51
|
Abstract
Around 1% of the open reading frames in the human genome encode predicted DNA and RNA helicases. One highly conserved group of DNA helicases is the RecQ family. Genetic defects in three of the five human RecQ helicases, BLM, WRN and RECQ4, give rise to defined syndromes associated with cancer predisposition, some features of premature ageing and chromosomal instability. In recent years, there has been a tremendous advance in our understanding of the cellular functions of individual RecQ helicases. In this Review, we discuss how these proteins might suppress genomic rearrangements, and therefore function as 'caretaker' tumour suppressors.
Collapse
Affiliation(s)
- Wai Kit Chu
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | |
Collapse
|
52
|
Characterization in vitro and in vivo of the DNA helicase encoded by Deinococcus radiodurans locus DR1572. DNA Repair (Amst) 2009; 8:612-9. [PMID: 19179120 DOI: 10.1016/j.dnarep.2008.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 02/09/2023]
Abstract
Deinococcus radiodurans survives extremely high doses of ionizing and ultraviolet radiation and treatment with various DNA-damaging chemicals. As an effort to identify and characterize proteins that function in DNA repair in this organism, we have studied the protein encoded by locus DR1572. This gene is predicted to encode a Superfamily I DNA helicase, except that genome sequencing indicated that it has a one-base frameshift and would not encode a complete helicase. We have cloned the gene from two different D. radiodurans strains and find that the frameshift mutation is not present. The corrected gene encodes a 755 residue protein that is similar to the Bacillus subtilis YvgS protein and to helicase IV of Escherichia coli. The purified protein (helicase IV(Dr)) has ATP hydrolysis and DNA helicase activity. A truncated protein that lacks 214 residues from the N-terminus, which precede the conserved helicase domain, has greater ATPase activity than the full-length protein but has no detectable helicase activity. Disruption of locus DR1572 in the D. radiodurans chromosome causes greater sensitivity to hydrogen peroxide and methyl-methanesulfonate compared to wild-type cells, but no change in resistance to gamma and ultraviolet radiation and to mitomycin C. The results indicate that locus DR1572 encodes a complete protein that contributes to DNA metabolism in D. radiodurans.
Collapse
|
53
|
Ambur OH, Davidsen T, Frye SA, Balasingham SV, Lagesen K, Rognes T, Tønjum T. Genome dynamics in major bacterial pathogens. FEMS Microbiol Rev 2009; 33:453-70. [PMID: 19396949 PMCID: PMC2734928 DOI: 10.1111/j.1574-6976.2009.00173.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pathogenic bacteria continuously encounter multiple forms of stress in their hostile environments, which leads to DNA damage. With the new insight into biology offered by genome sequences, the elucidation of the gene content encoding proteins provides clues toward understanding the microbial lifestyle related to habitat and niche. Campylobacter jejuni, Haemophilus influenzae, Helicobacter pylori, Mycobacterium tuberculosis, the pathogenic Neisseria, Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus aureus are major human pathogens causing detrimental morbidity and mortality at a global scale. An algorithm for the clustering of orthologs was established in order to identify whether orthologs of selected genes were present or absent in the genomes of the pathogenic bacteria under study. Based on the known genes for the various functions and their orthologs in selected pathogenic bacteria, an overview of the presence of the different types of genes was created. In this context, we focus on selected processes enabling genome dynamics in these particular pathogens, namely DNA repair, recombination and horizontal gene transfer. An understanding of the precise molecular functions of the enzymes participating in DNA metabolism and their importance in the maintenance of bacterial genome integrity has also, in recent years, indicated a future role for these enzymes as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ole Herman Ambur
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, Oslo University Hospital, Norway
| | | | | | | | | | | | | |
Collapse
|
54
|
Vindigni A, Hickson ID. RecQ helicases: multiple structures for multiple functions? HFSP JOURNAL 2009; 3:153-64. [PMID: 19949442 DOI: 10.2976/1.3079540] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/20/2009] [Indexed: 11/19/2022]
Abstract
Approximately 1% of the open reading frames in the human genome encode proteins that function as DNA or RNA helicases. These enzymes act in all aspects of nucleic acid metabolism where the complementary strands of DNA:DNA or DNA:RNA duplexes require to be transiently opened. However, they perform wider roles in nucleic acid metabolism due to their ability to couple the energy derived from hydrolysis of ATP to their unidirectional translocation along strands of DNARNA. In this way, helicases can displace proteins from DNARNA, drive the migration of DNA junctions (such as the Holliday junction recombination intermediate), or generate superhelical tension in nucleic acid duplexes. Here, we review a subgroup of DNA helicase enzymes, the RecQ family, that has attracted considerable interest in recent years due to their role not only in suppression of genome instability, but also in the avoidance of human disease. We focus particularly on the protein structural motifs and the multiple assembly states that characterize RecQ helicases and discuss novel biophysical techniques to study the different RecQ structures present in solution. We also speculate on the roles of the different domains and oligomeric forms in defining which DNA structures will represent substrates for RecQ helicase-mediated transactions.
