51
|
Novak EA, Mollen KP. Mitochondrial dysfunction in inflammatory bowel disease. Front Cell Dev Biol 2015; 3:62. [PMID: 26484345 PMCID: PMC4589667 DOI: 10.3389/fcell.2015.00062] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) represents a group of idiopathic disorders characterized by chronic or recurring inflammation of the gastrointestinal tract. While the exact etiology of disease is unknown, IBD is recognized to be a complex, multifactorial disease that results from an intricate interplay of genetic predisposition, an altered immune response, changes in the intestinal microbiota, and environmental factors. Together, these contribute to a destruction of the intestinal epithelial barrier, increased gut permeability, and an influx of immune cells. Given that most cellular functions as well as maintenance of the epithelial barrier is energy-dependent, it is logical to assume that mitochondrial dysfunction may play a key role in both the onset and recurrence of disease. Indeed several studies have demonstrated evidence of mitochondrial stress and alterations in mitochondrial function within the intestinal epithelium of patients with IBD and mice undergoing experimental colitis. Although the hallmarks of mitochondrial dysfunction, including oxidative stress and impaired ATP production are known to be evident in the intestines of patients with IBD, it is as yet unclear whether these processes occur as a cause of consequence of disease. We provide a current review of mitochondrial function in the setting of intestinal inflammation during IBD.
Collapse
Affiliation(s)
- Elizabeth A Novak
- Department of Surgery, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Kevin P Mollen
- Department of Surgery, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| |
Collapse
|
52
|
Wandu WS, Tan C, Ogbeifun O, Vistica BP, Shi G, Hinshaw SJH, Xie C, Chen X, Klinman DM, Cai H, Gery I. Leucine-Rich Repeat Kinase 2 (Lrrk2) Deficiency Diminishes the Development of Experimental Autoimmune Uveitis (EAU) and the Adaptive Immune Response. PLoS One 2015; 10:e0128906. [PMID: 26067490 PMCID: PMC4465928 DOI: 10.1371/journal.pone.0128906] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 05/02/2015] [Indexed: 12/25/2022] Open
Abstract
Background Mutations in LRRK2 are related to certain forms of Parkinson’s disease and, possibly, to the pathogenesis of Crohn’s disease. In both these diseases inflammatory processes participate in the pathogenic process. LRRK2 is expressed in lymphoid cells and, interestingly, Lrrk2 (-/-) mice were reported to develop more severe experimental colitis than their wild type (WT) controls. Here, we examined the possible involvement of LRRK2 in the pathogenesis of experimental autoimmune uveitis (EAU), an animal model for human uveitis, by testing Lrrk2 (-/-) mice for their capacity to develop this experimental eye disease and related immune responses. Methods Lrrk2 (-/-) mice and their WT controls (C57Bl/6) were immunized with interphotoreceptor retinoid-binding protein (IRBP) and compared for their development of EAU, delayed type hypersensitivity (DTH) by skin tests, production of cytokines in culture, and expression of interferon (IFN)-γ, interleukin (IL)-17 and FoxP3 by spleen cells, using flow cytometry. Peritoneal macrophages were examined for their production of cytokines/chemokines in culture following stimulation with LPS or the oligodeoxynucleotide CpG. The Lrrk2 (-/-) and WT mice were also compared for their response to bovine serum albumin (BSA). Results The Lrrk2 (-/-) mice developed lower levels of EAU, DTH responses and cytokine production by lymphocytes than did their WT controls. Intracellular expression of IFN-γ and IL-17, by spleen cells, and secretion of cytokines/chemokines by activated peritoneal macrophages of Lrrk2 (-/-) mice trended toward diminished levels, although variabilities were noted. The expression levels of FoxP3 by Lrrk2 (-/-) spleen cells, however, were similar to those seen in WT controls. Consistent with their low response to IRBP, Lrrk2 (-/-) mice responded to BSA less vigorously than their WT controls. Conclusions Lrrk2 deficiency in mice diminished the development of EAU and the related adaptive immune responses to IRBP as compared to the WT controls.
Collapse
Affiliation(s)
- Wambui S. Wandu
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Cuiyan Tan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Osato Ogbeifun
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Barbara P. Vistica
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Guangpu Shi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Samuel J. H. Hinshaw
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Chengsong Xie
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Xi Chen
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Dennis M. Klinman
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States of America
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Igal Gery
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, United States of America
- * E-mail:
| |
Collapse
|
53
|
Zhang HS, Chen Y, Fan L, Xi QL, Wu GH, Li XX, Yuan TL, He SQ, Yu Y, Shao ML, Liu Y, Bai CG, Ling ZQ, Li M, Liu Y, Fang J. The Endoplasmic Reticulum Stress Sensor IRE1α in Intestinal Epithelial Cells Is Essential for Protecting against Colitis. J Biol Chem 2015; 290:15327-36. [PMID: 25925952 DOI: 10.1074/jbc.m114.633560] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Indexed: 12/19/2022] Open
Abstract
Intestinal epithelial cells (IECs) have critical roles in maintaining homeostasis of intestinal epithelium. Endoplasmic reticulum (ER) stress is implicated in intestinal epithelium homeostasis and inflammatory bowel disease; however, it remains elusive whether IRE1α, a major sensor of ER stress, is directly involved in these processes. We demonstrate here that genetic ablation of Ire1α in IECs leads to spontaneous colitis in mice. Deletion of IRE1α in IECs results in loss of goblet cells and failure of intestinal epithelial barrier function. IRE1α deficiency induces cell apoptosis through induction of CHOP, the pro-apoptotic protein, and sensitizes cells to lipopolysaccharide, an endotoxin from bacteria. IRE1α deficiency confers upon mice higher susceptibility to chemical-induced colitis. These results suggest that IRE1α functions to maintain the intestinal epithelial homeostasis and plays an important role in defending against inflammation bowel diseases.
Collapse
Affiliation(s)
- Hai-Sheng Zhang
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Ying Chen
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Li Fan
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Qiu-Lei Xi
- the Department of Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai 200030
| | - Guo-Hao Wu
- the Department of Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai 200030
| | - Xiu-Xiu Li
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Tang-Long Yuan
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Sheng-Qi He
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Yue Yu
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Meng-Le Shao
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Yang Liu
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Chen-Guang Bai
- the Department of Pathology, Changhai Hospital, the Second Military Medical University, Shanghai 200433
| | - Zhi-Qiang Ling
- the Department of Pathology, Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital and Zhejiang Cancer Center, Hangzhou 310022
| | - Min Li
- the Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Yong Liu
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,
| | - Jing Fang
- From the Laboratory of Food Safety Research, Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, the Department of Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai 200030, the Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, and
| |
Collapse
|
54
|
Central role of gimap5 in maintaining peripheral tolerance and T cell homeostasis in the gut. Mediators Inflamm 2015; 2015:436017. [PMID: 25944983 PMCID: PMC4405212 DOI: 10.1155/2015/436017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/15/2014] [Indexed: 01/01/2023] Open
Abstract
Inflammatory bowel disease (IBD) including Crohn's disease and ulcerative colitis is often precipitated by an abnormal immune response to microbiota due to host genetic aberrancies. Recent studies highlight the importance of the host genome and microflora interactions in the pathogenesis of mucosal inflammation including IBD. Specifically, genome-wide (GWAS) and also next-generation sequencing (NGS)—including whole exome or genome sequencing—have uncovered a large number of susceptibility loci that predispose to autoimmune diseases and/or the two phenotypes of IBD. In addition, the generation of “IBD-prone” animal models using both reverse and forward genetic approaches has not only helped confirm the identification of susceptibility loci but also shed critical insight into the underlying molecular and cellular pathways that drive colitis development. In this review, we summarize recent findings derived from studies involving a novel early-onset model of colitis as it develops in GTPase of immunity-associated protein 5- (Gimap5-) deficient mice. In humans, GIMAP5 has been associated with autoimmune diseases although its function is poorly defined. Here, we discuss how defects in Gimap5 function impair immunological tolerance and lymphocyte survival and ultimately drive the development of CD4+ T cell-mediated early-onset colitis.
