51
|
Delhove JMKM, Buckley SMK, Perocheau DP, Karda R, Arbuthnot P, Henderson NC, Waddington SN, McKay TR. Longitudinal in vivo bioimaging of hepatocyte transcription factor activity following cholestatic liver injury in mice. Sci Rep 2017; 7:41874. [PMID: 28157201 PMCID: PMC5291111 DOI: 10.1038/srep41874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/28/2016] [Indexed: 01/09/2023] Open
Abstract
Molecular mechanisms regulating liver repair following cholestatic injury remain largely unknown. We have combined a mouse model of acute cholestatic liver injury, partial bile duct ligation (pBDL), with a novel longitudinal bioimaging methodology to quantify transcription factor activity during hepatic injury and repair. We administered lentiviral transcription factor activated luciferase/eGFP reporter (TFAR) cassettes to neonatal mice enabling longitudinal TFAR profiling by continued bioimaging throughout the lives of the animals and following pBDL in adulthood. Neonatal intravascular injection of VSV-G pseudotyped lentivirus resulted in almost exclusive transduction of hepatocytes allowing analysis of hepatocyte-specific transcription factor activity. We recorded acute but transient responses with NF-κB and Smad2/3 TFAR whilst our Notch reporter was repressed over the 40 days of evaluation post-pBDL. The bipotent hepatic progenitor cell line, HepaRG, can be directed to differentiate into hepatocytes and biliary epithelia. We found that forced expression of the Notch inhibitor NUMB in HepaRG resulted in enhanced hepatocyte differentiation and proliferation whereas over-expressing the Notch agonist JAG1 resulted in biliary epithelial differentiation. In conclusion, our data demonstrates that hepatocytes rapidly upregulate NF-κB and Smad2/3 activity, whilst repressing Notch signalling. This transcriptional response to cholestatic liver injury likely promotes partial de-differentiation to allow pro-regenerative proliferation of hepatocytes.
Collapse
Affiliation(s)
- Juliette M K M Delhove
- Stem Cell Group, Cardiovascular &Cell Sciences Research Institute, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK.,Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Suzanne M K Buckley
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Dany P Perocheau
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Rajvinder Karda
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil C Henderson
- MRC Centre for Inflammation Research, The Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK.,Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tristan R McKay
- Stem Cell Group, Cardiovascular &Cell Sciences Research Institute, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK.,School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K
| |
Collapse
|
52
|
Cai SY, Boyer JL. Studies on the mechanisms of bile acid initiated hepatic inflammation in cholestatic liver injury. INFLAMMATION AND CELL SIGNALING 2017; 4:e1561. [PMID: 28804737 PMCID: PMC5553904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mechanism of bile acid induced cholestatic liver injury remains controversial, thus hindering the development of new therapies for these diseases. In this research highlight, we briefly review the evolution of our understanding of the pathogenesis of bile acid induced liver injury, and summarize our recent findings on this topic. Our data suggests that under pathophysiological conditions bile acid induced liver injury is mediated by inflammatory responses that are initiated from stressed hepatocytes. We conclude by mentioning potential new therapeutic approaches for treating cholestatic liver injury based on these pathophysiologic concepts.
Collapse
|
53
|
Lim SW, Lee DR, Choi BK, Kim HS, Yang SH, Suh JW, Kim KS. Protective effects of a polymethoxy flavonoids-rich Citrus aurantium peel extract on liver fibrosis induced by bile duct ligation in mice. ASIAN PAC J TROP MED 2016; 9:1158-1164. [DOI: 10.1016/j.apjtm.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022] Open
|
54
|
Microcystin-LR induced liver injury in mice and in primary human hepatocytes is caused by oncotic necrosis. Toxicon 2016; 125:99-109. [PMID: 27889601 DOI: 10.1016/j.toxicon.2016.11.254] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 11/22/2022]
Abstract
Microcystins are a group of toxins produced by freshwater cyanobacteria. Uptake of microcystin-leucine arginine (MC-LR) by organic anion transporting polypeptide 1B2 in hepatocytes results in inhibition of protein phosphatase 1A and 2A, and subsequent cell death. Studies performed in primary rat hepatocytes demonstrate prototypical apoptosis after MC-LR exposure; however, no study has directly tested whether apoptosis is critically involved in vivo in the mouse, or in human hepatocytes. MC-LR (120 μg/kg) was administered to C57BL/6J mice and cell death was evaluated by alanine aminotransferase (ALT) release, caspase-3 activity in the liver, and histology. Mice exposed to MC-LR had increases in plasma ALT values, and hemorrhage in the liver, but no increase in capase-3 activity in the liver. Pre-treatment with the pan-caspase inhibitor z-VAD-fmk failed to protect against cell death measured by ALT, glutathione depletion, or hemorrhage. Administration of MC-LR to primary human hepatocytes resulted in significant toxicity at concentrations between 5 nM and 1 μM. There were no elevated caspase-3 activities and pretreatment with z-VAD-fmk failed to protect against cell death in human hepatocytes. MC-LR treated human hepatocytes stained positive for propidium iodide, indicating membrane instability, a marker of necrosis. Of note, both increases in PI positive cells, and increases in lactate dehydrogenase release, occurred before the onset of complete actin filament collapse. In conclusion, apoptosis does not contribute to MC-LR-induced cell death in the in vivo mouse model or in primary human hepatocytes in vitro. Thus, targeting necrotic cell death mechanisms will be critical for preventing microcystin-induced liver injury.