Collapse
|
55
|
Chavez A, Tsou AM, Johnson FB. Telomeres do the (un)twist: helicase actions at chromosome termini. Biochim Biophys Acta Mol Basis Dis 2009; 1792:329-40. [PMID: 19245831 DOI: 10.1016/j.bbadis.2009.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Telomeres play critical roles in protecting genome stability, and their dysfunction contributes to cancer and age-related degenerative diseases. The precise architecture of telomeres, including their single-stranded 3' overhangs, bound proteins, and ability to form unusual secondary structures such as t-loops, is central to their function and thus requires careful processing by diverse factors. Furthermore, telomeres provide unique challenges to the DNA replication and recombination machinery, and are particularly suited for extension by the telomerase reverse transcriptase. Helicases use the energy from NTP hydrolysis to track along DNA and disrupt base pairing. Here we review current findings concerning how helicases modulate several aspects of telomere form and function.
Collapse
Affiliation(s)
- Alejandro Chavez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
56
|
Killoran MP, Kohler PL, Dillard JP, Keck JL. RecQ DNA helicase HRDC domains are critical determinants in Neisseria gonorrhoeae pilin antigenic variation and DNA repair. Mol Microbiol 2008; 71:158-71. [PMID: 19017267 DOI: 10.1111/j.1365-2958.2008.06513.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neisseria gonorrhoeae (Gc), an obligate human bacterial pathogen, utilizes pilin antigenic variation to evade host immune defences. Antigenic variation is driven by recombination between expressed (pilE) and silent (pilS) copies of the pilin gene, which encodes the major structural component of the type IV pilus. We have investigated the role of the GcRecQ DNA helicase (GcRecQ) in this process. Whereas the vast majority of bacterial RecQ proteins encode a single 'Helicase and RNase D C-terminal' (HRDC) domain, GcRecQ encodes three tandem HRDC domains at its C-terminus. Gc mutants encoding versions of GcRecQ with either two or all three C-terminal HRDC domains removed are deficient in pilin variation and sensitized to UV light-induced DNA damage. Biochemical analysis of a GcRecQ protein variant lacking two HRDC domains, GcRecQDeltaHRDC2,3, shows it has decreased affinity for single-stranded and partial-duplex DNA and reduced unwinding activity on a synthetic Holliday junction substrate relative to full-length GcRecQ in the presence of Gc single-stranded DNA-binding protein (GcSSB). Our results demonstrate that the multiple HRDC domain architecture in GcRecQ is critical for structure-specific DNA binding and unwinding, and suggest that these features are central to GcRecQ's roles in Gc antigenic variation and DNA repair.
Collapse
Affiliation(s)
- Michael P Killoran
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | | | | | | |
Collapse
|
57
|
Muftuoglu M, Kulikowicz T, Beck G, Lee JW, Piotrowski J, Bohr VA. Intrinsic ssDNA annealing activity in the C-terminal region of WRN. Biochemistry 2008; 47:10247-54. [PMID: 18771289 DOI: 10.1021/bi800807n] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Werner syndrome (WS) is a rare autosomal recessive disorder in humans characterized by premature aging and genetic instability. WS is caused by mutations in the WRN gene, which encodes a member of the RecQ family of DNA helicases. Cellular and biochemical studies suggest that WRN plays roles in DNA replication, DNA repair, telomere maintenance, and homologous recombination and that WRN has multiple enzymatic activities including 3' to 5' exonuclease, 3' to 5' helicase, and ssDNA annealing. The goal of this study was to map and further characterize the ssDNA annealing activity of WRN. Enzymatic studies using truncated forms of WRN identified a C-terminal 79 amino acid region between the RQC and the HRDC domains (aa1072-1150) that is required for ssDNA annealing activity. Deletion of the region reduced or eliminated ssDNA annealing activity of the WRN protein. Furthermore, the activity appears to correlate with DNA binding and oligomerization status of the protein.
