellular carcinoma progression via facilitating HuR cytoplasmic export and stabilizing BIRC3 mRNA. Cell Death Dis 2024; 15:191. [PMID: 38443362 PMCID: PMC10914787 DOI: 10.1038/s41419-024-06570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Circular RNAs (circRNAs) have been implicated in tumorigenesis and progression of various cancers. However, the underlying mechanisms of circRNAs in hepatocellular carcinoma (HCC) have not been fully elucidated. Herein, a new oncogenic circRNA, hsa_circ_0070039 (circNUP54), was identified to be significantly upregulated in HCC through circRNA sequencing. As verified in 68 HCC samples, circNUP54 overexpression was correlated with aggressive cancerous behaviors and poor outcomes. Moreover, the function experiments showed that knockdown of circNUP54 inhibited the malignant progression of HCC in vitro and in vivo, whereas overexpression of circNUP54 had the opposite role. Mechanistic investigations carried out by RNA pull-down, RNA immunoprecipitation, and immunofluorescence revealed that circNUP54 interacted with the RNA-binding protein Hu-antigen R (HuR) and promoted its cytoplasmic export. The cytoplasmic accumulation of HuR stabilized the downstream BIRC3 mRNA through its binding to the 3' UTR region. Consequently, the encoded protein of BIRC3, cellular inhibitor of apoptosis 2 (cIAP2), proceeded to activate the NF-κB signal pathway and ultimately contributed to HCC progression. In addition, depletion of BIRC3 rescued the pro-tumorigenic effect of circNUP54 on HCC cells. Overall, this study demonstrated that circNUP54 facilitates HCC progression via regulating the HuR/BIRC3/NF-κB axis, which may serve as a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Chenwei Tang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Wentao Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Qingbin Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Xiaowu Ma
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Bingkun Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Ziyu Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Jiahao Jiang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Zhiqin Xie
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou City, Hunan Province, 412007, China
| | - Wenliang Tan
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou City, Hunan Province, 412007, China
| | - Lei Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Songyao Liu
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Yonglin Hua
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Yuxin Xiao
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Baoshan Ding
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yajin Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China.
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
59
|
Xu T, Verhagen MP, Teeuwssen M, Sun W, Joosten R, Sacchetti A, Ewing-Graham PC, Jansen MPHM, Boere IA, Bryce NS, Zeng J, Treutlein HR, Hook J, Hardeman EC, Gunning PW, Fodde R. Tropomyosin1 isoforms underlie epithelial to mesenchymal plasticity, metastatic dissemination, and resistance to chemotherapy in high-grade serous ovarian cancer. Cell Death Differ 2024; 31:360-377. [PMID: 38365970 PMCID: PMC10923901 DOI: 10.1038/s41418-024-01267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Phenotypic plasticity, defined as the ability of individual cells with stable genotypes to exert different phenotypes upon exposure to specific environmental cues, represent the quintessential hallmark of the cancer cell en route from the primary lesion to distant organ sites where metastatic colonization will occur. Phenotypic plasticity is driven by a broad spectrum of epigenetic mechanisms that allow for the reversibility of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions (EMT/MET). By taking advantage of the co-existence of epithelial and quasi-mesenchymal cells within immortalized cancer cell lines, we have analyzed the role of EMT-related gene isoforms in the regulation of epithelial mesenchymal plasticity (EMP) in high grade serous ovarian cancer. When compared with colon cancer, a distinct spectrum of downstream targets characterizes quasi-mesenchymal ovarian cancer cells, likely to reflect the different modalities of metastasis formation between these two types of malignancy, i.e. hematogenous in colon and transcoelomic in ovarian cancer. Moreover, upstream RNA-binding proteins differentially expressed between epithelial and quasi-mesenchymal subpopulations of ovarian cancer cells were identified that underlie differential regulation of EMT-related isoforms. In particular, the up- and down-regulation of RBM24 and ESRP1, respectively, represent a main regulator of EMT in ovarian cancer cells. To validate the functional and clinical relevance of our approach, we selected and functionally analyzed the Tropomyosin 1 gene (TPM1), encoding for a protein that specifies the functional characteristics of individual actin filaments in contractile cells, among the ovarian-specific downstream AS targets. The low-molecular weight Tpm1.8/9 isoforms are specifically expressed in patient-derived ascites and promote invasion through activation of EMT and Wnt signaling, together with a broad spectrum of inflammation-related pathways. Moreover, Tpm1.8/9 expression confers resistance to taxane- and platinum-based chemotherapy. Small molecule inhibitors that target the Tpm1 isoforms support targeting Tpm1.8/9 as therapeutic targets for the development of future tailor-made clinical interventions.
Collapse
Affiliation(s)
- Tong Xu
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs P Verhagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Miriam Teeuwssen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Elisabeth-TweeSteden Ziekenhuis (ETZ), Tilburg, The Netherlands
| | - Wenjie Sun
- Institut Curie, Laboratory of Genetics and Developmental Biology, Paris, France
| | - Rosalie Joosten
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andrea Sacchetti
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Maurice P H M Jansen
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid A Boere
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole S Bryce
- School of Biomedical Sciences, Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
- The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Jun Zeng
- Computist Bio-NanoTech, Scoresby, VIC, 3179, Australia
| | - Herbert R Treutlein
- Computist Bio-NanoTech, Scoresby, VIC, 3179, Australia
- Sanoosa Pty. Ltd, Moonee Ponds, VIC, 3039, Australia
| | - Jeff Hook
- School of Biomedical Sciences, Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Edna C Hardeman
- School of Biomedical Sciences, Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Peter W Gunning
- School of Biomedical Sciences, Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
60
|
Wang J, Zhao X, Wang Q, Zheng X, Simayi D, Zhao J, Yang P, Mao Q, Xia H. FAM76B regulates PI3K/Akt/NF-κB-mediated M1 macrophage polarization by influencing the stability of PIK3CD mRNA. Cell Mol Life Sci 2024; 81:107. [PMID: 38421448 PMCID: PMC10904503 DOI: 10.1007/s00018-024-05133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Macrophage polarization is closely related to inflammation development, yet how macrophages are polarized remains unclear. In our study, the number of M1 macrophages was markedly increased in Fam76b knockout U937 cells vs. wild-type U937 cells, and FAM76B expression was decreased in M1 macrophages induced from different sources of macrophages. Moreover, Fam76b knockout enhanced the mRNA and protein levels of M1 macrophage-associated marker genes. These results suggest that FAM76B inhibits M1 macrophage polarization. We then further explored the mechanism by which FAM76B regulates macrophage polarization. We found that FAM76B can regulate PI3K/Akt/NF-κB pathway-mediated M1 macrophage polarization by stabilizing PIK3CD mRNA. Finally, FAM76B was proven to protect against inflammatory bowel disease (IBD) by inhibiting M1 macrophage polarization through the PI3K/Akt/NF-κB pathway in vivo. In summary, FAM76B regulates M1 macrophage polarization through the PI3K/Akt/NF-κB pathway in vitro and in vivo, which may inform the development of future therapeutic strategies for IBD and other inflammatory diseases.
