51
|
Teer E, Dominick L, Mukonowenzou NC, Essop MF. HIV-Related Myocardial Fibrosis: Inflammatory Hypothesis and Crucial Role of Immune Cells Dysregulation. Cells 2022; 11:cells11182825. [PMID: 36139400 PMCID: PMC9496784 DOI: 10.3390/cells11182825] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Although the underlying mechanisms driving human immunodeficiency virus (HIV)-mediated cardiovascular diseases (CVD) onset and progression remain unclear, the role of chronic immune activation as a significant mediator is increasingly being highlighted. Chronic inflammation is a characteristic feature of CVD and considered a contributor to diastolic dysfunction, heart failure, and sudden cardiac death. This can trigger downstream effects that result in the increased release of pro-coagulant, pro-fibrotic, and pro-inflammatory cytokines. Subsequently, this can lead to an enhanced thrombotic state (by platelet activation), endothelial dysfunction, and myocardial fibrosis. Of note, recent studies have revealed that myocardial fibrosis is emerging as a mediator of HIV-related CVD. Together, such factors can eventually result in systolic and diastolic dysfunction, and an increased risk for CVD. In light of this, the current review article will focus on (a) the contributions of a chronic inflammatory state and persistent immune activation, and (b) the role of immune cells (mainly platelets) and cardiac fibrosis in terms of HIV-related CVD onset/progression. It is our opinion that such a focus may lead to the development of promising therapeutic targets for the treatment and management of CVD in HIV-positive patients.
Collapse
Affiliation(s)
- Eman Teer
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Leanne Dominick
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Nyasha C. Mukonowenzou
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- Correspondence: ; Tel.: +27-21-938-9388
| |
Collapse
|
52
|
Guillamat-Prats R. Role of Mesenchymal Stem/Stromal Cells in Coagulation. Int J Mol Sci 2022; 23:ijms231810393. [PMID: 36142297 PMCID: PMC9499599 DOI: 10.3390/ijms231810393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are widely used in disease models in order to control several phases in the response to injuries, immune reaction, wound healing, and regeneration. MSCs can act upon both the innate and adaptive immune systems and target a broad number of functions, such as the secretion of cytokines, proteolytic enzymes, angiogenic factors, and the regulating of cell proliferation and survival. The role of MSCs in coagulation has been less studied. This review evaluates the properties and main functions of MSCs in coagulation. MSCs can regulate coagulation in a wide range of pathways. MSCs express and release tissue factors (TF), one of the key regulators of the extrinsic coagulation pathways; MSCs can trigger platelet production and contribute to platelet activation. Altogether, MSCs seem to have a pro-thrombotic role and their superior characterization prior to their administration is necessary in order to prevent adverse coagulation events.
Collapse
Affiliation(s)
- Raquel Guillamat-Prats
- Lung Immunity Translational Research Group in Respiratory Diseases, Germans Trias i Pujol Research Institute (IGTP), 08914 Badalona, Spain
| |
Collapse
|
53
|
Kuszmiersz P, Siwiec-Koźlik A, Pacholczak-Madej R, Rams A, Celińska-Lowenhoff M, Iwaniec T, Kosałka-Węgiel J, Zaręba L, Dziedzic R, Bazan-Socha S, Dropiński J. Thrombin generation potential is increased in patients with autoimmune inflammatory myopathies. Adv Med Sci 2022; 67:346-352. [PMID: 36084366 DOI: 10.1016/j.advms.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE Dermatomyositis and polymyositis (DM/PM) are rare autoimmune inflammatory myopathies, characterized by an increased risk of cardiovascular and thromboembolic events, likely related to the prothrombotic plasma properties. The aim of this study was to assess the in vitro thrombin generation profile as a biomarker of plasma procoagulant properties in DM/PM patients. METHODS In 58 clinically stable DM/PM patients and 67 controls matched for sex, age, body mass index, we measured plasma thrombin generation potential using the Calibrated Automated Thrombinography (CAT) and analyzed its relationship with clinical disease characteristics, including autoantibodies profile. RESULTS Patients with DM/PM had a 21% increase in endogenous thrombin potential (ETP), 36% higher peak thrombin concentration, and 11% faster thrombin generation, compared to controls (p < 0.001, all, also after adjustment for potential confounders). Interestingly, although both diseases did not differ in thrombin generation potential, heterogenous variables predicted elevated ETPs in both of them. In DM, that was higher fibrinogen, C-reactive protein, and total cholesterol, whereas in PM, presence of arthritis and increased blood platelet count. Surprisingly, thrombin formation capacity remained in a robust inverse relationship with serum troponin (r = -0.67, p < 0.001) in the patient group. CONCLUSIONS DM/PM patients are characterized by an increased thrombin generation potential, suggesting prothrombotic plasma properties in both diseases. However, more studies are needed to verify its rationale and role in DM/PM clinical course and unfavorable clinical outcomes.
Collapse
Affiliation(s)
- Piotr Kuszmiersz
- Jagiellonian University Medical College, Department of Rheumatology and Immunology, Cracow, Poland
| | - Andżelika Siwiec-Koźlik
- Jagiellonian University Medical College, Department of Rheumatology and Immunology, Cracow, Poland
| | - Renata Pacholczak-Madej
- Jagiellonian University Medical College, Department of Anatomy, Cracow, Poland; National Cancer Institute, Maria Skłodowska-Curie Memorial Institute, Kraków Branch, Poland
| | - Anna Rams
- Jagiellonian University Medical College, Department of Internal Medicine, Cracow, Poland
| | | | - Teresa Iwaniec
- Jagiellonian University Medical College, Department of Haematology, Cracow, Poland
| | - Joanna Kosałka-Węgiel
- Jagiellonian University Medical College, Department of Rheumatology and Immunology, Cracow, Poland
| | - Lech Zaręba
- University of Rzeszow, Interdisciplinary Centre for Computational Modeling, Rzeszow, Poland
| | - Radosław Dziedzic
- Jagiellonian University Medical College, Students' Scientific Group of Immune Diseases and Hypercoagulation, Cracow, Poland
| | - Stanisława Bazan-Socha
- Jagiellonian University Medical College, Department of Internal Medicine, Cracow, Poland
| | - Jerzy Dropiński
- Jagiellonian University Medical College, Department of Internal Medicine, Cracow, Poland.
| |
Collapse
|
54
|
Prostate Cancer Secretome and Membrane Proteome from Pten Conditional Knockout Mice Identify Potential Biomarkers for Disease Progression. Int J Mol Sci 2022; 23:ijms23169224. [PMID: 36012492 PMCID: PMC9409251 DOI: 10.3390/ijms23169224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cause of mortality among men. Tumor secretome is a promising strategy for understanding the biology of tumor cells and providing markers for disease progression and patient outcomes. Here, transcriptomic-based secretome analysis was performed on the PCa tumor transcriptome of Genetically Engineered Mouse Model (GEMM) Pb-Cre4/Ptenf/f mice to identify potentially secreted and membrane proteins—PSPs and PMPs. We combined a selection of transcripts from the GSE 94574 dataset and a list of protein-coding genes of the secretome and membrane proteome datasets using the Human Protein Atlas Secretome. Notably, nine deregulated PMPs and PSPs were identified in PCa (DMPK, PLN, KCNQ5, KCNQ4, MYOC, WIF1, BMP7, F3, and MUC1). We verified the gene expression patterns of Differentially Expressed Genes (DEGs) in normal and tumoral human samples using the GEPIA tool. DMPK, KCNQ4, and WIF1 targets were downregulated in PCa samples and in the GSE dataset. A significant association between shorter survival and KCNQ4, PLN, WIF1, and F3 expression was detected in the MSKCC dataset. We further identified six validated miRNAs (mmu-miR-6962-3p, mmu-miR- 6989-3p, mmu-miR-6998-3p, mmu-miR-5627-5p, mmu-miR-15a-3p, and mmu-miR-6922-3p) interactions that target MYOC, KCNQ5, MUC1, and F3. We have characterized the PCa secretome and membrane proteome and have spotted new dysregulated target candidates in PCa.
Collapse
|
55
|
Hong L, Chen G, Cai Z, Liu H, Zhang C, Wang F, Xiao Z, Zhong J, Wang L, Wang Z, Cui W. Balancing Microthrombosis and Inflammation via Injectable Protein Hydrogel for Inflammatory Bowel Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200281. [PMID: 35524641 PMCID: PMC9284187 DOI: 10.1002/advs.202200281] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/01/2022] [Indexed: 05/17/2023]
Abstract
Emerging evidence indicates that a vicious cycle between inflammation and microthrombosis catalyzes the pathogenesis of inflammatory bowel disease (IBD). Over-stimulated inflammation triggers a coagulation cascade and leads to microthrombosis, which further complicates the injury through tissue hypoxia and ischemia. Herein, an injectable protein hydrogel with anti-thrombosis and anti-inflammation competency is developed to impede this cycle, cross-linked by silver ion mediated metal-ligand coordination and electronic interaction with sulfhydryl functionalized bovine serum albumin and heparin, respectively. The ex vivo experiments show that the hydrogel, HEP-Ag-BSA, exhibits excellent self-healing ability, injectability, biocompatibility, and sustained drug release. HEP-Ag-BSA also demonstrates anti-coagulation and anti-inflammation abilities via coagulation analysis and lipopolysaccharide stimulation assay. The in vivo imaging confirms the longer retention time of HEP-Ag-BSA at inflammatory sites than in normal mucosa owing to electrostatic interactions. The in vivo study applying a mouse model with colitis also reveals that HEP-Ag-BSA can robustly inhibit inflammatory microthrombosis with reduced bleeding risk. This versatile protein hydrogel platform can definitively hinder the "inflammation and microthrombosis" cycle, providing a novel integrated approach against IBD.
Collapse
Affiliation(s)
- Liwen Hong
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Gaoxian Chen
- Department of Pharmacology and Chemical BiologyInstitute of Molecular MedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Hua Liu
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Chen Zhang
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Fei Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical BiologyInstitute of Molecular MedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Jie Zhong
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lei Wang
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Department of GeriatricsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhengting Wang
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
56
|
Li C, Wang B. Mesenchymal Stem/Stromal Cells in Progressive Fibrogenic Involvement and Anti-Fibrosis Therapeutic Properties. Front Cell Dev Biol 2022; 10:902677. [PMID: 35721482 PMCID: PMC9198494 DOI: 10.3389/fcell.2022.902677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Fibrosis refers to the connective tissue deposition and stiffness usually as a result of injury. Fibrosis tissue-resident mesenchymal cells, including fibroblasts, myofibroblast, smooth muscle cells, and mesenchymal stem/stromal cells (MSCs), are major players in fibrogenic processes under certain contexts. Acknowledging differentiation potential of MSCs to the aforementioned other types of mesenchymal cell lineages is essential for better understanding of MSCs’ substantial contributions to progressive fibrogenesis. MSCs may represent a potential therapeutic option for fibrosis resolution owing to their unique pleiotropic functions and therapeutic properties. Currently, clinical trial efforts using MSCs and MSC-based products are underway but clinical data collected by the early phase trials are insufficient to offer better support for the MSC-based anti-fibrotic therapies. Given that MSCs are involved in the coagulation through releasing tissue factor, MSCs can retain procoagulant activity to be associated with fibrogenic disease development. Therefore, MSCs’ functional benefits in translational applications need to be carefully balanced with their potential risks.
