51
|
Yamauchi S, Yamamoto K, Ogawa K. Testicular Macrophages Produce Progesterone De Novo Promoted by cAMP and Inhibited by M1 Polarization Inducers. Biomedicines 2022; 10:biomedicines10020487. [PMID: 35203696 PMCID: PMC8962427 DOI: 10.3390/biomedicines10020487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Tissue-resident macrophages (Mø) originating from fetal precursors are maintained via self-renewal under tissue-/organ-specific microenvironments. Herein, we developed a propagation method of testicular tissue-resident Mø in mixed primary culture with interstitial cells composed of Leydig cells from the mouse testis. We examined Mø/monocyte marker expression in propagated testicular Mø using flow cytometry; gene expression involved in testosterone production as well as spermatogenesis in testicular Mø and interstitial cells propagated by mixed culture via RT-PCR; and progesterone (P4) de novo production in propagated testicular Mø treated with cyclic adenosine monophosphate, isoproterenol, and M1 polarization inducers using ELISA. Mø marker expression patterns in the propagated Mø were identical to those in testicular interstitial Mø with a CD206-positive/major histocompatibility complex (MHC) II-negative M2 phenotype. We identified the genes involved in P4 production, transcription factors essential for steroidogenesis, and androgen receptors, and showed that P4 production de novo was upregulated by cyclic adenosine monophosphate and β2-adrenergic stimulation and was downregulated by M1 polarization stimulation in Mø. We also demonstrated the formation of gap junctions between Leydig cells and interstitial Mø. This is the first study to demonstrate de novo P4 production in tissue-resident Mø. Based on previous studies revealing inhibition of testosterone production by P4, we propose that local feedback machinery between Leydig cells and adjacent interstitial Mø regulates testosterone production. The results presented in this study can facilitate future studies on immune-endocrine interactions in gonads that are related to infertility and hormonal disorders.
Collapse
Affiliation(s)
- Sawako Yamauchi
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan; (S.Y.); (K.Y.)
| | - Kousuke Yamamoto
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan; (S.Y.); (K.Y.)
| | - Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan
- Correspondence:
| |
Collapse
|
52
|
Jin H, Yan M, Pan C, Liu Z, Sha X, Jiang C, Li L, Pan M, Li D, Han X, Ding J. Chronic exposure to polystyrene microplastics induced male reproductive toxicity and decreased testosterone levels via the LH-mediated LHR/cAMP/PKA/StAR pathway. Part Fibre Toxicol 2022; 19:13. [PMID: 35177090 PMCID: PMC8851716 DOI: 10.1186/s12989-022-00453-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/02/2022] [Indexed: 12/19/2022] Open
Abstract
Background Microplastics (MPs), which are smaller in size and difficult to degrade, can be easily ingested by marine life and enter mammals through the food chain. Our previous study demonstrated that following acute exposure to MPs, the serum testosterone content reduced and sperm quality declined, resulting in male reproductive dysfunction in mice. However, the toxic effect of long-term exposure to MPs at environmental exposure levels on the reproductive system of mammals remains unclear. Results In vivo, mice were given drinking water containing 100 μg/L and 1000 μg/L polystyrene MPs (PS-MPs) with particle sizes of 0.5 μm, 4 μm, and 10 μm for 180 consecutive days. We observed alterations in testicular morphology and reductions in testosterone, LH and FSH contents in serum. In addition, the viability of sperm was declined and the rate of sperm abnormality was increased following exposure to PS-MPs. The expression of steroidogenic enzymes and StAR was downregulated in testis tissues. In vitro, we used primary Leydig cells to explore the underlying mechanism of the decrease in testosterone induced by PS-MPs. First, we discovered that PS-MPs attached to and became internalized by Leydig cells. And then we found that the contents of testosterone in the supernatant declined. Meanwhile, LHR, steroidogenic enzymes and StAR were downregulated with concentration-dependent on PS-MPs. We also confirmed that PS-MPs decreased StAR expression by inhibiting activation of the AC/cAMP/PKA pathway. Moreover, the overexpression of LHR alleviated the reduction in StAR and steroidogenic enzymes levels, and finally alleviated the reduction in testosterone induced by PS-MPs. Conclusions PS-MPs exposure resulted in alterations in testicular histology, abnormal spermatogenesis, and interference of serum hormone secretion in mice. PS-MPs induced a reduction in testosterone level through downregulation of the LH-mediated LHR/cAMP/PKA/StAR pathway. In summary, our study showed that chronic exposure to PS-MPs resulted in toxicity of male reproduction under environmental exposure levels, and these potential risks may ring alarm bells of public health. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00453-2.
Collapse
Affiliation(s)
- Haibo Jin
- Immunology and Reproductive Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Minghao Yan
- Immunology and Reproductive Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Chun Pan
- Immunology and Reproductive Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Zhenyu Liu
- Immunology and Reproductive Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Xiaoxuan Sha
- Immunology and Reproductive Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Chengyue Jiang
- Immunology and Reproductive Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Luxi Li
- Immunology and Reproductive Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Mengge Pan
- Immunology and Reproductive Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Dongmei Li
- Immunology and Reproductive Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Xiaodong Han
- Immunology and Reproductive Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| | - Jie Ding
- Immunology and Reproductive Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
53
|
Sun L, Dai J, Xu J, Yang J, Zhang D. Comparative Cytotoxic Effects and Possible Mechanisms of Deoxynivalenol, Zearalenone and T-2 Toxin Exposure to Porcine Leydig Cells In Vitro. Toxins (Basel) 2022; 14:toxins14020113. [PMID: 35202140 PMCID: PMC8875536 DOI: 10.3390/toxins14020113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Mycotoxins such as zearalenone (ZEN), deoxynivalenol (DON) and T-2 toxin (T-2) are the most poisonous biological toxins in food pollution. Mycotoxin contaminations are a global health issue. The aim of the current study was to use porcine Leydig cells as a model to explore the toxic effects and underlying mechanisms of ZEN, DON and T-2. The 50% inhibitory concentration (IC50) of ZEN was 49.71 μM, and the IC50 values of DON and T-2 were 2.49 μM and 97.18 nM, respectively. Based on the values of IC50, ZEN, DON and T-2 exposure resulted in increased cell apoptosis, as well as disrupted mitochondria membrane potential and cell cycle distribution. The results also showed that ZEN and DON significantly reduced testosterone and progesterone secretion in Leydig cells, but T-2 only reduced testosterone secretion. Furthermore, the expression of steroidogenic acute regulatory (StAR) protein and 3β-hydroxysteroid dehydrogenase (3β-HSD) were significantly decreased by ZEN, DON and T-2; whereas the protein expression of cholesterol side-chain cleavage enzyme (CYP11A1) was only significantly decreased by ZEN. Altogether, these data suggest that the ZEN, DON and T-2 toxins resulted in reproductive toxicity involving the inhibition of steroidogenesis and cell proliferation, which contributes to the cellular apoptosis induced by mitochondrial injury in porcine Leydig cells.
Collapse
Affiliation(s)
- Lingwei Sun
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (L.S.); (J.D.); (J.X.)
| | - Jianjun Dai
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (L.S.); (J.D.); (J.X.)
| | - Jiehuan Xu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (L.S.); (J.D.); (J.X.)
| | - Junhua Yang
- Institute for Agri-Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: (J.Y.); (D.Z.)
| | - Defu Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (L.S.); (J.D.); (J.X.)
- Correspondence: (J.Y.); (D.Z.)
| |
Collapse
|
54
|
Hébert-Mercier PO, Bergeron F, Robert NM, Mehanovic S, Pierre KJ, Mendoza-Villarroel RE, de Mattos K, Brousseau C, Tremblay JJ. Growth Hormone-induced STAT5B Regulates Star Gene Expression Through a Cooperation With cJUN in Mouse MA-10 Leydig Cells. Endocrinology 2022; 163:6490116. [PMID: 34967898 PMCID: PMC8765792 DOI: 10.1210/endocr/bqab267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 01/01/2023]
Abstract
Leydig cells produce androgens that are essential for male sex differentiation and reproductive function. Leydig cell function is regulated by several hormones and signaling molecules, including growth hormone (GH). Although GH is known to upregulate Star gene expression in Leydig cells, its molecular mechanism of action remains unknown. The STAT5B transcription factor is a downstream effector of GH signaling in other systems. While STAT5B is present in both primary and Leydig cell lines, its function in these cells has yet to be ascertained. Here we report that treatment of MA-10 Leydig cells with GH or overexpression of STAT5B induces Star messenger RNA levels and increases steroid hormone output. The mouse Star promoter contains a consensus STAT5B element (TTCnnnGAA) at -756 bp to which STAT5B binds in vitro (electrophoretic mobility shift assay and supershift) and in vivo (chromatin immunoprecipitation) in a GH-induced manner. In functional promoter assays, STAT5B was found to activate a -980 bp mouse Star reporter. Mutating the -756 bp element prevented STAT5B binding but did not abrogate STAT5B-responsiveness. STAT5B was found to functionally cooperate with DNA-bound cJUN. The STAT5B/cJUN cooperation was only observed in Leydig cells and not in Sertoli or fibroblast cells, indicating that additional Leydig cell-enriched transcription factors are required. The STAT5B/cJUN cooperation was lost only when both STAT5B and cJUN elements were mutated. In addition to identifying the Star gene as a novel target for STAT5B in Leydig cells, our data provide important new insights into the mechanism of GH and STAT5B action in the regulation of Leydig cell function.
Collapse
Affiliation(s)
- Pierre-Olivier Hébert-Mercier
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Nicholas M Robert
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Kenley Joule Pierre
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Raifish E Mendoza-Villarroel
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Catherine Brousseau
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- Correspondence: Jacques J. Tremblay, PhD, Reproduction, Mother and Child Health, Room T3-67, Centre de recherche du CHU de Québec – Université Laval CHUL, 2705 Laurier Blvd, Québec City, QC, G1V 4G2, Canada.
| |
Collapse
|
55
|
Sağraç D, Şenkal S, Hayal TB, Demirci S, Şişli HB, Asutay AB, Doğan A. Protective role of Cytoglobin and Neuroglobin against the Lipopolysaccharide (LPS)-induced inflammation in Leydig cells ex vivo. Reprod Biol 2022; 22:100595. [PMID: 35121559 DOI: 10.1016/j.repbio.2021.100595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/21/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022]
Abstract
Leydig cells are responsible for testosterone production in male testis upon stimulation by luteinizing hormone. Inflammation and oxidative stress related Leydig cell dysfunction is one of the major causes of male infertility. Cytoglobin (CYGB) and Neuroglobin (NGB) are two globin family member proteins which protect cells against oxidative stress. In the current study, we established a Lipopolysaccharide (LPS)-induced inflammation model in TM3 Leydig cell culture to study the function of CYGB and NGB proteins under inflammatory conditions. CYGB and NGB were downregulated using siRNA and shRNA based experimental strategies. Overexpression was conducted using lentiviral pLenti-III-CYGB-2A-GFP, and pLenti-III-NGB-2A-GFP vector systems. As testicular macrophages regulate immune function upon inflammation and steroidogenesis of Leydig cells, we generated direct/indirect co-culture systems of TM3 and mouse macrophage (RAW264.7) cells ex vivo. Downregulation of CYGB and NGB induced nitride oxide (NO) release, blocked cell cycle progression, reduced testosterone production and increased inflammatory and apoptotic pathway gene expression in the presence and absence of LPS. On the other hand, CYGB and NGB overexpression reduced TNFα and COX-2 protein expressions and increased the expression of testosterone biogenesis pathway genes upon LPS stimulation. In addition, CYGB and NGB overexpression upregulated testosterone production. The present study successfully established an inflammatory interaction model of TM3 and RAW264.7 cells. Suppression of CYGB and NGB in TM3 cells changed macrophage morphology, enhanced macrophage cell number and NO release in co-culture experiments upon LPS exposure. In summary, these results demonstrate that globin family members might control LPS induced inflammation by regulating apoptotic mechanisms and macrophage response.