Collapse
|
55
|
Zhao J, Song Q, Wang L, Dong X, Yang X, Bai X, Song B, Damaser M, Li L. Detrusor myocyte autophagy protects the bladder function via inhibiting the inflammation in cyclophosphamide-induced cystitis in rats. PLoS One 2015; 10:e0122597. [PMID: 25830308 PMCID: PMC4382282 DOI: 10.1371/journal.pone.0122597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 02/11/2015] [Indexed: 11/18/2022] Open
Abstract
Autophagy, a highly conserved homeostatic cellular process that removes and recycles damaged proteins and organelles in response to cellular stress, is believed to play a crucial role in the immune response and inflammation. The role of autophagy in bladder cystitis, however, has not well been clarified. Here we investigate the role of detrusor myocytes autophagy (DMA) in cyclophosphamide-induced cystitis animal model. 164 female Sprague-Dawley rats were randomized into three experimental groups and compared to three control groups, respectively. The expressions of microtubule-associated protein 1 light chain 3 (LC3), p-p70s6k (the phosphorylated form of ribosomal protein S6), SOD2 (superoxide dismutase 2) in the bladder muscular layer were measured using western blot. The co-location of LC3, alpha-smooth muscle actin (α-SMA), and autophagic vacuoles were investigated with double-labeled immunofluorescence and transmission electron microscopy (TEM). The expression of lL-1β, IL-6, IL-8, malondialdehyde (MDA), and glutathione (GSH) in the detrusor layer were analyzed using ELISA. The bladder inflammation and the number of mast cells in the muscular layer were analyzed by histology. The bladder function was evaluated using cystometry. In cyclophosphamide-induced cystitis, autophagy was detected in detrusor myocytes by increased LC3, p-p70s6k expression, and autophagosomes. However, the presence of enhanced inflammation and oxidative stress in the cyclophosphamide-treated group suggest autophagy of detrusor myocytes may not be sufficiently activated. Inflammation and oxidative stress were significantly decreased and the bladder histology and micturition function were significantly improved with rapamycin (RAPA, autophagy agonist) pre-treatment. In contrast, inflammation and oxidative stress were dramatically increased and the bladder histology and function were negatively affected with chloroquine (CQ, autophagy blocker) pre-treated. These findings preferentially provide evidence of the association between DMA and cyclophosphamide-induced cystitis in rats. The autophagy agonist RAPA significantly decreased the inflammation and protected the bladder function, which might be considered as a potential treatment for interstitial cystitis.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qixiang Song
- Department of Biomedical Engineering, the Cleveland Clinic, Cleveland, OH, United States of America
| | - Liang Wang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xingliang Yang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xinyu Bai
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Bo Song
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Margot Damaser
- Department of Biomedical Engineering, the Cleveland Clinic, Cleveland, OH, United States of America
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
56
|
Abstract
In eukaryotic cells, protein folding and modification in the endoplasmic reticulum (ER) is highly sensitive to disturbances of homeostasis. The accumulation of unfolded and misfolded proteins in the ER lumen, termed ER stress, activates intracellular signaling pathways to resolve the protein-folding defect. This unfolded protein response (UPR) increases the capacity of ER protein folding, reduces global protein synthesis, and activates ER-associated protein degradation. If ER stress is too severe or chronic, or the UPR is compromised and not able to restore ER protein-folding homeostasis, numerous apoptotic signaling pathways are activated. Preclinical and clinical studies in the past decade indicate that ER stress and the UPR have a significant impact on the pathogenesis of inflammatory bowel disease. Paneth and goblet cells, 2 epithelial cell populations in the gut, rely on a robust ER function for protein folding and secretion. Several immune cells are orchestrated by ER stress and the UPR for differentiation, activation, migration, and survival. In addition, a variety of exogenous and endogenous molecules in the intestinal lumen affect ER function, making ER stress and the UPR relevant cellular signals in intestinal homeostasis. Recent studies demonstrated that unresolved ER stress and/or dysregulated UPR may cause inflammatory bowel disease by inducing epithelial cell death, impairing mucosal barrier function, and activating proinflammatory response in the gut. With our increased understanding of ER stress in inflammatory bowel disease pathogenesis, it is now possible to develop novel therapies to improve ER protein-folding homeostasis and target-specific UPR pathways in cells residing in the intestinal mucosa.
Collapse
|
57
|
Endoplasmic reticulum stress in intestinal epithelial cell function and inflammatory bowel disease. Gastroenterol Res Pract 2015; 2015:328791. [PMID: 25755668 PMCID: PMC4338396 DOI: 10.1155/2015/328791] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 12/11/2022] Open
Abstract
In eukaryotic cells, perturbation of protein folding homeostasis in the endoplasmic reticulum (ER) causes accumulation of unfolded and misfolded proteins in the ER lumen, which activates intracellular signaling pathways termed the unfolded protein response (UPR). Recent studies have linked ER stress and the UPR to inflammatory bowel disease (IBD). The microenvironment of the ER is affected by a myriad of intestinal luminal molecules, implicating ER stress and the UPR in proper maintenance of intestinal homeostasis. Several intestinal cell populations, including Paneth and goblet cells, require robust ER function for protein folding, maturation, and secretion. Prolonged ER stress and impaired UPR signaling may cause IBD through: (1) induction of intestinal epithelial cell apoptosis, (2) disruption of mucosal barrier function, and (3) induction of the proinflammatory response in the gut. Based on our increased understanding of ER stress in IBD, new pharmacological approaches can be developed to improve intestinal homeostasis by targeting ER protein-folding in the intestinal epithelial cells (IECs).
Collapse
|
58
|
Sun Y, Pu LY, Lu L, Wang XH, Zhang F, Rao JH. N-acetylcysteine attenuates reactive-oxygen-species-mediated endoplasmic reticulum stress during liver ischemia-reperfusion injury. World J Gastroenterol 2014; 20:15289-15298. [PMID: 25386077 PMCID: PMC4223262 DOI: 10.3748/wjg.v20.i41.15289] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/08/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of N-acetylcysteine (NAC) on endoplasmic reticulum (ER) stress and tissue injury during liver ischemia reperfusion injury (IRI).
METHODS: Mice were injected with NAC (300 mg/kg) intraperitoneally 2 h before ischemia. Real-time polymerase chain reaction and western blotting determined ER stress molecules (GRP78, ATF4 and CHOP). To analyze the role of NAC in reactive oxygen species (ROS)-mediated ER stress and apoptosis, lactate dehydrogenase (LDH) was examined in cultured hepatocytes treated by H2O2 or thapsigargin (TG).
RESULTS: NAC treatment significantly reduced the level of ROS and attenuated ROS-induced liver injury after IRI, based on glutathione, malondialdehyde, serum alanine aminotransferase levels, and histopathology. ROS-mediated ER stress was significantly inhibited in NAC-treated mice. In addition, NAC treatment significantly reduced caspase-3 activity and apoptosis after reperfusion, which correlated with the protein expression of Bcl-2 and Bcl-xl. Similarly, NAC treatment significantly inhibited LDH release from hepatocytes treated by H2O2 or TG.
CONCLUSION: This study provides new evidence for the protective effects of NAC treatment on hepatocytes during IRI. Through inhibition of ROS-mediated ER stress, NAC may be critical to inhibit the ER-stress-related apoptosis pathway.
Collapse
|
59
|
Muraro D, Lauffenburger DA, Simmons A. Prioritisation and network analysis of Crohn's disease susceptibility genes. PLoS One 2014; 9:e108624. [PMID: 25268122 PMCID: PMC4182533 DOI: 10.1371/journal.pone.0108624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/01/2014] [Indexed: 01/23/2023] Open
Abstract
Recent Genome-Wide Association Studies (GWAS) have revealed numerous Crohn's disease susceptibility genes and a key challenge now is in understanding how risk polymorphisms in associated genes might contribute to development of this disease. For a gene to contribute to disease phenotype, its risk variant will likely adversely communicate with a variety of other gene products to result in dysregulation of common signaling pathways. A vital challenge is to elucidate pathways of potentially greatest influence on pathological behaviour, in a manner recognizing how multiple relevant genes may yield integrative effect. In this work we apply mathematical analysis of networks involving the list of recently described Crohn's susceptibility genes, to prioritise pathways in relation to their potential development of this disease. Prioritisation was performed by applying a text mining and a diffusion based method (GRAIL, GPEC). Prospective biological significance of the resulting prioritised list of proteins is highlighted by changes in their gene expression levels in Crohn's patients intestinal tissue in comparison with healthy donors.
Collapse
Affiliation(s)
- Daniele Muraro
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alison Simmons
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
60
|
Chaudhari N, Talwar P, Parimisetty A, Lefebvre d'Hellencourt C, Ravanan P. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 2014; 8:213. [PMID: 25120434 PMCID: PMC4114208 DOI: 10.3389/fncel.2014.00213] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022] Open
Abstract
Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.
Collapse
Affiliation(s)
- Namrata Chaudhari
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| | - Priti Talwar
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| | - Avinash Parimisetty
- Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, EA 41516, Plateforme CYROI, Université de La Réunion , Saint Denis de La Réunion , France
| | - Christian Lefebvre d'Hellencourt
- Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, EA 41516, Plateforme CYROI, Université de La Réunion , Saint Denis de La Réunion , France
| | - Palaniyandi Ravanan
- Apoptosis and Cell Death Research Lab, School of Biosciences and Technology, Vellore Institute of Technology University , Vellore , India
| |
Collapse
|
61
|
Loss of Sonic hedgehog leads to alterations in intestinal secretory cell maturation and autophagy. PLoS One 2014; 9:e98751. [PMID: 24887421 PMCID: PMC4041759 DOI: 10.1371/journal.pone.0098751] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022] Open
Abstract
Background Intestinal epithelial cells express the Sonic and Indian hedgehog ligands. Despite the strong interest in gut hedgehog signaling in GI diseases, no studies have specifically addressed the singular role of intestinal epithelial cell Sonic hedgehog signaling. The aim of this study was to investigate the specific role of Sonic hedgehog in adult ileal epithelial homeostasis. Methodology/Principal Findings A Sonic hedgehog intestinal epithelial conditional knockout mouse model was generated. Assessment of ileal histological abnormalities, crypt epithelial cell proliferation, epithelial cell fate, junctional proteins, signaling pathways, as well as ultrastructural analysis of intracellular organelles were performed in control and mutant mice. Mice lacking intestinal epithelial Sonic Hedgehog displayed decreased ileal crypt/villus length, decreased crypt proliferation as well as a decrease in the number of ileal mucin-secreting goblet cells and antimicrobial peptide-secreting Paneth cells during adult life. These secretory cells also exhibited disruption of their secretory products in mutant mice. Ultrastructural microscopy analysis revealed a dilated ER lumen in secretory cells. This phenotype was also associated with a decrease in autophagy. Conclusions/Significance Altogether, these findings indicate that the loss of Sonic hedgehog can lead to ileal secretory cell modifications indicative of endoplasmic reticulum stress, accompanied by a significant reduction in autophagy.
