51
|
Brocato J, Fang L, Chervona Y, Chen D, Kiok K, Sun H, Tseng HC, Xu D, Shamy M, Jin C, Costa M. Arsenic induces polyadenylation of canonical histone mRNA by down-regulating stem-loop-binding protein gene expression. J Biol Chem 2014; 289:31751-31764. [PMID: 25266719 DOI: 10.1074/jbc.m114.591883] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The replication-dependent histone genes are the only metazoan genes whose messenger RNA (mRNA) does not terminate with a poly(A) tail at the 3'-end. Instead, the histone mRNAs display a stem-loop structure at their 3'-end. Stem-loop-binding protein (SLBP) binds the stem-loop and regulates canonical histone mRNA metabolism. Here we report that exposure to arsenic, a carcinogenic metal, decreased cellular levels of SLBP by inducing its proteasomal degradation and inhibiting SLBP transcription via epigenetic mechanisms. Notably, arsenic exposure dramatically increased polyadenylation of canonical histone H3.1 mRNA possibly through down-regulation of SLBP expression. The polyadenylated H3.1 mRNA induced by arsenic was not susceptible to normal degradation that occurs at the end of S phase, resulting in continued presence into mitosis, increased total H3.1 mRNA, and increased H3 protein levels. Excess expression of canonical histones have been shown to increase sensitivity to DNA damage as well as increase the frequency of missing chromosomes and induce genomic instability. Thus, polyadenylation of canonical histone mRNA following arsenic exposure may contribute to arsenic-induced carcinogenesis.
Collapse
Affiliation(s)
- Jason Brocato
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Lei Fang
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Yana Chervona
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Danqi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Kathrin Kiok
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Hsiang-Chi Tseng
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Dazhong Xu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Magdy Shamy
- Department of Environmental Sciences, Faculty of Meteorology, Environment, and Arid Land Agriculture, King Abdulaziz University, Jeddah 21432, Saudi Arabia
| | - Chunyuan Jin
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and.
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| |
Collapse
|
52
|
Health Effects Associated with Inhalation of Airborne Arsenic Arising from Mining Operations. GEOSCIENCES 2014. [DOI: 10.3390/geosciences4030128] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
53
|
Qi Y, Zhang M, Li H, Frank JA, Dai L, Liu H, Zhang Z, Wang C, Chen G. Autophagy inhibition by sustained overproduction of IL6 contributes to arsenic carcinogenesis. Cancer Res 2014; 74:3740-52. [PMID: 24830721 DOI: 10.1158/0008-5472.can-13-3182] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic inflammation has been implicated as an etiologic factor in cancer, whereas autophagy may help preserve cancer cell survival but exert anti-inflammatory effects. How these phenomenas interact during carcinogenesis remains unclear. We explored this question in a human bronchial epithelial cell-based model of lung carcinogenesis that is mediated by subchronic exposure to arsenic. We found that sustained overexpression of the pro-inflammatory IL6 promoted arsenic-induced cell transformation by inhibiting autophagy. Conversely, strategies to enhance autophagy counteracted the effect of IL6 in the model. These findings were confirmed and extended in a mouse model of arsenic-induced lung cancer. Mechanistic investigations suggested that mTOR inhibition contributed to the activation of autophagy, whereas IL6 overexpression was sufficient to block autophagy by supporting Beclin-1/Mcl-1 interaction. Overall, our findings argued that chronic inflammatory states driven by IL6 could antagonize autophagic states that may help preserve cancer cell survival and promote malignant progression, suggesting a need to uncouple inflammation and autophagy controls to enable tumor progression.