Collapse
Affiliation(s)
- Derya Sağraç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ayla Burçin Asutay
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
56
|
Zhang S, Wen Z, Li X, Lin L, Zou C, Li Y, Wang Y, Ge RS. Short-term exposure to perfluorotetradecanoic acid affects the late-stage regeneration of Leydig cells in adult male rats. Toxicol Appl Pharmacol 2021; 433:115777. [PMID: 34736952 DOI: 10.1016/j.taap.2021.115777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/09/2021] [Accepted: 10/24/2021] [Indexed: 01/09/2023]
Abstract
Perfluorotetradecanoic acid (PFTeDA) is one of perfluoroalkyl substances widely found in the environment. PFTeDA may cause the dysfunction of male reproductive system. However, whether PFTeDA affects the regeneration of Leydig cells remains unclear. The objective of this study was to examine the effects of short-term exposure of PFTeDA on the late-stage maturation of Leydig cells. Fifty-four adult Sprague-Dawley male rats were daily gavaged with PFTeDA (0, 10, or 20 mg/kg body weight) for 10 days, and then were injected intraperitoneally with ethylene dimethane sulfonate (EDS, 75 mg/kg body weight/once) to ablate Leydig cells to induce their regeneration. On day 21 (early stage) and 56 (late stage) after EDS, hormone levels, gene expression, and protein levels were measured. PFTeDA did not affect the early stage of Leydig cell regeneration, because it had no effect on serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels, Leydig cell number, and its gene and protein expression. PFTeDA significantly reduced serum testosterone level and down-regulated the expression of Leydig cell genes (Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Hsd11b1, and Insl3) and their proteins (CYP11A1, HSD3B1, CYP17A1, HSD17B3, and INSL3), decreased the phosphorylation of AKT1 and ERK1/2, as well as lowered sperm count in the epididymis at 20 mg/kg. In conclusion, short-term exposure to PFTeDA blocks the late-stage maturation of Leydig cells.
Collapse
Affiliation(s)
- Song Zhang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfeixiang, Mochou Road, Nanjing 210004, Jiangsu, China
| | - Zina Wen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liben Lin
- Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Zou
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
57
|
Enangue Njembele AN, Tremblay JJ. Mechanisms of MEHP Inhibitory Action and Analysis of Potential Replacement Plasticizers on Leydig Cell Steroidogenesis. Int J Mol Sci 2021; 22:ijms222111456. [PMID: 34768887 PMCID: PMC8584274 DOI: 10.3390/ijms222111456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Steroid production in Leydig cells is stimulated mainly by the pituitary luteinizing hormone, which leads to increased expression of genes involved in steroidogenesis, including the gene encoding the steroidogenic acute regulatory (STAR) protein. Mono(2-ethylhexyl)phthalate (MEHP), the active metabolite of the widely used plasticizer DEHP, is known to disrupt Leydig steroidogenesis but its mechanisms of action remain poorly understood. We found that MEHP caused a significant reduction in hormone-induced steroid hormone production in two Leydig cell lines, MA-10 and MLTC-1. Consistent with disrupted cholesterol transport, we found that MEHP represses cAMP-induced Star promoter activity. MEHP responsiveness was mapped to the proximal Star promoter, which contains multiple binding sites for several transcription factors. In addition to STAR, we found that MEHP also reduced the levels of ferredoxin reductase, a protein essential for electron transport during steroidogenesis. Finally, we tested new plasticizers as alternatives to phthalates. Two plasticizers, dioctyl succinate and 1,6-hexanediol dibenzoate, had no significant effect on hormone-induced steroidogenesis. Our current findings reveal that MEHP represses steroidogenesis by affecting cholesterol transport and its conversion into pregnenolone. We also found that two novel molecules with desirable plasticizer properties have no impact on Leydig cell steroidogenesis and could be suitable phthalate replacements.
Collapse
Affiliation(s)
- Annick N. Enangue Njembele
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 46254)
| |
Collapse
|
58
|
de Santi F, Beltrame FL, Rodrigues BM, Scaramele NF, Lopes FL, Cerri PS, Sasso-Cerri E. Venlafaxine-induced adrenergic signaling stimulates Leydig cells steroidogenesis via Nur77 overexpression: a possible role of EGF. Life Sci 2021; 289:120069. [PMID: 34688693 DOI: 10.1016/j.lfs.2021.120069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Venlafaxine, a norepinephrine and serotonin reuptake inhibitor, impairs rat sperm parameters, spermatogenesis and causes high intratesticular estrogen and testosterone levels, indicating that Leydig cells (LCs) may be a venlafaxine target. We evaluated the effect of venlafaxine treatment on LCs in vivo, focusing on adrenergic signaling, EGF immunoexpression and steroidogenesis. Germ cells mitotic/meiotic activity and UCHL1 levels were also evaluated in the seminiferous epithelium. Adult male rats received venlafaxine (30 mg/kg) or distilled water. In testicular sections, the seminiferous tubules, epithelium and the LCs nuclear areas were measured, and the immunoexpression of Ki-67, UCHL1, StAR, EGF, c-Kit and 17β-HSD was evaluated. UCHL1, StAR and EGF protein levels and Adra1a, Nur77 and Ndrg2 expression were analyzed. MDA and nitrite testicular levels, and serum estrogen and testosterone levels were measured. Venlafaxine induced LCs hypertrophy and Ndrg2 upregulation, in parallel to increased number of Ki-67, c-Kit- and 17β-HSD-positive interstitial cells, indicating that this antidepressant stimulates LCs lineage proliferation and differentiation. Upregulation of Adra1a and Nur77 could explain the high levels of StAR and testosterone levels, as well as aromatization. Enhanced EGF immunoexpresion in LCs suggests that this growth fact is involved in adrenergically-induced steroidogenesis, likely via upregulation of Nur77. Slight tubular atrophy and weak Ki-67 immunoexpression in germ cells, in association with high UCHL1 levels, indicate that spermatogenesis is likely impaired by this enzyme under supraphysiological estrogen levels. These data corroborate the unchanged MDA and nitrite levels. Therefore, venlafaxine stimulates LCs steroidogenesis via adrenergic signaling, and EGF may be involved in this process.
Collapse
Affiliation(s)
- Fabiane de Santi
- Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, Brazil
| | - Flávia L Beltrame
- Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, Brazil
| | - Beatriz M Rodrigues
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil
| | - Natália F Scaramele
- São Paulo State University (Unesp), School of Veterinary Medicine, Department of Production and Animal Health, Araçatuba, Brazil
| | - Flávia L Lopes
- São Paulo State University (Unesp), School of Veterinary Medicine, Department of Production and Animal Health, Araçatuba, Brazil
| | - Paulo S Cerri
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil.
| |
Collapse
|
59
|
Yang H, Wan Z, Jin Y, Wang F, Zhang Y. SMAD2 regulates testicular development and testosterone synthesis in Hu sheep. Theriogenology 2021; 174:139-148. [PMID: 34454319 DOI: 10.1016/j.theriogenology.2021.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/15/2021] [Accepted: 08/22/2021] [Indexed: 01/01/2023]
Abstract
The SMAD protein family plays crucial roles in reproduction as a downstream target genes of the TGFβ signaling pathway. Many studies have focused on the expression change exploration of SMADs during testicular development and investigation of SMAD2 in hormone synthesis regulation. However, little attention has been given to determining the regulatory mechanism of SMADs in sheep testes. In the present study, we first detected SMAD mRNA expression levels in three-month-old (3 M), six-month-old (6 M), nine-month-old (9 M) and two-year-old (2Y) sheep testes. Different SMADs showed various expression patterns. In addition, the subcellular localization of SMAD2 was also analyzed, and Sertoli cells (SCs), Leydig cells (LCs) and spermatogonia presented mainly positive staining. Protein and nucleic acid sequence alignment showed that the SMAD2 gene was extremely homologous between various species. SMAD2 interference RNA was transfected into sheep LCs to examine the cell proliferation and hormone levels. The testosterone level was significantly decreased, and cell proliferation efficiency presented the same trend (P < 0.05). Moreover, SMAD2 downregulation promoted cell apoptosis (P < 0.05) and changed the cell cycle. In total, our results revealed that downregulating the expression of SMAD2 can effectively inhibit testosterone levels by affecting cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Hua Yang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Wan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanshan Jin
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
60
|
Chen HB, Pineda Garcia JC, Arizono S, Takeda T, Li RS, Hattori Y, Sano H, Miyauchi Y, Hirota Y, Tanaka Y, Ishii Y. DAPL1 is a novel regulator of testosterone production in Leydig cells of mouse testis. Sci Rep 2021; 11:18532. [PMID: 34535743 PMCID: PMC8448858 DOI: 10.1038/s41598-021-97961-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
Leydig cells in the testes produce testosterone in the presence of gonadotropins. Therefore, male testosterone levels must oscillate within a healthy spectrum, given that elevated testosterone levels augment the risk of cardiovascular disorders. We observed that the expression of death-associated protein-like 1 (DAPL1), which is involved in the early stages of epithelial differentiation and apoptosis, is considerably higher in the testes of sexually mature mice than in other tissues. Accordingly, Dapl1-null mice were constructed to evaluate this variation. Notably, in these mice, the testicular levels of steroidogenic acute regulatory protein (StAR) and serum testosterone levels were significantly elevated on postnatal day 49. The findings were confirmed in vitro using I-10 mouse testis-derived tumor cells. The in vivo and in vitro data revealed the DAPL1-regulated the expression of StAR involving altered transcription of critical proteins in the protein kinase A and CREB/CREM pathways in Leydig cells. The collective findings implicate DAPL1 as an important factor for steroidogenesis regulation, and DAPL1 deregulation may be related to high endogenous levels of testosterone.
Collapse
Affiliation(s)
- Hong-Bin Chen
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Jorge Carlos Pineda Garcia
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinako Arizono
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Division of Experimental, Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Japan
| | - Ren-Shi Li
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Yukiko Hattori
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroe Sano
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuu Miyauchi
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
61
|
Zhao L, Zhang J, Yang L, Zhang H, Zhang Y, Gao D, Jiang H, Li Y, Dong H, Ma T, Wang X, Wu M, Wang A, Jin Y, Yuan Y, Chen H. Glyphosate exposure attenuates testosterone synthesis via NR1D1 inhibition of StAR expression in mouse Leydig cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147323. [PMID: 33957581 DOI: 10.1016/j.scitotenv.2021.147323] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Glyphosate is a broad-spectrum herbicide that impairs testosterone synthesis in mammals. Leydig cells (LCs), the primary producers of testosterone, demonstrate rhythmic expression of circadian clock genes both in vivo and in vitro. The nuclear receptor NR1D1 is an important clock component that constitutes the subsidiary transcriptional/translational loop in the circadian clock system. Nr1d1 deficiency resulted in diminished fertility in both male and female mice. However, whether NR1D1 is involved in the glyphosate-mediated inhibition of testosterone synthesis in LCs remains unclear. Here, the involvement of NR1D1 in glyphosate-mediated inhibition of testosterone synthesis was investigated both in vitro and in vivo. Glyphosate exposure of TM3 cells significantly increased Nr1d1 mRNA levels, but decreased Bmal1, Per2, StAR, Cyp11a1, and Cyp17a1 mRNA levels. Western blotting confirmed elevated NR1D1 and reduced StAR protein levels following glyphosate exposure. Glyphosate exposure also reduced testosterone production in TM3 cells. In primary LCs, glyphosate exposure also upregulated Nr1d1 mRNA levels and downregulated the mRNA levels of other clock genes (Bmal1 and Per2) and steroidogenic genes (StAR, Cyp17a1, Cyp11a1, and Hsd3b2), and inhibited testosterone synthesis. Moreover, glyphosate exposure significantly reduced the amplitude and shortened the period of PER2::LUCIFERASE oscillations in primary LCs isolated from mPer2Luciferase knock-in mice. Four weeks of oral glyphosate upregulated NR1D1 at both the mRNA and protein levels in mouse testes, and this was accompanied by a reduction in StAR expression. Notably, serum testosterone levels were also drastically reduced in mice treated with glyphosate. Moreover, dual-luciferase reporter and EMSA assays revealed that in TM3 cells NR1D1 inhibits the expression of StAR by binding to a canonical RORE element present within its promoter. Together, these data demonstrate that glyphosate perturbs testosterone synthesis via NR1D1 mediated inhibition of StAR expression in mouse LCs. These findings extend our understanding of how glyphosate impairs male fertility.