Collapse
|
55
|
Abstract
Cholestasis is a common pathological component of numerous liver diseases. The initiating event during cholestatic liver injury is widely believed to be the accumulation of bile acids in hepatocytes and the hepatic parenchyma. As bile acids are considered the primary toxic compounds in the injury, numerous in vitro models of bile acid-induced injury and bile acid-induced changes in gene expression have been developed to attempt to better define cholestasis at a cellular level. This chapter focuses on the establishment of a system for determining the effects of cholestatic concentrations of bile acids on hepatocytes using primary hepatocytes or hepatoma cell lines. Moreover, this chapter addresses significant differences in the response of different species to bile acid exposure and novel information on the relevance of treating hepatocytes with concentrations of specific bile acids.
Collapse
|
56
|
Yang L, Guo Y, Wen D, Yang L, Chen Y, Zhang G, Fan Z. Bone Fracture Enhances Trauma Brain Injury. Scand J Immunol 2016; 83:26-32. [PMID: 26448486 DOI: 10.1111/sji.12393] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/25/2015] [Indexed: 01/04/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of mortality and morbidity in young individuals worldwide. However, the understanding of TBI at secondary phase remained obscure, and more knowledge of the pathophysiology of TBI is necessary. In this study, we examined the influence of bone fracture (BF) on TBI and investigated whether blocking high mobility group 1 (HMGB1) protein, an inflammatory mediator, could be effective to alleviate TBI. We found neurological severity was significantly increased by BF at 4 days post-TBI with longer removal time of adhesive tape and higher percentage of left turn in the corner test compared to TBI treatment alone. Additionally, higher brain lesion volume and severer brain oedema in TBI + BF mice supports the negative effect of BF on TBI. HMGB1 level was significantly stimulated by BF, suggesting the important role of HMGB1 in the development of secondary TBI. Notably, ablation of HMGB1 significantly reduced this negative influence of BF on TBI. These results suggest that HMGB1 can be massively induced by the systemic immune activation triggered by BF, which in turn aggravates inflammation. Blocking HMGB1 reduced the inflammatory effect of BF and therefore helps lessen the severity of secondary TBI. In conclusion, these results provided the evidence that anti-HMGB1 may be an effective and feasible method to alleviate TBI.
Collapse
Affiliation(s)
- L Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Y Guo
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - D Wen
- Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - L Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Y Chen
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - G Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Z Fan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
57
|
Lea JD, Clarke JI, McGuire N, Antoine DJ. Redox-Dependent HMGB1 Isoforms as Pivotal Co-Ordinators of Drug-Induced Liver Injury: Mechanistic Biomarkers and Therapeutic Targets. Antioxid Redox Signal 2016; 24:652-65. [PMID: 26481429 DOI: 10.1089/ars.2015.6406] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE High-mobility group box 1 (HMGB1) is a critical protein in the coordination of the inflammatory response in drug-induced liver injury (DILI). HMGB1 is released from necrotic hepatocytes and activated immune cells. The extracellular function of HMGB1 is dependent upon redox modification of cysteine residues that control chemoattractant and cytokine-inducing properties. Existing biomarkers of DILI such as alanine aminotransferase (ALT) have limitations such as lack of sensitivity and tissue specificity that can adversely affect clinical intervention. RECENT ADVANCES HMGB1 isoforms have been shown to be more sensitive biomarkers than ALT for predicting DILI development and the requirement for liver transplant following acetaminophen (APAP) overdose. Hepatocyte-specific conditional knockout of HMGB1 has demonstrated the pivotal role of HMGB1 in DILI and liver disease. Tandem mass spectrometry (MS/MS) enables the characterization and quantification of different mechanism-dependent post-translationally modified isoforms of HMGB1. CRITICAL ISSUES HMGB1 shows great promise as a biomarker of DILI. However, current diagnostic assays are either too time-consuming to be clinically applicable (MS/MS) or are unable to distinguish between different redox and acetyl isoforms of HMGB1 (ELISA). Additionally, HMGB1 is not liver specific, so while it outperforms ALT (also not liver specific) as a biomarker for the prediction of DILI development, it should be used in a biomarker panel along with liver-specific markers such as miR-122. FUTURE DIRECTIONS A point-of-care test for HMGB1 and the development of redox and acetyl isoform-targeting antibodies will advance clinical utility. Work is ongoing to validate baseline levels of circulating HMGB1 in healthy volunteers.