Collapse
Affiliation(s)
- Yuanlin Qi
- Authors' Affiliations: Department of Molecular & Biomedical Pharmacology, Biochemistry and Molecular Biology and
| | - Mingfang Zhang
- Authors' Affiliations: Department of Molecular & Biomedical Pharmacology, Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Hui Li
- Authors' Affiliations: Department of Molecular & Biomedical Pharmacology
| | - Jacqueline A Frank
- Authors' Affiliations: Department of Molecular & Biomedical Pharmacology
| | - Lu Dai
- Graduate Center for Toxicology, University of Kentucky College of Medicine
| | - Huijuan Liu
- Authors' Affiliations: Department of Molecular & Biomedical Pharmacology
| | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky College of Medicine
| | - Chi Wang
- Biostatistics Shared Resource Facility, Markey Cancer Center and Department of Biostatistics, University of Kentucky College of Public Health, Lexington, Kentucky; and Departments of
| | - Gang Chen
- Authors' Affiliations: Department of Molecular & Biomedical Pharmacology,
| |
Collapse
|
54
|
Tokar EJ, Kojima C, Waalkes MP. Methylarsonous acid causes oxidative DNA damage in cells independent of the ability to biomethylate inorganic arsenic. Arch Toxicol 2014; 88:249-61. [PMID: 24091636 PMCID: PMC3946729 DOI: 10.1007/s00204-013-1141-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Inorganic arsenic (iAs) and its toxic methylated metabolite, methylarsonous acid (MMA(III)), both have carcinogenic potential. Prior study shows iAs-induced malignant transformation in both arsenic methylation-proficient (liver) and methylation-deficient (prostate) cells, but only methylation-proficient cells show oxidative DNA damage (ODD) during this transformation. To further define whether arsenic methylation is necessary for transformation or ODD induction, here we chronically exposed these same liver or prostate cell lines to MMA(III) (0.25-1.0 μM) and tested for acquired malignant phenotype. Various metrics of oncogenic transformation were periodically assessed along with ODD during chronic MMA(III) exposure. Methylation-deficient and methylation-proficient cells both acquired a cancer phenotype with MMA(III) exposure at about 20 weeks, based on increased matrix metalloproteinase secretion, colony formation, and invasion. In contrast, prior work showed iAs-induced transformation took longer in biomethylation-deficient cells (~30 weeks) than in biomethylation-proficient cells (~18 weeks). In the present study, MMA(III) caused similar peak ODD levels at similar concentrations and at similar exposure times (18-22 weeks) in both cell types. At the approximate peak of ODD production, both cell types showed similar alterations in arsenic and oxidative stress adaptation factors (i.e., ABCC1, ABCC2, GST-π, SOD-1). Thus, MMA(III) causes oncogenic transformation associated with ODD in methylation-deficient cells, indicating that further methylation is not required to induce ODD. Together, these results show that MMA(III) and iAs cause an acquired malignant phenotype in methylation-deficient cells, yet iAs does not induce ODD. This indicates iAs likely has both genotoxic and non-genotoxic mechanisms dictated by the target cell's ability to methylate arsenic.
Collapse
Affiliation(s)
- Erik J. Tokar
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Chikara Kojima
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Michael P. Waalkes
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|
55
|
Xie H, Huang S, Martin S, Wise JP. Arsenic is cytotoxic and genotoxic to primary human lung cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 760:33-41. [PMID: 24291234 PMCID: PMC3928068 DOI: 10.1016/j.mrgentox.2013.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/10/2013] [Accepted: 11/19/2013] [Indexed: 01/25/2023]
Abstract
Arsenic originates from both geochemical and numerous anthropogenic activities. Exposure of the general public to significant levels of arsenic is widespread. Arsenic is a well-documented human carcinogen. Long-term exposure to high levels of arsenic in drinking water has been linked to bladder, lung, kidney, liver, prostate, and skin cancers. Among them, lung cancer is of great public concern. However, little is known about how arsenic causes lung cancer and few studies have considered effects in normal human lung cells. The purpose of this study was to determine the cytotoxicity and genotoxicity of arsenic in human primary bronchial fibroblast and epithelial cells. Our data show that arsenic induces a concentration-dependent decrease in cell survival after short (24h) or long (120h) exposures. Arsenic induces concentration-dependent but not time-dependent increases in chromosome damage in fibroblasts. No chromosome damage is induced after either 24h or 120h arsenic exposure in epithelial cells. Using neutral comet assay and gamma-H2A.X foci forming assay, we found that 24h or 120h exposure to arsenic induces increases in DNA double strand breaks in both cell lines. These data indicate that arsenic is cytotoxic and genotoxic to human lung primary cells but lung fibroblasts are more sensitive to arsenic than epithelial cells. Further research is needed to understand the specific mechanisms involved in arsenic-induced genotoxicity in human lung cells.