Collapse
Affiliation(s)
- Meltem Muftuoglu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
58
|
Sinha KM, Stephanou NC, Unciuleac MC, Glickman MS, Shuman S. Domain requirements for DNA unwinding by mycobacterial UvrD2, an essential DNA helicase. Biochemistry 2008; 47:9355-64. [PMID: 18702526 DOI: 10.1021/bi800725q] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterial UvrD2 is a DNA-dependent ATPase with 3' to 5' helicase activity. UvrD2 is an atypical helicase, insofar as its N-terminal ATPase domain resembles the superfamily I helicases UvrD/PcrA, yet it has a C-terminal HRDC domain, which is a feature of RecQ-type superfamily II helicases. The ATPase and HRDC domains are connected by a CxxC-(14)-CxxC tetracysteine module that defines a new clade of UvrD2-like bacterial helicases found only in Actinomycetales. By characterizing truncated versions of Mycobacterium smegmatis UvrD2, we show that whereas the HRDC domain is not required for ATPase or helicase activities in vitro, deletion of the tetracysteine module abolishes duplex unwinding while preserving ATP hydrolysis. Replacing each of the CxxC motifs with a double-alanine variant AxxA had no effect on duplex unwinding, signifying that the domain module, not the cysteines, is crucial for function. The helicase activity of a truncated UvrD2 lacking the tetracysteine and HRDC domains was restored by the DNA-binding protein Ku, a component of the mycobacterial NHEJ system and a cofactor for DNA unwinding by the paralogous mycobacterial helicase UvrD1. Our findings indicate that coupling of ATP hydrolysis to duplex unwinding can be achieved by protein domains acting in cis or trans. Attempts to disrupt the M. smegmatis uvrD2 gene were unsuccessful unless a second copy of uvrD2 was present elsewhere in the chromosome, indicating that UvrD2 is essential for growth of M. smegmatis.
Collapse
Affiliation(s)
- Krishna Murari Sinha
- Molecular Biology and Immunology Programs, Sloan-Kettering Institute, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
59
|
Gupta R, Brosh RM. Helicases as prospective targets for anti-cancer therapy. Anticancer Agents Med Chem 2008; 8:390-401. [PMID: 18473724 DOI: 10.2174/187152008784220339] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It has been proposed that selective inactivation of a DNA repair pathway may enhance anti-cancer therapies that eliminate cancerous cells through the cytotoxic effects of DNA damaging agents or radiation. Given the unique and critically important roles of DNA helicases in the DNA damage response, DNA repair, and maintenance of genomic stability, a number of strategies currently being explored or in use to combat cancer may be either mediated or enhanced through the modulation of helicase function. The focus of this review will be to examine the roles of helicases in DNA repair that might be suitably targeted by cancer therapeutic approaches. Treatment of cancers with anti-cancer drugs such as small molecule compounds that modulate helicase expression or function is a viable approach to selectively kill cancer cells through the inactivation of helicase-dependent DNA repair pathways, particularly those associated with DNA recombination, replication restart, and cell cycle checkpoint.
Collapse
Affiliation(s)
- Rigu Gupta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
60
|
Killoran MP, Keck JL. Structure and function of the regulatory C-terminal HRDC domain from Deinococcus radiodurans RecQ. Nucleic Acids Res 2008; 36:3139-49. [PMID: 18411208 PMCID: PMC2396406 DOI: 10.1093/nar/gkn143] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RecQ helicases are critical for maintaining genome integrity in organisms ranging from bacteria to humans by participating in a complex network of DNA metabolic pathways. Their diverse cellular functions require specialization and coordination of multiple protein domains that integrate catalytic functions with DNA-protein and protein-protein interactions. The RecQ helicase from Deinococcus radiodurans (DrRecQ) is unusual among RecQ family members in that it has evolved to utilize three 'Helicase and RNaseD C-terminal' (HRDC) domains to regulate its activity. In this report, we describe the high-resolution structure of the C-terminal-most HRDC domain of DrRecQ. The structure reveals unusual electrostatic surface features that distinguish it from other HRDC domains. Mutation of individual residues in these regions affects the DNA binding affinity of DrRecQ and its ability to unwind a partial duplex DNA substrate. Taken together, the results suggest the unusual electrostatic surface features of the DrRecQ HRDC domain may be important for inter-domain interactions that regulate structure-specific DNA binding and help direct DrRecQ to specific recombination/repair sites.
Collapse
Affiliation(s)
- Michael P Killoran
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532, USA
| | | |
Collapse
|
61
|
Kerr ID, Sivakolundu S, Li Z, Buchsbaum JC, Knox LA, Kriwacki R, White SW. Crystallographic and NMR Analyses of UvsW and UvsW.1 from Bacteriophage T4. J Biol Chem 2007; 282:34392-400. [PMID: 17878153 DOI: 10.1074/jbc.m705900200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The uvsWXY system is implicated in the replication and repair of the bacteriophage T4 genome. Whereas the roles of the recombinase (UvsX) and the recombination mediator protein (UvsY) are known, the precise role of UvsW is unclear. Sequence analysis identifies UvsW as a member of the monomeric SF2 helicase superfamily that translocates nucleic acid substrates via the action of two RecA-like motor domains. Functional homologies to Escherichia coli RecG and biochemical analyses have shown that UvsW interacts with branched nucleic acid substrates, suggesting roles in recombination and the rescue of stalled replication forks. A sequencing error at the 3'-end of the uvsW gene has revealed a second, short open reading frame that encodes a protein of unknown function called UvsW.1. We have determined the crystal structure of UvsW to 2.7A and the NMR solution structure of UvsW.1. UvsW has a four-domain architecture with structural homology to the eukaryotic SF2 helicase, Rad54. A model of the UvsW-ssDNA complex identifies structural elements and conserved residues that may interact with nucleic acid substrates. The NMR solution structure of UvsW.1 reveals a dynamic four-helix bundle with homology to the structure-specific nucleic acid binding module of RecQ helicases.