Collapse
Affiliation(s)
- Juan Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Xinyue Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Qizhi Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Dilihumaer Simayi
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China.
| |
Collapse
|
61
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
62
|
Morillo-Bernal J, Pizarro-García P, Moreno-Bueno G, Cano A, Mazón MJ, Eraso P, Portillo F. HuR (ELAVL1) Stabilizes SOX9 mRNA and Promotes Migration and Invasion in Breast Cancer Cells. Cancers (Basel) 2024; 16:384. [PMID: 38254873 PMCID: PMC10813878 DOI: 10.3390/cancers16020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
RNA-binding proteins play diverse roles in cancer, influencing various facets of the disease, including proliferation, apoptosis, angiogenesis, senescence, invasion, epithelial-mesenchymal transition (EMT), and metastasis. HuR, a known RBP, is recognized for stabilizing mRNAs containing AU-rich elements (AREs), although its complete repertoire of mRNA targets remains undefined. Through a bioinformatics analysis of the gene expression profile of the Hs578T basal-like triple-negative breast cancer cell line with silenced HuR, we have identified SOX9 as a potential HuR-regulated target. SOX9 is a transcription factor involved in promoting EMT, metastasis, survival, and the maintenance of cancer stem cells (CSCs) in triple-negative breast cancer. Ribonucleoprotein immunoprecipitation assays confirm a direct interaction between HuR and SOX9 mRNA. The half-life of SOX9 mRNA and the levels of SOX9 protein decreased in cells lacking HuR. Cells silenced for HuR exhibit reduced migration and invasion compared to control cells, a phenotype similar to that described for SOX9-silenced cells.
Collapse
Affiliation(s)
- Jesús Morillo-Bernal
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Patricia Pizarro-García
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Gema Moreno-Bueno
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
- Fundación MD Anderson Internacional, 28033 Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María J. Mazón
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Pilar Eraso
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Francisco Portillo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
63
|
Wang X, Liang C, Wang S, Ma Q, Pan X, Ran A, Qin C, Huang B, Yang F, Liu Y, Zhang Y, Ren J, Ning H, Li H, Jiang Y, Xiao B. RNA Binding Protein PTBP1 Promotes the Metastasis of Gastric Cancer by Stabilizing PGK1 mRNA. Cells 2024; 13:140. [PMID: 38247832 PMCID: PMC10814388 DOI: 10.3390/cells13020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Gastric cancer (GC) is the most common type of malignant tumor within the gastrointestinal tract, and GC metastasis is associated with poor prognosis. Polypyrimidine tract binding protein 1 (PTBP1) is an RNA-binding protein implicated in various types of tumor development and metastasis. However, the role of PTBP1 in GC metastasis remains elusive. In this study, we verified that PTBP1 was upregulated in GC tissues and cell lines, and higher PTBP1 level was associated with poorer prognosis. It was shown that PTBP1 knockdown in vitro inhibited GC cell migration, whereas PTBP1 overexpression promoted the migration of GC cells. In vivo, the knockdown of PTBP1 notably reduced both the size and occurrence of metastatic nodules in a nude mice liver metastasis model. We identified phosphoglycerate kinase 1 (PGK1) as a downstream target of PTBP1 and found that PTBP1 increased the stability of PGK1 by directly binding to its mRNA. Furthermore, the PGK1/SNAIL axis could be required for PTBP1's function in the promotion of GC cell migration. These discoveries suggest that PTBP1 could be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Xiaolin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Ce Liang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Shimin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Qiang Ma
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Xiaojuan Pan
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Ai Ran
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Changhong Qin
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Bo Huang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Feifei Yang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Yuying Liu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Yuying Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Junwu Ren
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Hao Ning
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Haiping Li
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Yan Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.W.); (C.L.); (S.W.); (Q.M.); (X.P.); (A.R.); (C.Q.); (B.H.); (F.Y.); (Y.L.); (Y.Z.); (J.R.); (H.N.); (H.L.); (Y.J.)
| |
Collapse
|
64
|
Zhou C, Wu Q, Zhao H, Xie R, He X, Gu H. Unraveling the Role of RNA-Binding Proteins, with a Focus on RPS5, in the Malignant Progression of Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:773. [PMID: 38255847 PMCID: PMC10815211 DOI: 10.3390/ijms25020773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a major global health concern, demanding a thorough understanding of its molecular mechanisms for effective therapeutic strategies. RNA-binding proteins (RBPs) play critical roles in post-transcriptional gene regulation, with their dysregulation increasingly recognized as a hallmark of various cancers. However, the specific contributions of RBPs to HCC pathogenesis and prevention remain incompletely understood. In this study, we systematically conducted an examination of the expression profiles and clinical relevance of RBPs in 556 clinical samples from well-established cohorts. Through comprehensive analyses, a subset of RBPs exhibiting significant overexpression in HCC was identified, establishing a noteworthy correlation between their aberrant expression and HCC progression. Furthermore, 40S ribosomal protein S5 (RPS5), a ribosomal protein, emerged as a potential key contributor in HCC progression. Rigorous analyses established a correlation between elevated RPS5 expression and advanced clinicopathological features, suggesting its potential as a prognostic biomarker. Experiments further confirmed the impact of RPS5 on pivotal cellular processes implicated in cancer progression, including cell proliferation and metastasis. Further mechanistic studies unveiled the potential of RPS5 to activate the cell cycle by binding to key molecules involved in the pathway, thereby promoting the malignant progression of HCC. Additionally, our analysis of the etiology behind RPS5 overexpression in HCC posited it as an outcome of transcriptional regulation by the transcription factors Nuclear Respiratory Factor 1 (NRF1) and MYC-associated zinc finger protein (MAZ). In conclusion, our study contributes to the growing evidence elucidating the intricate involvement of RBPs, exemplified by RPS5, in the malignant progression of HCC. The integration of genomic, transcriptomic, and functional analyses provides a comprehensive understanding of the regulatory mechanisms associated with RPS5 in HCC. This comprehensive analysis not only advances our knowledge of the molecular drivers behind HCC but also highlights the potential therapeutic relevance of targeting RBPs and their regulatory network for the development of more effective treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Huiying Gu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China; (C.Z.); (Q.W.); (H.Z.); (R.X.); (X.H.)