Collapse
Affiliation(s)
- Hong Xie
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME, United States; Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME, United States.
| | - Shouping Huang
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME, United States; Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME, United States
| | - Sarah Martin
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME, United States
| | - John P Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME, United States; Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME, United States
| |
Collapse
|
56
|
García-Esquinas E, Pollán M, Umans JG, Francesconi KA, Goessler W, Guallar E, Howard B, Farley J, Yeh J, Best LG, Navas-Acien A. Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiol Biomarkers Prev 2013; 22:1944-53. [PMID: 23800676 PMCID: PMC3843229 DOI: 10.1158/1055-9965.epi-13-0234-t] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Inorganic arsenic, a carcinogen at high exposure levels, is a major global health problem. Prospective studies on carcinogenic effects at low-moderate arsenic levels are lacking. METHODS We evaluated the association between baseline arsenic exposure and cancer mortality in 3,932 American Indians, 45 to 74 years of age, from Arizona, Oklahoma, and North/South Dakota who participated in the Strong Heart Study from 1989 to 1991 and were followed through 2008. We estimated inorganic arsenic exposure as the sum of inorganic and methylated species in urine. Cancer deaths (386 overall, 78 lung, 34 liver, 18 prostate, 26 kidney, 24 esophagus/stomach, 25 pancreas, 32 colon/rectal, 26 breast, and 40 lymphatic/hematopoietic) were assessed by mortality surveillance reviews. We hypothesized an association with lung, liver, prostate, and kidney cancers. RESULTS Median (interquartile range) urine concentration for inorganic plus methylated arsenic species was 9.7 (5.8-15.6) μg/g creatinine. The adjusted HRs [95% confidence interval (CI)] comparing the 80th versus 20th percentiles of arsenic were 1.14 (0.92-1.41) for overall cancer, 1.56 (1.02-2.39) for lung cancer, 1.34 (0.66, 2.72) for liver cancer, 3.30 (1.28-8.48) for prostate cancer, and 0.44 (0.14, 1.14) for kidney cancer. The corresponding hazard ratios were 2.46 (1.09-5.58) for pancreatic cancer, and 0.46 (0.22-0.96) for lymphatic and hematopoietic cancers. Arsenic was not associated with cancers of the esophagus and stomach, colon and rectum, and breast. CONCLUSIONS Low to moderate exposure to inorganic arsenic was prospectively associated with increased mortality for cancers of the lung, prostate, and pancreas. IMPACT These findings support the role of low-moderate arsenic exposure in development of lung, prostate, and pancreas cancer and can inform arsenic risk assessment.
Collapse
Affiliation(s)
- Esther García-Esquinas
- Department of Environmental Health Science, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD
- Environmental Epidemiology and Cancer Unit. National Center for Epidemiology. Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Marina Pollán
- Environmental Epidemiology and Cancer Unit. National Center for Epidemiology. Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Jason G. Umans
- MedStar Health Research Institute, Hyattsville, MD
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC
| | - Kevin A. Francesconi
- Institute of Chemistry-Analytical Chemistry, Karl-Franzens University, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry-Analytical Chemistry, Karl-Franzens University, Graz, Austria
| | - Eliseo Guallar
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Barbara Howard
- MedStar Health Research Institute, Hyattsville, MD
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC
| | - John Farley
- Divison of Gynecology Oncology, Department of Obstetrics and Gynecology, Creighton University School of Medicine at St. Joseph’s Hospital and Medical Center, a member of Catholic Healthcare West, Phoenix, AZ
| | - Jeunliang Yeh
- Center for American Indian Health Research, College of Public Health, University of Oklahoma Health Sciences Center. Oklahoma City, OK
| | - Lyle G. Best
- Missouri Breaks Industries Research Inc. Timber Lake, SD
| | - Ana Navas-Acien
- Department of Environmental Health Science, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| |
Collapse
|
57
|
Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells. Toxicol Appl Pharmacol 2013; 273:27-34. [DOI: 10.1016/j.taap.2013.08.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/25/2013] [Accepted: 08/26/2013] [Indexed: 01/26/2023]
|
58
|
Lohcharoenkal W, Wang L, Stueckle TA, Dinu CZ, Castranova V, Liu Y, Rojanasakul Y. Chronic exposure to carbon nanotubes induces invasion of human mesothelial cells through matrix metalloproteinase-2. ACS NANO 2013; 7:7711-23. [PMID: 23924264 PMCID: PMC3875633 DOI: 10.1021/nn402241b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Malignant mesothelioma is one of the most aggressive forms of cancer known. Recent studies have shown that carbon nanotubes (CNTs) are biopersistent and induce mesothelioma in animals, but the underlying mechanisms are not known. Here, we investigate the effect of long-term exposure to high aspect ratio CNTs on the aggressive behaviors of human pleural mesothelial cells, the primary cellular target of human lung mesothelioma. We show that chronic exposure (4 months) to single- and multiwalled CNTs induced proliferation, migration, and invasion of the cells similar to that observed in asbestos-exposed cells. An up-regulation of several key genes known to be important in cell invasion, notably matrix metalloproteinase-2 (MMP-2), was observed in the exposed mesothelial cells as determined by real-time PCR. Western blot and enzyme activity assays confirmed the increased expression and activity of MMP-2. Whole genome microarray analysis further indicated the importance of MMP-2 in the invasion gene signaling network of the exposed cells. Knockdown of MMP-2 in CNT and asbestos-exposed cells by shRNA-mediated gene silencing effectively inhibited the aggressive phenotypes. This study demonstrates CNT-induced cell invasion and indicates the role of MMP-2 in the process.