Collapse
Affiliation(s)
- Chenghai Li
- Stem Cell Program of Clinical Research Center, People’s Hospital of Zhengzhou University and Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan University, Zhengzhou, China
- *Correspondence: Chenghai Li, ; Bin Wang,
| | - Bin Wang
- Department of Neurosurgery, People’s Hospital of Zhengzhou University and Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Chenghai Li, ; Bin Wang,
| |
Collapse
|
57
|
Shi J, Tang Y, Liang F, Liu L, Liang N, Yang X, Zhang N, Yi Z, Zhong Y, Wang W, Zhao K. NLRP3 inflammasome contributes to endotoxin-induced coagulation. Thromb Res 2022; 214:8-15. [PMID: 35421682 DOI: 10.1016/j.thromres.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Excessive activation of the coagulation cascades leads to life-threatening disseminated intravascular coagulation (DIC) in sepsis. Two recent studies by our group and others have both demonstrated the noncanonical inflammasome is pivotal for the endotoxin or gram-negative bacterial-induced coagulation. Based on this, we further evaluated the function of the NLRP3 inflammasome, the most studied inflammasome, in endotoxin-induced coagulation. MATERIALS AND METHODS We established an endotoxin-induced coagulation model by intraperitoneal injection of sublethal doses of LPS in mice. Mice were sacrificed 8 h after injection and blood was collected for thrombin-antithrombin (TAT), plasminogen activator inhibitor-1 (PAI-1), prothrombin time (PT), D-dimer, IL-1β and tissue factor (TF) measurements by commercial ELISA. Lungs and livers were examined via HE staining images to determine injury scores and immunohistochemistry for TF expression and fibrin deposits. The role of NLRP3 activation was evaluated in wild-type (WT), Nlrp3-/-, Asc-/- (apoptosis-associated speck-like protein containing a CARD), Caspase-11-/- mice and 30 min after treatment with MCC950, a potent inhibitor of NLRP3. Western blotting and Q-PCR were performed to assess TF expression in the lungs and livers. To uncover the different effects of NLRP3 and Caspase-11, we also compared the time-dependent IL-1β release in LPS-treated Nlrp3-/- and Caspase-11-/- mice. Correlation analysis of TAT, PAI-1 were estimated the relationship of coagulation and release of IL-1β, as well as IL-1β and TF. RESULTS Inhibition of NLRP3 by MCC950 as well as NLRP3 or ASC deficiency decreased TAT, PAI-1, PT, D-dimer, and TF levels in blood and impaired the thrombus formation and fibrin deposition, as well as declined expression of TF in the liver and lung in endotoxin-induced coagulation but not caspase-11 deficiency. Impressively, IL-1β release is increased in LPS-treated Caspase-11-/- mice, but not in Nlrp3-/- mice. Moreover, the correlation analysis is indicated that downstream of the NLRP3 inflammasome, IL-1β expression, is positively correlated with TAT, PAI-1 and TF in blood circulation. CONCLUSIONS The NLRP3 inflammasome contributes to endotoxin-induced coagulation by promoting TF expression at least in part through the induction of IL-1β release. These findings broadened our understanding of the mechanism of coagulation and implicated a possible therapeutic strategy for preventing coagulation in sepsis.
Collapse
Affiliation(s)
- Jie Shi
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yiting Tang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Liang
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liping Liu
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ni Liang
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyu Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ningjie Zhang
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhonjie Yi
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenhua Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Zhao
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
58
|
The Levels of TNF-α, Tissue Factor, and Coagulation Function in Rats with Pulmonary Hypertension and the Intervention Effect of Sildenafil Encapsulated by Targeted Nanocarriers. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8619092. [PMID: 35602350 PMCID: PMC9122730 DOI: 10.1155/2022/8619092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
Pulmonary hypertension (PAH) is a proliferative disease of pulmonary blood vessels, but the pathogenesis of pulmonary hypertension is still unclear. This article explores the role of tumor necrosis factor-α (TNF-α), tissue factor (TF), and coagulation function (CF) in the pathogenesis of PAH. PAH is often accompanied by vascular intima injury and muscular arterial media thickening. Coupled with the wide application of nanotargeted drugs in recent years, a targeted nanocarrier encapsulating sildenafil was prepared in this study. The particle size, PDI, zeta potential, drug loading, and encapsulation efficiency were
,
,
, 24.61%, and 70.52%. The monocrotaline PAH rat model was constructed, and it was found that the levels of TNF-α, TF, and CF in the peripheral blood of PAH rats were abnormally increased. 30 PAH rats were randomly divided into 5 groups and injected with saline (NS group), sildenafil (sildenafil group), target the nanoempty carrier (TNC-E group), ordinary nanocarrier encapsulated sildenafil (CNC-sildenafil group), and targeted nanocarrier encapsulate sildenafil (TNC-sildenafil group). Compared with the NS group, the mean pulmonary artery pressure in the TNC-sildenafil group was lower (
). Compared with the normal rat group, the pulmonary small blood vessel media thickness, TNF-α level, TF level, and the area of myocardial cells were increased in the NS group, sildenafil group, TNC-E group, and CNC-sildenafil group (
). Compared with the NS group, the pulmonary small blood vessel media thickness, myocardial cell area, and the levels of TNF-α and TF in the TNC-sildenafil group were reduced (
). Targeting nanocarrier encapsulation of sildenafil can obviously reduce the average pulmonary artery pressure in rats with pulmonary hypertension, improve pulmonary vascular media proliferation and myocardial hypertrophy, and restore the levels of TNF-α, TF, and CF to a normal state.
Collapse
|
59
|
Tamura R, Yoshihara K, Enomoto T. Therapeutic Strategies Focused on Cancer-Associated Hypercoagulation for Ovarian Clear Cell Carcinoma. Cancers (Basel) 2022; 14:2125. [PMID: 35565252 PMCID: PMC9099459 DOI: 10.3390/cancers14092125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is associated with chemotherapy resistance and poor prognosis, especially in advanced cases. Although comprehensive genomic analyses have clarified the significance of genomic alterations such as ARID1A and PIK3CA mutations in OCCC, therapeutic strategies based on genomic alterations have not been confirmed. On the other hand, OCCC is clinically characterized by a high incidence of thromboembolism. Moreover, OCCC specifically shows high expression of tissue factor and interleukin-6, which play a critical role in cancer-associated hypercoagulation and may be induced by OCCC-specific genetic alterations or the endometriosis-related tumor microenvironment. In this review, we focused on the association between cancer-associated hypercoagulation and molecular biology in OCCC. Moreover, we reviewed the effectiveness of candidate drugs targeting hypercoagulation, such as tissue factor- or interleukin-6-targeting drugs, anti-inflammatory drugs, anti-hypoxia signaling drugs, anticoagulants, and combined immunotherapy with these drugs for OCCC. This review is expected to contribute to novel basic research and clinical trials for the prevention, early detection, and treatment of OCCC focused on hypercoagulation.
Collapse
Affiliation(s)
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (R.T.); (T.E.)
| | | |
Collapse
|
60
|
Chen H, Shu H, Su W, Li B, Zhang H, Li L, Lin C, Yi W, Zhan XY, Chen C, Li X, Yang Y, Zhou M, Yang M. Tanshinone IIA Has a Potential Therapeutic Effect on Kawasaki Disease and Suppresses Megakaryocytes in Rabbits With Immune Vasculitis. Front Cardiovasc Med 2022; 9:873851. [PMID: 35498027 PMCID: PMC9043496 DOI: 10.3389/fcvm.2022.873851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background and Objective It is urgent to find out an alternative therapy for Kawasaki disease (KD) since around 20% patients are resistant to intravenous immunoglobulin (IVIG) or aspirin. Tanshinone IIA is the active component of the traditional Chinese medicine Danshen (Salvia miltiorrhiza), which has anti-inflammatory and anti-platelet properties; however, whether or not tanshinone IIA has a therapeutic effect on KD remains unclear. Therefore, the present study aimed to examine the effect of tanshinone IIA on KD patients and rabbits with immune vasculitis, and to identify the potential mechanisms with special emphasis on megakaryopoiesis and megakaryocytic apoptosis. Methods Kawasaki disease patients were recruited and prescribed with tanshinone IIA in the absence or presence of aspirin and IVIG, and the inflammatory responses and platelet functions were determined. Megakaryocytes (MKs) isolated from rabbits with immune vasculitis and human megakaryocytic CHRF-288-11 cells were treated with tanshinone IIA to examine the colony forming unit (CFU) and apoptosis, respectively. Microarray assay was conducted to identify potential targets of tanshinone IIA-induced apoptosis. Results Tanshinone IIA reduced the serum levels of C-reactive protein (CRP), interleukin (IL)-1β, IL-6, and P-selectin in KD patients; such inhibitory effect was more significant compared to aspirin and IVIG. It also dose-dependently lowered the levels of tumor necrosis factor (TNF)-α and IL-8 in peripheral blood mononuclear cells isolated from KD patients. In rabbits with immune vasculitis, tanshinone IIA significantly reduced the serum levels of proinflammatory cytokines and platelet functions. In addition, tanshinone IIA significantly decreased the number of bone marrow MKs and inhibited the Colony Forming Unit-Megakaryocyte (CFU-MK) formation. In human megakaryocytic CHRF-288-11 cells, tanshinone IIA induced caspase-dependent apoptosis, probably through up-regulating TNF receptor superfamily member 9 (TNFRSF9) and the receptor (TNFRSF)-interacting serine/threonine-protein kinase 1 (RIPK1), which may contribute to its anti-platelet and anti-inflammatory properties. Conclusion Tanshinone IIA exerts better anti-inflammatory and anti-platelet effects in treating KD patients than aspirin and IVIG. It attenuates immune vasculitis likely by inhibiting IL-mediated megakaryopoiesis and inducing TNFRSF9/RIPK1/caspase-dependent megakaryocytic apoptosis. The findings therefore suggest that tanshinone IIA may be a promising alternative therapy for the treatment of KD.
Collapse
Affiliation(s)
- Hui Chen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huiying Shu
- Department of Hematology and Oncology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weiqing Su
- Lianjiang People’s Hospital, Zhanjiang, China
| | - Bo Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, China
| | - Hua Zhang
- Capital Institute of Pediatrics, Beijing, China
| | - Liang Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chao Lin
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenfang Yi
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiao-Yong Zhan
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chun Chen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaojing Li
- Department of Hematology and Oncology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanqi Yang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Zhou
- Department of Hematology and Oncology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Min Zhou,
| | - Mo Yang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Lianjiang People’s Hospital, Zhanjiang, China
- *Correspondence: Mo Yang,
| |
Collapse
|
61
|
Wang Z, Mao HJ, Qiu XS, Chen YX, Xu GY. Diagnostic value of platelet indices in infected nonunion: a retrospective study. J Orthop Surg Res 2022; 17:200. [PMID: 35379285 PMCID: PMC8981626 DOI: 10.1186/s13018-022-03096-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The diagnostic value of platelet indices has been evaluated in various infectious diseases but not in infected nonunion. The purpose of this study was to assess the usefulness of platelet indices for diagnosis of infected nonunion after open reduction and internal fixation. METHODS This retrospective study was performed in patients who underwent primary fracture nonunion revision surgeries from January 2016 to December 2021. A total of 297 patients were included in the study: 96 with infected nonunion (group A) and 201 with aseptic nonunion (group B). Receiver operator characteristic (ROC) curve analysis was performed to evaluate diagnostic value of each index. Area under the curve (AUC), sensitivity, specificity, and positive and negative predictive values were calculated and compared. RESULTS Demographic characteristics were comparable between the two groups. White blood cell (WBC) count, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), plasma fibrinogen, plasma D-dimer, platelet count (PC), plateletcrit, and ratio of platelet count to mean platelet volume (PC/MPV) were significantly higher, and MPV and platelet distribution width (PDW) significantly lower, in group A than in group B (P < 0.05). ROC analysis showed PC/MPV and plasma fibrinogen to have better diagnostic value than the other coagulation indicators (AUC of 0.801 and 0.807, respectively). The combination of ESR, plasma fibrinogen, and PC/MPV had good sensitivity and specificity for diagnosis of infected nonunion. PC/MPV had better diagnostic value than ESR and plasma fibrinogen in the subgroup of patients with coagulation-related comorbidities. CONCLUSIONS Plasma fibrinogen and PC/MPV ratio might be useful parameters for early diagnosis of infected nonunion.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hai-Jun Mao
- Department of Orthopedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xu-Sheng Qiu
- Department of Orthopedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yi-Xin Chen
- Department of Orthopedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Guang-Yue Xu
- Department of Orthopedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
62
|
Fang Y, Huang L, Wang X, Si X, Lenahan C, Shi H, Shao A, Tang J, Chen S, Zhang J, Zhang JH. A new perspective on cerebrospinal fluid dynamics after subarachnoid hemorrhage: From normal physiology to pathophysiological changes. J Cereb Blood Flow Metab 2022; 42:543-558. [PMID: 34806932 PMCID: PMC9051143 DOI: 10.1177/0271678x211045748] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
Knowledge about the dynamic metabolism and function of cerebrospinal fluid (CSF) physiology has rapidly progressed in recent decades. It has traditionally been suggested that CSF is produced by the choroid plexus and drains to the arachnoid villi. However, recent findings have revealed that the brain parenchyma produces a large portion of CSF and drains through the perivascular glymphatic system and meningeal lymphatic vessels into the blood. The primary function of CSF is not limited to maintaining physiological CNS homeostasis but also participates in clearing waste products resulting from neurodegenerative diseases and acute brain injury. Aneurysmal subarachnoid hemorrhage (SAH), a disastrous subtype of acute brain injury, is associated with high mortality and morbidity. Post-SAH complications contribute to the poor outcomes associated with SAH. Recently, abnormal CSF flow was suggested to play an essential role in the post-SAH pathophysiological changes, such as increased intracerebral pressure, brain edema formation, hydrocephalus, and delayed blood clearance. An in-depth understanding of CSF dynamics in post-SAH events would shed light on potential development of SAH treatment options. This review summarizes and updates the latest physiological characteristics of CSF dynamics and discusses potential pathophysiological changes and therapeutic targets after SAH.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoli Si
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Hui Shi
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
63
|
Immunothrombosis and the molecular control of tissue factor by pyroptosis: prospects for new anticoagulants. Biochem J 2022; 479:731-750. [PMID: 35344028 DOI: 10.1042/bcj20210522] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
The interplay between innate immunity and coagulation after infection or injury, termed immunothrombosis, is the primary cause of disseminated intravascular coagulation (DIC), a condition that occurs in sepsis. Thrombosis associated with DIC is the leading cause of death worldwide. Interest in immunothrombosis has grown because of COVID-19, the respiratory disease caused by SARS-CoV-2, which has been termed a syndrome of dysregulated immunothrombosis. As the relatively new field of immunothrombosis expands at a rapid pace, the focus of academic and pharmacological research has shifted from generating treatments targeted at the traditional 'waterfall' model of coagulation to therapies better directed towards immune components that drive coagulopathies. Immunothrombosis can be initiated in macrophages by cleavage of the non-canonical inflammasome which contains caspase-11. This leads to release of tissue factor (TF), a membrane glycoprotein receptor that forms a high-affinity complex with coagulation factor VII/VIIa to proteolytically activate factors IX to IXa and X to Xa, generating thrombin and leading to fibrin formation and platelet activation. The mechanism involves the post-translational activation of TF, termed decryption, and release of decrypted TF via caspase-11-mediated pyroptosis. During aberrant immunothrombosis, decryption of TF leads to thromboinflammation, sepsis, and DIC. Therefore, developing therapies to target pyroptosis have emerged as an attractive concept to counteract dysregulated immunothrombosis. In this review, we detail the three mechanisms of TF control: concurrent induction of TF, caspase-11, and NLRP3 (signal 1); TF decryption, which increases its procoagulant activity (signal 2); and accelerated release of TF into the intravascular space via pyroptosis (signal 3). In this way, decryption of TF is analogous to the two signals of NLRP3 inflammasome activation, whereby induction of pro-IL-1β and NLRP3 (signal 1) is followed by activation of NLRP3 (signal 2). We describe in detail TF decryption, which involves pathogen-induced alterations in the composition of the plasma membrane and modification of key cysteines on TF, particularly at the location of the critical, allosterically regulated disulfide bond of TF in its 219-residue extracellular domain. In addition, we speculate towards the importance of identifying new therapeutics to block immunothrombotic triggering of TF, which can involve inhibition of pyroptosis to limit TF release, or the direct targeting of TF decryption using cysteine-modifying therapeutics.