| |
Collapse
|
65
|
Chen C, Wang C, Liu W, Chen J, Chen L, Luo X, Wu J. Prognostic value and gene regulatory network of CMSS1 in hepatocellular carcinoma. Cancer Biomark 2024; 39:361-370. [PMID: 38160346 PMCID: PMC11191500 DOI: 10.3233/cbm-230209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Cms1 ribosomal small subunit homolog (CMSS1) is an RNA-binding protein that may play an important role in tumorigenesis and development. OBJECTIVE RNA-seq data from the GEPIA database and the UALCAN database were used to analyze the expression of CMSS1 in liver hepatocellular carcinoma (LIHC) and its relationship with the clinicopathological features of the patients. METHODS LinkedOmics was used to identify genes associated with CMSS1 expression and to identify miRNAs and transcription factors significantly associated with CMSS1 by GSEA. RESULTS The expression level of CMSS1 in hepatocellular carcinoma tissues was significantly higher than that in normal tissues. In addition, the expression level of CMSS1 in advanced tumors was significantly higher than that in early tumors. The expression level of CMSS1 was higher in TP53-mutated tumors than in non-TP53-mutated tumors. CMSS1 expression levels were strongly correlated with disease-free survival (DFS) and overall survival (OS) in patients with LIHC, and high CMSS1 expression predicted poorer OS (P< 0.01) and DFS (P< 0.01). Meanwhile, our results suggested that CMSS1 is associated with the composition of the immune microenvironment of LIHC. CONCLUSIONS The present study suggests that CMSS1 is a potential molecular marker for the diagnosis and prognostic of LIHC.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Caiming Wang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Department of Operation Room, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wei Liu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Department of Breast, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jiacheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiangxiang Luo
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
66
|
Ma M, Zhuang J, Li H, Mi R, Song Y, Yang W, Lu Y, Shen X, Wu Y, Shen H. Low expression of ZFP36L1 in osteosarcoma promotes lung metastasis by inhibiting the SDC4-TGF-β signaling feedback loop. Oncogene 2024; 43:47-60. [PMID: 37935976 PMCID: PMC10766520 DOI: 10.1038/s41388-023-02880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
ZFP36L1, which is a negative regulator of gene transcripts, has been proven to regulate the progression of several carcinomas. However, its role in sarcoma remains unknown. Here, by using data analyses and in vivo experiments, we found that ZFP36L1 inhibited the lung metastasis of osteosarcoma (OS). Knockdown of ZFP36L1 promoted OS cell migration by activating TGF-β signaling and increasing SDC4 expression. Intriguingly, we observed a positive feedback loop between SDC4 and TGF-β signaling. SDC4 protected TGFBR3 from matrix metalloproteinase (MMP)-mediated cleavage and therefore relieved the inhibition of TGF-β signaling by soluble TGFBR3, while TGF-β signaling positively regulated SDC4 transcription. We also proved that ZFP36L1 regulated SDC4 mRNA decay through adenylate-uridylate (AU)-rich elements (AREs) in its 3'UTR. Furthermore, treatment with SB431542 (a TGF-β receptor kinase inhibitor) and MK2 inhibitor III (a MAPKAPK2 inhibitor that increases the ability of ZFP36L1 to degrade mRNA) dramatically inhibited OS lung metastasis, suggesting a promising therapeutic approach for the treatment of OS lung metastasis.
Collapse
Affiliation(s)
- Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Jiahao Zhuang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Hongyu Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Rujia Mi
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Yihui Song
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Wen Yang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Yixuan Lu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Xin Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China.
| |
Collapse
|
67
|
Ji Y, Zhang W, Shen K, Su R, Liu X, Ma Z, Liu B, Hu C, Xue Y, Xin Z, Yang Y, Li A, Jiang Z, Jing N, Zhu HH, Dong L, Zhu Y, Dong B, Pan J, Wang Q, Xue W. The ELAVL3/MYCN positive feedback loop provides a therapeutic target for neuroendocrine prostate cancer. Nat Commun 2023; 14:7794. [PMID: 38016952 PMCID: PMC10684895 DOI: 10.1038/s41467-023-43676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Neuroendocrine prostate cancer is a rapidly progressive and lethal disease characterized by early visceral metastasis, poor prognosis, and limited treatment options. Uncovering the oncogenic mechanisms could lead to the discovery of potential therapeutic avenues. Here, we demonstrate that the RNA-binding protein ELAVL3 is specifically upregulated in neuroendocrine prostate cancer and that overexpression of ELAVL3 alone is sufficient to induce the neuroendocrine phenotype in prostate adenocarcinoma. Mechanistically, ELAVL3 is transcriptionally regulated by MYCN and subsequently binds to and stabilizes MYCN and RICTOR mRNA. Moreover, ELAVL3 is shown to be released in extracellular vesicles and induce neuroendocrine differentiation of adenocarcinoma cells via an intercellular mechanism. Pharmacological inhibition of ELAVL3 with pyrvinium pamoate, an FDA-approved drug, effectively suppresses tumor growth, reduces metastatic risk, and improves survival in neuroendocrine prostate cancer mouse models. Our results identify ELAVL3 as a critical regulator of neuroendocrine differentiation in prostate cancer and propose a drug repurposing strategy for targeted therapies.
Collapse
Affiliation(s)
- Yiyi Ji
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Weiwei Zhang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Kai Shen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Ruopeng Su
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Xinyu Liu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Zehua Ma
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Bo Liu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Cong Hu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Yizheng Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Zhixiang Xin
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Yi Yang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Ang Li
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Zhou Jiang
- Department of Pathology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Na Jing
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Dong
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Yinjie Zhu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Jiahua Pan
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Qi Wang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China.
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, China.
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
68
|
Shi Y, Tian Y, Wu Y, Zhao Y. CircTNPO1 promotes the tumorigenesis of osteosarcoma by sequestering miR-578 to upregulate WNT5A expression. Cell Signal 2023; 111:110858. [PMID: 37633479 DOI: 10.1016/j.cellsig.2023.110858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
As a type of non-coding RNAs, circular RNAs (circRNAs) have the ability to bind to miRNAs and regulate gene expression. Recent studies have shown that circRNAs are involved in certain pathological events. However, the expression and functional role of circTNPO1 in osteosarcoma (OS) are not yet clear. To investigate circRNAs that are differentially expressed in OS tissues and cells, circRNA microarray analysis combined with qRT-PCR was performed. The in-vitro and in-vivo functions of circTNPO1 were studied by knocking it down or overexpressing it. The binding and regulatory relationships between circTNPO1, miR-578, and WNT5A were evaluated using dual luciferase assays, RNA pull-down and rescue assays, as well as RNA immunoprecipitation (RIP). Furthermore, functional experiments were conducted to uncover the regulatory effect of the circTNPO1/miR-578/WNT5A pathway on OS progression. Cytoplasm was identified as the primary location of circTNPO1, which exhibited higher expression in OS tissues and cells compared to the corresponding controls. The overexpression of circTNPO1 was found to enhance malignant phenotypes in vitro and increase oncogenicity in vivo. Moreover, circTNPO1 was observed to sequester miR-578 in OS cells, resulting in the upregulation of WNT5A and promoting carcinoma progression. These findings indicate that circTNPO1 can contribute to the progression of OS through the miR-578/WNT5A axis. Therefore, targeting the circTNPO1/miR-578/WNT5A axis could be a promising therapeutic strategy for OS.
Collapse
Affiliation(s)
- Yubo Shi
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunyun Tian
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanqing Wu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yingchun Zhao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
69
|
Mu M, Niu W, Chu F, Dong Q, Hu S, Niu C. CircSOBP suppresses the progression of glioma by disrupting glycolysis and promoting the MDA5-mediated immune response. iScience 2023; 26:107897. [PMID: 37766977 PMCID: PMC10520879 DOI: 10.1016/j.isci.2023.107897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/25/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma, an aggressively growing and highly malignant brain tumor, poses substantial therapeutic challenges due to its resistance to radiotherapy and chemotherapy. Recent research has identified circRNAs as pivotal players in glioma formation and development. However, the roles of circRNA in the metabolic and immune regulation of glioma are unclear. In this study, circSOBP expression was significantly downregulated in glioma cells and specimens. Functionally, enhanced circSOBP expression mitigated cell proliferation, invasion, migration, and glycolysis in gliomas. Mechanistically, circSOBP inhibited glycolysis and activated the MDA5-mediated IKKε/TBK1/IRF3 signaling pathway by binding TKFC proteins. Furthermore, the elevated levels of IFN-I induced by the MDA5 pathway increased the number and activity of CD8+ T and NK cells in the immune response of the animal models. In summary, our findings have emphasized the critical role of circSOBP in binding and modulating TKFC protein, offering potential therapeutic avenue for targeting glioma metabolism and immunological reprogramming.