Collapse
Affiliation(s)
- Warangkana Lohcharoenkal
- Department of Pharmaceutical Sciences and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV
| | - Liying Wang
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Todd A. Stueckle
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Cerasela Zoica Dinu
- Department of Chemical Engineering, West Virginia University, Morgantown, WV
| | - Vincent Castranova
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV
| | - Yuxin Liu
- Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV
- Corresponding Author Correspondence should be addressed to Prof. Yon Rojanasakul, West Virginia University, Department of Pharmaceutical Sciences and Mary Babb Randolph Cancer Center. Phone: 304-293-1476
| |
Collapse
|
59
|
Cytotoxicity and gene expression changes induced by inorganic and organic trivalent arsenicals in human cells. Toxicology 2013; 312:18-29. [PMID: 23876855 DOI: 10.1016/j.tox.2013.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 02/03/2023]
Abstract
Inorganic arsenic (iAs) is a human urinary bladder, skin and lung carcinogen. iAs is metabolized to methylated arsenicals, with trivalent arsenicals more cytotoxic than pentavalent forms in vitro. In this study, cytotoxicity and gene expression changes for arsenite (iAs(III)), monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)) were evaluated in three human cell types, urothelial (1T1), keratinocyte (HEK001) and bronchial epithelial (HBE) cells, corresponding to target organs for iAs-induced cancer. Cells were exposed to arsenicals to determine cytotoxicity and to study gene expression changes. Affymetrix chips were used to determine differentially expressed genes (DEGs) by statistical analysis. Lethal concentrations (LC50) for trivalent arsenicals in all cells ranged from 1.6 to 10μM. MMA(III) and DMA(III) had 4-12-fold greater potency compared to iAs. Increasing concentrations of iAs(III) induced more genes and additional signaling pathways in HBE cells. At equivalent cytotoxic concentrations, greater numbers of DEGs were induced in 1T1 cells compared to the other cells. Each arsenical altered slightly different signaling pathways within and between cell types, but when altered pathways from all three arsenicals were combined, they were similar between cell types. The major signaling pathways altered included NRF2-mediated stress response, interferon, p53, cell cycle regulation and lipid peroxidation. These results show a similar process qualitatively and quantitatively for all three cell types, and support a mode of action involving cytotoxicity and regenerative proliferation.
Collapse
|
60
|
Xu Y, Zhao Y, Xu W, Luo F, Wang B, Li Y, Pang Y, Liu Q. Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells. Toxicol Appl Pharmacol 2013; 272:542-50. [PMID: 23811328 DOI: 10.1016/j.taap.2013.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/23/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
Abstract
Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover, IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis.
Collapse
Affiliation(s)
- Yuan Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Wang L, Stueckle TA, Mishra A, Derk R, Meighan T, Castranova V, Rojanasakul Y. Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells. Nanotoxicology 2013; 8:485-507. [PMID: 23634900 DOI: 10.3109/17435390.2013.801089] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accumulating evidence indicates that carbon nanotubes (CNTs) are biopersistent and can cause lung damage. With similar fibrous morphology and mode of exposure to asbestos, a known human carcinogen, growing concern has arisen for elevated risk of CNT-induced lung carcinogenesis; however, relatively little is known about the long-term carcinogenic effect of CNT. Neoplastic transformation is a key early event leading to carcinogenesis. We studied the ability of single- and multi-walled CNTs to induce neoplastic transformation of human lung epithelial cells compared to asbestos. Long-term (6-month) exposure of the cells to occupationally relevant concentrations of CNT in culture caused a neoplastic-like transformation phenotype as demonstrated by increased cell proliferation, anchorage-independent growth, invasion and angiogenesis. Whole-genome expression signature and protein expression analyses showed that single- and multi-walled CNTs shared similar signaling signatures which were distinct from asbestos. These results provide novel toxicogenomic information and suggest distinct particle-associated mechanisms of neoplasia promotion induced by CNTs and asbestos.