Collapse
|
64
|
Pleiotropic Effects of PCSK9: Focus on Thrombosis and Haemostasis. Metabolites 2022; 12:metabo12030226. [PMID: 35323669 PMCID: PMC8950753 DOI: 10.3390/metabo12030226] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
The proprotein convertase subtilisin/keying 9 (PCSK9) is a serine protease that has gained importance in recent years as a drug target, mainly due to its effect on cholesterol metabolism in promoting the degradation of the low-density lipoprotein receptor (LDLR). However, this protease may also play an important role in lipid-independent reactions, including the process of thrombogenesis. Considering this, we reviewed the effects and implications of PCSK9 on platelet function and blood coagulation. PCSK9 knockout mice exhibited reduced platelet activity and developed less agonist-induced arterial thrombi compared to the respective control animals. This is in line with known research that elevated blood levels of PCSK9 are associated with an increased platelet reactivity and total number of circulating platelets in humans. Moreover, PCSK9 also has an effect on crucial factors of the coagulation cascade, such as increasing factor VIII plasma levels, since the degradation of this blood clotting factor is promoted by the LDLR. The aforementioned pleiotropic effects of the PCSK9 are important to take into account when evaluating the clinical benefit of PCSK9 inhibitors.
Collapse
|
65
|
Hoek M, Schultz M, Alummoottil S, Aneck-Hahn N, Mathabe K, Bester J. Ex vivo Vitamin D supplementation improves viscoelastic profiles in prostate cancer patients. Clin Hemorheol Microcirc 2022; 81:221-232. [DOI: 10.3233/ch-211353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Increased risk of thromboembolic events is associated with prostate cancer, specifically linked to activation of tissue factor. Vitamin D has potential anticoagulant effects by the downregulation of tissue factor expression. OBJECTIVES: To evaluate the effects on clot formation, the morphological and viscoelastic profiles of prostate cancer patients, before and after ex vivo supplementation of Vitamin D was studied. METHODS: Participants were recruited into a metastatic, non-metastatic and reference group. Whole blood samples were treated ex vivo with a dose of 0.5μg/kg Calcitriol. Clot kinetics were assessed using Thromboelastography ®. Morphology of the blood components were studied using scanning electron microscopy (SEM). RESULTS: Results from the Thromboelastography ® and SEM indicated no major differences between the non-metastatic group before and after treatment compared to the reference group. The Thromboelastography ® showed that the metastatic group had an increased viscoelastic profile relating to a hypercoagulable state. Visible changes with regards to platelet activation and fibrin morphology were demonstrated with SEM analysis of the metastatic group. The viscoelastic and morphological properties for the non-metastatic group after treatment improved to be comparable to the reference group. CONCLUSION: Vitamin D supplementation may lead to a more favorable viscoelastic profile, with less dangerous clots forming.
Collapse
Affiliation(s)
- Marinka Hoek
- Department of Urology, University of Pretoria, Pretoria, South Africa
| | - Michelle Schultz
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Sajee Alummoottil
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Natalie Aneck-Hahn
- Department of Urology, University of Pretoria, Pretoria, South Africa
- Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Kgomotso Mathabe
- Department of Urology, University of Pretoria, Pretoria, South Africa
| | - Janette Bester
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
66
|
Post-stroke Impairment of the Blood–Brain Barrier and Perifocal Vasogenic Edema Is Alleviated by Endovascular Mesenchymal Stem Cell Administration: Modulation of the PKCδ/MMP9/AQP4-Mediated Pathway. Mol Neurobiol 2022; 59:2758-2775. [DOI: 10.1007/s12035-022-02761-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022]
|
67
|
Swan D, Thachil J. Management of haemostatic complications of chimaeric antigen receptor T-cell therapy. Br J Haematol 2022; 197:250-259. [PMID: 35146749 DOI: 10.1111/bjh.18045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Dawn Swan
- Department of Haematology, St James' Hospital, Dublin, Republic of Ireland
| | - Jecko Thachil
- Department of Haematology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
68
|
Dechamps M, De Poortere J, Martin M, Gatto L, Daumerie A, Bouzin C, Octave M, Ginion A, Robaux V, Pirotton L, Bodart J, Gerard L, Montiel V, Campion A, Gruson D, Van Dievoet MA, Douxfils J, Haguet H, Morimont L, Derive M, Jolly L, Bertrand L, Dumoutier L, Castanares-Zapatero D, Laterre PF, Horman S, Beauloye C. Inflammation-Induced Coagulopathy Substantially Differs Between COVID-19 and Septic Shock: A Prospective Observational Study. Front Med (Lausanne) 2022; 8:780750. [PMID: 35111777 PMCID: PMC8801505 DOI: 10.3389/fmed.2021.780750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Critical COVID-19, like septic shock, is related to a dysregulated systemic inflammatory reaction and is associated with a high incidence of thrombosis and microthrombosis. Improving the understanding of the underlying pathophysiology of critical COVID-19 could help in finding new therapeutic targets already explored in the treatment of septic shock. The current study prospectively compared 48 patients with septic shock and 22 patients with critical COVID-19 regarding their clinical characteristics and outcomes, as well as key plasmatic soluble biomarkers of inflammation, coagulation, endothelial activation, platelet activation, and NETosis. Forty-eight patients with matched age, gender, and co-morbidities were used as controls. Critical COVID-19 patients exhibited less organ failure but a prolonged ICU length-of-stay due to a prolonged respiratory failure. Inflammatory reaction of critical COVID-19 was distinguished by very high levels of interleukin (IL)-1β and T lymphocyte activation (including IL-7 and CD40L), whereas septic shock displays higher levels of IL-6, IL-8, and a more significant elevation of myeloid response biomarkers, including Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) and IL-1ra. Subsequent inflammation-induced coagulopathy of COVID-19 also differed from sepsis-induced coagulopathy (SIC) and was characterized by a marked increase in soluble tissue factor (TF) but less platelets, antithrombin, and fibrinogen consumption, and less fibrinolysis alteration. In conclusion, COVID-19 inflammation-induced coagulopathy substantially differs from SIC. Modulating TF release and activity should be evaluated in critical COVID-19 patients.
Collapse
Affiliation(s)
- Mélanie Dechamps
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Julien De Poortere
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Manon Martin
- Computational Biology and Bioinformatics Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Aurélie Daumerie
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Marie Octave
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Audrey Ginion
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Valentine Robaux
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Laurence Pirotton
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Bodart
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ludovic Gerard
- Department of Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Pôle de Pneumologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Virginie Montiel
- Department of Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Alessandro Campion
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Damien Gruson
- Department of Clinical Biology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Jonathan Douxfils
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur, Belgium
- Qualiblood, s.a., Namur, Belgium
| | - Hélène Haguet
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur, Belgium
- Qualiblood, s.a., Namur, Belgium
| | - Laure Morimont
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur, Belgium
- Qualiblood, s.a., Namur, Belgium
| | | | | | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Laure Dumoutier
- Experimental Medicine Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Diego Castanares-Zapatero
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- *Correspondence: Christophe Beauloye
| |
Collapse
|
69
|
Moll G, Ankrum JA, Olson SD, Nolta JA. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:2-13. [PMID: 35641163 PMCID: PMC8895495 DOI: 10.1093/stcltm/szab005] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
The number of mesenchymal stromal/stem cell (MSC) therapeutics and types of clinical applications have greatly diversified during the past decade, including rapid growth of poorly regulated “Stem Cell Clinics” offering diverse “Unproven Stem Cell Interventions.” This product diversification necessitates a critical evaluation of the reliance on the 2006 MSC minimal criteria to not only define MSC identity but characterize MSC suitability for intravascular administration. While high-quality MSC therapeutics have been safely administered intravascularly in well-controlled clinical trials, repeated case reports of mild-to-more-severe adverse events have been reported. These are most commonly related to thromboembolic complications upon infusion of highly procoagulant tissue factor (TF/CD142)-expressing MSC products. As TF/CD142 expression varies widely depending on the source and manufacturing process of the MSC product, additional clinical cell product characterization and guidelines are needed to ensure the safe use of MSC products. To minimize risk to patients receiving MSC therapy, we here propose to supplement the minimal criteria used for characterization of MSCs, to include criteria that assess the suitability of MSC products for intravascular use. If cell products are intended for intravascular delivery, which is true for half of all clinical applications involving MSCs, the effects of MSC on coagulation and hemocompatibility should be assessed and expression of TF/CD142 should be included as a phenotypic safety marker. This adjunct criterion will ensure both the identity of the MSCs as well as the safety of the MSCs has been vetted prior to intravascular delivery of MSC products.
Collapse
Affiliation(s)
- Guido Moll
- BIH Center for Regenerative Therapies (BCRT) and Berlin Brandenburg School of Regenerative Therapies (BSRT), Berlin Institute of Health (BIH) at the Charité—Universitätsmedizin Berlin, corporate member of Freie Universität zu Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Corresponding author: Guido Moll, PhD, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering and Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Jan A Nolta
- Director of the Stem Cell Program, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
70
|
Groarke EM, Dulau-Florea AE, Kanthi Y. Thrombotic manifestations of VEXAS syndrome. Semin Hematol 2021; 58:230-238. [PMID: 34802545 DOI: 10.1053/j.seminhematol.2021.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/11/2022]
Abstract
VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is a recently described autoinflammatory syndrome characterized by diffuse inflammatory manifestations, predisposition to hematological malignancy, and an association with a high rate of thrombosis. VEXAS is attributed to somatic mutations in the UBA1 gene in hematopoietic stem and progenitor cells with myeloid restriction in mature forms. The rate of thrombosis in VEXAS patients is approximately 40% in all reported cases to date. Venous thromboembolism predominates thrombotic events in VEXAS. These are classified as unprovoked in etiology, although systemic and vascular inflammation are implicated. Here, we review the clinical and laboratory characteristics in VEXAS that provide insight into the possible mechanisms leading to thrombosis. We present knowledge gaps in the mechanisms and management of VEXAS-associated thromboinflammation and propose areas for future investigation in the field.