Collapse
Affiliation(s)
- Jonathan D Lea
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Joanna I Clarke
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Niamh McGuire
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Daniel J Antoine
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| |
Collapse
|
58
|
Clarke JI, Dear JW, Antoine DJ. Recent advances in biomarkers and therapeutic interventions for hepatic drug safety – false dawn or new horizon? Expert Opin Drug Saf 2016; 15:625-34. [DOI: 10.1517/14740338.2016.1160057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joanna I. Clarke
- MRC Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - James W. Dear
- Pharmacology, Toxicology and Therapeutics Unit, BHF/University Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Daniel J. Antoine
- MRC Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
59
|
Abshagen K, König M, Hoppe A, Müller I, Ebert M, Weng H, Holzhütter HG, Zanger UM, Bode J, Vollmar B, Thomas M, Dooley S. Pathobiochemical signatures of cholestatic liver disease in bile duct ligated mice. BMC SYSTEMS BIOLOGY 2015; 9:83. [PMID: 26589287 PMCID: PMC4654904 DOI: 10.1186/s12918-015-0229-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/05/2015] [Indexed: 02/08/2023]
Abstract
Background Disrupted bile secretion leads to liver damage characterized by inflammation, fibrosis, eventually cirrhosis, and hepatocellular cancer. As obstructive cholestasis often progresses insidiously, markers for the diagnosis and staging of the disease are urgently needed. To this end, we compiled a comprehensive data set of serum markers, histological parameters and transcript profiles at 8 time points of disease progression after bile duct ligation (BDL) in mice, aiming at identifying a set of parameters that could be used as robust biomarkers for transition of different disease progression phases. Results Statistical analysis of the more than 6,000 data points revealed distinct temporal phases of disease. Time course correlation analysis of biochemical, histochemical and mRNA transcript parameters (=factors) defined 6 clusters for different phases of disease progression. The number of CTGF-positive cells provided the most reliable overall measure for disease progression at histological level, bilirubin at biochemical level, and metalloproteinase inhibitor 1 (Timp1) at transcript level. Prominent molecular events exhibited by strong transcript peaks are found for the transcriptional regulator Nr0b2 (Shp) and 1,25-dihydroxyvitamin D(3) 24-hydroxylase (Cyp24a1) at 6 h. Based on these clusters, we constructed a decision tree of factor combinations potentially useful as markers for different time intervals of disease progression. Best prediction for onset of disease is achieved by fibronectin (Fn1), for early disease phase by Cytochrome P450 1A2 (Cyp1a2), passage to perpetuation phase by collagen1α-1 (Col1a1), and transition to the progression phase by interleukin 17-a (Il17a), with early and late progression separated by Col1a1. Notably, these predictions remained stable even for randomly chosen small sub-sets of factors selected from the clusters. Conclusion Our detailed time-resolved explorative study of liver homogenates following BDL revealed a well-coordinated response, resulting in disease phase dependent parameter modulations at morphological, biochemical, metabolic and gene expression levels. Interestingly, a small set of selected parameters can be used as diagnostic markers to predict disease stages in mice with cholestatic liver disease. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0229-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kerstin Abshagen
- Institute for Experimental Surgery, University Medicine Rostock, Schillingallee 69a, Rostock, 18057, Germany.
| | - Matthias König
- Institute for Biochemistry, Computational Systems Biochemistry Group, Charité University Medicine Berlin, Berlin, 10117, Germany.
| | - Andreas Hoppe
- Institute for Biochemistry, Computational Systems Biochemistry Group, Charité University Medicine Berlin, Berlin, 10117, Germany.
| | - Isabell Müller
- Institute for Experimental Surgery, University Medicine Rostock, Schillingallee 69a, Rostock, 18057, Germany.
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.
| | - Honglei Weng
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.
| | - Herrmann-Georg Holzhütter
- Institute for Biochemistry, Computational Systems Biochemistry Group, Charité University Medicine Berlin, Berlin, 10117, Germany.
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tuebingen, Tuebingen, Stuttgart, 70376, Germany.
| | - Johannes Bode
- Department for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University of Düsseldorf, Düsseldorf, 40225, Germany.
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medicine Rostock, Schillingallee 69a, Rostock, 18057, Germany.
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tuebingen, Tuebingen, Stuttgart, 70376, Germany.
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.