Collapse
Affiliation(s)
- Iain D Kerr
- Department of Structural Biology, St. Jude Children's Research Hospital, 332 N. Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Guo RB, Rigolet P, Ren H, Zhang B, Zhang XD, Dou SX, Wang PY, Amor-Gueret M, Xi XG. Structural and functional analyses of disease-causing missense mutations in Bloom syndrome protein. Nucleic Acids Res 2007; 35:6297-310. [PMID: 17878217 PMCID: PMC2094094 DOI: 10.1093/nar/gkm536] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bloom syndrome (BS) is an autosomal recessive disorder characterized by genomic instability and the early development of many types of cancer. Missense mutations have been identified in the BLM gene (encoding a RecQ helicase) in affected individuals, but the molecular mechanism and the structural basis of the effects of these mutations remain to be elucidated. We analysed five disease-causing missense mutations that are localized in the BLM helicase core region: Q672R, I841T, C878R, G891E and C901Y. The disease-causing mutants had low ATPase and helicase activities but their ATP binding abilities were normal, except for Q672, whose ATP binding activity was lower than that of the intact BLM helicase. Mutants C878R, mapping near motif IV, and G891E and C901Y, mapping in motif IV, displayed severe DNA-binding defects. We used molecular modelling to analyse these mutations. Our work provides insights into the molecular basis of BLM pathology, and reveals structural elements implicated in coupling DNA binding to ATP hydrolysis and DNA unwinding. Our findings will help to explain the mechanism underlying BLM catalysis and interpreting new BLM causing mutations identified in the future.
Collapse
Affiliation(s)
- Rong-Bing Guo
- CNRS, UMR 2027, Institut Curie – Section de Recherche, Centre Universitaire, Bâtiment 110, F-91405 Orsay, CNRS UMR 8113, Ecole Normale Supérieure (ENS) Cachan, 61 avenue du Président Wilson, 94235 Cachan cedex, France, School of Life Science, East China Normal University, Science Building, 3663 North Zhongshan Road, Shanghai 200062 and Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | - Pascal Rigolet
- CNRS, UMR 2027, Institut Curie – Section de Recherche, Centre Universitaire, Bâtiment 110, F-91405 Orsay, CNRS UMR 8113, Ecole Normale Supérieure (ENS) Cachan, 61 avenue du Président Wilson, 94235 Cachan cedex, France, School of Life Science, East China Normal University, Science Building, 3663 North Zhongshan Road, Shanghai 200062 and Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | - Hua Ren
- CNRS, UMR 2027, Institut Curie – Section de Recherche, Centre Universitaire, Bâtiment 110, F-91405 Orsay, CNRS UMR 8113, Ecole Normale Supérieure (ENS) Cachan, 61 avenue du Président Wilson, 94235 Cachan cedex, France, School of Life Science, East China Normal University, Science Building, 3663 North Zhongshan Road, Shanghai 200062 and Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | - Bo Zhang
- CNRS, UMR 2027, Institut Curie – Section de Recherche, Centre Universitaire, Bâtiment 110, F-91405 Orsay, CNRS UMR 8113, Ecole Normale Supérieure (ENS) Cachan, 61 avenue du Président Wilson, 94235 Cachan cedex, France, School of Life Science, East China Normal University, Science Building, 3663 North Zhongshan Road, Shanghai 200062 and Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | - Xing-Dong Zhang
- CNRS, UMR 2027, Institut Curie – Section de Recherche, Centre Universitaire, Bâtiment 110, F-91405 Orsay, CNRS UMR 8113, Ecole Normale Supérieure (ENS) Cachan, 61 avenue du Président Wilson, 94235 Cachan cedex, France, School of Life Science, East China Normal University, Science Building, 3663 North Zhongshan Road, Shanghai 200062 and Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | - Shuo-Xing Dou
- CNRS, UMR 2027, Institut Curie – Section de Recherche, Centre Universitaire, Bâtiment 110, F-91405 Orsay, CNRS UMR 8113, Ecole Normale Supérieure (ENS) Cachan, 61 avenue du Président Wilson, 94235 Cachan cedex, France, School of Life Science, East China Normal University, Science Building, 3663 North Zhongshan Road, Shanghai 200062 and Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | - Peng-Ye Wang
- CNRS, UMR 2027, Institut Curie – Section de Recherche, Centre Universitaire, Bâtiment 110, F-91405 Orsay, CNRS UMR 8113, Ecole Normale Supérieure (ENS) Cachan, 61 avenue du Président Wilson, 94235 Cachan cedex, France, School of Life Science, East China Normal University, Science Building, 3663 North Zhongshan Road, Shanghai 200062 and Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | - Mounira Amor-Gueret
- CNRS, UMR 2027, Institut Curie – Section de Recherche, Centre Universitaire, Bâtiment 110, F-91405 Orsay, CNRS UMR 8113, Ecole Normale Supérieure (ENS) Cachan, 61 avenue du Président Wilson, 94235 Cachan cedex, France, School of Life Science, East China Normal University, Science Building, 3663 North Zhongshan Road, Shanghai 200062 and Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | - Xu Guang Xi
- CNRS, UMR 2027, Institut Curie – Section de Recherche, Centre Universitaire, Bâtiment 110, F-91405 Orsay, CNRS UMR 8113, Ecole Normale Supérieure (ENS) Cachan, 61 avenue du Président Wilson, 94235 Cachan cedex, France, School of Life Science, East China Normal University, Science Building, 3663 North Zhongshan Road, Shanghai 200062 and Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