Collapse
|
62
|
Erlotinib promotes endoplasmic reticulum stress-mediated injury in the intestinal epithelium. Toxicol Appl Pharmacol 2014; 278:45-52. [PMID: 24768708 DOI: 10.1016/j.taap.2014.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 01/23/2023]
Abstract
Erlotinib, a popular drug for treating non-small cell lung cancer (NSCLC), causes diarrhea in approximately 55% of patients receiving this drug. In the present study, we found that erlotinib induced barrier dysfunction in rat small intestine epithelial cells (IEC-6) by increasing epithelial permeability and down-regulating E-cadherin. The mRNA levels of various pro-inflammatory cytokines (Il-6, Il-25 and Il-17f) were increased after erlotinib treatment in IEC-6 cells. Erlotinib concentration- and time-dependently induced apoptosis and endoplasmic reticulum (ER) stress in both IEC-6 and human colon epithelial cells (CCD 841 CoN). Intestinal epithelial injury was also observed in male C57BL/6J mice administrated with erlotinib. Knockdown of C/EBP homologous protein (CHOP) with small interference RNA partially reversed erlotinib-induced apoptosis, production of IL-6 and down-regulation of E-cadherin in cultured intestinal epithelial cells. In conclusion, erlotinib caused ER stress-mediated injury in the intestinal epithelium, contributing to its side effects of diarrhea in patients.
Collapse
|
63
|
Pacheco R, Contreras F, Zouali M. The dopaminergic system in autoimmune diseases. Front Immunol 2014; 5:117. [PMID: 24711809 PMCID: PMC3968755 DOI: 10.3389/fimmu.2014.00117] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/05/2014] [Indexed: 01/02/2023] Open
Abstract
Bidirectional interactions between the immune and the nervous systems are of considerable interest both for deciphering their functioning and for designing novel therapeutic strategies. The past decade has brought a burst of insights into the molecular mechanisms involved in neuroimmune communications mediated by dopamine. Studies of dendritic cells (DCs) revealed that they express the whole machinery to synthesize and store dopamine, which may act in an autocrine manner to stimulate dopamine receptors (DARs). Depending on specific DARs stimulated on DCs and T cells, dopamine may differentially favor CD4+ T cell differentiation into Th1 or Th17 inflammatory cells. Regulatory T cells can also release high amounts of dopamine that acts in an autocrine DAR-mediated manner to inhibit their suppressive activity. These dopaminergic regulations could represent a driving force during autoimmunity. Indeed, dopamine levels are altered in the brain of mouse models of multiple sclerosis (MS) and lupus, and in inflamed tissues of patients with inflammatory bowel diseases or rheumatoid arthritis (RA). The distorted expression of DARs in peripheral lymphocytes of lupus and MS patients also supports the importance of dopaminergic regulations in autoimmunity. Moreover, dopamine analogs had beneficial therapeutic effects in animal models, and in patients with lupus or RA. We propose models that may underlie key roles of dopamine and its receptors in autoimmune diseases.
Collapse
Affiliation(s)
- Rodrigo Pacheco
- Laboratory of Neuroimmunology, Fundación Ciencia & Vida , Santiago , Chile ; Programa de Biomedicina, Universidad San Sebastián , Santiago , Chile
| | - Francisco Contreras
- Laboratory of Neuroimmunology, Fundación Ciencia & Vida , Santiago , Chile ; Universidad Andrés Bello, Facultad de Ciencias Biológicas , Santiago , Chile
| | - Moncef Zouali
- INSERM UMR 1132 , Paris , France ; University Paris Diderot , Paris , France
| |
Collapse
|
64
|
Activated macrophage-like synoviocytes are resistant to endoplasmic reticulum stress-induced apoptosis in antigen-induced arthritis. Inflamm Res 2014; 63:335-46. [PMID: 24468888 DOI: 10.1007/s00011-013-0705-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/30/2013] [Accepted: 12/26/2013] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To explore the characteristic expression of endoplasmic reticulum (ER) stress protein in antigen-induced arthritis models and the role of ER stress in arthritis. METHODS Effective animal models of rheumatoid arthritis in rabbits and rats were induced by methylated bovine serum albumin and Freund's complete adjuvant. Pathological changes were assessed by magnetic resonance imaging and histological analysis. The expression and localization of ER stress proteins in synovium and peritoneal macrophages (PMΦ) were analyzed by double immunofluorescence staining. RT-PCR was performed to detect mRNA expression of ER stress-related genes. Tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) levels in synoviocytes were measured by RT-PCR and radioimmunoassay. RESULTS We found that the ER stress marker BiP was highly up-regulated in arthritis synovium and extensively expressed in fibroblast-like synoviocytes (FLS) and macrophage-like synoviocytes (MLS). The expression of the pro-apoptotic factor CHOP/GADD153 was slightly elevated in inflammatory synovium and mainly localized in FLS, but insignificant in MLS. Unexpectedly, increased expression of CHOP was observed in PMΦ in arthritis rats. Likewise, cleaved caspase-3 was rarely expressed in MLS. In addition, induction of ER stress by tunicamycin resulted in significantly increased expression of pro-inflammatory molecules such as IL-1β and TNF-α in cultured inflammatory FLS. CONCLUSION Differential activation of the ER stress proteins in synovium MLS may contribute to the resistance of synoviocytes to ER stress-induced apoptosis. Furthermore, ER stress is a potential mediator of arthritis inflammation.
Collapse
|
65
|
Thakur PC, Davison JM, Stuckenholz C, Lu L, Bahary N. Dysregulated phosphatidylinositol signaling promotes endoplasmic-reticulum-stress-mediated intestinal mucosal injury and inflammation in zebrafish. Dis Model Mech 2013; 7:93-106. [PMID: 24135483 PMCID: PMC3882052 DOI: 10.1242/dmm.012864] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysregulated phosphatidylinositol (PI) signaling has been implicated in human gastrointestinal (GI) malignancies and inflammatory states, underlining the need to study pathophysiological roles of PI in an in vivo genetic model. Here, we study the significance of PI in GI pathophysiology using the zebrafish mutant cdipthi559, which lacks PI synthesis, and unravel a crucial role of PI in intestinal mucosal integrity and inflammation. The cdipthi559 mutants exhibit abnormal villous architecture and disorganized proliferation of intestinal epithelial cells (IECs), with pathologies reminiscent of inflammatory bowel disease (IBD), including apoptosis of goblet cells, abnormal mucosecretion, bacterial overgrowth and leukocyte infiltration. The mutant IECs exhibit vacuolation, microvillus atrophy and impaired proliferation. The cdipthi559 gene expression profile shows enrichment of acute phase response signaling, and the endoplasmic reticulum (ER) stress factors hspa5 and xbp1 are robustly activated in the mutant GI tissue. Temporal electron micrographic analyses reveal that PI-deficient IECs undergo sequential ER-Golgi disruption, mitochondrial depletion, macroautophagy and cell death, consistent with chronic ER-stress-mediated cytopathology. Furthermore, pharmacological induction of ER stress by inhibiting protein glycosylation or PI synthase inhibition in leukocyte-specific reporter lines replicates the cdipthi559 inflammatory phenotype, suggesting a fundamental role of PI metabolism and ER stress in mucosal inflammation. Antibiotics and anti-inflammatory drugs resolved the inflammation, but not the autophagic necroapoptosis of IECs, suggesting that bacterial overgrowth can exacerbate ER stress pathology, whereas persistent ER stress is sufficient to trigger inflammation. Interestingly, the intestinal phenotype was partially alleviated by chemical chaperones, suggesting their therapeutic potential. Using zebrafish genetic and pharmacological models, this study demonstrates a newly identified link between intracellular PI signaling and ER-stress-mediated mucosal inflammation. The zebrafish cdipt mutants provide a powerful tool for dissecting the fundamental mechanisms of ER-stress-mediated human GI diseases and a platform to develop molecularly targeted therapies.
Collapse
Affiliation(s)
- Prakash C Thakur
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| | | | | | | | | |
Collapse
|
66
|
Műzes G, Tulassay Z, Sipos F. Interplay of autophagy and innate immunity in Crohn's disease: a key immunobiologic feature. World J Gastroenterol 2013; 19:4447-4454. [PMID: 23901219 PMCID: PMC3725368 DOI: 10.3748/wjg.v19.i28.4447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/19/2013] [Accepted: 07/04/2013] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease representing a clinical phenotype of inflammatory bowel disease is a polygenic immune disorder with complex multifactor etiology. Recent genome-wide association studies of susceptibility loci have highlighted on the importance of the autophagy pathway, which previously had not been implicated in disease pathology. Autophagy represents an evolutionarily highly conserved multi-step process of cellular self-digestion due to sequestration of excessive, damaged, or aged proteins and intracellular organelles in double-membranous vesicles of autophagosomes, terminally self-digested in lysosomes. Autophagy is deeply involved in regulation of cell development and differentiation, survival and senescence, and it also fundamentally affects the inflammatory pathways, as well as the innate and adaptive arms of immune responses. Autophagy is mainly activated due to sensors of the innate immunity, i.e., by pattern recognition receptor signaling. The interplay of genes regulating immune functions is strongly influenced by the environment, especially gut resident microbiota. The basic challenge for intestinal immune recognition is the requirement of a simultaneous delicate balance between tolerance and responsiveness towards microbes. On the basis of autophagy-related risk genetic polymorphisms (ATG16L1, IRGM, NOD2, XBP1) impaired sensing and handling of intracellular bacteria by innate immunity, closely interrelated with the autophagic and unfolded protein pathways seem to be the most relevant immunobiologic events. Autophagy is now widely considered as a key regulator mechanism with the capacity to integrate several aspects of Crohn's disease pathogenesis. In this review, recent advances in the exciting crosstalk of susceptibility coding variants-related autophagy and innate immunity are discussed.