| |
Collapse
|
60
|
McGill MR, Du K, Weemhoff JL, Jaeschke H. Critical review of resveratrol in xenobiotic-induced hepatotoxicity. Food Chem Toxicol 2015; 86:309-18. [PMID: 26561740 DOI: 10.1016/j.fct.2015.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023]
Abstract
Use of natural products is increasingly popular. In fact, many patients with liver diseases self-medicate with herbal supplements. Resveratrol (RSV), in particular, is a common natural product that can reduce injury in experimental models of liver disease. Xenobiotic hepatotoxicity is a particularly important area-of-need for therapeutics. Drug-induced liver injury, for example, is the most common cause of acute liver failure (ALF) and ALF-induced deaths in many countries. Importantly, RSV protects against hepatotoxicity in animal models in vivo caused by several drugs and chemicals and may be an effective intervention. Although many mechanisms have been proposed to explain the protection, not all are consistent with other data. Furthermore, RSV suffers from other issues, including limited bioavailability due to extensive hepatic metabolism. The purpose of this article is to summarize recent findings on the protective effects of RSV in xenobiotic-induced liver injury and other forms of liver injury and to provide a critical review of the underlying mechanisms. New mechanisms that are more consistent with data emerging from the toxicology field are suggested. Efforts to move RSV into clinical use are also considered. Overall, RSV is a promising candidate for therapeutic use, but additional studies are needed to better understand its effects.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Kuo Du
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - James L Weemhoff
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
61
|
Woolbright BL, Jaeschke H. Therapeutic targets for cholestatic liver injury. Expert Opin Ther Targets 2015; 20:463-75. [PMID: 26479335 DOI: 10.1517/14728222.2016.1103735] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cholestasis is a reduction in bile flow that occurs during numerous pathologies. Blockage of the biliary tracts results in hepatic accumulation of bile acids or their conjugate bile salts. The molecular mechanisms behind liver injury associated with cholestasis are extensively studied, but not well understood. Multiple models of obstructive cholestasis result in a significant inflammatory infiltrate at the sites of necrosis that characterize the injury. AREAS COVERED This review will focus on direct bile acid toxicity during cholestasis, bile acid signaling processes and on the development and continuation of inflammation during cholestasis, with a focus on novel proposed molecular mediators of neutrophil recruitment. While significant progress has been made on these molecular mechanisms, a continued focus on how cholestasis and the innate immune system interact is necessary to discover targetable therapeutics that might protect the liver while leaving global immunity intact. EXPERT OPINION While bile acid toxicity likely occurs in humans and other mammals when toxic bile acids accumulate, persistent inflammation is likely responsible for continued liver injury during obstructive cholestasis. Targeting molecular mediators of inflammation may help prevent liver injury during acute cholestasis both in murine models and human patients.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- a Department of Pharmacology , Toxicology & Therapeutics, University of Kansas Medical Center , 3901 Rainbow Blvd, MS 1018, Kansas City , KS , 66160 USA
| | - Hartmut Jaeschke
- a Department of Pharmacology , Toxicology & Therapeutics, University of Kansas Medical Center , 3901 Rainbow Blvd, MS 1018, Kansas City , KS , 66160 USA
| |
Collapse
|
62
|
Zhang L, Cheng Y, Du X, Chen S, Feng X, Gao Y, Li S, Liu L, Yang M, Chen L, Peng Z, Yang Y, Luo W, Wang R, Chen W, Chai J. Swertianlarin, an Herbal Agent Derived from Swertia mussotii Franch, Attenuates Liver Injury, Inflammation, and Cholestasis in Common Bile Duct-Ligated Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:948376. [PMID: 26273316 PMCID: PMC4530240 DOI: 10.1155/2015/948376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 12/24/2022]
Abstract
Swertianlarin is an herbal agent abundantly distributed in Swertia mussotii Franch, a Chinese traditional herb used for treatment of jaundice. To study the therapeutic effect of swertianlarin on cholestasis, liver injury, serum proinflammatory cytokines, and bile salt concentrations were measured by comparing rats treated with swertianlarin 100 mg/kg/d or saline for 3, 7, or 14 days after bile duct ligation (BDL). Serum alanine aminotransferase (ATL) and aspartate aminotransferase (AST) levels were significantly decreased in BDL rats treated with swertianlarin for 14 days (P < 0.05). The reduced liver injury in BDL rats by swertianlarin treatment for 14 days was further confirmed by liver histopathology. Levels of serum tumor necrosis factor alpha (TNFα) were decreased by swertianlarin in BDL rats for 3 and 7 days (P < 0.05). Moreover, reductions in serum interleukins IL-1β and IL-6 levels were also observed in BDL rats treated with swertianlarin (P < 0.05). In addition, most of serum toxic bile salt concentrations (e.g., chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA)) in cholestatic rats were decreased by swertianlarin (P < 0.05). In conclusion, the data suggest that swertianlarin derived from Swertia mussotii Franch attenuates liver injury, inflammation, and cholestasis in bile duct-ligated rats.
Collapse
Affiliation(s)
- Liangjun Zhang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ying Cheng
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiaohuang Du
- Department of Traditional Chinese Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xinchan Feng
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yu Gao
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Shaoxue Li
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Li Liu
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Mei Yang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lei Chen
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhihong Peng
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yong Yang
- Chongqing Academy of Chinese Material Medicine, Chongqing 400065, China
| | - Weizao Luo
- Chongqing Academy of Chinese Material Medicine, Chongqing 400065, China
| | - Rongquan Wang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jin Chai
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
63
|
MicroRNAs as Signaling Mediators and Biomarkers of Drug- and Chemical-Induced Liver Injury. J Clin Med 2015; 4:1063-1078. [PMID: 26167291 PMCID: PMC4470217 DOI: 10.3390/jcm4051063] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023] Open
Abstract
Drug-induced liver injury (DILI) is major problem for both the drug industry and for clinicians. There are two basic categories of DILI: intrinsic and idiosyncratic. The former is the chief cause of acute liver failure in several developed countries, while the latter is the most common reason for post-marketing drug withdrawal and a major reason for failure to approve new drugs in the U.S. Although considerably more progress has been made in the study of intrinsic DILI, our understanding of both forms of drug hepatotoxicity remains incomplete. Recent work involving microRNAs (miRNAs) has advanced our knowledge of DILI in two ways: (1) possible roles of miRNAs in the pathophysiological mechanisms of DILI have been identified, and (2) circulating miRNA profiles have shown promise for the detection and diagnosis of DILI in clinical settings. The purpose of this review is to summarize major findings in these two areas of research. Taken together, exciting progress has been made in the study of miRNAs in DILI. Possible mechanisms through which miRNA species contribute to the basic mechanisms of DILI are beginning to emerge, and new miRNA-based biomarkers have the potential to greatly improve diagnosis of liver injury and prediction of patient outcomes.