Collapse
Affiliation(s)
- Maolin Mu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
| | - Wanxiang Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
| | - Fang Chu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
| | - Qingsheng Dong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
| | - Shanshan Hu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui 230001, P.R. China
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui 230001, P.R. China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui 230001, P.R. China
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
70
|
Su Q, Pan Z, Chen H, Chen J, Zhang Y, Zhuang W. RBM47 restrains renal cell carcinoma progression and chemoresistance through interacting with lncRNA HOXB-AS1. Cell Death Discov 2023; 9:329. [PMID: 37660095 PMCID: PMC10475063 DOI: 10.1038/s41420-023-01623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
RNA binding proteins have the critical role in renal cell carcinoma (RCC) progression. However, the role of RBM47 in RCC has not been elucidated. In this study, we found that RBM47 was downregulated in RCC tissues and its expression was negatively correlated with the prognosis of RCC patients. Also, we found that the expression of RBM47 was regulated by CBP/P300-mediated H3K27ac in RCC. Functionally, RBM47 restrained RCC cells proliferation and metastasis. Mechanistically, RBM47 interfered with the interaction between HOXB-AS1 and p53 proteins via directly binding with HOXB-AS1, finally promoted the entry of p53 into the nucleus and therefore activated the p53 signaling. Moreover, RBM47 had a synergistic anticancer effect with sunitinib both in vivo and in vitro.
Collapse
Affiliation(s)
- Qingfu Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhenliang Pan
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Heyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jiabi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yanmei Zhang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| |
Collapse
|
71
|
Li C, Xu P, Huang Y, Wang Y, Wu Y, Li H, Peng Y, Wang X, Li G, He J, Miao C. RNA methylations in depression, from pathological mechanism to therapeutic potential. Biochem Pharmacol 2023; 215:115750. [PMID: 37595670 DOI: 10.1016/j.bcp.2023.115750] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Depression is caused by a variety of factors such as genetic factors, biological factors, and psychosocial factors, and the pathogenesis is complex. RNA methylations and related downstream signaling pathways influence a variety of biological mechanisms, including cell differentiation, tumorigenesis, sex determination, and stress response. In this work, we searched the PubMed, Web of Science, National Library of Science and Technology (NSTL), and ScienceDirect Online (SDOL) databases to summarize the biological roles of RNA methylations and their impact on the pathological mechanisms of depression. RNA methylations play a key role in the development of many diseases, and current research shows that RNA methylations are also closely linked to depression. RNA methylations in depression mainly involve "writers" (mediating the methylation modification process of RNAs), "erasers" (mediating the demethylation modification process of RNA methylation). Fat Mass and Obesity Associated (FTO) influences the development of depression by increasing body mass index (BMI), decreases the dopamine level, inhibits the adrenoceptor beta 2 (ADRB2)-c-Myc-sirt1 pathway, results in the m6A/m6Am dysregulation in brain, and may be involved in the pathogenesis of depression. The study of RNA methylations in depression has further deepened our understanding of the pathogenesis and development process of depression, provides new perspectives for the study of the pathological mechanism of depression, and provides new targets for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Chen Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Pengfei Xu
- Department of Orthopedics, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hui Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yanhui Peng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiao Wang
- Department of Clinical Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Guoying Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Juan He
- Department of Gynecology, Anhui Maternal and Child Health Hospital, Hefei, Anhui, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China; Institute of Traditional Chinese Medicine for the Prevention and Treatment of Rheumatology, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
72
|
Li J, Dong X, Kong X, Wang Y, Li Y, Tong Y, Zhao W, Duan W, Li P, Wang Y, Wang C. Circular RNA hsa_circ_0067842 facilitates tumor metastasis and immune escape in breast cancer through HuR/CMTM6/PD-L1 axis. Biol Direct 2023; 18:48. [PMID: 37592296 PMCID: PMC10436663 DOI: 10.1186/s13062-023-00397-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to play diverse biological functions in the progression of multiple diseases. However, the impacts of circRNAs on breast cancer (BC) progression remains unclear. Therefore, the objective of this paper is to investigate the role and mechanisms of a functional circRNA in BC metastasis and immune escape. METHODS This study used a circRNA microarray and identified a novel circRNA hsa_circ_0067842. The validation and characteristics of hsa_circ_0067842 were investigated using qRT-PCR, sanger sequencing, RNase R treatment, actinomycin D treatment and fluorescence in situ hybridization (FISH). Gain- and loss-of-function assays were performed to evaluate the biological function of hsa_circ_0067842 in BC progression and immune escape. Mechanistically, the interaction between hsa_circ_0067842 and HuR was explored by RNA pull down, mass spectrometry (MS), subcellular component protein extraction and immunofluorescence (IF). The regulatory mechanisms of hsa_circ_0067842/HuR/CMTM6/PD-L1 axis were investigated by qRT-PCR, western blot, FISH, immunoprecipitation and rescue assays. RESULTS The expression of hsa_circ_0067842 was upregulated in BC tissues and cells, which was found to be significantly associated with poor prognosis, regardless of other clinical covariates. Function assays showed that hsa_circ_0067842 promoted the migration and invasion capacities of BC cells. Moreover, co-culture experiment with peripheral blood mononuclear cells (PBMCs) showed that hsa_circ_0067842 played a role in the immune escape of BC cells. Mechanistically, our study showed that hsa_circ_0067842 interacted with HuR, affecting its nuclear translocation, thus enhancing the stability of CMTM6. CMTM6 not only enhances the migration and invasion ability of BC cells, but also affects the ubiquitination of PD-L1 and inhibits its degradation. CONCLUSION Collectively, our results demonstrated that hsa_circ_0067842 promoted BC progression through the HuR/CMTM6/PD-L1 axis, providing new insight and a potential target for BC prognosis and therapy.