Collapse
|
67
|
Steinbrenner H, Speckmann B, Sies H. Toward understanding success and failures in the use of selenium for cancer prevention. Antioxid Redox Signal 2013; 19:181-91. [PMID: 23421468 PMCID: PMC3689159 DOI: 10.1089/ars.2013.5246] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Adequate and supranutritional selenium (Se) intake, maintaining full expression of selenoproteins, has been assumed to be beneficial for human health with respect to prevention of cancer. Strikingly, the effectiveness of dietary Se supplementation depends on many factors: baseline Se status, age, gender, and genetic background of an individual; type of cancer; and time point of intervention in addition to metabolic conversion and dose of applied Se compounds. RECENT ADVANCES Se intake levels for optimization of plasma selenoproteins in humans have been delineated. Regulation, function, and genetic variants of several selenoproteins have been characterized in the intestine, where Se-mediated prevention of colorectal cancer appears to be particularly promising. CRITICAL ISSUES Numerous cell culture and animal studies indicate anticarcinogenic capacity of various Se compounds but, at present, the outcome of human studies is inconsistent and, in large part, disappointing. Moreover, supranutritional Se intake may even trigger adverse health effects, possibly increasing the risk for Type 2 diabetes in Se-replete populations. FUTURE DIRECTIONS To improve protocols for the use of Se in cancer prevention, knowledge on cellular and systemic actions of Se compounds needs to be broadened and linked to individual-related determinants such as the occurrence of variants in selenoprotein genes and the Se status. Based on better mechanistic insight, populations and individuals that may benefit most from dietary Se supplementation need to be defined and studied in suitably planned intervention trials.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | |
Collapse
|
68
|
Shabala L, Walker EJ, Eklund A, Randall-Demllo S, Shabala S, Guven N, Cook AL, Eri RD. Exposure of colonic epithelial cells to oxidative and endoplasmic reticulum stress causes rapid potassium efflux and calcium influx. Cell Biochem Funct 2013; 31:603-11. [PMID: 23280987 DOI: 10.1002/cbf.2946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/07/2012] [Accepted: 12/05/2012] [Indexed: 11/11/2022]
Abstract
Endoplasmic reticulum (ER) stress and oxidative stress have recently been linked to the pathogenesis of inflammatory bowel diseases. Under physiological conditions, intestinal epithelial cells are exposed to ER and oxidative stress affecting the cellular ionic homeostasis. However, these altered ion flux 'signatures' during these stress conditions are poorly characterized. We investigated the kinetics of K(+) , Ca(2+) and H(+) ion fluxes during ER and oxidative stress in a colonic epithelial cell line LS174T using a non-invasive microelectrode ion flux estimation technique. ER and oxidative stress were induced by cell exposure to tunicamycin (TM) and copper ascorbate (CuAsc), respectively, from 1 to 24 h. Dramatic K(+) efflux was observed following acute ER stress with peak K(+) efflux being -30·6 and -138·7 nmolm(-2) s(-1) for 10 and 50 µg ml(-1) , respectively (p < 0·01). TM-dependent Ca(2+) uptake was more prolonged with peak values of 0·85 and 2·68 nmol m(-2) s(-1) for 10 and 50 µg ml(-1) TM, respectively (p < 0·02). Ion homeostasis was also affected by the duration of ER stress. Increased duration of TM treatment from 0 to 18 h led to increases in both K(+) efflux and Ca(2+) uptake. While K(+) changes were significantly higher at each time point tested, Ca(2+) uptake was significantly higher only after prolonged treatment (18 h). CuAsc also led to an increased K(+) efflux and Ca(2+) uptake. Functional assays to investigate the effect of inhibiting K(+) efflux with tetraethylammonium resulted in increased cell viability. We conclude that ER/oxidative stress in colonic epithelial cells cause dramatic K(+) , Ca(2+) and H(+) ion flux changes, which may predispose this lineage to poor stress recovery reminiscent of that seen in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Lana Shabala
- School of Agricultural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Kim SJ, Hong EH, Lee BR, Park MH, Kim JW, Pyun AR, Kim YJ, Chang SY, Chin YW, Ko HJ. α-Mangostin Reduced ER Stress-mediated Tumor Growth through Autophagy Activation. Immune Netw 2012; 12:253-60. [PMID: 23396851 PMCID: PMC3566420 DOI: 10.4110/in.2012.12.6.253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/01/2012] [Accepted: 11/07/2012] [Indexed: 12/17/2022] Open
Abstract
α-Mangostin is a xanthon derivative contained in the fruit hull of mangosteen (Garcinia mangostana L.), and the administration of α-Mangostin inhibited the growth of transplanted colon cancer, Her/CT26 cells which expressed Her-2/neu as tumor antigen. Although α-Mangostin was reported to have inhibitory activity against sarco/endoplasmic reticulum Ca2+ ATPase like thapsigargin, it showed different activity for autophagy regulation. In the current study, we found that α-Mangostin induced autophagy activation in mouse intestinal epithelial cells, as GFP-LC3 transgenic mice were orally administered with 20 mg/kg of α-Mangostin daily for three days. However, the activation of autophagy by α-Mangostin did not significantly increase OVA-specific T cell proliferation. As we assessed ER stress by using XBP-1 reporter system and phosphorylation of eIF2α, thapsigargin-induced ER stress was significantly reduced by α-Mangostin. However, coadministration of thapsigargin with α-Mangostin completely blocked the antitumor activity of α-Mangostin, suggesting ER stress with autophagy blockade accelerated tumor growth in mouse colon cancer model. Thus the antitumor activity of α-Mangostin can be ascribable to the autophagy activation rather than ER stress induction.
Collapse
Affiliation(s)
- Sung-Jin Kim
- Laboratory of Immunology and Microbiology, College of Pharmacy, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Crespo I, San-Miguel B, Prause C, Marroni N, Cuevas MJ, González-Gallego J, Tuñón MJ. Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis. PLoS One 2012; 7:e50407. [PMID: 23209735 PMCID: PMC3508929 DOI: 10.1371/journal.pone.0050407] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/18/2012] [Indexed: 12/23/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and apoptotic cell death play an important role in the pathogenesis and perpetuation of inflammatory bowel disease (IBD). We aimed to explore the potential of glutamine to reduce ER stress and apoptosis in a rat model of experimental IBD. Colitis was induced in male Wistar rats by intracolonic administration of 30 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Glutamine (25 mg/dL) was given by rectal route daily for 2 d or 7 d. Both oxidative stress (TBARS concentration and oxidised/reduced glutathione ratio) and ER stress markers (CHOP, BiP, calpain-1 and caspase-12 expression) increased significantly within 48 h of TNBS instillation, and glutamine attenuated the extent of the changes. Glutamine also inhibited the significant increases of ATF6, ATF4 and spliced XBP-1 mRNA levels induced by TNBS instillation. TNBS-colitis resulted in a significant increase in p53 and cytochrome c expression, and a reduced Bcl-xL expression and Bax/Bcl-2 ratio. These effects were significantly inhibited by glutamine. Treatment with the amino acid also resulted in significant decreases of caspase-9, caspase-8 and caspase-3 activities. Double immunofluorescence staining showed co-localization of CHOP and cleaved caspase-3 in colon sections. Phospho-JNK and PARP-1 expression was also significantly higher in TNBS-treated rats, and treatment with glutamine significantly decreased JNK phosphorylation and PARP-1 proteolysis. To directly address the effect of glutamine on ER stress and apoptosis in epithelial cells, the ER stress inducers brefeldin A and tunicamycin were added to Caco-2 cells that were treated with glutamine (5 mM and 10 mM). The significant enhancement in PERK, ATF6 phosphorylated IRE1, BiP and cleaved caspase-3 expression induced by brefeldin A and tunicamycin was partly prevented by glutamine. Data obtained indicated that modulation of ER stress signalling and anti-apoptotic effects contribute to protection by glutamine against damage in TNBS-induced colitis.