Collapse
|
64
|
Woolbright BL, Jaeschke H. Xenobiotic and Endobiotic Mediated Interactions Between the Cytochrome P450 System and the Inflammatory Response in the Liver. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:131-61. [PMID: 26233906 DOI: 10.1016/bs.apha.2015.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The liver is a unique organ in the body as it has significant roles in both metabolism and innate immune clearance. Hepatocytes in the liver carry a nearly complete complement of drug metabolizing enzymes, including numerous cytochrome P450s. While a majority of these enzymes effectively detoxify xenobiotics, or metabolize endobiotics, a subportion of these reactions result in accumulation of metabolites that can cause either direct liver injury or indirect liver injury through activation of inflammation. The liver also contains multiple populations of innate immune cells including the resident macrophages (Kupffer cells), a relatively large number of natural killer cells, and blood-derived neutrophils. While these cells are primarily responsible for clearance of pathogens, activation of these immune cells can result in significant tissue injury during periods of inflammation. When activated chronically, these inflammatory bouts can lead to fibrosis, cirrhosis, cancer, or death. This chapter will focus on interactions between how the liver processes xenobiotic and endobiotic compounds through the cytochrome P450 system, and how these processes can result in a response from the innate immune cells of the liver. A number of different clinically relevant diseases, as well as experimental models, are currently available to study mechanisms related to the interplay of innate immunity and cytochrome P450-mediated metabolism. A major focus of the chapter will be to evaluate currently understood mechanisms in the context of these diseases, as a way of outlining mechanisms that dictate the interactions between the P450 system and innate immunity.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
65
|
Nattrass R, Faulkner L, Vocanson M, Antoine DJ, Kipar A, Kenna G, Nicolas JF, Park BK, Naisbitt DJ. Activation of Flucloxacillin-Specific CD8+ T-Cells With the Potential to Promote Hepatocyte Cytotoxicity in a Mouse Model. Toxicol Sci 2015; 146:146-56. [DOI: 10.1093/toxsci/kfv077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
66
|
Woolbright BL, Dorko K, Antoine DJ, Clarke JI, Gholami P, Li F, Kumer SC, Schmitt TM, Forster J, Fan F, Jenkins RE, Park BK, Hagenbuch B, Olyaee M, Jaeschke H. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis. Toxicol Appl Pharmacol 2015; 283:168-77. [PMID: 25636263 PMCID: PMC4361327 DOI: 10.1016/j.taap.2015.01.015] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/19/2022]
Abstract
Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Daniel J Antoine
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Joanna I Clarke
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Parviz Gholami
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Feng Li
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sean C Kumer
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy M Schmitt
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jameson Forster
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Fang Fan
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Rosalind E Jenkins
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mojtaba Olyaee
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
67
|
Chai J, Du X, Chen S, Feng X, Cheng Y, Zhang L, Gao Y, Li S, He X, Wang R, Zhou X, Yang Y, Luo W, Chen W. Oral administration of oleanolic acid, isolated from Swertia mussotii Franch, attenuates liver injury, inflammation, and cholestasis in bile duct-ligated rats. Int J Clin Exp Med 2015; 8:1691-1702. [PMID: 25932098 PMCID: PMC4402745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND & AIMS Oleanolic acid is abundantly distributed in Swertia mussotii Franch, a Chinese traditional herb for the treatment of jaundice. However, the hepatoprotective role of oleanolic acid in obstructive cholestasis and its underlying molecular mechanism are unclear. METHODS Normal rats and bile duct-ligated (BDL) rats were given oleanolic acid and serum biochemistry, bile salts, and pro-inflammatory factors were measured, as well as the expression levels of liver bile acid synthesis and detoxification enzymes, membrane transporters, nuclear receptors, and transcriptional factors. RESULTS Oral administration of oleanolic acid at 100 mg/kg did not cause rat liver injury. However, it significantly reduced the serum levels of alanine aminotransferase (ALT) on days 7 and 14, aspartate aminotransferase (AST) and TNF-α on day 14, and alkaline phosphatase (ALP) and IL-1β on days 3, 7, and 14 in the BDL rats. Furthermore, the serum levels of total bile acid (TBA) and bile acids, including CDCA, CA, DCA, and Tα/βMCA were significantly reduced by oleanolic acid on day 3 in the BDL rats. In addition, the expression levels of detoxification enzymes Cyp3a, Ugt2b, Sult2a1, Gsta1-2, and Gstm1-3, membrane transporters Mrp3, Mrp4, Ostβ, Mdr1, Mdr2, and Bsep, nuclear receptors Pxr, Vdr, Hnf4α, Rxrα, Rarα, Lxr, and Lrh-1, and transcriptional factors Nrf2, Hnf3β, and Ahr were significantly increased in oleanolic acid-treated rats. CONCLUSION We demonstrated that the oral administration of oleanolic acid attenuates liver injury, inflammation, and cholestasis in BDL rats. The anti-cholestatic effect may be associated with the induction of hepatic detoxification enzymes and efflux transporters mediated by nuclear receptors and transcriptional factors.