- *To whom correspondence should be addressed. +33 1 69 86 31 81+33 1 69 86 94 29
| |
Collapse
|
63
|
Medhekar B, Miller JF. Diversity-generating retroelements. Curr Opin Microbiol 2007; 10:388-95. [PMID: 17703991 PMCID: PMC2703298 DOI: 10.1016/j.mib.2007.06.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/01/2007] [Accepted: 06/01/2007] [Indexed: 01/09/2023]
Abstract
Parasite adaptation to dynamic host characteristics is a recurrent theme in biology. Diversity-generating retroelements (DGRs) are a newly discovered family of genetic elements that function to diversify DNA sequences and the proteins they encode. The prototype DGR was identified in a temperate bacteriophage, BPP-1, on the basis of its ability to generate variability in a gene that specifies tropism for receptor molecules on host Bordetella species. Tropism switching is a template-dependent, reverse transcriptase mediated process that introduces nucleotide substitutions at defined locations within a target gene. This cassette-based mechanism is theoretically capable of generating trillions of different amino acid sequences in a distal tail fiber protein, providing a vast repertoire of potential ligand-receptor interactions. Variable residues are displayed in the context of a specialized C-type lectin fold, which has evolved a unique solution for balancing protein diversity against structural stability. Homologous DGRs have been identified in the chromosomes of diverse bacterial species. These unique genetic elements have the potential to confer powerful selective advantages to their hosts, and their ability to generate novel binding specificities and dynamic antimicrobial agents suggests numerous applications.
Collapse
Affiliation(s)
- Bob Medhekar
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jeff F Miller
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- The Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- The California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
- Correspondence E-mail ; Tel. (+1) 310 206 7926; Fax (+1) 310 206 3865
| |
Collapse
|
64
|
Abstract
DNA helicases are molecular motors that catalyse the unwinding of energetically unstable structures into single strands and have therefore an essential role in nearly all metabolism transactions. Defects in helicase function can result in human syndromes in which predisposition to cancer and genomic instability are common features. So far different helicase genes have been found associated in 8 such disorders. RecQ helicases are a family of conserved enzymes required for maintaining the genome integrity that function as suppressors of inappropriate recombination. Mutations in RecQ4, BLM and WRN give rise to various disorders: Bloom syndrome, Rothmund-Thomson syndrome, and Werner syndrome characterized by genomic instability and increased cancer susceptibility. The DNA helicase BRIP1/BACH1 is involved in double-strand break repair and is defective in Fanconi anemia complementation group J. Mutations in XPD and XPB genes can result in xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, three genetic disorders with different clinical features but with association of transcription and NER defects. This review summarizes our current knowledge on the diverse biological functions of these helicases and the molecular basis of the associated diseases.
Collapse
Affiliation(s)
- Muriel Uhring
- Institut de génétique et de biologie moléculaire et cellulaire, UMR 7104 CNRS/Inserm/ULP, 1, rue Laurent-Fries, BP 10142, 67404 Illkirch Cedex, France
| | | |
Collapse
|
65
|
Shereda RD, Bernstein DA, Keck JL. A central role for SSB in Escherichia coli RecQ DNA helicase function. J Biol Chem 2007; 282:19247-58. [PMID: 17483090 DOI: 10.1074/jbc.m608011200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecQ DNA helicases are critical components of DNA replication, recombination, and repair machinery in all eukaryotes and bacteria. Eukaryotic RecQ helicases are known to associate with numerous genome maintenance proteins that modulate their cellular functions, but there is little information regarding protein complexes involving the prototypical bacterial RecQ proteins. Here we use an affinity purification scheme to identify three heterologous proteins that associate with Escherichia coli RecQ: SSB (single-stranded DNA-binding protein), exonuclease I, and RecJ exonuclease. The RecQ-SSB interaction is direct and is mediated by the RecQ winged helix subdomain and the C terminus of SSB. Interaction with SSB has important functional consequences for RecQ. SSB stimulates RecQ-mediated DNA unwinding, whereas deletion of the C-terminal RecQ-binding site from SSB produces a variant that blocks RecQ DNA binding and unwinding activities, suggesting that RecQ recognizes both the SSB C terminus and DNA in SSB.DNA nucleoprotein complexes. These findings, together with the noted interactions between human RecQ proteins and Replication Protein A, identify SSB as a broadly conserved RecQ-binding protein. These results also provide a simple model that explains RecQ integration into genome maintenance processes in E. coli through its association with SSB.