Collapse
Affiliation(s)
- Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Xiangjun Dong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Xue Kong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Yafen Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Yanru Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Yao Tong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Weili Duan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China.
| | - Yanqun Wang
- Department of Clinical Laboratory, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, Shandong, China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China.
| |
Collapse
|
73
|
Li Q, Kang C. Targeting RNA-binding proteins with small molecules: Perspectives, pitfalls and bifunctional molecules. FEBS Lett 2023; 597:2031-2047. [PMID: 37519019 DOI: 10.1002/1873-3468.14710] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
RNA-binding proteins (RBPs) play vital roles in organisms through binding with RNAs to regulate their functions. Small molecules affecting the function of RBPs have been developed, providing new avenues for drug discovery. Herein, we describe the perspectives on developing small molecule regulators of RBPs. The following types of small molecule modulators are of great interest in drug discovery: small molecules binding to RBPs to affect interactions with RNA molecules, bifunctional molecules binding to RNA or RBP to influence their interactions, and other types of molecules that affect the stability of RNA or RBPs. Moreover, we emphasize that the bifunctional molecules may play important roles in small molecule development to overcome the challenges encountered in the process of drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
74
|
Zhao P, Yuan F, Xu L, Jin Z, Liu Y, Su J, Yuan L, Peng L, Wang C, Zhang G. HKDC1 reprograms lipid metabolism to enhance gastric cancer metastasis and cisplatin resistance via forming a ribonucleoprotein complex. Cancer Lett 2023:216305. [PMID: 37423558 DOI: 10.1016/j.canlet.2023.216305] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
As essential modulators of transcription and translation, RNA-binding proteins (RBPs) are frequently dysregulated in cancer. Bioinformatics study reveals that the RNA-binding protein hexokinase domain component 1 (HKDC1) is overexpressed in gastric cancer (GC). As HKDC1 plays a role in lipid homeostasis in the liver and glucose metabolism in certain cancers, the exact mechanism of action of HKDC1 in GC remains largely unknown. Upregulation of HKDC1 correlates with chemoresistance and poor prognosis in GC patients. HKDC1 enhances invasion, migration and resistance to cisplatin (CDDP) in GC cells in vitro and in vivo. Comprehensive transcriptomic sequencing and metabolomic analysis reveal that HKDC1 mediates abnormal lipid metabolism in GC cells. Herein, we identify a number of HKDC1-binding endogenous RNAs in GC cells, including protein kinase, DNA-activated, catalytic subunit (PRKDC) mRNA. We further validate that PRKDC is a crucial downstream effector of HKDC1 induced-GC tumorigenesis depends on lipid metabolism. Interestingly, G3BP1, a well-known oncoprotein, can be bound by HKDC1. HKDC1 cooperates with G3BP1 to enhance the stability of PRKDC transcript. Our results reveal a novel HKDC1/G3BP1-PRKDC regulatory axis that induces GC metastasis and chemoresistance via reprogramming lipid metabolism, which may provide an effective therapeutic strategy for a subset of GC with HKDC1 overexpression.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China
| | - Lijuan Xu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhenghao Jin
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yang Liu
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China
| | - Jing Su
- Department of Gastroenterology, Xuzhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, 221009, China
| | - Lin Yuan
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lei Peng
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China.
| | - Guoxin Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
75
|
Que Z, Yang K, Wang N, Li S, Li T. Functional Role of RBP in Osteosarcoma: Regulatory Mechanism and Clinical Therapy. Anal Cell Pathol (Amst) 2023; 2023:9849719. [PMID: 37426488 PMCID: PMC10328736 DOI: 10.1155/2023/9849719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023] Open
Abstract
Malignant bone neoplasms can be represented by osteosarcoma (OS), which accounts for 36% of all sarcomas. To reduce tumor malignancy, extensive efforts have been devoted to find an ideal target from numerous candidates, among which RNA-binding proteins (RBPs) have shown their unparalleled competitiveness. With the special structure of RNA-binding domains, RBPs have the potential to establish relationships with RNAs or small molecules and are considered regulators of different sections of RNA processes, including splicing, transport, translation, and degradation of RNAs. RBPs have considerable significant roles in various cancers, and experiments revealed that there was a strong association of RBPs with tumorigenesis and tumor cell progression. Regarding OS, RBPs are a new orientation, but achievements in hand are noteworthy. Higher or lower expression of RBPs was first found in tumor cells compared to normal tissue. By binding to different molecules, RBPs are capable of influencing tumor cell phenotypes through different signaling pathways or other axes, and researches on medical treatment have been largely inspired. Exploring the prognostic and therapeutic values of RBPs in OS is a hotspot where diverse avenues on regulating RBPs have achieved dramatical effects. In this review, we briefly summarize the contribution of RBPs and their binding molecules to OS oncogenicity and generally introduce distinctive RBPs as samples. Moreover, we focus on the attempts to differentiate RBP's opposite functions in predicting prognosis and collect possible strategies for treatment. Our review provides forwards insight into improving the understanding of OS and suggests RBPs as potential biomarkers for therapies.
Collapse
Affiliation(s)
- Ziyuan Que
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Kang Yang
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Nan Wang
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Shuying Li
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Tao Li
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
76
|
Coleman JC, Hallett SR, Grigoriadis AE, Conte MR. LARP4A and LARP4B in cancer: The new kids on the block. Int J Biochem Cell Biol 2023; 161:106441. [PMID: 37356415 DOI: 10.1016/j.biocel.2023.106441] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Recent developments have mounted a stunning body of evidence underlying the importance of RNA binding proteins (RBPs) in cancer research. In this minireview we focus on LARP4A and LARP4B, two paralogs belonging to the superfamily of La-related proteins, and provide a critical overview of current research, including their roles in cancer pathogenesis and cell proliferation, migration, cell cycle and apoptosis. We highlight current controversies surrounding LARP4A and LARP4B and conclude that their complex roles in tumorigenesis are cell-, tissue- and context-dependent, warning that caution must be exercised before categorising either protein as an oncoprotein or tumour-suppressor. We also reveal that LARP4A and LARP4B have often been confused with one another, adding uncertainty in delineating their functions. We suggest that further functional and mechanistic studies of LARP4 proteins present significant challenges for future investigations to recognise the vital contributions of these RBPs in cancer research.
Collapse
Affiliation(s)
- Jennifer C Coleman
- Centre for Craniofacial & Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Sadie R Hallett
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
77
|
Eraso P, Mazón MJ, Jiménez V, Pizarro-García P, Cuevas EP, Majuelos-Melguizo J, Morillo-Bernal J, Cano A, Portillo F. New Functions of Intracellular LOXL2: Modulation of RNA-Binding Proteins. Molecules 2023; 28:molecules28114433. [PMID: 37298909 DOI: 10.3390/molecules28114433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) was initially described as an extracellular enzyme involved in extracellular matrix remodeling. Nevertheless, numerous recent reports have implicated intracellular LOXL2 in a wide variety of processes that impact on gene transcription, development, differentiation, proliferation, migration, cell adhesion, and angiogenesis, suggesting multiple different functions for this protein. In addition, increasing knowledge about LOXL2 points to a role in several types of human cancer. Moreover, LOXL2 is able to induce the epithelial-to-mesenchymal transition (EMT) process-the first step in the metastatic cascade. To uncover the underlying mechanisms of the great variety of functions of intracellular LOXL2, we carried out an analysis of LOXL2's nuclear interactome. This study reveals the interaction of LOXL2 with numerous RNA-binding proteins (RBPs) involved in several aspects of RNA metabolism. Gene expression profile analysis of cells silenced for LOXL2, combined with in silico identification of RBPs' targets, points to six RBPs as candidates to be substrates of LOXL2's action, and that deserve a more mechanistic analysis in the future. The results presented here allow us to hypothesize novel LOXL2 functions that might help to comprehend its multifaceted role in the tumorigenic process.