Collapse
Affiliation(s)
- Emma M Groarke
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Alina E Dulau-Florea
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
71
|
PCSK9 Induces Tissue Factor Expression by Activation of TLR4/NFkB Signaling. Int J Mol Sci 2021; 22:ijms222312640. [PMID: 34884442 PMCID: PMC8657476 DOI: 10.3390/ijms222312640] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/30/2022] Open
Abstract
Proprotein convertase subtilisin kexin 9 (PCSK9) increases LDL cholesterol (C) concentration by accelerating the hepatic degradation of the LDL receptor (R) thus promoting atherogenesis. The molecule, however, also exerts proinflammatory effects independent of circulating LDL-C by enhancing local cytokine production and activation of NFkB, a process that might involve Toll-like receptor 4 (TLR4), a crucial component of the innate immunity system. Tissue factor (TF), a glycoprotein which plays an essential role in coagulation and inflammation, is rapidly induced by circulating monocytes stimulated by proinflammatory agents through NFkB-dependent mechanisms. The aims of our study were (1) to assess whether PCSK9 may induce monocytic TF expression and (2) to evaluate whether the TLR4/NFkB signaling pathway may contribute to that effect. Experiments were carried out in peripheral blood mononuclear cells (PBMCs), THP-1 cells, and HEK293 cells transfected with plasmids encoding the human TLR4 complex. PCSK9 increased procoagulant activity (PCA), mRNA and TF protein expression in both PBMCs and THP-1 cultures. Pre-treatment with inhibitors of TLR4/NFkB signaling such as LPS-RS, CLI-095, and BAY 11-7082, downregulated PCSK9-induced TF expression. A similar effect was obtained by incubating cell cultures with anti-PCSK9 human monoclonal antibody. In TLR4-HEK293 cells, PCSK9 activated the TLR4/NFkB signaling pathway to an extent comparable to LPS, the specific agonist of TLR4s and quantitative confocal microscopy documented the colocalization of PCSK9 and TLR4s. In conclusion, PCSK9 induces TF expression through activation of TLR4/NFkB signaling.
Collapse
|
72
|
Calcat-i-Cervera S, Sanz-Nogués C, O'Brien T. When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease. Front Med (Lausanne) 2021; 8:728496. [PMID: 34616756 PMCID: PMC8488400 DOI: 10.3389/fmed.2021.728496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced therapy medicinal products (ATMPs) offer new prospects to improve the treatment of conditions with unmet medical needs. Kidney diseases are a current major health concern with an increasing global prevalence. Chronic renal failure appears after many years of impairment, which opens a temporary window to apply novel therapeutic approaches to delay or halt disease progression. The immunomodulatory, anti-inflammatory, and pro-regenerative properties of mesenchymal stromal cells (MSCs) have sparked interest for their use in cell-based regenerative therapies. Currently, several early-phase clinical trials have been completed and many are ongoing to explore MSC safety and efficacy in a wide range of nephropathies. However, one of the current roadblocks to the clinical translation of MSC therapies relates to the lack of standardization and harmonization of MSC manufacturing protocols, which currently hinders inter-study comparability. Studies have shown that cell culture processing variables can have significant effects on MSC phenotype and functionality, and these are highly variable across laboratories. In addition, heterogeneity within MSC populations is another obstacle. Furthermore, MSCs may be isolated from several sources which adds another variable to the comparative assessment of outcomes. There is now a growing body of literature highlighting unique and distinctive properties of MSCs according to the tissue origin, and that characteristics such as donor, age, sex and underlying medical conditions may alter the therapeutic effect of MSCs. These variables must be taken into consideration when developing a cell therapy product. Having an optimal scale-up strategy for MSC manufacturing is critical for ensuring product quality while minimizing costs and time of production, as well as avoiding potential risks. Ideally, optimal scale-up strategies must be carefully considered and identified during the early stages of development, as making changes later in the bioprocess workflow will require re-optimization and validation, which may have a significant long-term impact on the cost of the therapy. This article provides a summary of important cell culture processing variables to consider in the scale-up of MSC manufacturing as well as giving a comprehensive review of tissue of origin-specific biological characteristics of MSCs and their use in current clinical trials in a range of renal pathologies.
Collapse
Affiliation(s)
| | | | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), CÚRAM, Biomedical Science Building, National University of Ireland, Galway, Ireland
| |
Collapse
|
73
|
Oe Y, Miyazaki M, Takahashi N. Coagulation, Protease-Activated Receptors, and Diabetic Kidney Disease: Lessons from eNOS-Deficient Mice. TOHOKU J EXP MED 2021; 255:1-8. [PMID: 34511578 DOI: 10.1620/tjem.255.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) dysfunction is known to exacerbate the progression and prognosis of diabetic kidney disease (DKD). One of the mechanisms through which this is achieved is that low eNOS levels are associated with hypercoagulability, which promotes kidney injury. In the extrinsic coagulation cascade, the tissue factor (factor III) and downstream coagulation factors, such as active factor X (FXa), exacerbate inflammation through activation of the protease-activated receptors (PARs). Recently, it has been shown that the lack of or reduced eNOS expression in diabetic mice, as a model of advanced DKD, increases renal tissue factor levels and PAR1 and 2 expression in their kidneys. Furthermore, pharmaceutical inhibition or genetic deletion of coagulation factors or PARs ameliorated inflammation in DKD in mice lacking eNOS. In this review, we summarize the relationship between eNOS, coagulation, and PARs and propose a novel therapeutic option for the management of patients with DKD.
Collapse
Affiliation(s)
- Yuji Oe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine
| | - Mariko Miyazaki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences
| |
Collapse
|
74
|
Lu H, Chen M, Tang S, Yu W. Association of coagulation disturbances with severity of COVID-19: a longitudinal study. Hematology 2021; 26:656-662. [PMID: 34493174 DOI: 10.1080/16078454.2021.1968648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Coagulation dysfunction is an evident factor in the clinical diagnosis and treatment of patients with coronavirus disease 2019 (COVID-19), appearing even in COVID-19 patients with normal inflammation indices. Therefore, this study aimed to analyze the characteristics of coagulation function indices in COVID-19 patients to investigate possible mechanisms through the comparison of non-severe and severe COVID-19 patients. METHODS We included 143 patients whose clinical characteristics, coagulation function, and other indices such as inflammatory factors were collected and compared based on disease severity. RESULTS Activated partial thromboplastin time (APTT), D-dimer, and fibrinogen levels were evidently higher in the severe group than in the non-severe group. Among non-severe COVID-19 patients, the aforementioned indicators depicted increasing trends, but the fibrinogen level alone was higher than normal. However, in severe COVID-19 patients, values of all three indices were higher than normal. In severe COVID-19 patients, fibrinogen and D-dimer were correlated with several inflammation indices during the early stage of the disease. However, no correlation between fibrinogen and inflammatory factors was observed in non-severe COVID-19 patients at any time point. DISCUSSION Results revealed that the hypercoagulability tendency of severe COVID-19 patients was more evident. The relationship between coagulation function and inflammatory factors showed that changes in coagulation function in severe COVID-19 patients may be related to abnormal increase in inflammatory factors at an early stage; however, in non-severe COVID-19 patients, there might be other factors leading to abnormal coagulation. CONCLUSION Inflammatory factors were not the only cause of abnormal coagulation function in COVID-19 patients.
Collapse
Affiliation(s)
- Huimin Lu
- Department of Intensive Care Unit, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, People's Republic of China
| | - Ming Chen
- Department of Intensive Care Unit, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, People's Republic of China
| | - Shaoqiu Tang
- Department of General Practice, Nanjing University Hospital, Nanjing, People's Republic of China
| | - Wenkui Yu
- Department of Intensive Care Unit, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, People's Republic of China
| |
Collapse
|
75
|
Leite PM, Martins MAP, Carvalho MDG, Castilho RO. Mechanisms and interactions in concomitant use of herbs and warfarin therapy: An updated review. Biomed Pharmacother 2021; 143:112103. [PMID: 34474338 DOI: 10.1016/j.biopha.2021.112103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
This review is an updated and expanded version published in this journal in 2016. Warfarin pharmacotherapy is extremely complex, since in addition to being a low therapeutic index drug, it does not follow the dose-response pattern and has characteristics that predispose the occurrence of interactions, such as high binding rate to plasma proteins, metabolization by cytochrome P450 enzymes, further to acting in the complex process of blood coagulation, platelet activation, and inflammation. For these reasons, warfarin has great potential for interaction with drugs, foods, and herbal medicines. Herb-warfarin interactions, however, are still not very well studied; thus, the objective of this update is to present new information on the subject aiming to provide a scientific basis to help health professionals in the clinical management of these interactions. A literature review was performed from May to June 2021 in multiple databases and articles published in 2016 to 2021 were included. A total of 59 articles describing 114 herbal medicines were reported to interact with warfarin. Of the plants mentioned, 84% had the potential to increase warfarin effect and the risk of bleeding. Targets possibly involved in these interactions include the processes of blood coagulation, platelet activation, and inflammation, in addition to the pharmacokinetics and pharmacodynamics of warfarin. Despite these alarming numbers, however, the clinical management of interactions is known to be effective. Thus, it is important that the use of these herbal medicines be done with caution in anticoagulated patients and that studies of herb-drug interactions be encouraged in order to generate information to support the clinical management of patients.
Collapse
Affiliation(s)
- Paula Mendonça Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil.
| | - Maria Auxiliadora Parreiras Martins
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Maria das Graças Carvalho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Rachel Oliveira Castilho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil; Consórcio Acadêmico Brasileiro de Saúde Integrativa, CABSIN, Brazil.
| |
Collapse
|
76
|
Kohansal Vajari M, Shirin M, Pourbagheri‐Sigaroodi A, Akbari ME, Abolghasemi H, Bashash D. COVID-19-related coagulopathy: A review of pathophysiology and pharmaceutical management. Cell Biol Int 2021; 45:1832-1850. [PMID: 33945651 PMCID: PMC8239905 DOI: 10.1002/cbin.11623] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/20/2021] [Accepted: 05/01/2021] [Indexed: 01/08/2023]
Abstract
December 2019 will never be forgotten in the history of medicine when an outbreak of pneumonia of unknown etiology in Wuhan, China sooner or later prompted the World Health Organization to issue a public health warning emergency. This is not the first nor will it be the last time that a member of β-coronaviruses (CoVs) is waging a full-scale war against human health. Notwithstanding the fact that pneumonia is the primary symptom of the novel coronavirus (2019nCoV; designated as SARS-CoV-2), the emergence of severe disease mainly due to the injury of nonpulmonary organs at the shadow of coagulopathy leaves no choice, in some cases, rather than a dreadful death. Multiple casual factors such as inflammation, endothelial dysfunction, platelet and complement activation, renin-angiotensin-aldosterone system derangement, and hypoxemia play a major role in the pathogenesis of coagulopathy in coronavirus disease 2019 (COVID-19) patients. Due to the undeniable role of coagulation dysfunction in the initiation of several complications, assessment of coagulation parameters and the platelet count would be beneficial in early diagnosis and also timely prediction of disease severity. Although low-molecular-weight heparin is considered as the first-line of treatment in COVID-19-associated coagulopathy, several possible therapeutic options have also been proposed for better management of the disease. In conclusion, this review would help us to gain insight into the pathogenesis, clinical manifestation, and laboratory findings associated with COVID-19 coagulopathy and would summarize management strategies to alleviate coagulopathy-related complications.
Collapse
Affiliation(s)
- Mahdi Kohansal Vajari
- Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Mahsa Shirin
- Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Atieh Pourbagheri‐Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Esmaeil Akbari
- Cancer Research Center, Department of General SurgeryShahid Beheshti University of Medical SciencesTehranIran
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Mofid HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
77
|
Merimi M, El-Majzoub R, Lagneaux L, Moussa Agha D, Bouhtit F, Meuleman N, Fahmi H, Lewalle P, Fayyad-Kazan M, Najar M. The Therapeutic Potential of Mesenchymal Stromal Cells for Regenerative Medicine: Current Knowledge and Future Understandings. Front Cell Dev Biol 2021; 9:661532. [PMID: 34490235 PMCID: PMC8416483 DOI: 10.3389/fcell.2021.661532] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
In recent decades, research on the therapeutic potential of progenitor cells has advanced considerably. Among progenitor cells, mesenchymal stromal cells (MSCs) have attracted significant interest and have proven to be a promising tool for regenerative medicine. MSCs are isolated from various anatomical sites, including bone marrow, adipose tissue, and umbilical cord. Advances in separation, culture, and expansion techniques for MSCs have enabled their large-scale therapeutic application. This progress accompanied by the rapid improvement of transplantation practices has enhanced the utilization of MSCs in regenerative medicine. During tissue healing, MSCs may exhibit several therapeutic functions to support the repair and regeneration of injured tissue. The process underlying these effects likely involves the migration and homing of MSCs, as well as their immunotropic functions. The direct differentiation of MSCs as a cell replacement therapeutic mechanism is discussed. The fate and behavior of MSCs are further regulated by their microenvironment, which may consequently influence their repair potential. A paracrine pathway based on the release of different messengers, including regulatory factors, chemokines, cytokines, growth factors, and nucleic acids that can be secreted or packaged into extracellular vesicles, is also implicated in the therapeutic properties of MSCs. In this review, we will discuss relevant outcomes regarding the properties and roles of MSCs during tissue repair and regeneration. We will critically examine the influence of the local microenvironment, especially immunological and inflammatory signals, as well as the mechanisms underlying these therapeutic effects. Importantly, we will describe the interactions of local progenitor and immune cells with MSCs and their modulation during tissue injury. We will also highlight the crucial role of paracrine pathways, including the role of extracellular vesicles, in this healing process. Moreover, we will discuss the therapeutic potential of MSCs and MSC-derived extracellular vesicles in the treatment of COVID-19 (coronavirus disease 2019) patients. Overall, this review will provide a better understanding of MSC-based therapies as a novel immunoregenerative strategy.