Collapse
Affiliation(s)
- Robert D Shereda
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706-1532, USA
| | | | | |
Collapse
|
66
|
Wu L, Hickson ID. DNA helicases required for homologous recombination and repair of damaged replication forks. Annu Rev Genet 2007; 40:279-306. [PMID: 16856806 DOI: 10.1146/annurev.genet.40.110405.090636] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA helicases are found in all kingdoms of life and function in all DNA metabolic processes where the two strands of duplex DNA require to be separated. Here, we review recent developments in our understanding of the roles that helicases play in the intimately linked processes of replication fork repair and homologous recombination, and highlight how the cell has evolved many distinct, and sometimes antagonistic, uses for these enzymes.
Collapse
Affiliation(s)
- Leonard Wu
- Cancer Research UK, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | | |
Collapse
|
67
|
Perry JJP, Fan L, Tainer JA. Developing master keys to brain pathology, cancer and aging from the structural biology of proteins controlling reactive oxygen species and DNA repair. Neuroscience 2006; 145:1280-99. [PMID: 17174478 PMCID: PMC1904427 DOI: 10.1016/j.neuroscience.2006.10.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 10/15/2006] [Accepted: 10/17/2006] [Indexed: 12/11/2022]
Abstract
This review is focused on proteins with key roles in pathways controlling either reactive oxygen species or DNA damage responses, both of which are essential for preserving the nervous system. An imbalance of reactive oxygen species or inappropriate DNA damage response likely causes mutational or cytotoxic outcomes, which may lead to cancer and/or aging phenotypes. Moreover, individuals with hereditary disorders in proteins of these cellular pathways have significant neurological abnormalities. Mutations in a superoxide dismutase, which removes oxygen free radicals, may cause the neurodegenerative disease amyotrophic lateral sclerosis. Additionally, DNA repair disorders that affect the brain to various extents include ataxia-telangiectasia-like disorder, Cockayne syndrome or Werner syndrome. Here, we highlight recent advances gained through structural biochemistry studies on enzymes linked to these disorders and other related enzymes acting within the same cellular pathways. We describe the current understanding of how these vital proteins coordinate chemical steps and integrate cellular signaling and response events. Significantly, these structural studies may provide a set of master keys to developing a unified understanding of the survival mechanisms utilized after insults by reactive oxygen species and genotoxic agents, and also provide a basis for developing an informed intervention in brain tumor and neurodegenerative disease progression.
Collapse
Affiliation(s)
- J J P Perry
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
68
|
Kitano K, Yoshihara N, Hakoshima T. Crystal structure of the HRDC domain of human Werner syndrome protein, WRN. J Biol Chem 2006; 282:2717-28. [PMID: 17148451 DOI: 10.1074/jbc.m610142200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Werner syndrome is a human premature aging disorder characterized by chromosomal instability. The disease is caused by the functional loss of WRN, a member of the RecQ-helicase family that plays an important role in DNA metabolic pathways. WRN contains four structurally folded domains comprising an exonuclease, a helicase, a winged-helix, and a helicase-and-ribonuclease D/C-terminal (HRDC) domain. In contrast to the accumulated knowledge pertaining to the biochemical functions of the three N-terminal domains, the function of C-terminal HRDC remains unknown. In this study, the crystal structure of the human WRN HRDC domain has been determined. The domain forms a bundle of alpha-helices similar to those of Saccharomyces cerevisiae Sgs1 and Escherichia coli RecQ. Surprisingly, the extra ten residues at each of the N and C termini of the domain were found to participate in the domain architecture by forming an extended portion of the first helix alpha1, and a novel looping motif that traverses straight along the domain surface, respectively. The motifs combine to increase the domain surface of WRN HRDC, which is larger than that of Sgs1 and E. coli. In WRN HRDC, neither of the proposed DNA-binding surfaces in Sgs1 or E. coli is conserved, and the domain was shown to lack DNA-binding ability in vitro. Moreover, the domain was shown to be thermostable and resistant to protease digestion, implying independent domain evolution in WRN. Coupled with the unique long linker region in WRN, the WRN HRDC may be adapted to play a distinct function in WRN that involves protein-protein interactions.