Collapse
Affiliation(s)
- Lijia Zhao
- Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Zhang
- Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Luda Yang
- Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haisen Zhang
- Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yu Zhang
- Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dengke Gao
- Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haizhen Jiang
- Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yating Li
- Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Dong
- Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tiantian Ma
- Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Wang
- Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meina Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Aihua Wang
- Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yaping Jin
- Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yalin Yuan
- Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Huatao Chen
- Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
62
|
Gao H, Li J, Zhao G, Li Y. 3,5,6-trichloro-2-pyridinol intensifies the effect of chlorpyrifos on the paracrine function of Sertoli cells by preventing binding of testosterone and the androgen receptor. Toxicology 2021; 460:152883. [PMID: 34352351 DOI: 10.1016/j.tox.2021.152883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
3,5,6-Trichloro-2-pyridinol (TCP) is an important biomarker and one of the final metabolites of chlorpyrifos (CPF). TCP inhibits secretion of sex hormones. Similar to CPF, TCP can bind to sex steroid hormone receptors and decrease the secretion of sex hormones. However, little attention has been paid to the ability of TCP and CPF to interfere with androgen receptor (AR) in Sertoli cells. This study aimed to explain how TCP promotes the inhibitory effect of CPF on the paracrine function of Sertoli cells. Western blotting indicated that after 20 weeks of exposure, expression of AR in testes was significantly reduced by CPF. An in vitro assay measured the cytotoxicity of CPF, TCP and diethylphosphate (DEP) on viability of Sertoli cells by Cell Counting Kit-8. CPF cytotoxicity was greater than that of TCP, and TCP cytotoxicity was greater than that of DEP at concentrations of 1000 μmol/L. Western blotting indicated that TCP and CPF both decreased expression of AR and cAMP-response element binding protein phosphorylation, while DEP had no effect in Sertoli cells, which are important in regulating paracrine function of Sertoli cells. The fluorescence measurements and docking studies revealed that testosterone, CPF and TCP showed four types of intermolecular interactions with AR, highlighting alkyl bonds with some of the same amino acids. Compared with testosterone, CPF and TCP also showed significant synergistic interaction with AR. CPF interacted with more amino acids and interaction energy than TCP did. This research elucidates TCP in the antiandrogenic effect of CPF on the paracrine function and suggests that TCP or chemicals with a trichloropyridine structure must be considered during reproductive toxicity assessment of potential environmental pollutants.
Collapse
Affiliation(s)
- Haina Gao
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Jinwang Li
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Guoping Zhao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
63
|
Guo H, Luo X, Sun L, Li J, Cui S. Cyclin-dependent kinase inhibitor 1B acts as a novel molecule to mediate testosterone synthesis and secretion in mouse Leydig cells by luteinizing hormone (LH) signaling pathway. In Vitro Cell Dev Biol Anim 2021; 57:742-752. [PMID: 34355300 DOI: 10.1007/s11626-021-00545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/06/2021] [Indexed: 10/20/2022]
Abstract
Cyclin-dependent kinase inhibitor 1B (Cdkn1b, p27) plays important regulatory roles in many cellular processes. p27 is highly expressed in the mouse testis, but its roles and underlying mechanisms for testosterone synthesis and secretion remain not well understood. In the current study, we found that p27 located in Leydig cells and Sertoli cells of adult mouse testis. To explore the function of p27 in Leydig cells, p27 inhibitor and activator were injected into the adult mice, primary Leydig cells and TM3 cells. Our in vivo and in vitro results showed that change in the expression of p27 significantly alters the testosterone in both globe serum and culture medium. Meanwhile, the steroidogenesis-related gene expression was significantly regulated too. Moreover, our in vitro study showed that luteinizing hormone (LH) significantly increased p27 mRNA levels. Furthermore, our results proved that altering the mRNA expression of p27 leads to the synchronized changes of Lhcgr, Star, Cyp11a1, Hsd3b6, Cyp11a1, and Hsd17b3. Alterations of p27 also result in synchronously changes of RAF1 and ERK1/2 phosphorylation. These findings indicate that p27 plays vital roles in LH-induced testosterone production, providing a novel mechanism that p27 acts as an upstream molecule to elevate ERK1/2 phosphorylation to promote the expression of StAR and other cholesterol-metabolizing enzymes.
Collapse
Affiliation(s)
- Hongzhou Guo
- State Key Laboratory of Agrobiotechnolpgy, College of Biological Sciences, China Agricultural University, Beijing, 10021, People's Republic of China
| | - Xuan Luo
- State Key Laboratory of Agrobiotechnolpgy, College of Biological Sciences, China Agricultural University, Beijing, 10021, People's Republic of China
| | - Longjie Sun
- State Key Laboratory of Agrobiotechnolpgy, College of Biological Sciences, China Agricultural University, Beijing, 10021, People's Republic of China
| | - Jianhua Li
- Department of Reproductive Medicine and Genetics, The Seventh Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnolpgy, College of Biological Sciences, China Agricultural University, Beijing, 10021, People's Republic of China.
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China.
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
64
|
Kumar S, Kim HJ, Lee CH, Choi HS, Lee K. Leydig Cell-Specific DAX1-Deleted Mice Has Higher Testosterone Level in the Testis During Pubertal Development. Reprod Sci 2021; 29:955-962. [PMID: 33891289 DOI: 10.1007/s43032-021-00554-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
Testosterone, the male sex hormone, is necessary for the development and function of the male reproductive system. Biosynthesis of testosterone in mammals mainly occurs in testicular Leydig cells. Many proteins such as P450c17, 3β-HSD, and StAR are involved in testicular steroidogenesis. DAX1 is essential for sex development and interacts with nuclear receptors such as steroidogenic factor 1 to inhibit steroidogenesis. In this study, we investigated the role of DAX1 in testicular steroidogenesis in vivo by generating Leydig cell-specific DAX1-knockout mice. Radioimmunoassay revealed that the levels of testosterone and progesterone were higher in Leydig cell-specific DAX1-knockout testes than in the testes from wild-type mice during the first 3-4 weeks of aging. In addition, the expression levels of steroidogenic genes, such as StAR, P450c17, P450scc, and 3β-HSD, were considerably higher in the testes from DAX1-knockout mice. DAX1-deficient mouse testes seemed to attain early puberty with the acceleration of germ cell development. These data suggest that DAX1 regulates the expression of steroidogenic genes, and thereby controls and fine-tunes steroidogenesis during testis development.
Collapse
Affiliation(s)
- Sudeep Kumar
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Hyo Jeong Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Keesook Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
65
|
S-allyl Cysteine Enhances Testosterone Production in Mice and Mouse Testis-Derived I-10 Cells. Molecules 2021; 26:molecules26061697. [PMID: 33803601 PMCID: PMC8003081 DOI: 10.3390/molecules26061697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Hypogonadism, associated with low levels of testosterone synthesis, has been implicated in several diseases. Recently, the quest for natural alternatives to prevent and treat hypogonadism has gained increasing research interest. To this end, the present study explored the effect of S-allyl cysteine (SAC), a characteristic organosulfur compound in aged-garlic extract, on testosterone production. SAC was administered at 50 mg/kg body weight intraperitoneally into 7-week-old BALB/c male mice in a single-dose experiment. Plasma levels of testosterone and luteinizing hormone (LH) and testis levels of proteins involved in steroidogenesis were measured by enzymatic immunoassay and Western blot, respectively. In addition, mouse testis-derived I-10 cells were also used to investigate the effect of SAC on steroidogenesis. In the animal experiment, SAC significantly elevated testosterone levels in both the plasma and the testis without changing the LH level in plasma and increased phosphorylated protein kinase A (p-PKA) levels. Similar results were also observed in I-10 cells. The findings demonstrating the increasing effect of SAC on p-PKA and mRNA levels of Cyp11a suggest that SAC increases the testosterone level by activating the PKA pathway and could be a potential target for hypogonadism therapeutics.
Collapse
|
66
|
Xiao Y, Zhao L, Li W, Wang X, Ma T, Yang L, Gao L, Li C, Zhang M, Yang D, Zhang J, Jiang H, Zhao H, Wang Y, Chao HW, Wang A, Jin Y, Chen H. Circadian clock gene BMAL1 controls testosterone production by regulating steroidogenesis-related gene transcription in goat Leydig cells. J Cell Physiol 2021; 236:6706-6725. [PMID: 33598947 DOI: 10.1002/jcp.30334] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Testosterone is produced by Leydig cells (LCs) and undergoes diurnal changes in serum levels in rats, mice, and humans, but little is known in goats. The present study revealed that goat serum testosterone levels displayed diurnal rhythmic changes (peak time at ZT11.2). Immunohistochemical staining showed that BMAL1, a circadian clock protein, is highly expressed in goat LCs. ELISA revealed that both hCG (0-5 IU/ml) and 22R-OH-cholesterol (0-30 μM) addition stimulated testosterone synthesis in primary goat LCs in a dose-dependent manner. Treating goat LCs with hCG (5 IU/ml) significantly increased intracellular cAMP levels. Additionally, real-time quantitative polymerase chain reaction (PCR) analysis revealed that the circadian clock (BMAL1, PER1, PER2, DBP, and NR1D1) and steroidogenesis-related genes (SF1, NUR77, StAR, HSD3B2, CYP17A1, CYP11A1, and HSD17B3) showed rhythmic expression patterns in goat LCs following dexamethasone synchronization. Several Bmal1-Luc circadian oscillations were clearly observed in dexamethasone-treated goat LCs transfected with the pLV6-Bmal1-Luc plasmid. BMAL1 knockdown significantly downregulated mRNA levels of PER2, NR1D1, DBP, StAR, HSD3B2, SF1, NUR77, and GATA4, and dramatically decreased StAR and HSD3B2 protein levels and testosterone production. In contrast, BMAL1 overexpression significantly increased the mRNA and protein expression levels of StAR and HSD17B3 and enhanced testosterone production. Reporter assays revealed that goat BMAL1, or in combination with mouse CLOCK, activated goat HSD17B3 transcription in vitro. These data indicate that BMAL1 contributes to testosterone production by regulating transcription of steroidogenesis-related genes in goat LCs, providing a basis for further exploring the underlying mechanism by which the circadian clock regulates ruminant reproductive capability.
Collapse
Affiliation(s)
- Yaoyao Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lijia Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Weidong Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiaoyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Cuimei Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Manhui Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dan Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haizhen Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongcong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiqun Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
67
|
Zhao L, Xiao Y, Li C, Zhang J, Zhang Y, Wu M, Ma T, Yang L, Wang X, Jiang H, Li Q, Zhao H, Wang Y, Wang A, Jin Y, Chen H. Zearalenone perturbs the circadian clock and inhibits testosterone synthesis in mouse Leydig cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:112-124. [PMID: 33148124 DOI: 10.1080/15287394.2020.1841699] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zearalenone (ZEA), a mycotoxin, is known to impair reproductive capability by disrupting the synthesis and secretion of testosterone by Leydig cells (LCs), although the mechanism is unknown. Robust rhythmicity of circadian clock and steroidogenic genes were identified in LCs. The aim of this study was to examine whether ZEA significantly attenuated the transcription of core clock genes (Bmal1, Dbp, Per2, and Nr1d1) as well as steroidogenic genes (StAR, Hsd3b2, and Cyp11a1) in mouse testis Leydig cell line (TM3). Western blotting confirmed declines in BMAL1, NR1D1, and StAR protein levels. ZEA also suppressed secreted testosterone levels. In primary LCs, isolated from PER2::LUCIFERASE reporter gene knock in mice, ZEA diminished the amplitude of PER2::LUC expression, and induced a phase shift and period extension. In primary LCs, ZEA also suppressed the expression levels of core clock and steroidogenic genes, reduced protein levels of BMAL1, and decreased testosterone secretion. In vivo expression of core clock and steroidogenic genes were reduced in testes of mice exposed to ZEA for 1 week leading to decreased serum testosterone levels. In summary, data suggest that ZEA may impair testosterone synthesis through attenuation of the circadian clock in LCs culminating in reproductive dysfunction in male mammals .