Collapse
Affiliation(s)
- Pilar Eraso
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - María J Mazón
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Victoria Jiménez
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Patricia Pizarro-García
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Eva P Cuevas
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Jara Majuelos-Melguizo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Jesús Morillo-Bernal
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
78
|
Liu X, Chen J, Chen W, Xu Y, Shen Y, Xu X. Targeting IGF2BP3 in Cancer. Int J Mol Sci 2023; 24:ijms24119423. [PMID: 37298373 DOI: 10.3390/ijms24119423] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
RNA-binding proteins (RBPs) can regulate multiple pathways by binding to RNAs, playing a variety of functions, such as localization, stability, and immunity. In recent years, with the development of technology, researchers have discovered that RBPs play a key role in the N6-methyladenosine (m6A) modification process. M6A methylation is the most abundant form of RNA modification in eukaryotes, which is defined as methylation on the sixth N atom of adenine in RNA. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is one of the components of m6A binding proteins, which plays an important role in decoding m6A marks and performing various biological functions. IGF2BP3 is abnormally expressed in many human cancers, often associated with poor prognosis. Here, we summarize the physiological role of IGF2BP3 in organisms and describe its role and mechanism in tumors. These data suggest that IGF2BP3 may be a valuable therapeutic target and prognostic marker in the future.
Collapse
Affiliation(s)
- Xin Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
79
|
Li F, Han Y, Chen R, Jiang Y, Chen C, Wang X, Zhou J, Xu Q, Jiang S, Zhang S, Yu K, Zhang S. MicroRNA-143 acts as a tumor suppressor through Musashi-2/DLL1/Notch1 and Musashi-2/Snail1/MMPs axes in acute myeloid leukemia. J Transl Med 2023; 21:309. [PMID: 37149661 PMCID: PMC10164318 DOI: 10.1186/s12967-023-04106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/05/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The previous studies have revealed that abnormal RNA-binding protein Musashi-2 (MSI2) expression is associated with cancer progression through post-transcriptional mechanisms, however mechanistic details of this regulation in acute myeloid leukemia (AML) still remain unclear. Our study aimed to explore the relationship between microRNA-143 (miR-143) and MSI2 and to clarify their clinical significance, biological function and mechanism. METHODS Abnormal expression of miR-143 and MSI2 were evaluated in bone marrow samples from AML patients by quantitative real time-PCR. Effects of miR-143 on regulating MSI2 expression were investigated using luciferase reporter assay. Functional roles of MSI2 and miR-143 on AML cell proliferation and migration were determined by CCK-8 assay, colony formation, and transwell assays in vitro and in mouse subcutaneous xenograft and orthotopic transplantation models in vivo. RNA immunoprecipitation, RNA stability measurement and Western blotting were performed to assess the effects of MSI2 on AML. RESULTS We found that MSI2 was significantly overexpressed in AML and exerted its role of promoting AML cell growth by targeting DLL1 and thereby activating Notch signaling pathway. Moreover, we found that MSI2 bound to Snail1 transcript and inhibited its degradation, which in turn upregulated the expression of matrix metalloproteinases. We also found that MSI2 targeting miR-143 is downregulated in AML. In the AML xenograft mouse model, overexpression of MSI2 recapitulated its leukemia-promoting effects, and overexpression of miR-143 partially attenuated tumor growth and prevented metastasis. Notably, low expression of miR-143, and high expression of MSI2 were associated with poor prognosis in AML patients. CONCLUSIONS Our data demonstrate that MSI2 exerts its malignant properties via DLL1/Notch1 cascade and the Snail1/MMPs axes in AML, and upregulation of miR-143 may be a potential therapeutic approach for AML.
Collapse
Affiliation(s)
- Fanfan Li
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Hematology, Wenzhou, 325015, Zhejiang, China
| | - Yixiang Han
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Hematology, Wenzhou, 325015, Zhejiang, China
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongrong Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Hematology, Wenzhou, 325015, Zhejiang, China
| | - Yinyan Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Hematology, Wenzhou, 325015, Zhejiang, China
| | - Cheng Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Hematology, Wenzhou, 325015, Zhejiang, China
| | - Xiaofang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Hematology, Wenzhou, 325015, Zhejiang, China
| | - Jifan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Hematology, Wenzhou, 325015, Zhejiang, China
| | - Qingqing Xu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Hematology, Wenzhou, 325015, Zhejiang, China
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China.
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Key Laboratory of Hematology, Wenzhou, 325015, Zhejiang, China.
| | - Shenghui Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China.
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Key Laboratory of Hematology, Wenzhou, 325015, Zhejiang, China.
- Laboratory Animal Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
80
|
Gerstberger S, Jiang Q, Ganesh K. Metastasis. Cell 2023; 186:1564-1579. [PMID: 37059065 PMCID: PMC10511214 DOI: 10.1016/j.cell.2023.03.003] [Citation(s) in RCA: 349] [Impact Index Per Article: 174.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 04/16/2023]
Abstract
Most cancer-associated deaths occur due to metastasis, yet our understanding of metastasis as an evolving, heterogeneous, systemic disease and of how to effectively treat it is still emerging. Metastasis requires the acquisition of a succession of traits to disseminate, variably enter and exit dormancy, and colonize distant organs. The success of these events is driven by clonal selection, the potential of metastatic cells to dynamically transition into distinct states, and their ability to co-opt the immune environment. Here, we review the main principles of metastasis and highlight emerging opportunities to develop more effective therapies for metastatic cancer.
Collapse
Affiliation(s)
- Stefanie Gerstberger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qingwen Jiang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karuna Ganesh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
81
|
Lu Q, Wang L, Zhang JY, Yang DH. Editorial: RNA and RNA modification in the pathogenesis, diagnosis and treatment of cancers, Volume II. Front Oncol 2023; 13:1164399. [PMID: 36968996 PMCID: PMC10036845 DOI: 10.3389/fonc.2023.1164399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Affiliation(s)
- Qisi Lu
- Department of Hematology, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jian-ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Dong-Hua Yang
- Clinical Medicine, New York College of Traditional Chinese Medicine, Mineola, NY, United States
- *Correspondence: Dong-Hua Yang,
| |
Collapse
|
82
|
Meng X, Xiao W, Sun J, Li W, Yuan H, Yu T, Zhang X, Dong W. CircPTK2/PABPC1/SETDB1 axis promotes EMT-mediated tumor metastasis and gemcitabine resistance in bladder cancer. Cancer Lett 2023; 554:216023. [PMID: 36436682 DOI: 10.1016/j.canlet.2022.216023] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Bladder cancer (BCa), characterized by high invasion, metastasis, recurrence, and chemoresistance, is one of the most prevalent urologic malignant tumors. Recent studies have highlighted the potential impact of the circRNAs-protein complex in tumorigenesis. However, the mechanisms by which the circRNAs-protein complex regulates BCa metastasis and chemoresistance remain elusive. Herein, we identified an upregulated circRNA, circPTK2, which could regulate SETDB1 expression by analyzing the transcriptome by RNA-sequencing. Importantly, using circRNA pulldown assay and RNA-binding protein immunoprecipitation, we identified PABPC1 as a robust novel interacting protein of circPTK2. Mechanistically, circPTK2 could bind to PABPC1 and enhance its ability to stabilize SETDB1 mRNA, thereby specifically promoting SETDB1 expression and facilitating SETDB1-mediated epithelial-mesenchymal transition (EMT). Functionally, overexpression of the circPTK2-SETDB1 axis markedly promoted migration, invasion, and gemcitabine resistance in vitro and enhanced lymph node metastasis in vivo. Collectively, our findings clarified a hitherto unexplored mechanism of the circPTK2/PABPC1/SETDB1 axis in EMT-mediated tumor metastasis and gemcitabine resistance in BCa.