Collapse
Affiliation(s)
- Jin Chai
- Department of Gastroenterology; Southwest Hospital, College of Pharmacy, Third Military Medical UniversityChongqing 400038
| | - Xiaohuang Du
- Department of Traditional Chinese Medicine; Southwest Hospital, College of Pharmacy, Third Military Medical UniversityChongqing 400038
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital; Southwest Hospital, College of Pharmacy, Third Military Medical UniversityChongqing 400038
| | - XinChan Feng
- Department of Gastroenterology; Southwest Hospital, College of Pharmacy, Third Military Medical UniversityChongqing 400038
| | - Ying Cheng
- Department of Gastroenterology; Southwest Hospital, College of Pharmacy, Third Military Medical UniversityChongqing 400038
| | - Liangjun Zhang
- Department of Gastroenterology; Southwest Hospital, College of Pharmacy, Third Military Medical UniversityChongqing 400038
| | - Yu Gao
- Department of Gastroenterology; Southwest Hospital, College of Pharmacy, Third Military Medical UniversityChongqing 400038
| | - Shaoxue Li
- Department of Gastroenterology; Southwest Hospital, College of Pharmacy, Third Military Medical UniversityChongqing 400038
| | - Xiaochong He
- Department of School of Nursing; College of Pharmacy, Third Military Medical UniversityChongqing 400038, P.R. China
| | - Rongquan Wang
- Department of Gastroenterology; Southwest Hospital, College of Pharmacy, Third Military Medical UniversityChongqing 400038
| | - Xiangdong Zhou
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical UniversityChongqing 400038, P.R. China
| | - Yong Yang
- Chongqing Academy of Chinese Material MedicalChongqing 400065, P.R. China
| | - Weizao Luo
- Chongqing Academy of Chinese Material MedicalChongqing 400065, P.R. China
| | - Wensheng Chen
- Department of Gastroenterology; Southwest Hospital, College of Pharmacy, Third Military Medical UniversityChongqing 400038
| |
Collapse
|
68
|
Abstract
Inflammation during liver injury normally serves as a mechanism for cleaning up debris and as a stimulant for regeneration. However, aberrant levels of inflammation can provoke further liver injury and inhibit regeneration through the release of damaging reactive oxygen species. Considerable effort has gone into understanding the mechanisms that control the switch between healthy and pathological inflammation. The identification of a receptor system that detects damage-associated molecular patterns and stimulates inflammation has led to the idea of sterile inflammation. This article will focus on the role of sterile inflammation during liver injury in three models where sterile inflammation has been presumed to mediate a portion of the injury mechanism and its potential relevance for the human pathophysiology.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
69
|
Yang M, Antoine DJ, Weemhoff JL, Jenkins RE, Farhood A, Park BK, Jaeschke H. Biomarkers distinguish apoptotic and necrotic cell death during hepatic ischemia/reperfusion injury in mice. Liver Transpl 2014; 20:1372-82. [PMID: 25046819 PMCID: PMC4213307 DOI: 10.1002/lt.23958] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/26/2014] [Accepted: 07/12/2014] [Indexed: 12/16/2022]
Abstract
Hepatic ischemia/reperfusion (IRP) injury is a significant clinical problem during tumor-resection surgery (Pringle maneuver) and liver transplantation. However, the relative contribution of necrotic and apoptotic cell death to the overall liver injury is still controversial. To address this important issue with a standard murine model of hepatic IRP injury, plasma biomarkers of necrotic cell death such as micro-RNA 122, full-length cytokeratin 18 (FK18), and high-mobility group box 1 (HMGB1) protein and plasma biomarkers of apoptosis such as plasma caspase-3 activity and caspase-cleaved fragment of cytokeratin 18 (CK18) coupled with markers of inflammation (hyperacetylated HMGB1) were compared by histological features in hematoxylin and eosin-stained and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-stained liver sections. After 45 minutes of hepatic ischemia and 1 to 24 hours of reperfusion, all necrosis markers increased dramatically in plasma by 40- to >10,000-fold over the baseline with a time course similar to that of alanine aminotransferase. These data correlated well with histological characteristics of necrosis. Within the area of necrosis, most cells were TUNEL positive; initially (≤3 hours of reperfusion), the staining was restricted to nuclei, but it later spread to the cytosol, and this is characteristic of karyorrhexis during necrotic cell death. In contrast, the lack of morphological evidence of apoptotic cell death and relevant caspase-3 activity in the postischemic liver correlated well with the absence of caspase-3 activity and CK18 (except for a minor increase at 3 hours of reperfusion) in plasma. A quantitative comparison of FK18 (necrosis) and CK18 (apoptosis) release indicated dominant cell death by necrosis during IRP and only a temporary and very minor degree of apoptosis. These data suggest that the focus of future research should be the elucidation of necrotic signaling mechanisms to identify relevant targets, which may be used to attenuate hepatic IRP injury.