Collapse
Affiliation(s)
- Lijia Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University , Yangling, China
| | - Yaoyao Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University , Yangling, China
| | - Cuimei Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University , Yangling, China
| | - Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University , Yangling, China
| | - Yaojia Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University , Yangling, China
| | - Meina Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University , Taiyuan, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University , Yangling, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University , Yangling, China
| | - Xiaoyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University , Yangling, China
| | - Haizhen Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University , Yangling, China
| | - Qian Li
- Medical Experiment Centre, Shaanxi University of Chinese Medicine , Xianyang, China
| | - Hongcong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University , Yangling, China
| | - Yiqun Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University , Yangling, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University , Yangling, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University , Yangling, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University , Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University , Yangling, China
| |
Collapse
|
68
|
Martinot E, Boerboom D. Slit/Robo signaling regulates Leydig cell steroidogenesis. Cell Commun Signal 2021; 19:8. [PMID: 33478524 PMCID: PMC7819258 DOI: 10.1186/s12964-020-00696-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/10/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND First identified as a regulator of neuronal axon guidance, Slit/Robo signaling has since been implicated in additional physiologic and pathologic processes, such as angiogenesis, organogenesis and cancer progression. However, its roles in the regulation of testis function have been little explored. METHODS Immunohistochemistry and RT-qPCR analyses were performed to detect the expression of Slit/Robo signaling effectors in the adult mouse testis. To identify the roles and mechanisms of Slit/Robo signaling in the regulation of steroidogenesis, RT-qPCR, immunoblotting and hormone measurements were carried out using Leydig cells (primary cultures and the MA10 cell line) treated with exogenous SLIT ligands, and testes from Robo1-null mice. RESULTS Slit1, -2 and -3 and Robo1 and -2 expression was detected in the adult mouse testis, particularly in Leydig cells. In vitro treatment of Leydig cells with exogenous SLIT ligands led to a decrease in the expression of the steroidogenic genes Star, Cyp11a1, and Cyp17a1. SLIT2 treatment decreased the phosphorylation of the key steroidogenic gene regulator CREB, possibly in part by suppressing AKT activity. Furthermore, SLIT2 treatment reduced the responsiveness of MA10 cells to luteinizing hormone by decreasing the expression of Lhcgr. Consistent with these in vitro results, an increase in testicular Star mRNA levels and intra-testicular testosterone concentrations were found in Robo1-null mice. Finally, we showed that the expression of the Slit and Robo genes in Leydig cells is enhanced by testosterone treatment in vitro, by an AR-independent mechanism. CONCLUSION Taken together, these results suggest that Slit/Robo signaling represents a novel mechanism that regulates Leydig cell steroidogenesis. It may act in an autocrine/paracrine manner to mediate negative feedback by testosterone on its own synthesis. Video Abstract.
Collapse
Affiliation(s)
- Emmanuelle Martinot
- Département de Biomédecine Vétérinaire, Centre de Recherche en Reproduction Et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Centre de Recherche en Reproduction Et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC Canada
| |
Collapse
|
69
|
Venditti M, Romano MZ, Aniello F, Minucci S. Preliminary Investigation on the Ameliorative Role Exerted by D-Aspartic Acid in Counteracting Ethane Dimethane Sulfonate (EDS) Toxicity in the Rat Testis. Animals (Basel) 2021; 11:ani11010133. [PMID: 33435542 PMCID: PMC7827869 DOI: 10.3390/ani11010133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary For proper fertility, the production of good-quality spermatozoa is essential. Nowadays, many environmental pollutants affect the spermatogenetic process, at different levels. For this reason, new approaches are needed to prevent/counteract these toxic effects. Here, we showed that the excitatory amino acid D-aspartic acid (D-Asp) prevents the deadly action of ethane dimethane sulfonate (EDS) on the testosterone-secreting Leydig cells in rat testis. We found that EDS, probably via the reduced testosterone level, alters the normal histology of the seminiferous epithelium, leading to germ cells death and to the decreased protein level of two Leydig cell “markers”: steroidogenic acute regulatory and prolyl endopeptidase. In addition, the same analysis performed on rats that were pre-treated with D-Asp revealed a protective role of this compound, since all the above parameters were quite normal. Moreover, we found that the protective mechanism of action involved in this scenario may be due to the ability of D-Asp to reduce the oxidative stress induced by EDS. Based on these findings, we could affirm that D-Asp may be an encouraging candidate to be used to alleviate the harmful action due to environmental pollutants exposure, in order to maintain appropriate fertility. Abstract Herein is reported the first evidence of the protective role of D-aspartic acid (D-Asp) in preventing the toxic effect exerted by the alkylating agent ethane dimethane sulfonate (EDS) in the rat testis. We confirmed that EDS treatment specifically destroyed Leydig cells (LC), resulting in the drastic decrease of the serum testosterone level and producing morphological changes in the germinal tubules, i.e., altered organization of the epithelium, loss of cell contacts and the consequent presence of empty spaces between them, and a reduce number of spermatozoa. Moreover, an increase of TUNEL-positive germ cells, other than alteration in the protein level and localization of two LC “markers”, StAR and PREP, were observed. Interestingly, results obtained from rats pre-treated with D-Asp for 15 days before EDS-injection showed that all the considered parameters were quite normal. To explore the probable mechanism(s) involved in the protection exerted by D-Asp, we considered the increased oxidative stress induced by EDS and the D-Asp antioxidant effects. Thiobarbiturc acid-reactive species (TBARS) levels increased following EDS-injection, while no change was observed in the D-Asp + EDS treated rats. Our results showed that D-Asp may be used as a strategy to mitigate the toxic effects exerted by environmental pollutants, as endocrine disrupters, in order to preserve the reproductive function.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università della Campania “Luigi Vanvitelli”, Via Costantinopoli, 16, 80138 Napoli, Italy; (M.V.); (M.Z.R.)
| | - Maria Zelinda Romano
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università della Campania “Luigi Vanvitelli”, Via Costantinopoli, 16, 80138 Napoli, Italy; (M.V.); (M.Z.R.)
| | - Francesco Aniello
- Dipartimento di Biologia, Università di Napoli ‘Federico II, Via Cinthia’, 21, 80126 Napoli, Italy;
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università della Campania “Luigi Vanvitelli”, Via Costantinopoli, 16, 80138 Napoli, Italy; (M.V.); (M.Z.R.)
- Correspondence:
| |
Collapse
|
70
|
Determination of Intraprostatic and Intratesticular Androgens. Int J Mol Sci 2021; 22:ijms22010466. [PMID: 33466491 PMCID: PMC7796479 DOI: 10.3390/ijms22010466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
Androgens represent the main hormones responsible for maintaining hormonal balance and function in the prostate and testis. As they are involved in prostate and testicular carcinogenesis, more detailed information of their active concentration at the site of action is required. Since the introduction of the term intracrinology as the local formation of active steroid hormones from inactive precursors of the adrenal gland, mainly dehydroepiandrosterone (DHEA) and DHEA-S, it is evident that blood circulating levels of sex steroid hormones need not reflect their actual concentrations in the tissue. Here, we review and critically evaluate available methods for the analysis of human intraprostatic and intratesticular steroid concentrations. Since analytical approaches have much in common in both tissues, we discuss them together. Preanalytical steps, including various techniques for separation of the analytes, are compared, followed by the end-point measurement. Advantages and disadvantages of chromatography-mass spectrometry (LC-MS, GC-MS), immunoanalytical methods (IA), and hybrid (LC-IA) are discussed. Finally, the clinical information value of the determined steroid hormones is evaluated concerning differentiating between patients with cancer or benign hyperplasia and between patients with different degrees of infertility. Adrenal-derived 11-oxygenated androgens are mentioned as perspective prognostic markers for these purposes.
Collapse
|
71
|
Opuwari CS, Matshipi MN, Phaahla MK, Setumo MA, Moraswi RT, Zitha AA, Offor U, Choma SSR. Androgenic effect of aqueous leaf extract of
Moringa oleifera
on Leydig TM3 cells in vitro. Andrologia 2020; 52:e13825. [DOI: 10.1111/and.13825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/29/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Chinyerum S. Opuwari
- Department of Pre‐Clinical Sciences University of Limpopo Polokwane South Africa
| | - Matome N. Matshipi
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Mantaneng K. Phaahla
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Mmaphulane A. Setumo
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Rantobeng T. Moraswi
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Amukelani A. Zitha
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Ugochukwu Offor
- Department of Pre‐Clinical Sciences University of Limpopo Polokwane South Africa
| | - Solomon S. R. Choma
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| |
Collapse
|
72
|
Beato S, Toledo-Solís FJ, Fernández I. Vitamin K in Vertebrates' Reproduction: Further Puzzling Pieces of Evidence from Teleost Fish Species. Biomolecules 2020; 10:E1303. [PMID: 32917043 PMCID: PMC7564532 DOI: 10.3390/biom10091303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Vitamin K (VK) is a fat-soluble vitamin that vertebrates have to acquire from the diet, since they are not able to de novo synthesize it. VK has been historically known to be required for the control of blood coagulation, and more recently, bone development and homeostasis. Our understanding of the VK metabolism and the VK-related molecular pathways has been also increased, and the two main VK-related pathways-the pregnane X receptor (PXR) transactivation and the co-factor role on the γ-glutamyl carboxylation of the VK dependent proteins-have been thoroughly investigated during the last decades. Although several studies evidenced how VK may have a broader VK biological function than previously thought, including the reproduction, little is known about the specific molecular pathways. In vertebrates, sex differentiation and gametogenesis are tightly regulated processes through a highly complex molecular, cellular and tissue crosstalk. Here, VK metabolism and related pathways, as well as how gametogenesis might be impacted by VK nutritional status, will be reviewed. Critical knowledge gaps and future perspectives on how the different VK-related pathways come into play on vertebrate's reproduction will be identified and proposed. The present review will pave the research progress to warrant a successful reproductive status through VK nutritional interventions as well as towards the establishment of reliable biomarkers for determining proper nutritional VK status in vertebrates.
Collapse
Affiliation(s)
- Silvia Beato
- Campus de Vegazana, s/n, Universidad de León (ULE), 24071 León, Spain;
| | - Francisco Javier Toledo-Solís
- Consejo Nacional de Ciencia y Tecnología (CONACYT, México), Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, C.P. 03940 Ciudad de Mexico, Mexico;
- Department of Biology and Geology, University of Almería, 04120 Almería, Spain
| | - Ignacio Fernández
- Center for Aquaculture Research, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, s/n, 40196 Zamarramala, Segovia, Spain
| |
Collapse
|
73
|
Yang Y, Zhou C, Zhang T, Li Q, Mei J, Liang J, Li Z, Li H, Xiang Q, Zhang Q, Zhang L, Huang Y. Conversion of Fibroblast into Functional Leydig-like Cell Using Defined Small Molecules. Stem Cell Reports 2020; 15:408-423. [PMID: 32735821 PMCID: PMC7419716 DOI: 10.1016/j.stemcr.2020.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Recent studies have demonstrated that fibroblasts can be directly converted into functional Leydig cells by transcription factors. However, the transgenic approach used in these studies raises safety concerns for its future application. Here, we report that fibroblasts can be directly reprogrammed into Leydig-like cells by exposure to a combination of forskolin, 20α-hydroxycholesterol, luteinizing hormone, and SB431542. These chemical compound-induced Leydig-like cells (CiLCs) express steroidogenic genes and have a global gene expression profile similar to that of progenitor Leydig cells, although not identical. In addition, these cells can survive in testis and produce testosterone in a circadian rhythm. This induction strategy is applicable to reprogramming human periodontal ligament fibroblasts toward Leydig-like cells. These findings demonstrated fibroblasts can be directly converted into Leydig-like cells by pure chemical compounds. This strategy overcomes the limitations of conventional transgenic-based reprogramming and provides a simple, effective approach for Leydig cell-based therapy while simultaneously preserving the hypothalamic-pituitary-gonadal axis. Direct induction of fibroblasts into Leydig-like cells (CiLCs) by chemicals CiLCs were modulated by HPG axis and produced testosterone in a diurnal rhythm Conversion process toward CiLCs did not pass through an intermediate state
Collapse
Affiliation(s)
- Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Chenxing Zhou
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Tiantian Zhang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Quan Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jiaxin Mei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jinlian Liang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Hanhao Li
- Department of Pharmacology, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; Bioparmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Qihao Zhang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Lei Zhang
- Guangdong Provincial Institute of Biological Products and Materia Medica, Guangzhou 510440, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; Department of Pharmacology, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Bioengineering Medicine of, Guangzhou 510632, China.