Collapse
Affiliation(s)
- Ken Kitano
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | |
Collapse
|
69
|
Sharma S, Doherty K, Brosh R. Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 2006; 398:319-37. [PMID: 16925525 PMCID: PMC1559444 DOI: 10.1042/bj20060450] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Helicases are molecular motor proteins that couple the hydrolysis of NTP to nucleic acid unwinding. The growing number of DNA helicases implicated in human disease suggests that their vital specialized roles in cellular pathways are important for the maintenance of genome stability. In particular, mutations in genes of the RecQ family of DNA helicases result in chromosomal instability diseases of premature aging and/or cancer predisposition. We will discuss the mechanisms of RecQ helicases in pathways of DNA metabolism. A review of RecQ helicases from bacteria to human reveals their importance in genomic stability by their participation with other proteins to resolve DNA replication and recombination intermediates. In the light of their known catalytic activities and protein interactions, proposed models for RecQ function will be summarized with an emphasis on how this distinct class of enzymes functions in chromosomal stability maintenance and prevention of human disease and cancer.
Collapse
Affiliation(s)
- Sudha Sharma
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Kevin M. Doherty
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
70
|
Killoran MP, Keck JL. Sit down, relax and unwind: structural insights into RecQ helicase mechanisms. Nucleic Acids Res 2006; 34:4098-105. [PMID: 16935877 PMCID: PMC1616949 DOI: 10.1093/nar/gkl538] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/29/2006] [Accepted: 07/13/2006] [Indexed: 01/25/2023] Open
Abstract
Helicases are specialized molecular motors that separate duplex nucleic acids into single strands. The RecQ family of helicases functions at the interface of DNA replication, recombination and repair in bacterial and eukaryotic cells. They are key, multifunctional enzymes that have been linked to three human diseases: Bloom's, Werner's and Rothmund-Thomson's syndromes. This review summarizes recent studies that relate the structures of RecQ proteins to their biochemical activities.
Collapse
Affiliation(s)
- Michael P. Killoran
- Department of Biomolecular Chemistry, 550 Medical Science Center, 1300 University Avenue, University of Wisconsin School of Medicine and Public HealthMadison, WI 53706-1532, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, 550 Medical Science Center, 1300 University Avenue, University of Wisconsin School of Medicine and Public HealthMadison, WI 53706-1532, USA
| |
Collapse
|
71
|
Ralf C, Hickson ID, Wu L. The Bloom's syndrome helicase can promote the regression of a model replication fork. J Biol Chem 2006; 281:22839-46. [PMID: 16766518 DOI: 10.1074/jbc.m604268200] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homozygous inactivation of BLM gives rise to Bloom's syndrome, a disorder associated with genomic instability and cancer predisposition. BLM encodes a member of the RecQ DNA helicase family that is required for the maintenance of genome stability and the suppression of sister-chromatid exchanges. BLM has been proposed to function in the rescue of replication forks that have collapsed or stalled as a result of encountering lesions that block fork progression. One proposed mechanism of fork rescue involves regression in which the nascent leading and lagging strands anneal to create a so-called "chicken foot" structure. Here we have developed an in vitro system for analysis of fork regression and show that BLM, but not Escherichia coli RecQ, can promote the regression of a model replication fork. BLM-mediated fork regression is ATP-dependent and occurs processively, generating regressed arms of >250 bp in length. These data establish the existence of a eukaryotic protein that could promote replication fork regression in vivo and suggest a novel pathway through which BLM might suppress genetic exchanges.
Collapse
Affiliation(s)
- Christine Ralf
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | |
Collapse
|
72
|
Huber MD, Duquette ML, Shiels JC, Maizels N. A Conserved G4 DNA Binding Domain in RecQ Family Helicases. J Mol Biol 2006; 358:1071-80. [PMID: 16530788 DOI: 10.1016/j.jmb.2006.01.077] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/17/2006] [Accepted: 01/20/2006] [Indexed: 11/18/2022]
Abstract
RecQ family helicases play important roles at G-rich domains of the genome, including the telomeres, rDNA, and immunoglobulin switch regions. This appears to reflect the unusual ability of enzymes in this family to unwind G4 DNA. How RecQ family helicases recognize this substrate has not been established. Here, we show that G4 DNA is a preferred target for BLM helicase within the context of long DNA molecules. We identify the RQC domain, found only in RecQ family enzymes, as an independent, high affinity and conserved G4 DNA binding domain; and show that binding to Holliday junctions involves both the RQC and the HRDC domains. These results provide mechanistic understanding of differences and redundancies of function and activities among RecQ family helicases, and of how deficiencies in human members of this family may contribute to genomic instability and disease.