Collapse
Affiliation(s)
- Irene Crespo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - Carolina Prause
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Norma Marroni
- Porto Alegre Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - María J. Cuevas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Javier González-Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - María J. Tuñón
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| |
Collapse
|
71
|
Tanjore H, Lawson WE, Blackwell TS. Endoplasmic reticulum stress as a pro-fibrotic stimulus. Biochim Biophys Acta Mol Basis Dis 2012. [PMID: 23201247 DOI: 10.1016/j.bbadis.2012.11.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Current evidence suggests a prominent role for endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) in fibrotic conditions affecting a number of internal organs, including the lungs, liver, GI tract, kidney, and heart. ER stress enhances the susceptibility of structural cells, in most cases the epithelium, to pro-fibrotic stimuli. Studies suggest that ER stress facilitates fibrotic remodeling through activation of pro-apoptotic pathways, induction of epithelial-mesenchymal transition, and promotion of inflammatory responses. While genetic mutations that lead to ER stress underlie some cases of fibrosis, including lung fibrosis secondary to mutations in surfactant protein C (SFTPC), a variety of other factors can cause ER stress. These ER stress inducing factors include metabolic abnormalities, oxidative stress, viruses, and environmental exposures. Interestingly, the ability of the ER to maintain homeostasis under stress diminishes with age, potentially contributing to the fact that fibrotic disorders increase in incidence with aging. Taken together, underlying ER stress and UPR pathways are emerging as important determinants of fibrotic remodeling in different forms of tissue fibrosis. Further work is needed to better define the mechanisms by which ER stress facilitates progressive tissue fibrosis. In addition, it remains to be seen whether targeting ER stress and the UPR could have therapeutic benefit. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Harikrishna Tanjore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | |
Collapse
|
72
|
Abstract
Endoplasmic reticulum (ER) stress due to the presence of misfolded or unfolded proteins in the ER invokes a fundamental biological response, termed the unfolded protein response (UPR). The UPR is orchestrated by three main proximal effectors, of which the IRE1/XBP1 pathway represents the evolutionarily most conserved one. Due to its high secretory burden, the intestinal epithelium is highly susceptible to perturbations in the UPR as has been revealed by functional investigations such as in mice that lack Xbp1 expression, specifically in the intestinal epithelial cells. Genetic studies have revealed several ER stress/UPR-associated genes, including XBP1, ORMDL3, AGR2 and MUC19 as risk factors for IBD, and specific functional, rare variants have been described for XBP1. Xbp1(Δ)(IEC) mice spontaneously develop small intestinal enteritis with crypt abscesses reminiscent of human IBD, while Agr2(-/-) mice develop granulomatous ileocolitis. Mechanistic studies into Xbp1(Δ)(IEC) mice revealed a major effect on Paneth cells associated with alterations in host-microbe interactions in the intestine, and the activation of key proinflammatory pathways in the host directly associated with unresolved ER stress and hypomorphic Xbp1 function. Remarkably, the intestinal epithelium of IBD patients commonly exhibits evidence of marked ER stress, which cannot easily be attributed to these genetic risk factors alone and indicates that the paradigm of ER stress-related inflammation might be both a primary originator as well as a potent perpetuator of intestinal inflammation in IBD.
Collapse
Affiliation(s)
- Timon-Eric Adolph
- Div of Gastroenterology and Hepatology, Dept of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Lukas Niederreiter
- Div of Gastroenterology and Hepatology, Dept of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Richard S Blumberg
- Div of Gastroenterology, Hepatology and Endoscopy, Dept of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Arthur Kaser
- Div of Gastroenterology and Hepatology, Dept of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
73
|
De Cruz P, Prideaux L, Wagner J, Ng SC, McSweeney C, Kirkwood C, Morrison M, Kamm MA. Characterization of the gastrointestinal microbiota in health and inflammatory bowel disease. Inflamm Bowel Dis 2012; 18:372-90. [PMID: 21604329 DOI: 10.1002/ibd.21751] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/31/2011] [Indexed: 02/06/2023]
Abstract
The enteric bacterial flora play a key role in maintaining health. Inflammatory bowel disease is associated with quantitative and qualitative alterations in the microbiota. Early characterization of the microbiota involved culture-dependent techniques. The advent of metagenomic techniques, however, allows for structural and functional characterization using culture-independent methods. Changes in diversity, together with quantitative alterations in specific bacterial species, have been identified. The functional significance of these changes, and their pathogenic role, remain to be elucidated.
Collapse
|
74
|
Zhang SX, Sanders E, Wang JJ. Endoplasmic reticulum stress and inflammation: mechanisms and implications in diabetic retinopathy. J Ocul Biol Dis Infor 2012; 4:51-61. [PMID: 23330021 DOI: 10.1007/s12177-011-9075-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/29/2011] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is the primary cellular compartment where proteins are synthesized and modified before they can be transported to their destination. Dysfunction of the ER impairs protein homeostasis and leads to the accumulation of misfolded/unfolded proteins in the ER, or ER stress. While it has long been recognized that ER stress is a major cause of conformational disorders, such as Alzheimer's disease, Huntington's disease, certain types of cancer, and type 2 diabetes, recent evidence suggests that ER stress is also implicated in many chronic inflammatory diseases. These diseases include irritable bowel syndrome, atherosclerosis, diabetic complications, and many others. Diabetic retinopathy is a common microvascular complication of diabetes, characterized by chronic inflammation, progressive damage to retinal vascular and neuronal cells, vascular leakage, and abnormal blood vessel growth (neovascularization). In this review, we discuss the role and mechanisms of ER stress in retinal inflammation and vascular damage in diabetic retinopathy.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Medicine, Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA ; Harold Hamm Diabetes Center at University of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA ; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd, Oklahoma City, OK USA
| | | | | |
Collapse
|
75
|
Novacek G, Papay P, Miehsler W, Reinisch W, Lichtenberger C, Sunder-Plassmann R, Vogelsang H, Gratzer C, Mannhalter C. Are inherited thrombotic risk factors associated with fibrostenosis in Crohn's disease? Inflamm Bowel Dis 2011; 17:2505-11. [PMID: 21351205 DOI: 10.1002/ibd.21648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/02/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Fibrostenotic lesions are common complications in Crohn's disease (CD) often requiring surgery. Inherited thrombotic risk factors are associated with fibrosis in other chronic inflammatory diseases. The aim of the study was to assess whether inherited thrombotic risk factors are associated with fibrostenosis in CD. METHODS Clinical data on 529 CD patients were collected retrospectively. Subjects were tested for and grouped according to the presence of factor V Leiden (FVL), the prothrombin G20210A, and the methylenetetrahydrofolate reductase C677T mutation (MTHFR). Patients who underwent CD-related intestinal surgery were assessed for the presence of fibrostenosis, which was the primary endpoint. The diagnosis of fibrostenosis was based on surgical, pathological, and histopathological reports. A Cox proportional hazards model was used for statistical analysis. RESULTS Thirty-two (6.1%, heterozygous 30, homozygous 2) patients were carriers of FVL, 19 (3.6%, all heterozygous) carried the prothrombin variant, and 318 (60.1%) the MTHFR variant (243 heterozygous, 75 homozygous). In all, 303 (57.3%) patients underwent intestinal surgery. Fibrostenosis was identified in 219 (72.3%) surgical specimens. The rate of first intestinal surgeries with fibrostenosis tended to be more frequent in patients with the homozygous 677TT MTHFR mutation (hazard ratio, HR 1.39; 95% confidence interval [CI]: 0.98-1.97; P = 0.067). After adjustment for potential confounders homozygous 677TT MTHFR mutation did not remain a risk factor for intestinal surgery with fibrostenosis (HR 1.23; 95% CI: 0.77-1.98; P = 0.387). FVL and the prothrombin variant had no influence on the primary endpoint. CONCLUSIONS The MTHFR 677TT mutation, factor V Leiden, and the prothrombin G20210A mutation are not associated with fibrostenosis in CD.
Collapse
Affiliation(s)
- Gottfried Novacek
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology; Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Kaser A, Flak MB, Tomczak MF, Blumberg RS. The unfolded protein response and its role in intestinal homeostasis and inflammation. Exp Cell Res 2011; 317:2772-9. [PMID: 21821022 PMCID: PMC3392150 DOI: 10.1016/j.yexcr.2011.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 01/26/2023]
Abstract
The unfolded protein response (UPR) is a signaling pathway from the endoplasmic reticulum (ER) to the nucleus that protects cells from the stress caused by misfolded or unfolded proteins [1, 2]. As such, ER stress is an ongoing challenge for all cells given the central biologic importance of secretion as part of normal physiologic functions. This is especially the case for cells that are highly dependent upon secretory function as part of their major duties. Within mucosal tissues, the intestinal epithelium is especially dependent upon an intact UPR for its normal activities [3]. This review will discuss the UPR and the special role that it provides in the functioning of the intestinal epithelium and, when dysfunctional, its implications for understanding mucosal homeostasis and intestinal inflammation, as occurs in inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Dept of Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Magdalena B. Flak
- Gastroenterology, Hepatology and Endoscopy Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michal F. Tomczak
- Gastroenterology, Hepatology and Endoscopy Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard S. Blumberg
- Gastroenterology, Hepatology and Endoscopy Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
77
|
Abstract
Polymorphisms in NOD2, encoding an intracellular pattern recognition receptor, contribute the largest fraction of genetic risk for Crohn's disease among the >40 risk loci identified so far. Autophagy plays a prominent role in the innate immune response towards intracellular bacteria. The discovery of the autophagy genes ATG16L1 and IRGM as risk factors for Crohn's disease turned autophagy into the spotlight in inflammatory bowel disease (IBD). Remarkably, NOD2 has recently been identified as a potent autophagy inducer. A physical interaction of NOD2 and ATG16L1 appears to be required for autophagic clearance of intracellular pathogens. Moreover, Crohn's disease-associated NOD2 and ATG16L1 variants exhibit a defect in the induction of an autophagic response and hence predict autophagy as a key converging mechanism that leads to Crohn's disease. Another pathway that is closely intertwined with autophagy and mutually cross-regulated is the unfolded protein response (UPR), which is induced by endoplasmic reticulum (ER) stress. Genes involved in the UPR (XBP1, ORMDL3) have also been genetically associated with Crohn's disease and ulcerative colitis. Moreover, the intestinal epithelium at the interface between host and microbe appears particularly affected by IBD-associated hypomorphic function of autophagy and the UPR. The functional convergence of main genetic risk factors for IBD on these innate immune pathways has hence important implications for the host's interaction with the microbiota. Moreover, the genetic convergence on these molecular mechanisms may open novel therapeutic options for IBD that deserve further exploration.