| |
Collapse
|
74
|
Counteracting Cisplatin-Induced Testicular Damages by Natural Polyphenol Constituent Honokiol. Antioxidants (Basel) 2020; 9:antiox9080723. [PMID: 32784851 PMCID: PMC7464045 DOI: 10.3390/antiox9080723] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Cisplatin, despite its anti-cancer ability, exhibits severe testicular toxicities when applied systemically. Due to its wide application in cancer treatment, reduction of its damages to normal tissue is an imminent clinical need. Here we evaluated the effects of honokiol, a natural lipophilic polyphenol compound, on cisplatin-induced testicular injury. We showed in-vitro and in-vivo that nanosome-encapsulated honokiol attenuated cisplatin-induced DNA oxidative stress by suppressing intracellular reactive oxygen species production and elevating gene expressions of mitochondrial antioxidation enzymes. Nanosome honokiol also mitigated endoplasmic reticulum stress through down regulation of Bip-ATF4-CHOP signaling pathway. Additionally, this natural polyphenol compound diminished cisplatin-induced DNA breaks and cellular apoptosis. The reduced type I collagen accumulation in the testis likely attributed from inhibition of TGFβ1, αSMA and ER protein TXNDC5 protein expression. The combinatorial beneficial effects better preserve spermatogenic layers and facilitate repopulation of sperm cells. Our study renders opportunity for re-introducing cisplatin to systemic anti-cancer therapy with reduced testicular toxicity and restored fertility.
Collapse
|
75
|
Li J, Fang B, Ren F, Xing H, Zhao G, Yin X, Pang G, Li Y. TCP structure intensified the chlorpyrifos-induced decrease in testosterone synthesis via LH-LHR-PKA-CREB-Star pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138496. [PMID: 32481206 DOI: 10.1016/j.scitotenv.2020.138496] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Similar to diethylphosphate (DEP), 3,5,6-trichloro-2-pyridinol (TCP) is also a characteristic chemical substance and ultimate transformation product of chlorpyrifos (CPF) because the structure of TCP is equivalent to the trichloro pyridine structure of CPF. TCP is often used as a biomarker of CPF exposure. TCP and DEP are often detected in human blood and urine due to the widespread use of CPF. No studies have sufficiently clarified which structure contributes to the negative effect of CPF on testosterone synthesis. This study aims to explain which structure promotes the inhibitory effect of CPF on testosterone synthesis and the related influence mechanisms. After 20 weeks of exposure, the testosterone level in testes was significantly reduced by different doses of CPF (0.3 mg/kg body weight CPF and 3.0 mg/kg body weight CPF). Meanwhile, the level of testosterone synthesized by isolated primary Leydig cells was also reduced by CPF. In addition, TCP but not DEP aggravated the decrease in testosterone synthesis in isolated primary Leydig cells. On the other hand, CPF and TCP significantly decreased the levels of the Star protein, CREB phosphorylation and PKA phosphorylation, which are important in regulating testosterone synthesis. Based on these results, TCP is a key structure that mediates the CPF-induced decrease in testosterone synthesis by terminating the signal transmission of the LH-LHR-PKA-CREB-Star pathway. Thus, chemicals with the TCP structure may be potential endocrine disruptors that decrease fertility. Chemicals that can be converted to TCP or achieve a trichloro pyridine structure must be considered during reproductive toxicity risk assessment.
Collapse
Affiliation(s)
- Jinwang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory of Food Quality and Safety, Beijing University of Agriculture, Beijing 100096, China
| | - Hanzhu Xing
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Guoping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xuefeng Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guofang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yixuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
76
|
Zhang H, Lu H, Chen P, Chen X, Sun C, Ge RS, Su Z, Ye L. Effects of gestational Perfluorooctane Sulfonate exposure on the developments of fetal and adult Leydig cells in F1 males. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114241. [PMID: 32120262 DOI: 10.1016/j.envpol.2020.114241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 05/15/2023]
Abstract
Studies have showed that some of the most common male reproductive disorders present in adult life might have a fetal origin. Perfluorooctane sulfonic (PFOS) is one of the major environmental pollutants that may affect the development of male reproductive system if exposed during fetal or pubertal periods. However, whether PFOS exposure during fetal period affects testicular functions in the adult is still unclear. Herein, we investigated the effects of a brief gestational exposure to PFOS on the development of adult Leydig- and Sertoli-cells in the male offspring. Eighteen pregnant Sprague-Dawley rats were randomly divided into three groups and each received 0, 1 or 5 mg/kg/day PFOS from gestational day 5-20. The testicular functions of F1 males were evaluated on day 1, 35 and 90 after birth. PFOS treatment significantly decreased serum testosterone levels of animals by all three ages examined. The expression level of multiple mRNAs and proteins of Leydig (Scarb1, Cyp11a1, Cyp17a1 and Hsd17b3) and Sertoli (Dhh and Sox9) cells were also down-regulated by day 1 and 90. PFOS exposure might also inhibit Leydig cell proliferation since the number of PCNA-positive Leydig cells were significantly reduced by postnatal day 35. Accompanied by changes in Leydig cell proliferation and differentiation, PFOS also significantly reduced phosphorylation of glycogen synthase kinase-3β while increased phosphorylation of β-catenin. In conclusion, gestational PFOS exposure may have significant long-term effects on adult testicular functions of the F1 offspring. Changes in Wnt signaling may play a role in the process.
Collapse
Affiliation(s)
- Huishan Zhang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hemin Lu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Panpan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xipo Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Chengcheng Sun
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhijian Su
- Biopharmaceutical Research and Development Center, Department of Cell Biology Jinan University, Guangzhou, China
| | - Leping Ye
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
77
|
Selvaraju V, Baskaran S, Agarwal A, Henkel R. Environmental contaminants and male infertility: Effects and mechanisms. Andrologia 2020; 53:e13646. [PMID: 32447772 DOI: 10.1111/and.13646] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
The escalating prevalence of male infertility and decreasing trend in sperm quality have been correlated with rapid industrialisation and the associated discharge of an excess of synthetic substances into the environment. Humans are inevitably exposed to these ubiquitously distributed environmental contaminants, which possess the ability to intervene with the growth and function of male reproductive organs. Several epidemiological reports have correlated the blood and seminal levels of environmental contaminants with poor sperm quality. Numerous in vivo and in vitro studies have been conducted to investigate the effect of various environmental contaminants on spermatogenesis, steroidogenesis, Sertoli cells, blood-testis barrier, epididymis and sperm functions. The reported reprotoxic effects include alterations in the spermatogenic cycle, increased germ cell apoptosis, inhibition of steroidogenesis, decreased Leydig cell viability, impairment of Sertoli cell structure and function, altered expression of steroid receptors, increased permeability of blood-testis barrier, induction of peroxidative and epigenetic alterations in spermatozoa resulting in poor sperm quality and function. In light of recent scientific reports, this review discusses the effects of environmental contaminants on the male reproductive function and the possible mechanisms of action.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
78
|
Wang M, Yang S, Cai J, Yan R, Meng L, Long M, Zhang Y. Proteomic analysis using iTRAQ technology reveals the toxic effects of zearalenone on the leydig cells of rats. Food Chem Toxicol 2020; 141:111405. [PMID: 32389840 DOI: 10.1016/j.fct.2020.111405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/25/2022]
Abstract
Zearalenone (ZEA) is a mycotoxin that contaminates crops worldwide and is toxic to the reproductive systems of mammals, however, the toxicological mechanism by which ZEA affects germ cells is not fully understood. In this study, proteomic analysis using iTRAQ technology was adopted to determine the cellular response of Leydig cells of rats to ZEA exposure. The results were used to elucidate the mechanisms responsible for the toxicity of the ZEA towards germ cells. After 24 h of exposure to ZEA at a concentration of 30 μmol/L, a total of 128 differentially expressed proteins (DEPs) were identified. Of these, 70 DEPs were up-regulated and 58 DEPs were down-regulated. The DEPs associated with ZEA toxicology were then screened by using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results show that these DEPs are involved in a number of important ZEA toxicological pathways including apoptosis, immunotoxicity, DNA damage, and signaling pathways. The complex regulatory relationships between the DEPs and ZEA toxicological signaling pathways are also explicitly demonstrated in the form of a protein-protein interaction network. This study thus provides a theoretical molecular basis for understanding the toxicological mechanisms by which ZEA affects germ cells.
Collapse
Affiliation(s)
- Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jing Cai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Rong Yan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Lingqi Meng
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
79
|
Xia Y, Yang X, Lu J, Xie Q, Ye A, Sun W. The endoplasmic reticulum stress and related signal pathway mediated the glyphosate-induced testosterone synthesis inhibition in TM3 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113949. [PMID: 31968290 DOI: 10.1016/j.envpol.2020.113949] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Glyphosate is the most widely used herbicide in the world. In recent years, many studies have demonstrated that exposure to glyphosate-based herbicides (GHBs) was related to the decrease of serum testosterone and the decline in semen quality. However, the molecular mechanism of glyphosate-induced testosterone synthesis disorders is still unclear. In the present study, the effects of glyphosate on testosterone secretion and the role of endoplasmic reticulum (ER) stress in the process were investigated in TM3 cells. The effects of glyphosate at different concentrations on the viability of TM3 cells were detected by CCK8 method. The effect of glyphosate exposure on testosterone secretion was determined by enzyme-linked immunosorbent assay (ELISA). The expression levels of testosterone synthases and ER stress-related proteins were detected by Western blot and Immunofluorescence stain. Results showed that exposure to glyphosate at concentrations below 200 mg/L had no effect on cell viability, while the glyphosate above 0.5 mg/L could inhibit the testosterone secretion in TM3 cells. Treatment TM3 cells with glyphosate at 5 mg/L not only reduced the protein levels of testosterone synthase StAR and CYP17A1, inhibited testosterone secretion, but also increased the protein level of ER stress molecule Bip and promoted the phosphorylation of PERK and eIF2α. Pretreatment cells with PBA, an inhibitor of ER stress, alleviated glyphosate-induced increase in Bip, p-PERK and p-eIF2α protein levels, meanwhile rescuing glyphosate-induced testosterone synthesis disorders. When pretreatment with GSK2606414, a PERK inhibitor, the glyphosate-induced phosphorylation of PERK and eIF2α was blocked, and the glyphosate-inhibited testosterone synthesis and secretion was also restored. Overall, our findings suggest that glyphosate can interfere with the expression of StAR and CYP17A1 and inhibit testosterone synthesis and secretion via ER stress-mediated the activation of PERK/eIF2α signaling pathway in Leydig cells.