Collapse
Affiliation(s)
- Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
- LBBES Laboratory, Genetics and Immune-Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Rania El-Majzoub
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Beirut, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Douâa Moussa Agha
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
- LBBES Laboratory, Genetics and Immune-Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Nathalie Meuleman
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
78
|
Witkowski M, Witkowski M, Friebel J, Buffa JA, Li XS, Wang Z, Sangwan N, Li L, DiDonato JA, Tizian C, Haghikia A, Kirchhofer D, Mach F, Räber L, Matter CM, Tang WHW, Landmesser U, Lüscher TF, Rauch U, Hazen SL. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc Res 2021; 118:2367-2384. [PMID: 34352109 PMCID: PMC9890461 DOI: 10.1093/cvr/cvab263] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023] Open
Abstract
AIMS Gut microbiota and their generated metabolites impact the host vascular phenotype. The metaorganismal metabolite trimethylamine N-oxide (TMAO) is both associated with adverse clinical thromboembolic events, and enhances platelet responsiveness in subjects. The impact of TMAO on vascular Tissue Factor (TF) in vivo is unknown. Here, we explore whether TMAO-enhanced thrombosis potential extends beyond TMAO effects on platelets, and is linked to TF. We also further explore the links between gut microbiota and vascular endothelial TF expression in vivo. METHODS AND RESULTS In initial exploratory clinical studies, we observed that among sequential stable subjects (n = 2989) on anti-platelet therapy undergoing elective diagnostic cardiovascular evaluation at a single-site referral centre, TMAO levels were associated with an increased incident (3 years) risk for major adverse cardiovascular events (MACE) (myocardial infarction, stroke, or death) [4th quartile (Q4) vs. Q1 adjusted hazard ratio (HR) 95% confidence interval (95% CI), 1.73 (1.25-2.38)]. Similar results were observed within subjects on aspirin mono-therapy during follow-up [adjusted HR (95% CI) 1.75 (1.25-2.44), n = 2793]. Leveraging access to a second higher risk cohort with previously reported TMAO data and monitoring of anti-platelet medication use, we also observed a strong association between TMAO and incident (1 year) MACE risk in the multi-site Swiss Acute Coronary Syndromes Cohort, focusing on the subset (n = 1469) on chronic dual anti-platelet therapy during follow-up [adjusted HR (95% CI) 1.70 (1.08-2.69)]. These collective clinical data suggest that the thrombosis-associated effects of TMAO may be mediated by cells/factors that are not inhibited by anti-platelet therapy. To test this, we first observed in human microvascular endothelial cells that TMAO dose-dependently induced expression of TF and vascular cell adhesion molecule (VCAM)1. In mouse studies, we observed that TMAO-enhanced aortic TF and VCAM1 mRNA and protein expression, which upon immunolocalization studies, was shown to co-localize with vascular endothelial cells. Finally, in arterial injury mouse models, TMAO-dependent enhancement of in vivo TF expression and thrombogenicity were abrogated by either a TF-inhibitory antibody or a mechanism-based microbial choline TMA-lyase inhibitor (fluoromethylcholine). CONCLUSION Endothelial TF contributes to TMAO-related arterial thrombosis potential, and can be specifically blocked by targeted non-lethal inhibition of gut microbial choline TMA-lyase.
Collapse
Affiliation(s)
- Marco Witkowski
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA,Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Mario Witkowski
- Department of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Friebel
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany,Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Jennifer A Buffa
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Lin Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Caroline Tizian
- Department of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arash Haghikia
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - François Mach
- Department of Cardiology, University Hospital Geneva, Rue Gabrielle-Perret-Gentil 4 1205, Geneva, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Inselspital Bern, Freiburgstrasse 18 CH-3010, Bern, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland,Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100 8091, Zurich, Switzerland
| | - W H Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA,Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany,Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland,Department of Cardiology, Royal Brompton and Harefield Hospitals, Imperial College, Sydney St, London SW3 6NP, UK
| | - Ursula Rauch
- Corresponding author. Tel: +1 216 445 9763; fax: +1 216 444 9404, E-mail: (S.L.H.); Tel: +49 30 8445 2362; fax: +49 30 8445 4648, E-mail: (U.R.)
| | - Stanley L Hazen
- Corresponding author. Tel: +1 216 445 9763; fax: +1 216 444 9404, E-mail: (S.L.H.); Tel: +49 30 8445 2362; fax: +49 30 8445 4648, E-mail: (U.R.)
| |
Collapse
|
79
|
Tantibhedhyangkul W, Matamnan S, Longkunan A, Boonwong C, Khowawisetsut L. Endothelial Activation in Orientia tsutsugamushi Infection Is Mediated by Cytokine Secretion From Infected Monocytes. Front Cell Infect Microbiol 2021; 11:683017. [PMID: 34368012 PMCID: PMC8340038 DOI: 10.3389/fcimb.2021.683017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Scrub typhus, caused by Orientia tsutsugamushi, is a common systemic infection in Asia. Delay in diagnosis and treatment can lead to vasculitis in the visceral organs and other complications. The mechanisms that drive endothelial activation and the inflammatory response in O. tsutsugamushi infection remain unknown. In addition, the interaction between monocytes and endothelial cells is still unclear. Here we demonstrate that O. tsutsugamushi-infected human dermal microvascular endothelial cells produced moderate levels of chemokines and low levels of IL-6 and IFN-β, but not TNF or IL-1β. Recombinant TNF and cytokine-rich supernatants from infected monocytes markedly enhanced chemokine production in infected endothelial cells. We also show that TNF and monocyte supernatants, but not O. tsutsugamushi infection of endothelial cells per se, upregulated the endothelial cell surface expression of ICAM-1, E-selectin, and tissue factor. This finding was consistent with the inability of O. tsutsugamushi to induce cytokine secretion from endothelial cells. The upregulation of surface molecules after stimulation with monocyte supernatants was significantly reduced by neutralizing anti-TNF antibodies. These results suggest that endothelial cell activation and response are mainly mediated by inflammatory cytokines secreted from monocytes.
Collapse
Affiliation(s)
- Wiwit Tantibhedhyangkul
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sutthicha Matamnan
- Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Asma Longkunan
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chawikan Boonwong
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
80
|
Lee B, Shin H, Oh JE, Park J, Park M, Yang SC, Jun JH, Hong SH, Song H, Lim HJ. An autophagic deficit in the uterine vessel microenvironment provokes hyperpermeability through deregulated VEGFA, NOS1, and CTNNB1. Autophagy 2021; 17:1649-1666. [PMID: 32579471 PMCID: PMC8354601 DOI: 10.1080/15548627.2020.1778292] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
The uterus undergoes vascular changes during the reproductive cycle and pregnancy. Steroid hormone deprivation induces macroautophagy/autophagy in major uterine cell types. Herein, we explored the functions of uterine autophagy using the Amhr2-Cre-driven atg7 deletion model. Deletion of Atg7 was confirmed by functional deficit of autophagy in uterine stromal, myometrial, and vascular smooth muscle cells, but not in endothelial cells. atg7d/d uteri exhibited enhanced stromal edema accompanied by dilation of blood vessels. Ovariectomized atg7d/d uteri showed decreased expression of endothelial junction-related proteins, such as CTNNB1/beta-catenin, with increased vascular permeability, and increased expression of VEGFA and NOS1. Nitric oxide (NO) was shown to mediate VEGFA-induced vascular permeability by targeting CTNNB1. NO involvement in maintaining endothelial junctional stability in atg7d/d uteri was confirmed by the reduction in extravasation following treatment with a NOS inhibitor. We also showed that atg7d/d uterine phenotype improved the fetal weight:placental weight ratio, which is one of the indicators of assessing the status of preeclampsia. We showed that autophagic deficit in the uterine vessel microenvironment provokes hyperpermeability through the deregulation of VEGFA, NOS1, and CTNNB1.Abbreviations: ACTA2: actin, alpha 2, smooth muscle, aortic; Amhr2: anti-Mullerian hormone type 2 receptor; ANGPT1: angiopoietin 1; ATG: autophagy-related; CDH5: cadherin 5; CLDN5: claudin 5; COL1A1: collagen, type I, alpha 1; CSPG4/NG2: chondroitin sulfate proteoglycan 4; CTNNB1: catenin (cadherin associated protein), beta 1; DES: desmin; EDN1: endothelin 1; EDNRB: endothelin receptor type B; F3: coagulation factor III; KDR/FLK1/VEGFR2: kinase insert domain protein receptor; LYVE1: lymphatic vessel endothelial hyaluronan receptor 1; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MCAM/CD146: melanoma cell adhesion molecule; MYL2: myosin, light polypeptide 2, regulatory, cardiac, slow; MYLK: myosin, light polypeptide kinase; NOS1/nNOS: nitric oxide synthase 1, neuronal; NOS2/iNOS: nitric oxide synthase 2, inducible; NOS3/eNOS: nitric oxide synthase 3, endothelial cell; OVX: ovariectomy; PECAM1/CD31: platelet/endothelial cell adhesion molecule 1; POSTN: periostin, osteoblast specific factor; SQSTM1: sequestosome 1; TEK/Tie2: TEK receptor tyrosine kinase; TJP1/ZO-1: tight junction protein 1; TUBB1, tubulin, beta 1 class VI; USC: uterine stromal cell; VEGFA: vascular endothelial growth factor A; VSMC: vascular smooth muscle cell.
Collapse
Affiliation(s)
- Bora Lee
- Department of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Hyejin Shin
- Department of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Ji-Eun Oh
- Department of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jaekyoung Park
- Department of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea
| | - Seung Chel Yang
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea
| | - Jin-Hyun Jun
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Gyeonggi-do, Korea
- Department of Senior Healthcare, BK21 Plus Program, Eulji Medi-Bio Research Institute, Graduate School, Eulji University, Daejeon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Kangwon-do, Chuncheon, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea
| | - Hyunjung Jade Lim
- Department of Biomedical Science & Technology, Konkuk University, Seoul, Korea
- Department of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
81
|
Chen P, Wu B, Ji L, Zhan Y, Li F, Cheng L, Cao J, Chen H, Ke Y, Min Z, Sun L, Hua F, Chen H, Cheng Y. Cytokine Consistency Between Bone Marrow and Peripheral Blood in Patients With Philadelphia-Negative Myeloproliferative Neoplasms. Front Med (Lausanne) 2021; 8:598182. [PMID: 34249954 PMCID: PMC8264196 DOI: 10.3389/fmed.2021.598182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/09/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Inflammation might play a critical role in the pathogenesis and progression of Philadelphia-negative myeloproliferative neoplasms (Ph−MPNs) with elevated inflammatory cytokines in peripheral blood (PB). However, the inflammatory status inside the bone marrow (BM), which is the place of malignancy origin and important microenvironment of neoplasm evolution, has not yet been elucidated. Methods: Inflammatory cytokine profiles in PB and BM of 24 Ph-MPNs patients were measured by a multiplex quantitative inflammation array. Cytokines that correlated between PB and BM were selected and then validated by ELISA in a separate cohort of 52 MPN patients. Furthermore, a panel of cytokines was identified and examined for potential application as non-invasive markers for the diagnosis and prediction of fibrosis progress of MPN subtypes. Results: The levels of G-CSF, I-309, IL-1β, IL-1ra, IL-12p40, IL-15, IL-16, M-CSF, MIG, PDGF-BB, and TIMP-1 in BM supernatants were significantly higher than those in PB (all p < 0.05). Linear correlations between BM and PB levels were found in 13 cytokines, including BLC, Eotaxin-2, I-309, sICAM-1, IL-15, M-CSF, MIP-1α, MIP-1δ, RANTES, TIMP-1, TIMP-2, sTNFRI, and sTNFRII (all R > 0.4 and p < 0.05). Levels of BLC, Eotaxin-2, M-CSF, and TIMP-1 in PB were significantly different from those in health controls (all p < 0.05). In PB, levels of TIMP-1 and Eotaxin-2 in essential thrombocythemia (ET) group were significantly lower than those in groups of prefibrotic primary myelofibrosis (pre-PMF) [TIMP-1: 685.2 (322.2–1,229) ng/ml vs. 1,369 (1,175–1,497) ng/ml, p = 0.0221; Eotaxin-2: 531.4 (317.9–756.6) pg/ml vs. 942.4 (699.3–1,474) pg/ml, p = 0.0393] and primary myelofibrosis (PMF) [TIMP-1: 685.2 (322.2–1229) ng/ml vs. 1,365 (1,115–1,681) ng/ml, p = 0.0043; Eotaxin-2: 531.4 (317.9–756.6) pg/ml vs. 1,010 (818–1,556) pg/ml, p = 0.0030]. The level of TIMP-1 in myelofibrosis (MF) >1 group was significantly higher than that in MF ≤ 1 group. Conclusion: Abnormal inflammatory status is present in MPN, especially in its BM microenvironment. Consistency between PB and BM levels was found in multiple inflammatory cytokines. Circulating cytokine levels of BLC, M-CSF, Eotaxin-2, and TIMP-1 reflected inflammation inside BM niche, suggesting potential diagnostic value for MPN subtypes and prognostic value for fibrosis progression.