Collapse
Affiliation(s)
- Michael D Huber
- Department of Biochemistry, University of Washington Medical School, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
73
|
Killoran MP, Keck JL. Three HRDC domains differentially modulate Deinococcus radiodurans RecQ DNA helicase biochemical activity. J Biol Chem 2006; 281:12849-57. [PMID: 16531400 DOI: 10.1074/jbc.m600097200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecQ helicases are key genome maintenance enzymes that function in DNA replication, recombination, and repair. In contrast to nearly every other identified RecQ family member, the RecQ helicase from the radioresistant bacterium Deinococcus radiodurans encodes three "Helicase and RNase D C-terminal" (HRDC) domains at its C terminus. HRDC domains have been implicated in structure-specific nucleic acid binding with roles in targeting RecQ proteins to particular DNA structures; however, only RecQ proteins with single HRDC domains have been examined to date. We demonstrate that the HRDC domains can be proteolytically removed from the D. radiodurans RecQ (DrRecQ) C terminus, consistent with each forming a structural domain. Using this observation as a guide, we produced a panel of recombinant DrRecQ variants lacking combinations of its HRDC domains to investigate their biochemical functions. The N-terminal-most HRDC domain is shown to be critical for high affinity DNA binding and for efficient unwinding of DNA in some contexts. In contrast, the more C-terminal HRDC domains attenuate the DNA binding affinity and DNA-dependent ATP hydrolysis rate of the enzyme and play more complex roles in structure-specific DNA unwinding. Our results indicate that the multiple DrRecQ HRDC domains have evolved to encode DNA binding and regulatory functions in the enzyme.
Collapse
Affiliation(s)
- Michael P Killoran
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706-1532, USA
| | | |
Collapse
|
74
|
Zittel MC, Keck JL. Coupling DNA-binding and ATP hydrolysis in Escherichia coli RecQ: role of a highly conserved aromatic-rich sequence. Nucleic Acids Res 2005; 33:6982-91. [PMID: 16340008 PMCID: PMC1310897 DOI: 10.1093/nar/gki999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RecQ enzymes are broadly conserved Superfamily-2 (SF-2) DNA helicases that play critical roles in DNA metabolism. RecQ proteins use the energy of ATP hydrolysis to drive DNA unwinding; however, the mechanisms by which RecQ links ATPase activity to DNA-binding/unwinding are unknown. In many Superfamily-1 (SF-1) DNA helicases, helicase sequence motif III links these activities by binding both single-stranded (ss) DNA and ATP. However, the ssDNA-binding aromatic-rich element in motif III present in these enzymes is missing from SF-2 helicases, raising the question of how these enzymes link ATP hydrolysis to DNA-binding/unwinding. We show that Escherichia coli RecQ contains a conserved aromatic-rich loop in its helicase domain between motifs II and III. Although placement of the RecQ aromatic-rich loop is topologically distinct relative to the SF-1 enzymes, both loops map to similar tertiary structural positions. We examined the functions of the E.coli RecQ aromatic-rich loop using RecQ variants with single amino acid substitutions within the segment. Our results indicate that the aromatic-rich loop in RecQ is critical for coupling ATPase and DNA-binding/unwinding activities. Our studies also suggest that RecQ's aromatic-rich loop might couple ATP hydrolysis to DNA-binding in a mechanistically distinct manner from SF-1 helicases.
Collapse
Affiliation(s)
| | - James L. Keck
- To whom correspondence should be addressed. Tel: +608 263 1815; Fax: +608 262 5253;
| |
Collapse
|
75
|
Lee JW, Kusumoto R, Doherty KM, Lin GX, Zeng W, Cheng WH, von Kobbe C, Brosh RM, Hu JS, Bohr VA. Modulation of Werner syndrome protein function by a single mutation in the conserved RecQ domain. J Biol Chem 2005; 280:39627-36. [PMID: 16150736 DOI: 10.1074/jbc.m506112200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Naturally occurring mutations in the human RECQ3 gene result in truncated Werner protein (WRN) and manifest as a rare premature aging disorder, Werner syndrome. Cellular and biochemical studies suggest a multifaceted role of WRN in DNA replication, DNA repair, recombination, and telomere maintenance. The RecQ C-terminal (RQC) domain of WRN was determined previously to be the major site of interaction for DNA and proteins. By using site-directed mutagenesis in the WRN RQC domain, we determined which amino acids might be playing a critical role in WRN function. A site-directed mutation at Lys-1016 significantly decreased WRN binding to fork or bubble DNA substrates. Moreover, the Lys-1016 mutation markedly reduced WRN helicase activity on fork, D-loop, and Holliday junction substrates in addition to reducing significantly the ability of WRN to stimulate FEN-1 incision activities. Thus, DNA binding mediated by the RQC domain is crucial for WRN helicase and its coordinated functions. Our nuclear magnetic resonance data on the three-dimensional structure of the wild-type RQC and Lys-1016 mutant proteins display a remarkable similarity in their structures.
Collapse
Affiliation(s)
- Jae Wan Lee
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224-6825, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|