Collapse
Affiliation(s)
- Yongpeng Xia
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300041, PR China
| | - Jingchun Lu
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Qixin Xie
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Anfang Ye
- Department of Occupational Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, PR China.
| | - Wenjun Sun
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China; Institute of Environmental Medicine, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China; Department of Occupational Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, PR China.
| |
Collapse
|
80
|
D-Aspartate Upregulates DAAM1 Protein Levels in the Rat Testis and Induces Its Localization in Spermatogonia Nucleus. Biomolecules 2020; 10:biom10050677. [PMID: 32353957 PMCID: PMC7277804 DOI: 10.3390/biom10050677] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Cell differentiation during spermatogenesis requires a proper actin dynamic, regulated by several proteins, including formins. Disheveled-Associated-Activator of Morphogenesis1 (DAAM1) belongs to the formins and promotes actin polymerization. Our results showed that oral D-Aspartate (D-Asp) administration, an excitatory amino acid, increased DAAM1 protein levels in germ cells cytoplasm of rat testis. Interestingly, after the treatment, DAAM1 also localized in rat spermatogonia (SPG) and mouse GC-1 cells nuclei. We provided bioinformatic evidence that DAAM1 sequence has two predicted NLS, supporting its nuclear localization. The data also suggested a role of D-Asp in promoting DAAM1 shuttling to the nuclear compartment of those proliferative cells. In addition, the proliferative action induced by D-Asp is confirmed by the increased levels of PCNA, a protein expressed in the nucleus of cells in the S phase and p-H3, a histone crucial for chromatin condensation during mitosis and meiosis. In conclusion, we demonstrated, for the first time, an increased DAAM1 protein levels following D-Asp treatment in rat testis and also its localization in the nucleus of rat SPG and in mouse GC-1 cells. Our results suggest an assumed role for this formin as a regulator of actin dynamics in both cytoplasm and nuclei of the germ cells.
Collapse
|
81
|
A framework for high-resolution phenotyping of candidate male infertility mutants: from human to mouse. Hum Genet 2020; 140:155-182. [PMID: 32248361 DOI: 10.1007/s00439-020-02159-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Male infertility is a heterogeneous condition of largely unknown etiology that affects at least 7% of men worldwide. Classical genetic approaches and emerging next-generation sequencing studies support genetic variants as a frequent cause of male infertility. Meanwhile, the barriers to transmission of this disease mean that most individual genetic cases will be rare, but because of the large percentage of the genome required for spermatogenesis, the number of distinct causal mutations is potentially large. Identifying bona fide causes of male infertility thus requires advanced filtering techniques to select for high-probability candidates, including the ability to test causality in animal models. The mouse remains the gold standard for defining the genotype-phenotype connection in male fertility. Here, we present a best practice guide consisting of (a) major points to consider when interpreting next-generation sequencing data performed on infertile men, and, (b) a systematic strategy to categorize infertility types and how they relate to human male infertility. Phenotyping infertility in mice can involve investigating the function of multiple cell types across the testis and epididymis, as well as sperm function. These findings will feed into the diagnosis and treatment of male infertility as well as male health broadly.
Collapse
|
82
|
Kotula-Balak M, Duliban M, Pawlicki P, Tuz R, Bilinska B, Płachno BJ, Arent ZJ, Krakowska I, Tarasiuk K. The meaning of non-classical estrogen receptors and peroxisome proliferator-activated receptor for boar Leydig cell of immature testis. Acta Histochem 2020; 122:151526. [PMID: 32094002 DOI: 10.1016/j.acthis.2020.151526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
Abstract
Communication in biological systems involves diverse-types of cell-cell interaction including cross-talk between receptors expressed by the target cells. Recently, novel sort of estrogen receptors (G protein - coupled estrogen receptor; GPER and estrogen-related receptor; ERR) that signal directly via estrogen binding and/or via mutual interaction-regulated estrogen signaling were reported in various organs including testis. Peroxisome proliferator - activated receptor (PPAR) is responsible for maintaining of lipid homeostasis that is critical for sex steroid production in the testis. Here, we investigated the role of interaction between GPER, ERRβ and PPARγ in steroidogenic Leydig cells of immature boar testis. Testicular fragments cultured ex vivo were treated with GPER or PPARγ antagonists. Then, cell ultrastructure, expression and localization of GPER, ERRβ, PPARγ together with the molecular receptor mechanism, through cyclic AMP and Raf/Ras/extracellular signal activated kinases (ERK), in the control of cholesterol concentration and estrogen production by Leydig cells were studied. In the ultrastructure of antagonist-treated Leydig cells, mitochondria were not branched and not bifurcated as they were found in control. Additionally, in PPARγ-blocked Leydig cells changes in the number of lipid droplets were revealed. Independent of used antagonist, western blot revealed decreased co-expression of GPER, ERRβ, PPARγ with exception of increased expression of ERRβ after PPARγ blockage. Immunohistochemistry confirmed presence of all receptors partially located in the nucleus or cytoplasm of Leydig cells of both control and treated testes. Changes in receptor expression, decreased cholesterol and increased estradiol tissue concentrations occurred through decreased cAMP level (with exception after GPER blockage) as well as Raf/Ras/ERK pathway expression. These all findings indicate that GPER-ERRβ-PPARγ interaction exists in immature boar testis and regulates Leydig cell function. Further detailed studies and considerations on GPER-ERRβ-PPARγ as possible diagnosis/therapy target in disturbances of testis steroidogenic function are needed.
Collapse
Affiliation(s)
- M Kotula-Balak
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - M Duliban
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - R Tuz
- Department of Swine and Small Animal Breeding, Institute of Animal Sciences, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - B J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387 Krakow, Poland
| | - Z J Arent
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - I Krakowska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - K Tarasiuk
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
83
|
Radovic SM, Starovlah IM, Capo I, Miljkovic D, Nef S, Kostic TS, Andric SA. Insulin/IGF1 signaling regulates the mitochondrial biogenesis markers in steroidogenic cells of prepubertal testis, but not ovary. Biol Reprod 2020; 100:253-267. [PMID: 30084987 DOI: 10.1093/biolre/ioy177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022] Open
Abstract
Controlled changes in mitochondrial biogenesis and morphology are required for cell survival and homeostasis, but the molecular mechanisms are largely unknown. Here, male and female prepubertal mice (P21) with insulin and IGF1 receptors deletions in steroidogenic tissues (Insr/Igf1r-DKO) were used to investigate transcription of the key regulators of mitochondrial biogenesis (Ppargc1a, Ppargc1b, Pparg, Nrf1, Tfam) and architecture in Leydig cells, ovaries, and adrenals. Results showed that the expression of PGC1, a master regulator of mitochondrial biogenesis and integrator of environmental signals, and its downstream target Tfam, significantly decreased in androgen-producing Leydig cells. This is followed by reduction of Mtnd1, a mitochondrial DNA encoded transcript whose core subunit belongs to the minimal assembly required for catalysis. The same markers remained unchanged in ovaries. In contrast, in adrenals, the pattern of transcripts for mitochondrial biogenesis markers was the same in both sexes, but opposite from that observed in Leydig cells. The level of transcripts for markers of mitochondrial architecture (Mfn1, Mfn2) significantly increased in Leydig cells from Insr/Igf1r-DKO, but not in ovaries. This was followed by mitochondrial morphology disturbance, suggesting that the mitochondrial phase of steroidogenesis could be affected. Indeed, basal and pregnenolone stimulated progesterone productions in the mitochondria of Leydig cells from Insr/Igf1r-DKO decreased more than androgen production, and were barely detectable. Our results are the first to show that INSR/IGF1R are important for mitochondrial biogenesis in gonadal steroidogenic cells of prepubertal males, but not females and they serve as important regulators of mitochondrial architecture and biogenesis markers in Leydig cells.
Collapse
Affiliation(s)
- Sava M Radovic
- Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Isidora M Starovlah
- Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Capo
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Dejan Miljkovic
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tatjana S Kostic
- Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Silvana A Andric
- Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
84
|
Akcan G, Alimogullari E, Abu-Issa R, Cayli S. Analysis of the developmental expression of small VCP-interacting protein and its interaction with steroidogenic acute regulatory protein in Leydig cells. Reprod Biol 2020; 20:88-96. [PMID: 32037270 DOI: 10.1016/j.repbio.2020.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023]
Abstract
Small VCP-interacting protein (SVIP) is a 9-kDa protein that is composed of 76 amino acids, and it plays a role in the endoplasmic reticulum-associated protein degradation (ERAD) pathway. Recent studies have shown that SVIP is an androgen-responsive protein and its expression is regulated by androgens. Because no data are available regarding the cellular localization and expression of SVIP in the mouse testis, where androgens are highly expressed, immunohistochemistry and western blotting were performed. In the fetal testis, we found that moderate but consistent staining of SVIP is present in the cytoplasm of Leydig cells. In prepubertal and adult life, SVIP remains present in Leydig cells as well as in the cytoplasm of some peritubular and Sertoli cells. From postnatal day 15 onward, SVIP is strongly expressed in the cytoplasm of Leydig cells. Furthermore, TM3, MA-10 Leydig and Sertoli cell lines were also used to evaluate the expression of SVIP. To identify the interacting partners, such as steroidogenic acute regulatory (STAR) protein, colocalization studies were performed by fluorescence microscopy, showing that STAR colocalized with SVIP in the adult mouse testis. The expression changes of STAR were studied by using SVIP siRNAs in Leydig cell line cultures. Depletion of SVIP resulted in decreased expression of STAR. Additionally, the number and size of lipid droplets were significantly increased in SVIP-depleted Leydig cells. Taken together, our data identify SVIP as a marker of Leydig cell lineage and as a regulator of STAR protein expression and lipid droplet status in Leydig cells.
Collapse
Affiliation(s)
- Gulben Akcan
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| | - Ebru Alimogullari
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| | - Radwan Abu-Issa
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| | - Sevil Cayli
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey.
| |
Collapse
|
85
|
Huang Y, Zhu J, Li H, Wang W, Li Y, Yang X, Zheng N, Liu Q, Zhang Q, Zhang W, Liu J. Cadmium exposure during prenatal development causes testosterone disruption in multigeneration via SF-1 signaling in rats. Food Chem Toxicol 2020; 135:110897. [DOI: 10.1016/j.fct.2019.110897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/30/2022]
|
86
|
E Q, Wang C, Gu X, Gan X, Zhang X, Wang S, Ma J, Zhang L, Zhang R, Su L. Competitive endogenous RNA (ceRNA) regulation network of lncRNA-miRNA-mRNA during the process of the nickel-induced steroidogenesis disturbance in rat Leydig cells. Toxicol In Vitro 2019; 63:104721. [PMID: 31734292 DOI: 10.1016/j.tiv.2019.104721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023]
Abstract
Nickel (Ni) is a ubiquitous environmental pollutant, which can disrupt the production of steroid in rat Leydig cells. Steroidogenesis can be affected by non-coding RNAs (ncRNAs), which operate in normal physiological processes. To date, however, very few studies have focused on whether ncRNAs are involved in Ni-induced steroidogenesis disturbance. The present study was designed to investigate the impact of NiSO4 on the regulation of RNA networks including long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA in rat Leydig cells. After treatment with 1000 μmol/L NiSO4 for 24 h, 372 lncRNAs, 27 miRNAs (fold change>2, p < .05) and 3666 mRNAs (fold change>2, p < .01, and FDR < 0.01) were identified to be markedly altered by high-throughput sequencing analysis in rat Leydig cells. Functional analysis showed that the differentially expressed mRNAs were annotated into some steroid-related pathways. A dysregulated competing endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA was constructed based on bioinformatic analysis. Furthermore, a ceRNA network related to steroidogenesis was selected to analyze further and after the validation by qRT-PCR. The LOC102549726/miR-760-3p/Atf6, LOC102549726/miR-760-3p/Ets1, LOC102549726/miR-760-3p/Sik1 and AABR07037489.1/miR-708-5p/MAPK14 ceRNA networks were eventually confirmed. Collectively, our study provided a systematic perspective on the potential role of ncRNAs in steroidogenesis disturbance induced by Ni in rat Leydig cells.
Collapse
Affiliation(s)
- Qiannan E
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Caixia Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xueyan Gu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaoqin Gan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaotian Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shuang Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jianhua Ma
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Li Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Rui Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Li Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
87
|
Lu E, Feng F, Wen W, Tong X, Li X, Xiao L, Li G, Wang J, Zhang C. Notch signaling inhibition induces G0/G1 arrest in murine Leydig cells. Andrologia 2019; 51:e13413. [PMID: 31523838 DOI: 10.1111/and.13413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/16/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
As a highly evolutionarily conserved signaling pathway, Notch widely participates in cell-fate decisions and the development of various tissues and organs. In male reproduction, research on the Notch signaling pathway has mainly concentrated on germ cells and Sertoli cells. Leydig cells are the primary producers of testosterone and play important roles in spermatogenesis and maintaining secondary sexual characteristics. In this study, we used TM3 cells, a murine adult Leydig cell line, to investigate the expression profiles of Notch receptors and ligands and observe the effect of Notch signaling on the proliferation of TM3 cells. We found that Notch 1-3 and the ligands Dll-1 and Dll-4 were expressed in TM3 cells, Notch 1-3 and the ligand Dll-1 were expressed in testis interstitial Leydig cells, and Notch signaling inhibition suppressed the proliferation of TM3 cells and induced G0/G1 arrest. Inhibition of Notch signaling increased the expression of p21Waf1/Cip1 and p27. Overall, our results suggest that Notch inhibition suppresses the proliferation of TM3 cells and P21Waf1/Cip1 , and p27 may contribute to this process.