Collapse
Affiliation(s)
- Pu Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Boting Wu
- Department of Transfusion Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lili Ji
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Luya Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingjing Cao
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hehui Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Ke
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Min
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lihua Sun
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Fanli Hua
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Hao Chen
- Department of Thoracic Surgery, Zhongshan Hospital Xuhui Branch, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
82
|
Kondreddy V, Magisetty J, Keshava S, Rao LVM, Pendurthi UR. Gab2 (Grb2-Associated Binder2) Plays a Crucial Role in Inflammatory Signaling and Endothelial Dysfunction. Arterioscler Thromb Vasc Biol 2021; 41:1987-2005. [PMID: 33827252 PMCID: PMC8147699 DOI: 10.1161/atvbaha.121.316153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 01/21/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Usha R. Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| |
Collapse
|
83
|
Shouman MM, Abdelsalam RM, Tawfick MM, Kenawy SA, El-Naa MM. Antisense Tissue Factor Oligodeoxynucleotides Protected Diethyl Nitrosamine/Carbon Tetrachloride-Induced Liver Fibrosis Through Toll Like Receptor4-Tissue Factor-Protease Activated Receptor1 Pathway. Front Pharmacol 2021; 12:676608. [PMID: 34045968 PMCID: PMC8144514 DOI: 10.3389/fphar.2021.676608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tissue factor (TF) is a blood coagulation factor that has several roles in many non-coagulant pathways involved in different pathological conditions such as angiogenesis, inflammation and fibrogenesis. Coagulation and inflammation are crosslinked with liver fibrosis where protease-activated receptor1 (PAR1) and toll-like receptor4 (TLR4) play a key role. Antisense oligodeoxynucleotides are strong modulators of gene expression. In the present study, antisense TF oligodeoxynucleotides (TFAS) was evaluated in treating liver fibrosis via suppression of TF gene expression. Liver fibrosis was induced in rats by a single administration of N-diethyl nitrosamine (DEN, 200 mg/kg; i. p.) followed by carbon tetrachloride (CCl4, 3 ml/kg; s. c.) once weekly for 6 weeks. Following fibrosis induction, liver TF expression was significantly upregulated along with liver enzymes activities and liver histopathological deterioration. Alpha smooth muscle actin (α-SMA) and transforming growth factor-1beta (TGF-1β) expression, tumor necrosis factor-alpha (TNF-α) and hydroxyproline content and collagen deposition were significantly elevated in the liver. Blocking of TF expression by TFAS injection (2.8 mg/kg; s. c.) once weekly for 6 weeks significantly restored liver enzymes activities and improved histopathological features along with decreasing the elevated α-SMA, TGF-1β, TNF-α, hydroxyproline and collagen. Moreover, TFAS decreased the expression of both PAR1 and TLR4 that were induced by liver fibrosis. In conclusion, we reported that blockage of TF expression by TFAS improved inflammatory and fibrotic changes associated with CCl4+DEN intoxication. In addition, we explored the potential crosslink between the TF, PAR1 and TLR4 in liver fibrogenesis. These findings offer a platform on which recovery from liver fibrosis could be mediated through targeting TF expression.
Collapse
Affiliation(s)
- Maha M Shouman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern Sciences and Arts University (MSA), Giza, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Biology, Faculty of Pharmacy, New Giza University, Giza, Egypt
| | - Mahmoud M Tawfick
- Department of Microbiology and Immunology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Sanaa A Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona M El-Naa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
84
|
Miao L, Zhang Z, Ren Z, Li Y. Reactions Related to CAR-T Cell Therapy. Front Immunol 2021; 12:663201. [PMID: 33995389 PMCID: PMC8113953 DOI: 10.3389/fimmu.2021.663201] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
The application of chimeric antigen receptor (CAR) T-cell therapy as a tumor immunotherapy has received great interest in recent years. This therapeutic approach has been used to treat hematological malignancies solid tumors. However, it is associated with adverse reactions such as, cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), off-target effects, anaphylaxis, infections associated with CAR-T-cell infusion (CTI), tumor lysis syndrome (TLS), B-cell dysplasia, hemophagocytic lymphohistiocytosis (HLH)/macrophage activation syndrome (MAS) and coagulation disorders. These adverse reactions can be life-threatening, and thus they should be identified early and treated effectively. In this paper, we review the adverse reactions associated with CAR-T cells, the mechanisms driving such adverse reactions, and strategies to subvert them. This review will provide important reference data to guide clinical application of CAR-T cell therapy.
Collapse
Affiliation(s)
- Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhijian Ren
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
85
|
An Integrated Approach of the Potential Underlying Molecular Mechanistic Paradigms of SARS-CoV-2-Mediated Coagulopathy. Indian J Clin Biochem 2021; 36:387-403. [PMID: 33875909 PMCID: PMC8047580 DOI: 10.1007/s12291-021-00972-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/03/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (Covid-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pandemic disease which has affected more than 6.2 million people globally, with numbers mounting considerably daily. However, till date, no specific treatment modalities are available for Covid-19 and also not much information is known about this disease. Recent studies have revealed that SARS-CoV-2 infection is associated with the generation of thrombosis and coagulopathy. Fundamentally, it has been believed that a diverse array of signalling pathways might be responsible for the activation of coagulation cascade during SARS-CoV-2 infection. Henceforth, a detailed understanding of these probable underlying molecular mechanistic pathways causing thrombosis in Covid-19 disease deserves an urgent exploration. Therefore, in this review, the hypothetical crosstalk between distinct signalling pathways including apoptosis, inflammation, hypoxia and angiogenesis attributable for the commencement of thrombotic events during SARS-CoV-2 infection has been addressed which might further unravel promising therapeutic targets in Covid-19 disease.
Collapse
|
86
|
Asparuhova MB, Stähli A, Guldener K, Sculean A. A Novel Volume-Stable Collagen Matrix Induces Changes in the Behavior of Primary Human Oral Fibroblasts, Periodontal Ligament, and Endothelial Cells. Int J Mol Sci 2021; 22:ijms22084051. [PMID: 33919968 PMCID: PMC8070954 DOI: 10.3390/ijms22084051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to investigate the influence of a novel volume-stable collagen matrix (vCM) on early wound healing events including cellular migration and adhesion, protein adsorption and release, and the dynamics of the hemostatic system. For this purpose, we utilized transwell migration and crystal violet adhesion assays, ELISAs for quantification of adsorbed and released from the matrix growth factors, and qRT-PCR for quantification of gene expression in cells grown on the matrix. Our results demonstrated that primary human oral fibroblasts, periodontal ligament, and endothelial cells exhibited increased migration toward vCM compared to control cells that migrated in the absence of the matrix. Cellular adhesive properties on vCM were significantly increased compared to controls. Growth factors TGF-β1, PDGF-BB, FGF-2, and GDF-5 were adsorbed on vCM with great efficiency and continuously delivered in the medium after an initial burst release within hours. We observed statistically significant upregulation of genes encoding the antifibrinolytic thrombomodulin, plasminogen activator inhibitor type 1, thrombospondin 1, and thromboplastin, as well as strong downregulation of genes encoding the profibrinolytic tissue plasminogen activator, urokinase-type plasminogen activator, its receptor, and the matrix metalloproteinase 14 in cells grown on vCM. As a general trend, the stimulatory effect of the vCM on the expression of antifibrinolytic genes was synergistically enhanced by TGF-β1, PDGF-BB, or FGF-2, whereas the strong inhibitory effect of the vCM on the expression of profibrinolytic genes was reversed by PDGF-BB, FGF-2, or GDF-5. Taken together, our data strongly support the effect of the novel vCM on fibrin clot stabilization and coagulation/fibrinolysis equilibrium, thus facilitating progression to the next stages of the soft tissue healing process.
Collapse
Affiliation(s)
- Maria B. Asparuhova
- Dental Research Center, Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
- Correspondence:
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| | - Kevin Guldener
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| |
Collapse
|
87
|
Li Q, Hu L, Li J, Yu P, Hu F, Wan B, Xu M, Cheng H, Yu W, Jiang L, Shi Y, Li J, Duan M, Long Y, Liu WT. Hydrogen Attenuates Endotoxin-Induced Lung Injury by Activating Thioredoxin 1 and Decreasing Tissue Factor Expression. Front Immunol 2021; 12:625957. [PMID: 33767697 PMCID: PMC7985449 DOI: 10.3389/fimmu.2021.625957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/18/2021] [Indexed: 01/19/2023] Open
Abstract
Endotoxin-induced lung injury is one of the major causes of death induced by endotoxemia, however, few effective therapeutic options exist. Hydrogen inhalation has recently been shown to be an effective treatment for inflammatory lung injury, but the underlying mechanism is unknown. In the current study we aim to investigate how hydrogen attenuates endotoxin-induced lung injury and provide reference values for the clinical application of hydrogen. LPS was used to establish an endotoxin-induced lung injury mouse model. The survival rate and pulmonary pathologic changes were evaluated. THP-1 and HUVECC cells were cultured in vitro. The thioredoxin 1 (Trx1) inhibitor was used to evaluate the anti-inflammatory effects of hydrogen. Hydrogen significantly improved the survival rate of mice, reduced pulmonary edema and hemorrhage, infiltration of neutrophils, and IL-6 secretion. Inhalation of hydrogen decreased tissue factor (TF) expression and MMP-9 activity, while Trx1 expression was increased in the lungs and serum of endotoxemia mice. LPS-stimulated THP-1 and HUVEC-C cells in vitro and showed that hydrogen decreases TF expression and MMP-9 activity, which were abolished by the Trx1 inhibitor, PX12. Hydrogen attenuates endotoxin-induced lung injury by decreasing TF expression and MMP-9 activity via activating Trx1. Targeting Trx1 by hydrogen may be a potential treatment for endotoxin-induced lung injury.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
- Department of Anesthesiology, Jinling College Affiliated to Nanjing Medical University, Nanjing, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Juan Li
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Pan Yu
- Department of Burn and Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Fan Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Bing Wan
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Miaomiao Xu
- Department of Anesthesiology, Jinling College Affiliated to Nanjing Medical University, Nanjing, China
| | - Huixian Cheng
- Department of Anesthesiology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Wanyou Yu
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Liping Jiang
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yadan Shi
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jincan Li
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Manlin Duan
- Department of Anesthesiology, Jinling College Affiliated to Nanjing Medical University, Nanjing, China
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
- Department of Anesthesiology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yun Long
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Wen-Tao Liu
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
88
|
Song N, Wakimoto H, Rossignoli F, Bhere D, Ciccocioppo R, Chen KS, Khalsa JK, Mastrolia I, Samarelli AV, Dominici M, Shah K. Mesenchymal stem cell immunomodulation: In pursuit of controlling COVID-19 related cytokine storm. STEM CELLS (DAYTON, OHIO) 2021; 39:707-722. [PMID: 33586320 PMCID: PMC8014246 DOI: 10.1002/stem.3354] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/26/2021] [Indexed: 11/09/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has grown to be a global public health crisis with no safe and effective treatments available yet. Recent findings suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus pathogen that causes COVID-19, could elicit a cytokine storm that drives edema, dysfunction of the airway exchange, and acute respiratory distress syndrome in the lung, followed by acute cardiac injury and thromboembolic events leading to multiorgan failure and death. Mesenchymal stem cells (MSCs), owing to their powerful immunomodulatory abilities, have the potential to attenuate the cytokine storm and have therefore been proposed as a potential therapeutic approach for which several clinical trials are underway. Given that intravenous infusion of MSCs results in a significant trapping in the lung, MSC therapy could directly mitigate inflammation, protect alveolar epithelial cells, and reverse lung dysfunction by normalizing the pulmonary microenvironment and preventing pulmonary fibrosis. In this review, we present an overview and perspectives of the SARS-CoV-2 induced inflammatory dysfunction and the potential of MSC immunomodulation for the prevention and treatment of COVID-19 related pulmonary disease.