Collapse
Affiliation(s)
- Teresa Fritz
- Department of Medicine II (Gastroenterology & Hepatology), Innsbruck Medical University, Innsbruck, Austria
| | - Lukas Niederreiter
- Department of Medicine II (Gastroenterology & Hepatology), Innsbruck Medical University, Innsbruck, Austria
| | - Timon Adolph
- Department of Medicine II (Gastroenterology & Hepatology), Innsbruck Medical University, Innsbruck, Austria
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Dept of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arthur Kaser
- Department of Medicine II (Gastroenterology & Hepatology), Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
78
|
Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, Finkbeiner S, Fueyo-Margareto J, Gewirtz D, Jäättelä M, Kroemer G, Levine B, Melia TJ, Mizushima N, Rubinsztein DC, Simonsen A, Thorburn A, Thumm M, Tooze SA. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 2011; 7:1273-94. [PMID: 21997368 DOI: 10.4161/auto.7.11.17661] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The study of autophagy is rapidly expanding, and our knowledge of the molecular mechanism and its connections to a wide range of physiological processes has increased substantially in the past decade. The vocabulary associated with autophagy has grown concomitantly. In fact, it is difficult for readers--even those who work in the field--to keep up with the ever-expanding terminology associated with the various autophagy-related processes. Accordingly, we have developed a comprehensive glossary of autophagy-related terms that is meant to provide a quick reference for researchers who need a brief reminder of the regulatory effects of transcription factors and chemical agents that induce or inhibit autophagy, the function of the autophagy-related proteins, and the roles of accessory components and structures that are associated with autophagy.
Collapse
Affiliation(s)
- Daniel J Klionsky
- Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Liu Z, Lee J, Krummey S, Lu W, Cai H, Lenardo MJ. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol 2011; 12:1063-70. [PMID: 21983832 PMCID: PMC4140245 DOI: 10.1038/ni.2113] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/19/2011] [Indexed: 12/19/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been identified by genome-wide association studies as being encoded by a major susceptibility gene for Crohn's disease. Here we found that LRRK2 deficiency conferred enhanced susceptibility to experimental colitis in mice. Mechanistic studies showed that LRRK2 was a potent negative regulator of the transcription factor NFAT and was a component of a complex that included the large noncoding RNA NRON (an NFAT repressor). Furthermore, the risk-associated allele encoding LRRK2 Met2397 identified by a genome-wide association study for Crohn's disease resulted in less LRRK2 protein post-translationally. Severe colitis in LRRK2-deficient mice was associated with enhanced nuclear localization of NFAT1. Thus, our study defines a new step in the control of NFAT activation that involves an immunoregulatory function of LRRK2 and has important implications for inflammatory bowel disease.
Collapse
Affiliation(s)
- Zhihua Liu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinwoo Lee
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott Krummey
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaibin Cai
- Unit of Transgenesis; Laboratory of Neurogenetics; National Institute on Aging, National Institutes of Health; Bethesda, MD 20892 USA
| | - Michael J. Lenardo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
80
|
Autophagy: cellular defense to excessive inflammation. Microbes Infect 2011; 14:119-25. [PMID: 21924374 DOI: 10.1016/j.micinf.2011.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 01/01/2023]
Abstract
Autophagy can orchestrate a variety of cellular responses to dangerous stimuli. Our understanding of the physiologic roles of autophagy has recently expanded; in addition to its other roles, autophagy now appears to play an essential role in regulating inflammatory responses. This review describes recent findings concerning the roles and mechanisms of autophagy in controlling excessive inflammation.
Collapse
|
81
|
Berger E, Haller D. Structure-function analysis of the tertiary bile acid TUDCA for the resolution of endoplasmic reticulum stress in intestinal epithelial cells. Biochem Biophys Res Commun 2011; 409:610-5. [PMID: 21605547 DOI: 10.1016/j.bbrc.2011.05.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronically relapsing and immune-mediated disorders of the gastrointestinal tract. Endoplasmic reticulum (ER) stress mechanisms in the epithelium have been demonstrated to be implemented into the pathogenesis of intestinal inflammation. Chemical chaperones have been demonstrated to exhibit beneficial effects in various diseases associated with ER stress mechanisms by prohibiting the unfolded protein response (UPR). In a structure-function analysis, we tested the potential of the conjugated bile salt sodium tauroursodeoxycholate (TUDCA), naturally present in the small bowel, to resolve ER stress in intestinal epithelial cells. TUDCA efficiently inhibited the expression of UPR dependent genes like GRP78 triggered by the ER stressor tunicamycin in the small intestinal epithelial cell line Mode-K. TUDCA inhibited upstream signaling events in all three branches of the UPR cascade and diminished binding of UPR activated transcription factors to the grp78 promoter. A structure-function analysis revealed that UDCA but not its conjugation partner taurine, known as a chemical chaperone, is responsible for the inhibition of GRP78 induction and that UDCA is 10 times more effective than its taurine conjugate. This inhibitory effect was confirmed in a cell free assay, where TUDCA and UDCA but not taurine effectively inhibited the aggregation of thermally denatured BSA. We conclude that TUDCA and UDCA are potent anti-aggregants for the resolution of ER stress in intestinal epithelial cells and should be considered as a potential drug target to resolve ER stress mechanisms underlying the pathology of IBD.
Collapse
Affiliation(s)
- Emanuel Berger
- Chair for Biofunctionality, ZIEL Research Center for Nutrition and Food Science, CDD Center for Diet and Disease, Technische Universität München, Gregor-Mendel-Str. 2, 85350 Freising-Weihenstephan, Germany
| | | |
Collapse
|
82
|
Maingat F, Halloran B, Acharjee S, van Marle G, Church D, Gill MJ, Uwiera RRE, Cohen EA, Meddings J, Madsen K, Power C. Inflammation and epithelial cell injury in AIDS enteropathy: involvement of endoplasmic reticulum stress. FASEB J 2011; 25:2211-20. [PMID: 21427211 DOI: 10.1096/fj.10-175992] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Immunosuppressive lentivirus infections, including human, simian, and feline immunodeficiency viruses (HIV, SIV, and FIV, respectively), cause the acquired immunodeficiency syndrome (AIDS), frequently associated with AIDS enteropathy. Herein, we investigated the extent to which lentivirus infections affected mucosal integrity and intestinal permeability in conjunction with immune responses and activation of endoplasmic reticulum (ER) stress pathways. Duodenal biopsies from individuals with HIV/AIDS exhibited induction of IL-1β, CD3ε, HLA-DRA, spliced XBP-1(Xbp-1s), and CHOP expression compared to uninfected persons (P<0.05). Gut epithelial cells exposed to HIV-1 Vpr demonstrated elevated TNF-α, IL-1β, spliced Xbp-1s, and CHOP expression (P<0.05) together with calcium activation and disruption of epithelial cell monolayer permeability. In addition to reduced blood CD4(+) T lymphocyte levels, viral loads in the gut and plasma were high in FIV-infected animals (P<0.05). FIV-infected animals also exhibited a failure to gain weight and increased lactulose/mannitol ratios compared with uninfected animals (P<0.05). Proinflammatory and ER stress gene expression were activated in the ileum of FIV-infected animals (P<0.05), accompanied by intestinal epithelial damage with loss of epithelial cells and leukocyte infiltration of the lamina propria. Lentivirus infections cause gut inflammation and ensuing damage to intestinal epithelial cells, likely through induction of ER stress pathways, resulting in disruption of gut functional integrity.
Collapse
Affiliation(s)
- Ferdinand Maingat
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Grootjans J, Hodin CM, de Haan JJ, Derikx JPM, Rouschop KMA, Verheyen FK, van Dam RM, Dejong CHC, Buurman WA, Lenaerts K. Level of activation of the unfolded protein response correlates with Paneth cell apoptosis in human small intestine exposed to ischemia/reperfusion. Gastroenterology 2011; 140:529-539.e3. [PMID: 20965186 DOI: 10.1053/j.gastro.2010.10.040] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 09/10/2010] [Accepted: 10/07/2010] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS In the intestine, Paneth cells participate in the innate immune response. Their highly secretory function makes them susceptible to environmental conditions that cause endoplasmic reticulum (ER) stress. We investigated whether intestinal ischemia/reperfusion (I/R) induces ER stress, thereby activating the unfolded protein response (UPR), and whether excessive UPR activation affects Paneth cells. In addition, we investigated the consequences of Paneth cell compromise during physical barrier damage. METHODS Jejunal I/R was studied using a human experimental model (n = 30 patients). Activation of the UPR was assessed using immunofluorescence for binding protein and quantitative polymerase chain reaction analyses for C/EBP homologous protein (CHOP), growth arrest and DNA-damage inducible protein 34 (GADD34), and X-box binding protein 1 (XBP1) splicing. Paneth cell apoptosis was assessed by double staining for lysozyme and M30. Male Sprague-Dawley rats underwent either intestinal I/R to investigate UPR activation and Paneth cell apoptosis, or hemorrhagic shock with or without intraperitoneal administration of dithizone, to study consequences of Paneth cell compromise during physical intestinal damage. In these animals, bacterial translocation and circulating tumor necrosis factor-α and interleukin-6 levels were assessed. RESULTS In jejunum samples from humans and rats, I/R activated the UPR and resulted in Paneth cell apoptosis. Apoptotic Paneth cells showed signs of ER stress, and Paneth cell apoptosis correlated with the extent of ER stress. Apoptotic Paneth cells were shed into the crypt lumen, significantly lowering their numbers. In rats, Paneth cell compromise increased bacterial translocation and inflammation during physical intestinal damage. CONCLUSIONS ER stress-induced Paneth cell apoptosis contributes to intestinal I/R-induced bacterial translocation and systemic inflammation.