Collapse
Affiliation(s)
- Enhang Lu
- Joint Programme of Nanchang University and Queen Mary University of London, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Fen Feng
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Weihui Wen
- Department of Microbiology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Xiating Tong
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Xiang Li
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Li Xiao
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Gang Li
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Jing Wang
- Department of Microbiology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Chunping Zhang
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| |
Collapse
|
88
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
89
|
Han X, Wang Y, Chen T, Wilson MJ, Pan F, Wu X, Rui C, Chen D, Tang Q, Wu W. Inhibition of progesterone biosynthesis induced by deca-brominated diphenyl ether (BDE-209) in mouse Leydig tumor cell (MLTC-1). Toxicol In Vitro 2019; 60:383-388. [PMID: 31132478 DOI: 10.1016/j.tiv.2019.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 01/23/2023]
Abstract
Polybrominated Diphenyl Ethers (PBDEs) have been extensively applied as flame retardants in different polymeric materials since the 1970s, which have become a group of long-lasting environmental pollutants. They have been reported from previous studies to accumulate and then disrupt the endocrine system in humans. However, the mechanisms are still little known. In the present study, mouse Leydig tumor cells were utilized to investigate steroidogenic activity influenced by deca-brominated diphenyl ether (BDE-209). Our data showed that BDE-209 did not change intracellular cAMP level in the presence of human Chorionic Gonadotropin (hCG), cholera toxin (CT), and forskolin, which indicated that reduction of progesterone may not be related to the hCG-cAMP signal pathway in MLTC-1 cells. Furthermore, the reduction of progesterone generation was not shifted by 8-Br-cAMP, an analog of cAMP, indicating that BDE-209 may inhibit post-cAMP sites. In addition, mRNA expression levels of P450 side-chain cleavage enzyme (P450scc) and 3β-hydroxysteroid dehydrogenase (3β-HSD) presented a concentration-dependent decrease. In conclusion, this study suggested that BDE-209 may attenuate the progesterone secretion mainly through lowering the expression of these two enzymes.
Collapse
Affiliation(s)
- Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yanchen Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - Ting Chen
- Nanjing Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Mark J Wilson
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - Feng Pan
- Department of Urology, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xian Wu
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Can Rui
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Daozhen Chen
- Clinical laboratory, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, China.
| | - Qiuqin Tang
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
90
|
Shen J, Yang D, Zhou X, Wang Y, Tang S, Yin H, Wang J, Chen R, Chen J. Role of Autophagy in Zinc Oxide Nanoparticles-Induced Apoptosis of Mouse LEYDIG Cells. Int J Mol Sci 2019; 20:ijms20164042. [PMID: 31430870 PMCID: PMC6720004 DOI: 10.3390/ijms20164042] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) have shown adverse health impact on the human male reproductive system, with evidence of inducing apoptosis. However, whether or not ZnO NPs could promote autophagy, and the possible role of autophagy in the progress of apoptosis, remain unclear. In the current study, in vitro and in vivo toxicological responses of ZnO NPs were explored by using a mouse model and mouse Leydig cell line. It was found that intragastrical exposure of ZnO NPs to mice for 28 days at the concentrations of 100, 200, and 400 mg/kg/day disrupted the seminiferous epithelium of the testis and decreased the sperm density in the epididymis. Furthermore, serum testosterone levels were markedly reduced. The induction of apoptosis and autophagy in the testis tissues was disclosed by up-regulating the protein levels of cleaved Caspase-8, cleaved Caspase-3, Bax, LC3-II, Atg 5, and Beclin 1, accompanied by down-regulation of Bcl 2. In vitro tests showed that ZnO NPs could induce apoptosis and autophagy with the generation of oxidative stress. Specific inhibition of autophagy pathway significantly decreased the cell viability and up-regulated the apoptosis level in mouse Leydig TM3 cells. In summary, ZnO NPs can induce apoptosis and autophagy via oxidative stress, and autophagy might play a protective role in ZnO NPs-induced apoptosis of mouse Leydig cells.
Collapse
Affiliation(s)
- Jingcao Shen
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, China
| | - Dan Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, China
| | - Xingfan Zhou
- Key Laboratory of Occupational Health and Safety, Beijing Municipal Institute of Labor Protection, Beijing 100054, China
| | - Yuqian Wang
- Key Laboratory of Occupational Health and Safety, Beijing Municipal Institute of Labor Protection, Beijing 100054, China
| | - Shichuan Tang
- Key Laboratory of Occupational Health and Safety, Beijing Municipal Institute of Labor Protection, Beijing 100054, China
| | - Hong Yin
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora, VIC 3083, Australia
| | - Jinglei Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, China
| | - Rui Chen
- Key Laboratory of Occupational Health and Safety, Beijing Municipal Institute of Labor Protection, Beijing 100054, China.
| | - Jiaxiang Chen
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, China.
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, China.
| |
Collapse
|
91
|
Kandasamy M, Radhakrishnan RK, Poornimai Abirami GP, Roshan SA, Yesudhas A, Balamuthu K, Prahalathan C, Shanmugaapriya S, Moorthy A, Essa MM, Anusuyadevi M. Possible Existence of the Hypothalamic-Pituitary-Hippocampal (HPH) Axis: A Reciprocal Relationship Between Hippocampal Specific Neuroestradiol Synthesis and Neuroblastosis in Ageing Brains with Special Reference to Menopause and Neurocognitive Disorders. Neurochem Res 2019; 44:1781-1795. [PMID: 31254250 DOI: 10.1007/s11064-019-02833-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
The hippocampus-derived neuroestradiol plays a major role in neuroplasticity, independent of circulating estradiol that originates from gonads. The response of hypothalamus-pituitary regions towards the synthesis of neuroestradiol in the hippocampus is an emerging scientific concept in cognitive neuroscience. Hippocampal plasticity has been proposed to be regulated via neuroblasts, a major cellular determinant of functional neurogenesis in the adult brain. Defects in differentiation, integration and survival of neuroblasts in the hippocampus appear to be an underlying cause of neurocognitive disorders. Gonadotropin receptors and steroidogenic enzymes have been found to be expressed in neuroblasts in the hippocampus of the brain. However, the reciprocal relationship between hippocampal-specific neuroestradiol synthesis along neuroblastosis and response of pituitary based feedback regulation towards regulation of estradiol level in the hippocampus have not completely been ascertained. Therefore, this conceptual article revisits (1) the cellular basis of neuroestradiol synthesis (2) a potential relationship between neuroestradiol synthesis and neuroblastosis in the hippocampus (3) the possible involvement of aberrant neuroestradiol production with mitochondrial dysfunctions and dyslipidemia in menopause and adult-onset neurodegenerative disorders and (4) provides a hypothesis for the possible existence of the hypothalamic-pituitary-hippocampal (HPH) axis in the adult brain. Eventually, understanding the regulation of hippocampal neurogenesis by abnormal levels of neuroestradiol concentration in association with the feedback regulation of HPH axis might provide additional cues to establish a neuroregenerative therapeutic management for mood swings, depression and cognitive decline in menopause and neurocognitive disorders.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Faculty Recharge Programme, University Grants Commission(UGC-FRP), New Delhi, India.
| | - Risna Kanjirassery Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - G P Poornimai Abirami
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Syed Aasish Roshan
- Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Ajisha Yesudhas
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Kadalmani Balamuthu
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Chidambaram Prahalathan
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620024, India
| | | | - Anbalagan Moorthy
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Muthuswamy Anusuyadevi
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620024, India
| |
Collapse
|
92
|
Zirkin BR, Papadopoulos V. Leydig cells: formation, function, and regulation. Biol Reprod 2019; 99:101-111. [PMID: 29566165 DOI: 10.1093/biolre/ioy059] [Citation(s) in RCA: 396] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/11/2018] [Indexed: 12/23/2022] Open
Abstract
Herein we summarize important discoveries made over many years about Leydig cell function and regulation. Fetal Leydig cells produce the high levels of androgen (testosterone or androstenedione, depending upon the species) required for differentiation of male genitalia and brain masculinization. Androgen production declines with loss of these cells, reaching a nadir at postpartum. Testosterone then gradually increases to high levels with adult Leydig cell development from stem cells. In the adult, luteinizing hormone (LH) binding to Leydig cell LH receptors stimulates cAMP production, increasing the rate of cholesterol translocation into the mitochondria. Cholesterol is metabolized to pregnenolone by the CYP11A1 enzyme at the inner mitochondrial membrane, and pregnenolone to testosterone by mitochondria and smooth endoplasmic reticulum enzymes. Cholesterol translocation to the inner mitochondrial membrane is mediated by a protein complex formed at mitochondrial contact sites that consists of the cholesterol binding translocator protein, voltage dependent anion channel, and other mitochondrial and cytosolic proteins. Steroidogenic acute regulatory protein acts at this complex to enhance cholesterol movement across the membranes and thus increase testosterone formation. The 14-3-3γ and ε adaptor proteins serve as negative regulators of steroidogenesis, controlling the maximal amount of steroid formed. Decline in testosterone production occurs in many aging and young men, resulting in metabolic and quality-of-life changes. Testosterone replacement therapy is widely used to elevate serum testosterone levels in hypogonadal men. With knowledge gained of the mechanisms involved in testosterone formation, it is also conceivable to use pharmacological means to increase serum testosterone by Leydig cell stimulation.
Collapse
Affiliation(s)
- Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
93
|
Rebourcet D, Monteiro A, Cruickshanks L, Jeffery N, Smith S, Milne L, O’Shaughnessy PJ, Smith LB. Relationship of transcriptional markers to Leydig cell number in the mouse testis. PLoS One 2019; 14:e0219524. [PMID: 31291327 PMCID: PMC6619764 DOI: 10.1371/journal.pone.0219524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Objectives The current study aims to identify markers that would reflect the number of Leydig cells present in the testis, to help determine whether labour-intensive methods such as stereology are necessary. We used our well-characterised Sertoli cell ablation model in which we have empirically established the size of the Leydig cell population, to try to identify transcriptional biomarkers indicative of population size. Results Following characterisation of the Leydig cell population after Sertoli cell ablation in neonatal life or adulthood, we identified Hsd3b1 transcript levels as a potential indicator of Leydig cell number with utility for informing decision-making on whether to engage in time-consuming stereological cell counting analysis.
Collapse
Affiliation(s)
- Diane Rebourcet
- Faculty of Science, University of Newcastle, Callaghan, NSW, Australia
| | - Ana Monteiro
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lyndsey Cruickshanks
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
| | - Nathan Jeffery
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
| | - Sarah Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
| | - Laura Milne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
| | - Peter J. O’Shaughnessy
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lee B. Smith
- Faculty of Science, University of Newcastle, Callaghan, NSW, Australia
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
- * E-mail:
| |
Collapse
|
94
|
Lu H, Zhang H, Gao J, Li Z, Bao S, Chen X, Wang Y, Ge R, Ye L. Effects of perfluorooctanoic acid on stem Leydig cell functions in the rat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:206-215. [PMID: 30999198 DOI: 10.1016/j.envpol.2019.03.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 05/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic (PFOS) are two perfluorinated chemical products widely existing in the environment. Evidence suggested that PFOA might relate to male reproductive dysfunction in rats and humans. PFOA exposure inhibited the function of Leydig cells. However, it is still unknown whether PFOA affects stem Leydig cells (SLCs). In the present study, we examined the effects of a short-term exposure to PFOA on Leydig cell regeneration and also explored the possible mechanism involved. Thirty-six adult Sprague-Dawley rats were randomly divided into three groups and intraperitoneally injected with a single dose of 75 mg/kg ethane dimethyl sulfonate (EDS) to eliminate all Leydig cells. From post-EDS day 7, the 3 group rats received 0, 25 or 50 mg/kg/day PFOA (n = 12 per group) for 9 consecutive days. Exposure to PFOA significantly decreased serum testosterone levels by day 21 and day 56 post-EDS treatment. Also, the expression levels of Leydig cell specific genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Hsd11b1 and Cyp17a1) and their protein levels were all down-regulated. PFOA exposure may also affect proliferation of SLCs or their progeny since the numbers of PCNA-positive Leydig cells were reduced by post-EDS day 21. These in vivo observations were also confirmed by in vitro studies where the effects of PFOA were tested by culture of seminiferous tubules. In summary, PFOA exposure inhibits the development of Leydig cells, possibly by affecting both the proliferation and differentiation of SLCs or their progeny.