Collapse
Affiliation(s)
- Na Song
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroaki Wakimoto
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Filippo Rossignoli
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Deepak Bhere
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Kok-Siong Chen
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jasneet Kaur Khalsa
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
89
|
He X, Zeng Y, Jiang W. Eleven isoquinoline alkaloids on inhibiting tissue factor activity: structure-activity relationships and molecular docking. ACTA ACUST UNITED AC 2021; 76:11-19. [PMID: 32614784 DOI: 10.1515/znc-2019-0223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/01/2020] [Indexed: 11/15/2022]
Abstract
Tissue factor (TF) which plays a key role in hemostasis and thrombosis appears to be an attractive target and medicinal plants having alkaloids inhibition TF activity benefit to cardiovascular disease (CVD). The aim of study is to explore further knowledge about alkaloids and TF. TF procoagulant activities were determined by the simplified chromogenic assay and their mRNA expression were then examined by reverse transcription and polymerase chain reaction. Besides, the potential of TF/FVIIa binding with four representative alkaloids were analyzed by molecular docking. The results indicated that these isoquinoline alkaloids with various structures had a different effect on suppression of TF activity. Molecular docking showed four alkaloids including l-corydalmine, berberine, jatrorrhizine, and tetrahydropalmatine were stably posed in the active binding pocket of TF/FVIIa. The SARs analysis showed the structural difference including planar, quaternary nitrogen, and the peripheral functional groups at C-8, C-9, C-10, have strong effect on inhibition of TF activity, which provided effective methods to modify isoquinoline alkaloids for inhibiting TF activity. This study provides a further evidence for the cardiovascular protection of isoquinoline alkaloids, and has physiological significance in the clinical challenge to use isoquinoline alkaloids or their potential analogs in the treatment of CVD.
Collapse
Affiliation(s)
- Xuhua He
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yongjiang Zeng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
90
|
Liu J, Jiang L, Liu X, Xu L, Xu J, Zhu W, Shen Y, Zhang Z, Mao Y, Yan X, Sun J, Liu F, Xiong X, Chen X, Che Y, Du J. Tandem mass tag-based quantitative proteomic profiling of the serum of patients with abnormal uterine bleeding associated with copper intrauterine device. Int J Gynaecol Obstet 2021; 154:169-178. [PMID: 33354778 DOI: 10.1002/ijgo.13562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/14/2020] [Accepted: 12/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate changes in the level of protein in serum and uncover the underlying pathogenesis of abnormal uterine bleeding (AUB) associated with copper intrauterine devices (Cu IUD). METHODS Protein profiles were investigated via tandem mass tag (TMT)-based quantitative proteomics and bioinformatics technology. Quantification and characterization of candidate proteins were further performed in 33 controls and 45 cases by Luminex assay and enzyme-linked immunosorbent assay. RESULTS In total, 842 proteins were identified via TMT coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the serum of individuals with IUDs. Among them, 25 differentially expressed proteins (p < 0.05) were observed, including eight upregulated proteins and 17 downregulated proteins. Ten proteins were verified, and Alpha-1-Antitrypsin (a1AT) had a significantly elevated expression in women with AUB associated with the Cu IUD compared with healthy controls (p = 0.026) and a high area under the curve value (0.656), as well as sensitivity (64.9%) and specificity (71.9%). CONCLUSION This is the first study to explore changes in serum protein and the underlying mechanisms of AUB associated with the Cu IUD via TMT technology. a1AT with biomarker potential was validated. These findings might provide an experimental basis for the early diagnosis or treatment of AUB associated with the Cu IUD.
Collapse
Affiliation(s)
- Junwei Liu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai, China
| | - Lifang Jiang
- NHC Key laboratory of Birth Defects Prevention (Henan Provincial Research Institute for Population and Family Planning), Henan, China
| | - Xiaoli Liu
- Chongqing Health Center for Women and Children, Chongqing, China
| | - Linfen Xu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Jianhua Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai, China
| | - Weiqiang Zhu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai, China
| | - Yupei Shen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai, China
| | - Zhaofeng Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Mao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoqin Yan
- Maternal and Child Health and Family Planning Service Center of Huixian City, Henan, China
| | - Junjie Sun
- Chongqing Health Center for Women and Children, Chongqing, China
| | - Fang Liu
- Chongqing Health Center for Women and Children, Chongqing, China
| | - Xiumei Xiong
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Xiujuan Chen
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Yan Che
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai, China
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
91
|
Hu L, Chen S, Fu Y, Gao Z, Long H, Ren HW, Zuo Y, Wang J, Li H, Xu QB, Yu WX, Liu J, Shao C, Hao JJ, Wang CZ, Ma Y, Wang Z, Yanagihara R, Deng Y. Risk Factors Associated With Clinical Outcomes in 323 Coronavirus Disease 2019 (COVID-19) Hospitalized Patients in Wuhan, China. Clin Infect Dis 2020; 71:2089-2098. [PMID: 32361738 PMCID: PMC7197620 DOI: 10.1093/cid/ciaa539] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background With evidence of sustained transmission in more than 190 countries, coronavirus disease 2019 (COVID-19) has been declared a global pandemic. Data are urgently needed about risk factors associated with clinical outcomes. Methods A retrospective review of 323 hospitalized patients with COVID-19 in Wuhan was conducted. Patients were classified into three disease severity groups (non-severe, severe, and critical), based on initial clinical presentation. Clinical outcomes were designated as favorable and unfavorable, based on disease progression and response to treatments. Logistic regression models were performed to identify risk factors associated with clinical outcomes, and log-rank test was conducted for the association with clinical progression. Results Current standard treatments did not show significant improvement in patient outcomes. By univariate logistic regression analysis, 27 risk factors were significantly associated with clinical outcomes. Multivariate regression indicated age over 65 years (p<0.001), smoking (p=0.001), critical disease status (p=0.002), diabetes (p=0.025), high hypersensitive troponin I (>0.04 pg/mL, p=0.02), leukocytosis (>10 x 109/L, p<0.001) and neutrophilia (>75 x 109/L, p<0.001) predicted unfavorable clinical outcomes. By contrast, the administration of hypnotics was significantly associated with favorable outcomes (p<0.001), which was confirmed by survival analysis. Conclusions Hypnotics may be an effective ancillary treatment for COVID-19. We also found novel risk factors, such as higher hypersensitive troponin I, predicted poor clinical outcomes. Overall, our study provides useful data to guide early clinical decision making to reduce mortality and improve clinical outcomes of COVID-19.
Collapse
Affiliation(s)
- Ling Hu
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shaoqiu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA.,Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuanyuan Fu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Zitong Gao
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA.,Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Hui Long
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Hong-Wei Ren
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zuo
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Jie Wang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Li
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qing-Bang Xu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen-Xiong Yu
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jia Liu
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Chen Shao
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jun-Jie Hao
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Chuan-Zhen Wang
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yao Ma
- Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Zhanwei Wang
- Cancer Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Richard Yanagihara
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
92
|
Kong LJ, Wang YN, Wang Z, Lv QZ. NOD2 induces VCAM-1 and ET-1 gene expression via NF-κB in human umbilical vein endothelial cells with muramyl dipeptide stimulation. Herz 2020; 46:265-271. [PMID: 33245410 DOI: 10.1007/s00059-020-04996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/13/2020] [Accepted: 10/11/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Endothelial dysfunction is involved in various aspects of vascular biology and different stages of cardiovascular diseases (CVDs). Nucleotide-binding oligomerization domain-containing protein (NOD) 2, a pivotal innate immune receptor for muramyl dipeptide (MDP), has been reported to be a central regulator in CVDs. Previously, we reported that NOD2 played a leading role in MDP-triggered oxidative stress in endothelial cells (ECs). However, whether NOD2 participates in the regulatory mechanism of vascular cell adhesion molecule‑1 (VCAM-1) and endothelin‑1 (ET-1) expression was not elucidated. METHODS Human umbilical vein endothelial cells (HUVECs) were stimulated with MDP for 12 h. mRNA expression of VCAM‑1 and ET‑1 was detected using real time polymerase chain reaction (PCR). Scrambled control small interfering RNA (siRNA) and NOD2 siRNA were transfected into HUVECs using Lipofectamine 2000 reagent (Invitrogen, Waltham, MA, USA). Furthermore, pyrrolidine dithiocarbamate was adopted to investigate the effect of nuclear factor κB (NF-κB) on NOD2-mediated VCAM‑1 and ET‑1 gene expression in MDP-treated HUVECs. RESULTS Data showed that MDP significantly increased VCAM‑1 and ET‑1 mRNA expression, which was dependent on NOD2. In addition, NF-κB inhibition suppressed NOD2-mediated gene expression of VCAM‑1 and ET‑1. CONCLUSION Collectively, we confirmed NOD2 aggravated VCAM‑1 and ET‑1 gene expression through NF-κB in HUVECs treated with MDP.
Collapse
Affiliation(s)
- Ling-Jun Kong
- Department of Pharmacy, Shandong Provincial Hospital, Shandong First Medical University, 250021, Jinan, Shandong, China.
| | - Ya-Nan Wang
- Department of Anesthesiology, Peking University People's Hospital, 100044, Beijing, China
| | - Zi Wang
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Qian-Zhou Lv
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
93
|
Bray MA, Sartain SE, Gollamudi J, Rumbaut RE. Microvascular thrombosis: experimental and clinical implications. Transl Res 2020; 225:105-130. [PMID: 32454092 PMCID: PMC7245314 DOI: 10.1016/j.trsl.2020.05.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023]
Abstract
A significant amount of clinical and research interest in thrombosis is focused on large vessels (eg, stroke, myocardial infarction, deep venous thrombosis, etc.); however, thrombosis is often present in the microcirculation in a variety of significant human diseases, such as disseminated intravascular coagulation, thrombotic microangiopathy, sickle cell disease, and others. Further, microvascular thrombosis has recently been demonstrated in patients with COVID-19, and has been proposed to mediate the pathogenesis of organ injury in this disease. In many of these conditions, microvascular thrombosis is accompanied by inflammation, an association referred to as thromboinflammation. In this review, we discuss endogenous regulatory mechanisms that prevent thrombosis in the microcirculation, experimental approaches to induce microvascular thrombi, and clinical conditions associated with microvascular thrombosis. A greater understanding of the links between inflammation and thrombosis in the microcirculation is anticipated to provide optimal therapeutic targets for patients with diseases accompanied by microvascular thrombosis.
Collapse
Key Words
- adamts13, a disintegrin-like and metalloproteinase with thrombospondin type 1 motif 13
- ap, alternate pathway
- apc, activated protein c
- aps, antiphospholipid syndrome
- caps, catastrophic aps
- asfa, american society for apheresis
- atp, adenosine triphosphate
- cfh, complement factor h
- con a, concavalin a
- cox, cyclooxygenase
- damp, damage-associated molecular pattern
- dic, disseminated intravascular coagulation
- gbm, glomerular basement membrane
- hellp, hemolysis, elevated liver enzymes, low platelets
- hitt, heparin-induced thrombocytopenia and thrombosis
- hlh, hemophagocytic lymphohistiocytosis
- hus, hemolytic-uremic syndrome
- isth, international society for thrombosis and haemostasis
- ivig, intravenous immunoglobulin
- ldh, lactate nos, nitric oxide synthase
- net, neutrophil extracellular trap
- pai-1, plasminogen activator inhibitor 1
- pf4, platelet factor 4
- prr, pattern recognition receptor
- rbc, red blood cell
- scd, sickle cell disease
- sle, systemic lupus erythematosus
- tlr, toll-like receptor
- tf, tissue factor
- tfpi, tissue factor pathway inhibitor
- tma, thrombotic microangiopathy
- tnf-α, tumor necrosis factor-α
- tpe, therapeutic plasma exchange
- ulc, ultra large heparin-pf4 complexes
- ulvwf, ultra-large von willebrand factor
- vwf, von willebrand factor
Collapse
Affiliation(s)
- Monica A Bray
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Sarah E Sartain
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Jahnavi Gollamudi
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
94
|
Lactobacillus casei CRL431 modulates hemostatic activation induced by protein malnourishment and pneumococcal respiratory infection. Appl Microbiol Biotechnol 2020; 104:10669-10683. [PMID: 33079228 DOI: 10.1007/s00253-020-10957-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 10/24/2022]
Abstract
Previously, we demonstrated that Lactobacillus casei CRL431, a well-known immunomodulatory bacterium, beneficially regulates coagulation activation, fibrin formation in lung, and the pro-inflammatory state induced by protein malnourishment and pneumococcal infection. In this study, we deepen in the understanding of the mechanisms involved in the immunoregulatory activity of L. casei CRL431 during a nutritional repletion process by evaluating (a) platelet and endothelial activation, (b) tissue factor (TF) expression, and (c) protease-activated receptor (PAR) activation in an experimental bacterial respiratory infection model in malnourished mice. Our findings demonstrate for the first time that the repletion diet supplemented with L. casei CRL431 was effective to normalize platelet counts in blood, modulate platelet activation and their recruitment into the lung, and regulate local and systemic TF expression and endothelial activation, which were affected by malnourishment. Streptococcus pneumoniae challenge induced local and systemic increase of platelet counts, PARs activation, P-selectin and TF expression, as well as endothelial activation in both well-nourished and malnourished mice. Malnourished animals evidenced the highest alterations of the parameters evaluated while the mice fed with the probiotic bacterium had similar behavior to normal controls but with lower PAR activation in lung. These results demonstrate that supplementation of repletion diet with L. casei CRL431 is effective to modulate alterations induced by malnourishment and pneumococcal infection, restraining coagulation activation, the inflammatory process, and lung damage. These observations contribute to set the basis for the application of probiotic functional foods to modulate the inflammation-hemostasis interactions altered by malnourishment or bacterial respiratory infections. KEY POINTS: • Pneumococcal infection increases pro-coagulant state induced by protein malnourishment. • Repletion with L. casei CRL431 modulates platelet, TF, and endothelial activation. • L. casei CRL431 improves immune-coagulative response in protein malnourishment.