Collapse
Affiliation(s)
- Liying Wang
- HELD/PPRB, National Institute for Occupational Safety and Health , Morgantown, WV 26505 , USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Zhao F, Severson P, Pacheco S, Futscher BW, Klimecki WT. Arsenic exposure induces the Warburg effect in cultured human cells. Toxicol Appl Pharmacol 2013; 271:72-7. [PMID: 23648393 DOI: 10.1016/j.taap.2013.04.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 01/09/2023]
Abstract
Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
63
|
Hubaux R, Becker-Santos DD, Enfield KS, Rowbotham D, Lam S, Lam WL, Martinez VD. Molecular features in arsenic-induced lung tumors. Mol Cancer 2013; 12:20. [PMID: 23510327 PMCID: PMC3626870 DOI: 10.1186/1476-4598-12-20] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 03/07/2013] [Indexed: 11/10/2022] Open
Abstract
Arsenic is a well-known human carcinogen, which potentially affects ~160 million people worldwide via exposure to unsafe levels in drinking water. Lungs are one of the main target organs for arsenic-related carcinogenesis. These tumors exhibit particular features, such as squamous cell-type specificity and high incidence among never smokers. Arsenic-induced malignant transformation is mainly related to the biotransformation process intended for the metabolic clearing of the carcinogen, which results in specific genetic and epigenetic alterations that ultimately affect key pathways in lung carcinogenesis. Based on this, lung tumors induced by arsenic exposure could be considered an additional subtype of lung cancer, especially in the case of never-smokers, where arsenic is a known etiological agent. In this article, we review the current knowledge on the various mechanisms of arsenic carcinogenicity and the specific roles of this metalloid in signaling pathways leading to lung cancer.
Collapse
Affiliation(s)
- Roland Hubaux
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | | | | | | | | | | | | |
Collapse
|
64
|
Lin C, Tsai SC, Tseng MT, Peng SF, Kuo SC, Lin MW, Hsu YM, Lee MR, Amagaya S, Huang WW, Wu TS, Yang JS. AKT serine/threonine protein kinase modulates baicalin-triggered autophagy in human bladder cancer T24 cells. Int J Oncol 2013; 42:993-1000. [PMID: 23354080 DOI: 10.3892/ijo.2013.1791] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/28/2012] [Indexed: 11/06/2022] Open
Abstract
Baicalin is one of the major compounds in the traditional Chinese medicinal herb from Scutellaria baicalensis Georgi. We investigated the molecular mechanisms of cell autophagy induced by baicalin in human bladder cancer T24 cells. Baicalin inhibited cell survival as shown by MTT assay and increased cell death by trypan blue exclusion assay in a concentration-dependent manner. Baicalin did not induce apoptotic cell death in T24 cells by TUNEL and caspase-3 activity assay. Baicalin induced the acidic vesicular organelle cell autophagy marker, manifested by acridine orange (AO) and monodansylcadaverine (MDC) staining and cleavage of microtubule-associated protein 1 light chain 3 (LC3). The protein expression levels of the Atg 5, Atg 7, Atg 12, Beclin-1 and LC3-II were upregulated in T24 cells after baicalin treatment. Inhibition of autophagy by 3-methyl-adenine (an inhibitor of class III phosphatidylinositol-3 kinase; 3-MA) reduced the cleavage of LC3 in T24 cells after baicalin treatment. Furthermore, protein expression levels of phospho-AKT (Ser473) and enzyme activity of AKT were downregulated in T24 cells after baicalin treatment. In conclusion, baicalin triggered cell autophagy through the AKT signaling pathway in T24 cells.
Collapse
Affiliation(s)
- Chingju Lin
- Department of Physiology, China Medical University, Taichung 404, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|