Collapse
Affiliation(s)
- Joep Grootjans
- Department of Surgery, NUTRIM School for Nutrition, Toxicology & Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Kaser A, Tomczak M, Blumberg RS. "ER stress(ed out)!": Paneth cells and ischemia-reperfusion injury of the small intestine. Gastroenterology 2011; 140:393-6. [PMID: 21172333 PMCID: PMC4594951 DOI: 10.1053/j.gastro.2010.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
85
|
Zhou H. HIV protease inhibitors induce endoplasmic reticulum stress and disrupt barrier integrity in intestinal epithelial cells. Methods Enzymol 2011; 490:107-19. [PMID: 21266246 DOI: 10.1016/b978-0-12-385114-7.00006-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The integrity of the intestinal epithelial barrier plays a crucial role in maintaining symbiotic homeostasis between microbes in the gut lumen and eukaryotic cells. Disruption of intestinal epithelial barrier function occurs commonly under various pathological conditions, including trauma, inflammatory bowel disease, and drug-induced gastrointestinal toxicity, exhibiting increased intestinal epithelial paracellular permeability or "leakiness" of the intestinal mucosa. Endoplasmic reticulum (ER) stress has recently been linked to various pathological conditions, including intestinal inflammation. Our previous studies have shown that HIV protease inhibitors (PIs) induce ER stress and activate the unfolded protein response (UPR) in different types of cells, and HIV PI-induced UPR activation contributes to the disruption of barrier function in intestinal epithelial cells and the increase of intestinal permeability. This chapter will discuss the commonly used methods for analysis of ER stress activation and epithelial barrier function. Both in vitro cell culture models and in vivo animal models are useful tools to examine general drug-induced ER stress and intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Huiping Zhou
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
86
|
Fritz T, Niederreiter L, Tilg H, Blumberg RS, Kaser A. Controversy over NOD2, inflammation, and defensins. Inflamm Bowel Dis 2010; 16:1996-8. [PMID: 20128000 PMCID: PMC4592164 DOI: 10.1002/ibd.21213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Simms LA, Doecke JD, Walsh MD, et al. Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut. 2008;57:903–910.
Collapse
Affiliation(s)
- Teresa Fritz
- Department of Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Lukas Niederreiter
- Department of Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert Tilg
- Department of Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arthur Kaser
- Department of Medicine II, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
87
|
Bandyopadhyay SK, de la Motte CA, Majors AK, Strong SA. Inhibition of the phosphatidylinositol-3-kinase pathway abrogates polyinosinic:polycytidylic acid-stimulated hyaluronan-mediated human mucosal smooth muscle cell binding of U937 monocytic cells. J Interferon Cytokine Res 2010; 30:809-16. [PMID: 20836715 DOI: 10.1089/jir.2009.0061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The origin of inflammatory bowel disease (IBD) is unknown and likely to be multifactorial. Our laboratory has established that in human mucosal smooth muscle cells (M-SMCs), cellular stress induced by virus or the viral mimic double-stranded RNA (polyinosinic:polycytidylic acid [poly I:C]) increases cell surface hyaluronan (HA) deposition and the formation of long cable-like structures of HA that are important for leukocyte attachment. Since leukocyte accumulation and hyperplasia of the M-SMCs are characteristic pathological changes observed in IBD patients, and phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathways play established roles in cell survival, we investigated whether this pathway is involved in this unique HA-mediated leukocyte attachment. Poly I:C-stimulated M-SMCs bind significantly more monocytic cells than untreated cells and this response was inhibited in a dose-dependent manner by treatment with the PI3K inhibitor, LY294002. Since Akt is a critical downstream regulator of PI3K, we investigated the phosphorylation status of Akt in M-SMCs after treatment with poly I:C for 1 h and found that Akt was phosphorylated, but the phosphorylated Akt band was undetectable in LY294002 plus poly I:C-treated cultures. Confocal microscopy of M-SMCs stained for HA revealed that HA cable formation after poly I:C treatment was abrogated by LY294002. These results demonstrate that poly I:C-stimulated M-SMCs phosphorylate Akt, produce HA cables, and promote HA-mediated leukocyte adhesion through a PI3K/Akt-dependent manner.
Collapse
Affiliation(s)
- Sudip K Bandyopadhyay
- Department of Pathobiology, Lerner Research Institute , Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
88
|
Swamy M, Jamora C, Havran W, Hayday A. Epithelial decision makers: in search of the 'epimmunome'. Nat Immunol 2010; 11:656-65. [PMID: 20644571 PMCID: PMC2950874 DOI: 10.1038/ni.1905] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Frequent microbial and nonmicrobial challenges to epithelial cells trigger discrete pathways, promoting molecular changes such as the secretion of specific cytokines and chemokines and alterations to molecules displayed at the epithelial cell surface. In combination, these molecules impose key decisions on innate and adaptive immune cells. Depending on context, those decisions can be as diverse as those imposed by professional antigen-presenting cells, benefiting the host by balancing immune competence with the avoidance of immunopathology. Nonetheless, this potency of epithelial cells is also consistent with the causal contribution of epithelial dysregulation to myriad inflammatory diseases. This pathogenic axis provides an attractive target for tissue-specific clinical manipulation. In this context, a research goal should be to identify all molecules used by epithelial cells to instruct immune cells. We term this the 'epimmunome'.
Collapse
Affiliation(s)
- Mahima Swamy
- London Research Institute, CRUK, and Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital, London, UK
| | - Colin Jamora
- Section of Cell and Developmental Biology, Division of Biological Sciences, Natural Science Building, Room 6311, 9500 Gilman Drive, MC 0380, La Jolla, California 92093, USA
| | - Wendy Havran
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adrian Hayday
- London Research Institute, CRUK, and Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital, London, UK
| |
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW To provide an overview of the emerging role of cellular stress responses in inflammatory bowel disease (IBD). RECENT FINDINGS The unfolded protein response (UPR) is a primitive cellular pathway that is engaged when responding to endoplasmic reticulum stress and regulates autophagy. Highly secretory cells such as Paneth cells and goblet cells in the intestines are particularly susceptible to endoplasmic reticulum stress and are exceedingly dependent upon a properly functioning UPR to maintain cellular viability and homeostasis. Primary genetic abnormalities within the components of the UPR (e.g. XBP1, ARG2, ORMDL3), genes that encode proteins reliant upon a robust secretory pathway (e.g. MUC2, HLAB27) and environmental factors that create disturbances in the UPR (e.g. microbial products and inflammatory cytokines) are important factors in the primary development and/or perpetuation of intestinal inflammation. SUMMARY Endoplasmic reticulum stress is an important new pathway involved in the development of intestinal inflammation associated with IBD and likely other intestinal inflammatory disorders.
Collapse
|
90
|
Klionsky DJ, Codogno P, Cuervo AM, Deretic V, Elazar Z, Fueyo-Margareto J, Gewirtz DA, Kroemer G, Levine B, Mizushima N, Rubinsztein DC, Thumm M, Tooze SA. A comprehensive glossary of autophagy-related molecules and processes. Autophagy 2010; 6:438-48. [PMID: 20484971 DOI: 10.4161/auto.6.4.12244] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a rapidly expanding field in the sense that our knowledge about the molecular mechanism and its connections to a wide range of physiological processes has increased substantially in the past decade. Similarly, the vocabulary associated with autophagy has grown concomitantly. This fact makes it difficult for readers, even those who work in the field, to keep up with the ever-expanding terminology associated with the various autophagy-related processes. Accordingly, we have developed a comprehensive glossary of autophagy-related terms that is meant to provide a quick reference for researchers who need a brief reminder of the regulatory effects of transcription factors or chemical agents that induce or inhibit autophagy, the function of the autophagy-related proteins, or the role of accessory machinery or structures that are associated with autophagy.
Collapse
Affiliation(s)
- Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Insights into inflammatory bowel disease (IBD) are advancing rapidly owing to immunologic investigations of a plethora of animal models of intestinal inflammation, ground-breaking advances in the interrogation of diseases that are inherited as complex genetic traits, and the development of culture-independent methods to define the composition of the intestinal microbiota. These advances are bringing a deeper understanding to the genetically determined interplay between the commensal microbiota, intestinal epithelial cells, and the immune system and the manner in which this interplay might be modified by relevant environmental factors in the pathogenesis of IBD. This review examines these interactions and, where possible, potential lessons from IBD-directed, biologic therapies that may allow for elucidation of pathways that are central to disease pathogenesis in humans.
Collapse
Affiliation(s)
- Arthur Kaser
- Department of Medicine II, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
92
|
Abstract
Insights into inflammatory bowel disease (IBD) are advancing rapidly owing to immunologic investigations of a plethora of animal models of intestinal inflammation, ground-breaking advances in the interrogation of diseases that are inherited as complex genetic traits, and the development of culture-independent methods to define the composition of the intestinal microbiota. These advances are bringing a deeper understanding to the genetically determined interplay between the commensal microbiota, intestinal epithelial cells, and the immune system and the manner in which this interplay might be modified by relevant environmental factors in the pathogenesis of IBD. This review examines these interactions and, where possible, potential lessons from IBD-directed, biologic therapies that may allow for elucidation of pathways that are central to disease pathogenesis in humans.
Collapse
Affiliation(s)
- Arthur Kaser
- Department of Medicine II, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
93
|
Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell 2010; 140:859-70. [PMID: 20303876 DOI: 10.1016/j.cell.2010.01.023] [Citation(s) in RCA: 560] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 01/06/2010] [Accepted: 01/06/2010] [Indexed: 12/13/2022]
Abstract
The gut is home to our largest collection of microbes. The ability of the immune system to coevolve with the microbiota during postnatal life allows the host and microbiota to coexist in a mutually beneficial relationship. Failure to achieve or maintain equilibrium between a host and its microbiota has negative consequences for both intestinal and systemic health. In this Review, we consider the many cellular and molecular methods by which inflammatory responses are regulated to maintain intestinal homeostasis and the disease states that can ensue when this balance is lost.