Collapse
Affiliation(s)
- Xiangui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiayin Sun
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiquan Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongwei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tiexi Yu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wei Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
83
|
Wang X, Zhang C, Song H, Yuan J, Zhang L, He J. CircCCDC66: Emerging roles and potential clinical values in malignant tumors. Front Oncol 2023; 12:1061007. [PMID: 36698408 PMCID: PMC9869039 DOI: 10.3389/fonc.2022.1061007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Circular RNAs (circRNAs) are endogenous non-coding RNAs (ncRNAs) with a closed-loop structure. In recent years, circRNAs have become the focus of much research into RNA. CircCCDC66 has been identified as a novel oncogenic circRNA and is up-regulated in a variety of malignant tumors including thyroid cancer, non-small cell carcinoma, gastric cancer, colorectal cancer, renal cancer, cervical cancer, glioma, and osteosarcoma. It mediates cancer progression by regulating epigenetic modifications, variable splicing, transcription, and protein translation. The oncogenicity of circCCDC66 suppresses or promotes the expression of related genes mainly through direct or indirect pathways. This finding suggests that circCCDC66 is a biomarker for cancer diagnosis, prognosis assessment and treatment. However, there is no review on the relationship between circCCDC66 and cancers. Thus, the expression, biological functions, and regulatory mechanisms of circCCDC66 in malignant tumor and non-tumor diseases are summarized. The clinical value and prognostic significance of circCCDC66 are also evaluated, which can provide insights helpful to those exploring new strategies for the early diagnosis and targeted treatment of malignancies.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chao Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Huangqin Song
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Junlong Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefeng He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,*Correspondence: Jiefeng He,
| |
Collapse
|
84
|
Zhou Y, Liang Z, Xia Y, Li S, Liang J, Hu Z, Tang C, Zhao Q, Gong Q, Ouyang Y. Disruption of RBMS3 suppresses PD-L1 and enhances antitumor immune activities and therapeutic effects of auranofin against triple-negative breast cancer. Chem Biol Interact 2023; 369:110260. [PMID: 36414028 DOI: 10.1016/j.cbi.2022.110260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
Programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) interaction exerts a vital role in tumor-associated immune evasion. While strategies disrupting PD-1/PD-L1 axis have shown clinical benefits in various cancers, the limited response rate prompts us to investigate the complex mechanisms underlying the molecular regulation of PD-L1. Here, we identify the RNA binding protein RBMS3 as a crucial PD-L1 regulator in triple-negative breast cancer (TNBC). Correlation analysis shows that Rbms3 significantly correlates with immunosuppressive CD274, Rbms1, NT5E and ENTPD1. RBMS3 protein binds to CD274 mRNA specifically in TNBC cells to increase PD-L1 levels. Mechanistically, RBMS3 stabilizes CD274 mRNA by interacting with its 3'UTR, which represents as an intrinsic cancer cell mechanism for driving PL-D1 upregulation in TNBC. RBMS3 depletion not only destabilizes the mRNA stability and protein expression of PD-L1, but also suppresses the migratory abilities of TNBC MDA-MB-231 cells. Importantly, combination of RBMS3 ablation with auranofin (AUF), an FDA-approved thioredoxin reductase inhibitor, facilitates anti-tumor T-cell immunity in vivo and improves AUF-mediated anti-cancer effect. Taken together, our findings reveal RBMS3 as a key post-transcriptional regulator of PD-L1 and how they contribute to immune escape in TNBC, which could lead to novel combinatorial therapeutic strategies to enhance the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Yuting Zhou
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhongping Liang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yingjie Xia
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University, China
| | - Shuai Li
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiali Liang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhixiang Hu
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chengbin Tang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qing Zhao
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qing Gong
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Yongchang Ouyang
- The Sixth Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
85
|
Dey A, Mitra A, Pathak S, Prasad S, Zhang AS, Zhang H, Sun XF, Banerjee A. Recent Advancements, Limitations, and Future Perspectives of the use of Personalized Medicine in Treatment of Colon Cancer. Technol Cancer Res Treat 2023; 22:15330338231178403. [PMID: 37248615 PMCID: PMC10240881 DOI: 10.1177/15330338231178403] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/18/2023] [Accepted: 03/13/2023] [Indexed: 08/29/2024] Open
Abstract
Due to the heterogeneity of colon cancer, surgery, chemotherapy, and radiation are ineffective in all cases. The genomic profile and biomarkers associated with the process are considered in personalized medicine, along with the patient's personal history. It is based on the response of the targeted therapies to specific genetic variations. The patient's genetic transcriptomic and epigenetic features are evaluated, and the best therapeutic approach and diagnostic testing are identified through personalized medicine. This review aims to summarize all the necessary, updated information on colon cancer related to personalized medicine. Personalized medicine is gaining prominence as generalized treatments are finding it challenging to contain colon cancer cases which currently rank fourth among global cancer incidence while being the fifth largest in total death cases worldwide. In personalized therapy, patients are grouped into specific categories, and the best therapeutic approach is chosen based on evaluating their molecular features. Various personalized strategies are currently being explored in the treatment of colon cancer involving immunotherapy, phytochemicals, and other biomarker-specific targeted therapies. However, significant challenges must be overcome to integrate personalized medicine into healthcare systems completely. We look at the various signaling pathways and genetic and epigenetic alterations associated with colon cancer to understand and identify biomarkers useful in targeted therapy. The current personalized therapies available in colon cancer treatment and the strategies being explored to improve the existing methods are discussed. This review highlights the advantages and limitations of personalized medicine in colon cancer therapy. The current scenario of personalized medicine in developed countries and the challenges faced in middle- and low-income countries are also summarized. Finally, we discuss the future perspectives of personalized medicine in colon cancer and how it could be integrated into the healthcare systems.
Collapse
Affiliation(s)
- Amit Dey
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Abhijit Mitra
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Suhanya Prasad
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Białystok, Poland
| | | | - Hong Zhang
- School of Medicine, Department of Medical Sciences, Orebro University, Örebro, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| |
Collapse
|
86
|
Yang P, Zhang P, Zhang S. RNA-Binding Protein MEX3A Interacting with DVL3 Stabilizes Wnt/β-Catenin Signaling in Endometrial Carcinoma. Int J Mol Sci 2022; 24:592. [PMID: 36614043 PMCID: PMC9820120 DOI: 10.3390/ijms24010592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
Disease recurrence and metastasis lead to poor prognosis in patients with advanced endometrial carcinoma (EC). RNA-binding proteins (RBPs) are closely associated with tumor initiation and metastasis, but the function and molecular mechanisms of RBPs in EC are unclear. RBPs were screened and identified using the TCGA, GEO, and RBPTD databases. The effect of MEX3A on EC was verified by in vitro and in vivo experiments. Gene set enrichment analysis (GSEA), immunofluorescence (IF), and co-immunoprecipitation (Co-IP) were used to identify potential molecular mechanisms of action. We identified 148 differentially expressed RBPs in EC. MEX3A was upregulated and related to poor prognosis in patients with EC. In vitro and vivo experiments demonstrated that MEX3A promoted the growth, migration, and invasion capacities of EC cells. Mechanistically, DVL3, a positive regulator of the Wnt/β-catenin pathway, also increased the proliferation and metastasis of EC cells. MEX3A enhanced EMT and played a pro-carcinogenic role by interacting with DVL3 to stabilize β-catenin and upregulated the expression of its downstream target genes. MEX3A is upregulated in EC and promotes tumor progression by activating EMT and regulating the Wnt/β-catenin pathway via DVL3. MEX3A may therefore be a novel therapeutic target for EC.