Collapse
Affiliation(s)
- Min Yang
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Daniel J. Antoine
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - James L. Weemhoff
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Rosalind E. Jenkins
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Anwar Farhood
- Department of Pathology, St. David’s North Austin Medical Center, Austin, TX 78756, USA
| | - B. Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
70
|
Woolbright BL, McGill MR, Staggs VS, Winefield RD, Gholami P, Olyaee M, Sharpe MR, Curry SC, Lee WM, Jaeschke H. Glycodeoxycholic acid levels as prognostic biomarker in acetaminophen-induced acute liver failure patients. Toxicol Sci 2014; 142:436-44. [PMID: 25239633 DOI: 10.1093/toxsci/kfu195] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acetaminophen (APAP)-induced acute liver failure (ALF) remains a major clinical problem. Although a majority of patients recovers after severe liver injury, a subpopulation of patients proceeds to ALF. Bile acids are generated in the liver and accumulate in blood during liver injury, and as such, have been proposed as biomarkers for liver injury and dysfunction. The goal of this study was to determine whether individual bile acid levels could determine outcome in patients with APAP-induced ALF (AALF). Serum bile acid levels were measured in AALF patients using mass spectrometry. Bile acid levels were elevated 5-80-fold above control values in injured patients on day 1 after the overdose and decreased over the course of hospital stay. Interestingly, glycodeoxycholic acid (GDCA) was significantly increased in non-surviving AALF patients compared with survivors. GDCA values obtained at peak alanine aminotransferase (ALT) and from day 1 of admission indicated GDCA could predict survival in these patients by receiver-operating characteristic analysis (AUC = 0.70 for day 1, AUC = 0.68 for peak ALT). Of note, AALF patients also had significantly higher levels of serum bile acids than patients with active cholestatic liver injury. These data suggest measurements of GDCA in this patient cohort modestly predicted outcome and may serve as a prognostic biomarker. Furthermore, accumulation of bile acids in serum or plasma may be a result of liver cell dysfunction and not cholestasis, suggesting elevation of circulating bile acid levels may be a consequence and not a cause of liver injury.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- *Department of Pharmacology, Toxicology and Therapeutics, Department of Biostatistics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, Arizona 85006, Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, Arizona 85006 and Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Mitchell R McGill
- *Department of Pharmacology, Toxicology and Therapeutics, Department of Biostatistics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, Arizona 85006, Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, Arizona 85006 and Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Vincent S Staggs
- *Department of Pharmacology, Toxicology and Therapeutics, Department of Biostatistics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, Arizona 85006, Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, Arizona 85006 and Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Robert D Winefield
- *Department of Pharmacology, Toxicology and Therapeutics, Department of Biostatistics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, Arizona 85006, Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, Arizona 85006 and Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Parviz Gholami
- *Department of Pharmacology, Toxicology and Therapeutics, Department of Biostatistics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, Arizona 85006, Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, Arizona 85006 and Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Mojtaba Olyaee
- *Department of Pharmacology, Toxicology and Therapeutics, Department of Biostatistics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, Arizona 85006, Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, Arizona 85006 and Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Matthew R Sharpe
- *Department of Pharmacology, Toxicology and Therapeutics, Department of Biostatistics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, Arizona 85006, Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, Arizona 85006 and Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Steven C Curry
- *Department of Pharmacology, Toxicology and Therapeutics, Department of Biostatistics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, Arizona 85006, Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, Arizona 85006 and Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 *Department of Pharmacology, Toxicology and Therapeutics, Department of Biostatistics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, Arizona 85006, Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, Arizona 85006 and Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - William M Lee
- *Department of Pharmacology, Toxicology and Therapeutics, Department of Biostatistics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, Arizona 85006, Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, Arizona 85006 and Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 *Department of Pharmacology, Toxicology and Therapeutics, Department of Biostatistics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, Arizona 85006, Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, Arizona 85006 and Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hartmut Jaeschke
- *Department of Pharmacology, Toxicology and Therapeutics, Department of Biostatistics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, Arizona 85006, Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, Arizona 85006 and Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|
71
|
McGill MR, Jaeschke H. Mechanistic biomarkers in acetaminophen-induced hepatotoxicity and acute liver failure: from preclinical models to patients. Expert Opin Drug Metab Toxicol 2014; 10:1005-17. [PMID: 24836926 DOI: 10.1517/17425255.2014.920823] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Drug hepatotoxicity is a major clinical issue. Acetaminophen (APAP) overdose is especially common. Serum biomarkers used to follow patient progress reflect either liver injury or function, but focus on biomarkers that can provide insight into the basic mechanisms of hepatotoxicity is increasing and enabling us to translate mechanisms of toxicity from animal models into humans. AREAS COVERED We review recent advances in mechanistic serum biomarker research in drug hepatotoxicity. Specifically, biomarkers for reactive drug intermediates, mitochondrial dysfunction, nuclear DNA damage, mode of cell death and inflammation are discussed, as well as microRNAs. Emphasis is placed on APAP-induced liver injury. EXPERT OPINION Several serum biomarkers of reactive drug intermediates, mitochondrial damage, nuclear DNA damage, apoptosis and necrosis and inflammation have been described. These studies have provided evidence that mitochondrial damage is critical in APAP hepatotoxicity in humans, while apoptosis has only a minor role, and inflammation is important for recovery and regeneration after APAP overdose. Additionally, mechanistic serum biomarkers have been shown to predict outcome as well as, or better than, some clinical scores. In the future, such biomarkers will help determine the need for liver transplantation and, with improved understanding of the human pathophysiology, identify novel therapeutic targets.