Collapse
Affiliation(s)
- Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | |
Collapse
|
94
|
Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium 2010; 47:297-314. [PMID: 20189643 DOI: 10.1016/j.ceca.2010.02.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/17/2022]
Abstract
Homeostatic control of the endoplasmic reticulum (ER) both as the site for protein handling (synthesis, folding, trafficking, disaggregation and degradation) and as a Ca2+ store is of crucial importance for correct functioning of the cell. Disturbance of the homeostatic control mechanisms leads to a vast array of severe pathologies. The Ca2+ content of the ER is a dynamic equilibrium between active uptake via Ca2+ pumps and Ca2+ release by a number of highly regulated Ca2+-release channels. Regulation of the Ca2+-release channels is very complex and several mechanisms are still poorly understood or controversial. There is increasing evidence that a number of unrelated proteins, either by themselves or in association with other Ca2+ channels, can provide additional Ca2+-leak pathways. The ER is a dynamic organelle and changes in its size and components have been described, either as a result of (de)differentiation processes affecting the secretory capacity of cells, or as a result of adaptation mechanisms to diverse stress conditions such as the unfolded protein response and autophagy. In this review we want to give an overview of the current knowledge of the (short-term) regulatory mechanisms that affect Ca2+-release and Ca2+-leak pathways and of the (long-term) adaptations in ER size and capacity. Understanding of the consequences of these mechanisms for cellular Ca2+ signaling could provide a huge therapeutic potential.
Collapse
|
95
|
De Vos M. Joint involvement in inflammatory bowel disease: managing inflammation outside the digestive system. Expert Rev Gastroenterol Hepatol 2010; 4:81-9. [PMID: 20136591 DOI: 10.1586/egh.09.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Joint inflammation is present in approximately 30% of patients with inflammatory bowel disease. Peripheral arthritis can frequently be controlled by an optimal treatment of the gut inflammation in association with short-term use of NSAIDs. Recurrent inflammation requires the use of sulfasalazine. More therapy-resistant forms and axial arthropathy can be treated with anti-TNF drugs, predominantly infliximab and adalimumab. An intensified multidisciplinary approach in research and in the clinic may help to unravel the question of why common etiopathogenic mechanisms ultimately lead to different disease phenotypes. Animal models may help to identify the most promising therapeutic strategies including in the near future modulation of adhesion molecules, costimulatory molecules and the Th17 pathway.
Collapse
Affiliation(s)
- Martine De Vos
- Ghent University, Department Gastroenterology, University Hospital, De Pintelaan 185, B 9000 Gent, Belgium.
| |
Collapse
|
96
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and most lethal diffuse fibrosing lung disease, with a mortality rate that exceeds that of many cancers. Recently, there have been many clinical trials of novel therapies for IPF. The results have mostly been disappointing, although two treatment approaches have shown some efficacy. This Review describes the difficulties of treating IPF and the approaches that have been tried or are in development, and concludes with suggestions of future therapeutic targets and strategies.
Collapse
Affiliation(s)
- R M du Bois
- National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, USA.
| |
Collapse
|
97
|
Abstract
The intestinal epithelial cell (IEC) is increasingly recognized to play a prominent role as an important intermediary between the commensal microbiota and the intestinal immune system. Moreover, it is now recognized that intestinal inflammation in inflammatory bowel disease (IBD) may arise primarily from IEC dysfunction due to unresolved endoplasmic reticulum (ER) stress as a consequence of genetic disruption of X box binding protein-1 function. In addition to primary (genetic) abnormalities of the unfolded protein response, a variety of secondary (inflammation and environmental) factors are also likely to be important regulators of ER stress. ER stress pathways are also well known to regulate (and be regulated by) autophagy pathways. Therefore, the host's ability to manage ER stress is likely to be a major pathway in the pathogenesis of intestinal inflammation that arises primarily from the IEC. Herein we discuss ER stress in the IEC as both an originator and perpetuator of intestinal inflammation in IBD.
Collapse
|
98
|
WU XUDONG, SUN LIXIN, ZHA WEIBIN, STUDER ELAINE, GURLEY EMILY, CHEN LI, WANG XUAN, HYLEMON PHILLIPB, PANDAK WILLIAMM, SANYAL ARUNJ, ZHANG LUYONG, WANG GUANGJI, CHEN JIE, WANG JIAN, ZHOU HUIPING. HIV protease inhibitors induce endoplasmic reticulum stress and disrupt barrier integrity in intestinal epithelial cells. Gastroenterology 2010; 138:197-209. [PMID: 19732776 PMCID: PMC4644065 DOI: 10.1053/j.gastro.2009.08.054] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 07/28/2009] [Accepted: 08/20/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Human immunodeficiency virus (HIV) protease inhibitor (PI)-induced adverse effects have become a serious clinical problem. In addition to their metabolic and cardiovascular complications, these drugs also frequently cause severe gastrointestinal disorders, including mucosal erosions, epithelial barrier dysfunction, and diarrhea. However, the exact mechanisms underlying gastrointestinal adverse effects of HIV PIs remain unknown. This study investigated whether HIV PIs disrupt intestinal epithelial barrier integrity by activating endoplasmic reticulum (ER) stress. METHODS The most commonly used HIV PIs (lopinavir, ritonavir, and amprenavir) were used; their effects on ER stress activation and epithelial paracellular permeability were examined in vitro as well as in vivo using wild-type and CHOP(-)/(-) mice. RESULTS Treatment with lopinavir and ritonavir, but not amprenavir, induced ER stress, as indicated by a decrease in secreted alkaline phosphatase activities and an increase in the unfolded protein response. This activated ER stress partially impaired the epithelial barrier integrity by promoting intestinal epithelial cell apoptosis. CHOP silencing by specific small hairpin RNA prevented lopinavir- and ritonavir-induced barrier dysfunction in cultured intestinal epithelial cells, whereas CHOP(-)/(-) mice exhibited decreased mucosal injury after exposure to lopinavir and ritonavir. CONCLUSIONS HIV PIs induce ER stress and activate the unfolded protein response in intestinal epithelial cells, thus resulting in disruption of the epithelial barrier integrity.
Collapse
Affiliation(s)
- XUDONG WU
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia
| | - LIXIN SUN
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia
| | - WEIBIN ZHA
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia
| | - ELAINE STUDER
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia
| | - EMILY GURLEY
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia
| | - LI CHEN
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia
| | - XUAN WANG
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia
| | - PHILLIP B. HYLEMON
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia,Department of Internal Medicine/Gastroenterology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia
| | - WILLIAM M. PANDAK
- Department of Internal Medicine/Gastroenterology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia
| | - ARUN J. SANYAL
- Department of Internal Medicine/Gastroenterology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia
| | - LUYONG ZHANG
- China Pharmaceutical University, Nanjing, Jiangsu, China
| | - GUANGJI WANG
- China Pharmaceutical University, Nanjing, Jiangsu, China
| | - JIE CHEN
- Department of Surgery, University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - JIAN–YING WANG
- Department of Surgery, University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - HUIPING ZHOU
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, Virginia,Department of Internal Medicine/Gastroenterology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia,China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
99
|
Salminen A, Kauppinen A, Suuronen T, Kaarniranta K, Ojala J. ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology. J Neuroinflammation 2009; 6:41. [PMID: 20035627 PMCID: PMC2806266 DOI: 10.1186/1742-2094-6-41] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/26/2009] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) is involved in several crucial cellular functions, e.g. protein folding and quality control, maintenance of Ca2+ balance, and cholesterol synthesis. Many genetic and environmental insults can disturb the function of ER and induce ER stress. ER contains three branches of stress sensors, i.e. IRE1, PERK and ATF6 transducers, which recognize the misfolding of proteins in ER and activate a complex signaling network to generate the unfolded protein response (UPR). Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving misfolding and aggregation of proteins in conjunction with prolonged cellular stress, e.g. in redox regulation and Ca2+ homeostasis. Emerging evidence indicates that the UPR is activated in neurons but not in glial cells in AD brains. Neurons display pPERK, peIF2α and pIRE1α immunostaining along with abundant diffuse staining of phosphorylated tau protein. Recent studies have demonstrated that ER stress can also induce an inflammatory response via different UPR transducers. The most potent pathways are IRE1-TRAF2, PERK-eIF2α, PERK-GSK-3, ATF6-CREBH, as well as inflammatory caspase-induced signaling pathways. We will describe the mechanisms which could link the ER stress of neurons to the activation of the inflammatory response and the evolution of pathological changes in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
100
|
Uhlig HH, Powrie F. Mouse models of intestinal inflammation as tools to understand the pathogenesis of inflammatory bowel disease. Eur J Immunol 2009; 39:2021-6. [PMID: 19672896 DOI: 10.1002/eji.200939602] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mouse models of intestinal inflammation resemble aspects of inflammatory bowel disease in humans. These models have provided important insights into mechanisms that control intestinal homeostasis and regulation of intestinal inflammation. This viewpoint discusses themes that have emerged from mouse models of intestinal inflammation including bacterial recognition, autophagy, the IL-23/Th-17 axis of inflammation as well as the role of negative regulators. Many of the pathways highlighted by model systems have been identified in recent genome-wide association studies in human validating the relevance of mouse models to human inflammatory bowel disease. Understanding of the complex biological mechanisms that lead to intestinal inflammation in mouse models may help to define targets for treatment of human diseases.
Collapse
Affiliation(s)
- Holm H Uhlig
- Children's Hospital, Section of Paediatric Gastroenterology and Hepatology, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|