Collapse
Affiliation(s)
| | | | - Shu Zhang
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
87
|
Yang F, Lian Q, Ni B, Qiu X, He Y, Zou X, He F, Chen W. MUTYH is a potential prognostic biomarker and correlates with immune infiltrates in hepatocellular carcinoma. LIVER RESEARCH 2022; 6:258-268. [PMID: 39957908 PMCID: PMC11791856 DOI: 10.1016/j.livres.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/13/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The development of biomarkers for early detection and monitoring of HCC has not shown significant progress. Meanwhile, the second adenomatous polyposis-related gene, MUTYH, which encodes a DNA glycosylase, has been observed in its contribution to oxidative DNA damage repair. Abnormal expression of MUTYH can reduce cell survival rate. Therefore, this study investigated the usefulness of MUTYH in diagnosing and prognosis HCC. Materials and methods Using The Cancer Genome Atlas (TCGA) data, we analyzed the prognostic value of MUTYH in HCC. We used logistic regression, Wilcoxon signed-rank test, and Kruskal-Wallis test to examine MUTYH expression concerning clinical-pathologic characteristics. Univariate and multivariate Cox regression methods and Kaplan-Meier analysis were applied to determine the related prognostic factors of HCC. The enrichment analysis (GSEA) was used to determine the critical pathways associated with MUTYH. The single-sample gene set enrichment analysis (ssGSEA) was conducted to examine the correlation between MUTYH expression and cancer immune infiltration. Results The higher expression of MUTYH in HCC patients was associated with a poorer overall survival rate and a shorter disease-specific survival rate. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that all differentially expressed genes (DEGs) between the high and low expression levels of MUTYH significantly enriched in the trace ligand-receptor interaction, cell cycle, oocyte meiosis, gap junction, and DNA replication. Group analysis revealed the signals of their open access. The neuron system, M phase, DNA repair, Rho GTPase effector, and cell cycle checkpoints were significantly enriched. ssGSEA showed a positive correlation between MUTYH expression and the infiltration levels of Th2 cells, NK cells, and T helper cells. Moreover, a negative correlation was found between MUTYH expression and the infiltration levels of dendritic cells (DCs) and cytotoxic cells. Conclusions MUTYH expression levels were positively correlated with immune checkpoint gene expression levels in HCC tissues. The expression level of MUTYH was related to the prognosis of HCC and the immune infiltration of HCC.
Collapse
Affiliation(s)
- Fan Yang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Infectious Diseases, The First People's Hospital of Kashi, Kashi, Xinjiang, China
- Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qinghai Lian
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Beibei Ni
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiusheng Qiu
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yizhan He
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoguang Zou
- Department of Infectious Diseases, The First People's Hospital of Kashi, Kashi, Xinjiang, China
| | - Fangping He
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenjie Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
88
|
LLeonart ME. Understanding RNA-binding proteins. Semin Cancer Biol 2022; 86:135-136. [PMID: 35787942 DOI: 10.1016/j.semcancer.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells. Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona (Spain)..
| |
Collapse
|
89
|
Hai Y, Kawachi A, He X, Yoshimi A. Pathogenic Roles of RNA-Binding Proteins in Sarcomas. Cancers (Basel) 2022; 14:cancers14153812. [PMID: 35954475 PMCID: PMC9367343 DOI: 10.3390/cancers14153812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
RNA-binding proteins (RBPs) are proteins that physically and functionally bind to RNA to regulate the RNA metabolism such as alternative splicing, polyadenylation, transport, maintenance of stability, localization, and translation. There is accumulating evidence that dysregulated RBPs play an essential role in the pathogenesis of malignant tumors including a variety of types of sarcomas. On the other hand, prognosis of patients with sarcoma, especially with sarcoma in advanced stages, is very poor, and almost no effective standard treatment has been established for most of types of sarcomas so far, highlighting the urgent need for identifying novel therapeutic targets based on the deep understanding of pathogenesis. Therefore, defining the network of interactions between RBPs and disease-related RNA targets will contribute to a better understanding of sarcomagenesis and identification of a novel therapeutic target for sarcomas.
Collapse
Affiliation(s)
- Yu Hai
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Asuka Kawachi
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Akihide Yoshimi
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Correspondence: ; Tel.: +81-3-3542-2511
| |
Collapse
|
90
|
Bao G, Li T, Guan X, Yao Y, Liang J, Xiang Y, Zhong X. Development of a Prognostic Alternative Splicing Signature Associated With Tumor Microenvironment Immune Profiles in Lung Adenocarcinoma. Front Oncol 2022; 12:880478. [PMID: 35832557 PMCID: PMC9271776 DOI: 10.3389/fonc.2022.880478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Alternative splicing (AS), a pivotal post-transcriptional process across more than 95% of human transcripts, is involved in transcript structural variations and protein complexity. Clinical implications of AS events and their interaction with tumor immunity were systematically analyzed in lung adenocarcinoma (LUAD). METHODS Transcriptome profiling as well as AS data of LUAD were retrospectively curated. Then, the network of the overall survival (OS)-relevant AS events with splicing factors was established. After screening OS-relevant AS events, a LASSO prognostic model was conducted and evaluated with ROC curves. A nomogram that integrated independent prognostic indicators was created. Immune response and immune cell infiltration were estimated with ESTIMATE, CIBERSORT, and ssGSEA algorithms. Drug sensitivity was inferred with pRRophetic package. RESULTS In total, 2415 OS-relevant AS events were identified across LUAD patients. The interaction network of splicing factors with OS-relevant AS events uncovered the underlying regulatory mechanisms of AS events in LUAD. Thereafter, a prognostic model containing 12 AS events was developed, which acted as a reliable and independent prognostic indicator following verification. A nomogram that constituted stage and risk score displayed great effectiveness in evaluating the survival likelihood. Moreover, the AS-based prognostic model was in relation to immune response and immune cell infiltration. Patients with a high-risk score displayed therapeutic superiority to cisplatin, erlotinib, gefitinib, and gemcitabine. Finally, three AS-relevant genes (CDKN2A, TTC39C, and PKIB) were identified as prognostic markers. CONCLUSION Collectively, our findings developed an AS event signature with powerful prognostic predictive efficacy in LUAD.
Collapse
Affiliation(s)
- Guangyao Bao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xiaojiao Guan
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yao Yao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jie Liang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yifan Xiang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|