Collapse
Affiliation(s)
- Mitchell R McGill
- University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , 3901 Rainbow Blvd, MS 1018, Kansas City, KS 66160 , USA +1 913 588 7969 ; +1 913 588 7501 ;
| | | |
Collapse
|
72
|
Woolbright BL, Li F, Xie Y, Farhood A, Fickert P, Trauner M, Jaeschke H. Lithocholic acid feeding results in direct hepato-toxicity independent of neutrophil function in mice. Toxicol Lett 2014; 228:56-66. [PMID: 24742700 DOI: 10.1016/j.toxlet.2014.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
Lithocholic acid (LCA) supplementation in the diet results in intrahepatic cholestasis and bile infarcts. Previously we showed that an innate immune response is critical for cholestatic liver injury in the bile duct ligated mice. Thus, the purpose of this study was to investigate the role of neutrophils in the mechanism of liver injury caused by feeding mice a diet containing LCA. C57BL/6 mice were given control or 1% LCA containing diet for 24-96 h and then examined for parameters of hepatotoxicity. Plasma ALT levels were significantly increased by 48 h after LCA feeding, which correlated with both neutrophil recruitment to the liver and upregulation of numerous pro-inflammatory genes. The injury was confirmed by histology. Deficiency in intercellular adhesion molecule-1 (ICAM-1) expression or inhibition of neutrophil function failed to protect against the injury. Bile acid levels were quantified in plasma and bile of LCA-fed mice after 48 and 96 h. Only the observed biliary levels of taurochenodeoxycholic acid and potentially tauro-LCA caused direct cytotoxicity in mouse hepatocytes. These data support the conclusion that neutrophil recruitment occurs after the onset of bile acid-induced necrosis in LCA-fed animals, and is not a primary mechanism of cell death when cholestasis occurs through accumulation of hydrophobic bile acids.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, Kansas University Medical Center, USA
| | - Feng Li
- Department of Pharmacology, Toxicology & Therapeutics, Kansas University Medical Center, USA
| | - Yuchao Xie
- Department of Pharmacology, Toxicology & Therapeutics, Kansas University Medical Center, USA
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, TX 78756, USA
| | - Peter Fickert
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine, Graz, Austria; Department of Pathology, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, Kansas University Medical Center, USA.
| |
Collapse
|
73
|
Yang M, Ramachandran A, Yan HM, Woolbright BL, Copple BL, Fickert P, Trauner M, Jaeschke H. Osteopontin is an initial mediator of inflammation and liver injury during obstructive cholestasis after bile duct ligation in mice. Toxicol Lett 2013; 224:186-95. [PMID: 24188933 DOI: 10.1016/j.toxlet.2013.10.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 12/13/2022]
Abstract
Osteopontin (OPN) is a chemotactic factor which can be cleaved to the pro-inflammatory form by matrix metalloproteinases (MMPs). To test the hypothesis that OPN can modulate inflammatory liver injury during cholestasis, wild-type (WT) C57BL/6 and OPN knockout (OPN-KO) mice underwent bile duct ligation (BDL). OPN-KO mice showed significant reduction in liver injury (plasma ALT and necrosis) and neutrophil recruitment compared with WT animals at 24h but not 72h after BDL. In WT mice, a 4-fold increase in hepatic MMP-3 mRNA and elevated MMP activities and cleaved OPN levels were observed in bile. WT mice subjected to BDL in the presence of the MMP inhibitor BB-94 showed reduced liver injury, less neutrophil extravasation and diminished levels of cleaved OPN in bile. Thus, during obstructive cholestasis, OPN released from biliary epithelial cells could be cleaved by MMPs in bile. When the biliary system leaks, cleaved OPN enters the parenchyma and attracts neutrophils. In the absence of OPN, other chemoattractants, e.g. chemokines, mediate a delayed inflammatory response and injury. Taken together, our data suggest that OPN is the pro-inflammatory mediator that initiates the early neutrophil-mediated injury phase during obstructive cholestasis in mice.
Collapse
Affiliation(s)
- Min Yang
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | | | | | | | |
Collapse
|