Collapse
Affiliation(s)
- Hemin Lu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Huishan Zhang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jie Gao
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Zhaohui Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Suhao Bao
- Department of Anesthesiology, Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xianwu Chen
- Department of Anesthesiology, Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yiyan Wang
- Department of Anesthesiology, Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Renshan Ge
- Department of Anesthesiology, Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Leping Ye
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
95
|
Regulation of Leydig cell steroidogenesis: intriguing network of signaling pathways and mitochondrial signalosome. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
96
|
Lu M, Zhang R, Yu T, Wang L, Liu S, Cai R, Guo X, Jia Y, Wang A, Jin Y, Lin P. CREBZF regulates testosterone production in mouse Leydig cells. J Cell Physiol 2019; 234:22819-22832. [PMID: 31124138 DOI: 10.1002/jcp.28846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Abstract
CREBZF, including the two isoforms SMILE (long isoform of CREBZF) and Zhangfei (short isoform of CREBZF), has been identified as a novel transcriptional coregulator of a variety of nuclear receptors. Our previous studies found that SMILE is expressed in the mouse uterine luminal and glandular epithelium and is upregulated by estrogen. In the present study, CREBZF was age-dependently and -specifically expressed in mouse interstitial Leydig cells during sexual maturation. The expression pattern of CREBZF exhibited an age-related increase, and SMILE was the dominant isoform in the mouse testis. Although hCG did not affect CREBZF expression, CREBZF silencing significantly inhibited hCG-stimulated testosterone production in primary Leydig cells and MLTC-1 cells. Meanwhile, the serum concentration of testosterone was significantly decreased after microinjection of lentiviral-mediated shRNA-CREBZF into the mature mouse testis. In addition, CREBZF silencing markedly decreased P450c17, 17β-HSD, and 3β-HSD expression following hCG stimulation in primary Leydig cells, and this inhibitory effect was obviously reversed by overexpression of CREBZF. Furthermore, CREBZF significantly upregulated the mRNA levels of Nr4a1 and Nr5a1, which are the essential orphan nuclear receptors for steroidogenic gene expression. Together our data indicate that CREBZF promotes hCG-induced testosterone production in mouse Leydig cells by affecting Nr4a1 and Nr5a1 expression levels and subsequently increasing the expression of steroidogenic genes such as 3β-HSD, 17β-HSD, and P450c17, suggesting a potential important role of CREBZF in testicular testosterone synthesis.
Collapse
Affiliation(s)
- Minjie Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruixue Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Shouqin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Cai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyan Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanni Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
97
|
François Xavier KN, Patrick Brice DD, Modeste WN, Esther N, Albert K, Pierre K, Pierre W. Preventive effects of Aframomum melegueta extracts on the reproductive complications of propylthiouracil-induced hypothyroidism in male rat. Andrologia 2019; 51:e13306. [PMID: 31074045 DOI: 10.1111/and.13306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/03/2019] [Accepted: 04/13/2019] [Indexed: 12/18/2022] Open
Abstract
Recent studies have demonstrated that hypothyroidism is associated with infertility. This work was undertaken to evaluate the protective effects of Aframomum melegueta on testicular functions and fertility of hypothyroid male rats. Male rats were orally treated with propylthiouracil (PTU: 10 mg/kg) in combination with plant aqueous or methanol seed extract (20 and 100 mg/kg) for 56 days. Vitamin E and clomiphene citrate served as positive controls. On day 47 of treatment, each male was mated with two adult females for fertilization potential evaluation. At the end of the treatment, genital sex organ weights, sperm characteristics, testicular histology, oxidative status, plasmatic hormones and fertility potential were evaluated. Results indicated that PTU created hypothyroidism characterised by a significant increase in TSH with reduction of T3 and T4. PTU also lowered genital sex organ weights, sperm count, viability and motility, plasmatic levels of luteinising hormone, follicle-stimulating hormone and testosterone, and increased prolactin, cholesterol and testicular oxidative stress. Alteration in sperm morphology, testis and epididymis histology, and fertilization potential was also noticed. Co-administration with A. melegueta extracts successfully reversed PTU-induced infertility without any effect on thyroid hormones. These results provide evidence that A. melegueta has a protective effect on fertility in hypothyroid condition.
Collapse
Affiliation(s)
| | - Deeh Defo Patrick Brice
- Animal Physiology and Phytopharmacology Laboratory, University of Dschang, Dschang, Cameroon
| | - Wankeu-Nya Modeste
- Department of Animal Organisms Biology, University of Douala, Douala, Cameroon
| | - Ngadjui Esther
- Animal Physiology and Phytopharmacology Laboratory, University of Dschang, Dschang, Cameroon
| | - Kamanyi Albert
- Animal Physiology and Phytopharmacology Laboratory, University of Dschang, Dschang, Cameroon
| | - Kamtchouing Pierre
- Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Watcho Pierre
- Animal Physiology and Phytopharmacology Laboratory, University of Dschang, Dschang, Cameroon
| |
Collapse
|
98
|
Yang L, Lei L, Zhao Q, Gong Y, Guan G, Huang S. C-Type Natriuretic Peptide/Natriuretic Peptide Receptor 2 Is Involved in Cell Proliferation and Testosterone Production in Mouse Leydig Cells. World J Mens Health 2019; 37:186-198. [PMID: 30358184 PMCID: PMC6479080 DOI: 10.5534/wjmh.180041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023] Open
Abstract
PURPOSE This study investigated the role of natriuretic peptide receptor 2 (NPR2) on cell proliferation and testosterone secretion in mouse Leydig cells. MATERIALS AND METHODS Mouse testis of different postnatal stages was isolated to detect the expression C-type natriuretic peptide (CNP) and its receptor NPR2 by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Leydig cells isolated from mouse testis were cultured and treated with shNPR2 lentiviruses or CNP. And then the cyclic guanosine monophosphate production, testosterone secretion, cell proliferation, cell cycle and cell apoptosis in mouse Leydig cells were analyzed by ELISA, RT-qPCR, Cell Counting Kit-8, and flow cytometry. Moreover, the expression of NPR2, cell cycle, apoptosis proliferation and cell cycle related gene were detected by RT-qPCR and Western blot. RESULTS Knockdown of NPR2 by RNAi resulted in S phase cell cycle arrest, cell apoptosis, and decreased testosterone secretion in mouse Leydig cells. CONCLUSIONS Our study provides more evidences to better understand the function of CNP/NPR2 pathway in male reproduction, which may help us to treat male infertility.
Collapse
Affiliation(s)
- Lei Yang
- College of Basic Medical Science, Jiujiang, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, China.
| | - Lanjie Lei
- Clinical Skills Center, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Qihan Zhao
- College of Basic Medical Science, Jiujiang, China
| | - Ying Gong
- College of Basic Medical Science, Jiujiang, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, China
| | - Gaopeng Guan
- Clinical Skills Center, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, China
| | | |
Collapse
|
99
|
Park H, Park HS, Lim W, Song G. Ochratoxin A suppresses proliferation of Sertoli and Leydig cells in mice. Med Mycol 2019; 58:71-82. [DOI: 10.1093/mmy/myz016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Abstract
Ochratoxin A (OTA) is a mycotoxin originating from Penicillium and Aspergillus. In addition to toxic effects in various tissues and cells, including neurons, immune cells, hepatocytes, and nephrons, it also causes carcinogenesis and teratogenesis. Although the negative effects of OTA with respect to the pathogenesis of diseases and the malfunction of various organs have been studied widely, the biological signaling mechanisms in testicular cells are less well known. Therefore, we determined the hazardous effect of OTA in two types of testicular cells: TM3 (mouse Leydig cells) and TM4 (mouse Sertoli cells). Treatment with OTA led to a significant decrease in the proliferation of both cell lines, as revealed by an increased proportion of cells in the sub-G1 phase. In addition, the phosphorylation of signaling molecules belonging to the PI3K (Akt, P70S6K, and S6) and MAPK (ERK1/2 and JNK) pathways was regulated by OTA in a dose-dependent manner in TM3 and TM4 cells. Furthermore, the combination treatment of OTA and signaling inhibitors (LY294002, U0126, or SP600125) exerted synergistic antiproliferative effects in TM3 and TM4 cells. OTA also reduced the concentration of calcium ions in the cytosol and mitochondria, which disrupted the calcium homeostasis necessary for maintaining the normal physiological functions of testicular cells. In conclusion, the results of the present study demonstrate the mechanism underlying the antiproliferative effects of OTA in mouse testicular cells. Exposure to OTA may result in abnormal sperm maturation and the failure of spermatogenesis, which leads to male infertility.
Collapse
Affiliation(s)
- Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hee Seo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
100
|
Gao S, Chen S, Chen L, Zhao Y, Sun L, Cao M, Huang Y, Niu Q, Wang F, Yuan C, Li C, Zhou X. Brain-derived neurotrophic factor: A steroidogenic regulator of Leydig cells. J Cell Physiol 2019; 234:14058-14067. [PMID: 30628054 DOI: 10.1002/jcp.28095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) was first recognized for its roles in the peripheral and central nervous systems, and its complex functions on mammalian organs have been extended constantly. However, to date, little is known about its effects on the male reproductive system, including the steroidogenesis of mammals. The purpose of this study was to elucidate the effects of BDNF on testosterone generation of Leydig cells and the underlying mechanisms. We found that BDNF-induced proliferation of TM3 Leydig cells via upregulation of proliferating cell nuclear antigen ( Pcna) and promoted testosterone generation as a result of upregulation of steroidogenic acute regulatory protein ( Star), 3b-hydroxysteroid dehydrogenase ( Hsd3b1), and cytochrome P450 side-chain cleavage enzyme ( Cyp11a1) both in primary Leydig cells and TM3 Leydig cells, which were all attenuated in Bdnf knockdown TM3 Leydig cells. Furthermore, the possible mechanism of testosterone synthesis was explored in TM3 Leydig cells. The results showed that BDNF enhanced extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation, and the effect was disrupted by Bdnf deletion. Moreover, PD98059, a potent selective inhibitor of ERK1/2 activation, compromised BDNF-induced testosterone generation and upregulation of Star, Hsd3b1, and Cyp11a1. The Bdnf knockdown assay, on the other hand, indicated the autocrine effect of BDNF on steroidogenesis in TM3 Leydig cells. On the basis of these results, we concluded that BDNF, acting as an autocrine factor, induced testosterone generation as a result of the upregulation of Star, Hsd3b1, and Cyp11a1 via stimulation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Shan Gao
- College of Animal Science, Jilin University, Changchun, China
| | - Shuxiong Chen
- College of Animal Science, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Science, Jilin University, Changchun, China
| | - Yun Zhao
- College of Animal Science, Jilin University, Changchun, China
| | - Liting Sun
- College of Animal Science, Jilin University, Changchun, China
| | - Maosheng Cao
- College of Animal Science, Jilin University, Changchun, China
| | - Yuwen Huang
- College of Animal Science, Jilin University, Changchun, China
| | - Qiaoge Niu
- College of Animal Science, Jilin University, Changchun, China
| | - Fengge Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Chenfeng Yuan
- College of Animal Science, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Science, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|