Collapse
|
95
|
Withametelin: a biologically active withanolide in cancer, inflammation, pain and depression. Saudi Pharm J 2020; 28:1526-1537. [PMID: 33424246 PMCID: PMC7783102 DOI: 10.1016/j.jsps.2020.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022] Open
Abstract
Withanolides are natural medicinal agents whose safety and therapeutic profiles make them valuable to mankind. Among multiple withanolides, withametelin is underexplored. The present study was aimed to create a general biological profile of isolated withametelin from Datura innoxia Mill. targeting different biological models. In-silico studies include drug-likeliness, pharmacokinetics, toxicity, molecular targets and cytotoxicity to cancer cell lines predictions. In silico directed preliminary in-vitro evaluation comprised of cancer/normal cell cytotoxicity, DPPH and protein kinase inhibition assays while in-vivo bioactivities include antiinflammatory, analgesic, antidepressant and anticoagulant assays. Pharmacological findings were strengthened by molecular docking studies to check interactions with various proteins and to propose the future path of studies. Results indicated compliance with Lipinski drug-likeliness rule (score −0.55). ADMET prediction showed strong plasma protein binding, GI absorption (Caco-2 cells permeability = 46.74 nm/s), blood brain barrier penetration (Cbrain/Cblood = 0.31), efflux by P-glycoprotein, metabolism by CYP1A2, CYP2C19 and CYP3A4, medium hERG inhibition and non-carcinogenicity in rodents. Predicted molecular targets included mainly receptors (glucocorticoid, kappa opioid, delta opioid, adrenergic and dopamine), oxidoreductase (arachidonate 5-lipoxygenase and cyclooxygenase-2), enzymes (HMG-CoA reductase) and kinase (NFκb). Withametelin was more cytotoxic to cancer cells (DU145 IC50 7.67 ± 0.54 µM) than normal lymphocytes (IC50 33.55 ± 1.31 µM). It also showed good antioxidant and protein kinase inhibition potentials. Furthermore, withametelin (20 mg/kg) significantly reduced inflammatory paw edema (68.94 ± 5.55%), heat-induced pain (78.94 ± 6.87%) and immobility time (50%) in animals. Molecular docking showed hydrogen bonding interactions (binding energies: −11.3 to −7.8 kcal/mol) with arachidonate 5 lipoxygenase, NFκb and glucocorticoid receptor. Withametelin has potential for advance investigations for its cytotoxic, anti-inflammatory, analgesic and antidepressant activities.
Collapse
|
96
|
Shet AS, Lizarralde-Iragorri MA, Naik RP. The molecular basis for the prothrombotic state in sickle cell disease. Haematologica 2020; 105:2368-2379. [PMID: 33054077 PMCID: PMC7556662 DOI: 10.3324/haematol.2019.239350] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
The genetic and molecular basis of sickle cell disease (SCD) has long since been characterized but the pathophysiological basis is not entirely defined. How a red cell hemolytic disorder initiates inflammation, endothelial dysfunction, coagulation activation and eventually leads to vascular thrombosis, is yet to be elucidated. Recent evidence has demonstrated a high frequency of unprovoked/recurrent venous thromboembolism (VTE) in SCD, with an increased risk of mortality among patients with a history of VTE. Here, we thoroughly review the molecular basis for the prothrombotic state in SCD, specifically highlighting emerging evidence for activation of overlapping inflammation and coagulation pathways, that predispose to venous thromboembolism. We share perspectives in managing venous thrombosis in SCD, highlighting innovative therapies with the potential to influence the clinical course of disease and reduce thrombotic risk, while maintaining an acceptable safety profile.
Collapse
Affiliation(s)
- Arun S. Shet
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda
| | | | - Rakhi P. Naik
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
97
|
Kassem DH, Kamal MM. Mesenchymal Stem Cells and Their Extracellular Vesicles: A Potential Game Changer for the COVID-19 Crisis. Front Cell Dev Biol 2020; 8:587866. [PMID: 33102489 PMCID: PMC7554315 DOI: 10.3389/fcell.2020.587866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) is a global public health crisis. The high infectivity of the disease even from non-symptomatic infected patients, together with the lack of a definitive cure or preventive measures are all responsible for disease outbreak. The severity of COVID-19 seems to be mostly dependent on the patients' own immune response. The over-activation of the immune system in an attempt to kill the virus, can cause a "cytokine storm" which in turn can induce acute respiratory distress syndrome (ARDS), as well as multi-organ damage, and ultimately may lead to death. Thus, harnessing the immunomodulatory properties of mesenchymal stem cells (MSCs) to ameliorate that cytokine-storm can indeed provide a golden key for the treatment of COVID-19 patients, especially severe cases. In fact, MSCs transplantation can improve the overall outcome of COVID-19 patients via multiple mechanisms; first through their immunomodulatory effects which will help to regulate the infected patient inflammatory response, second via promoting tissue-repair and regeneration, and third through their antifibrotic effects. All these mechanisms will interplay and intervene together to enhance lung-repair and protect various organs from any damage resulting from exaggerated immune-response. A therapeutic modality which provides all these mechanisms undoubtedly hold a strong potential to help COVID-19 patients even those with the worst condition to hopefully survive and recover.
Collapse
Affiliation(s)
- Dina H. Kassem
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M. Kamal
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| |
Collapse
|
98
|
Witkowski M, Friebel J, Tabaraie T, Grabitz S, Dörner A, Taghipour L, Jakobs K, Stratmann B, Tschoepe D, Landmesser U, Rauch U. Metformin Is Associated with Reduced Tissue Factor Procoagulant Activity in Patients with Poorly Controlled Diabetes. Cardiovasc Drugs Ther 2020; 35:809-813. [PMID: 32940892 PMCID: PMC8266708 DOI: 10.1007/s10557-020-07040-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
Purpose Metformin is the first-line antidiabetic drug and shown to reduce cardiovascular risk independent from its glucose lowering action. Particularly in poorly controlled diabetes, tissue factor (TF) is expressed in the vasculature and accounts for thromboembolic complications. Here, we aimed to assess the effect of metformin on TF activity and markers of vascular inflammation in poorly controlled type 2 diabetes. Methods In a cohort of patients with uncontrolled type 2 diabetes (glycosylated hemoglobin 8.39 ± 0.24%, 68.1 ± 2.6 mmol/mol, n = 46) of whom half of the individuals were treated with metformin and the other half did not receive metformin as part of an anti-diabetic combination therapy, we assessed TF activity and markers of vascular inflammation. In vitro, human monocytic cells (THP-1) were exposed to metformin and TF expression measured in the presence and absence of the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide riboside (AICAR) or the AMPK inhibitor compound C. Results In the patients, metformin treatment was associated with lower levels of TF protein (241.5 ± 19 vs. 315.4 ± 25 pg/mL, p = 0.03) and reduced TF activity (408.9 ± 49 vs. 643.8 ± 47 U/mL, p = 0.001) compared with controls. Moreover, the patients on metformin showed lower levels of vascular cell adhesion molecule (VCAM)1 (26.6 ± 1.4 vs. 35.03 ± 3.1 ng/mL, p = 0.014) and higher expression of miR-126-3p/U6sno (11.39 ± 2.8 vs. 4.26 ± 0.9, p = 0.006), a known post-transcriptional down regulator of TF and VCAM1. In vitro, metformin dose-dependently reduced lipopolysaccharide (LPS)-induced TF expression in THP-1 cells. The AMPK activator AICAR alone lowered TF expression in THP-1, while the AMPK inhibitor compound C abrogated the metformin-dependent reduction in TF expression. Conclusions Our data are the first to report that metformin is associated with reduced plasma TF procoagulant activity possibly explaining—at least in part—the vasculoprotective properties of metformin. Electronic supplementary material The online version of this article (10.1007/s10557-020-07040-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Witkowski
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Julian Friebel
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Termeh Tabaraie
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Sinah Grabitz
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Andrea Dörner
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Lena Taghipour
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Kai Jakobs
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Bernd Stratmann
- Herz und Diabeteszentrum NRW, Ruhr Universität Bochum, Bad Oeynhausen, Germany
| | - Diethelm Tschoepe
- Herz und Diabeteszentrum NRW, Ruhr Universität Bochum, Bad Oeynhausen, Germany
| | - Ulf Landmesser
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Ursula Rauch
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany.
| |
Collapse
|
99
|
Allegra A, Innao V, Allegra AG, Musolino C. Coagulopathy and thromboembolic events in patients with SARS-CoV-2 infection: pathogenesis and management strategies. Ann Hematol 2020; 99:1953-1965. [PMID: 32671455 PMCID: PMC7363407 DOI: 10.1007/s00277-020-04182-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
In October 2019, a viral infectious disease appeared in the city of Wuhan in China. A new betacoronavirus, SARS-CoV-2, has been recognized as the responsible pathogen in this infection. Although coronavirus disease is principally expressed as a pulmonary infection, critical SARS-CoV-2 infection is frequently complicated with coagulopathy, and thromboembolic events are recognizable in several patients. Dehydration, acute inflammatory condition, protracted immobilization during disease, existence of multiple cardiovascular risk factors such as diabetes, obesity or hypertension, previous coronary artery disease, ischemic stroke, peripheral artery disease are frequent comorbidities in SARS-CoV-2 hospitalized subjects, which possibly augment thrombo-embolic risk. However, other causal factors can still be identified such as unrestricted angiotensin II action, the use of immunoglobulins, an increased production of adhesion molecules able to induce vascular inflammation and endothelial activation, complement stimulation, excessive production of neutrophil extracellular traps (NETs), and increased platelet count. Low-molecular-weight heparin should be chosen as early treatment because of its anti-inflammatory action and its ability to antagonize histones and so defend the endothelium. However, several therapeutic possibilities have also been proposed such as fibrinolytic treatment, drugs that target NETs, and complement inhibition. Nevertheless, although the violence of the pandemic may suggest the use of heroic treatments to reduce the frightening mortality that accompanies SARS-CoV-2 infection, we believe that experimental treatments should only be used within approved and controlled protocols, the only ones that can provide useful and specify information on the validity of the treatments.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125, Messina, Italy.
- COVID Centre AOU Policlinic G. Martino, Messina, Italy.
| | - Vanessa Innao
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125, Messina, Italy
| | - Caterina Musolino
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125, Messina, Italy
| |
Collapse
|
100
|
Modelling the linkage between influenza infection and cardiovascular events via thrombosis. Sci Rep 2020; 10:14264. [PMID: 32868834 PMCID: PMC7458909 DOI: 10.1038/s41598-020-70753-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
There is a heavy burden associated with influenza including all-cause hospitalization as well as severe cardiovascular and cardiorespiratory events. Influenza associated cardiac events have been linked to multiple biological pathways in a human host. To study the contribution of influenza virus infection to cardiovascular thrombotic events, we develop a dynamic model which incorporates some key elements of the host immune response, inflammatory response, and blood coagulation. We formulate these biological systems and integrate them into a cohesive modelling framework to show how blood clotting may be connected to influenza virus infection. With blood clot formation inside an artery resulting from influenza virus infection as the primary outcome of this integrated model, we demonstrate how blood clot severity may depend on circulating prothrombin levels. We also utilize our model to leverage clinical data to inform the threshold level of the inflammatory cytokine TNFα which initiates tissue factor induction and subsequent blood clotting. Our model provides a tool to explore how individual biological components contribute to blood clotting events in the presence of influenza infection, to identify individuals at risk of clotting based on their circulating prothrombin levels, and to guide the development of future vaccines to optimally interact with the immune system.
Collapse
|