51
|
Sellayah D, Thomas H, Lanham SA, Cagampang FR. Maternal Obesity During Pregnancy and Lactation Influences Offspring Obesogenic Adipogenesis but Not Developmental Adipogenesis in Mice. Nutrients 2019; 11:nu11030495. [PMID: 30818740 PMCID: PMC6470821 DOI: 10.3390/nu11030495] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/14/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity is an escalating health crisis of pandemic proportions and by all accounts it has yet to reach its peak. Growing evidence suggests that obesity may have its origins in utero. Recent studies have shown that maternal obesity during pregnancy may promote adipogenesis in offspring. However, these studies were largely based on cell culture models. Whether or not maternal obesity impacts on offspring adipogenesis in vivo remains to be fully established. Furthermore, in vivo adipogenic differentiation has been shown to happen at distinct time periods, one during development (developmental adipogenesis-which is complete by 4 weeks of age in mice) and another in adulthood in response to feeding a high-fat (HF) diet (obesogenic adipogenesis). We therefore set out to determine whether maternal obesity impacted on offspring adipocyte hyperplasia in vivo and whether maternal obesity impacted on developmental or obesogenic adipogenesis, or both. Our findings reveal that maternal obesity is associated with enhanced obesogenic adipogenesis in HF-fed offspring. Interestingly, in newly weaned (4-week-old) offspring, maternal obesity is associated with adipocyte hypertrophy, but there were no changes in adipocyte number. Our results suggest that maternal obesity impacts on offspring obesogenic adipogenesis but does not affect developmental adipogenesis.
Collapse
Affiliation(s)
- Dyan Sellayah
- Harborne Building 12A, School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6AS, UK.
| | - Hugh Thomas
- Institute of Developmental Sciences, School of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | - Stuart A Lanham
- Institute of Developmental Sciences, School of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | - Felino R Cagampang
- Institute of Developmental Sciences, School of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
52
|
Krautgasser C, Mandl M, Hatzmann FM, Waldegger P, Mattesich M, Zwerschke W. Reliable reference genes for expression analysis of proliferating and adipogenically differentiating human adipose stromal cells. Cell Mol Biol Lett 2019; 24:14. [PMID: 30815013 PMCID: PMC6377720 DOI: 10.1186/s11658-019-0140-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/11/2019] [Indexed: 12/28/2022] Open
Abstract
Background The proliferation and adipogenic differentiation of adipose stromal cells (ASCs) are complex processes comprising major phenotypical alterations driven by up- and downregulation of hundreds of genes. Quantitative RT-PCR can be employed to measure relative changes in the expression of a gene of interest. This approach requires constitutively expressed reference genes for normalization to counteract inter-sample variations due to differences in RNA quality and quantity. Thus, a careful validation of quantitative RT-PCR reference genes is needed to accurately measure fluctuations in the expression of genes. Here, we evaluated candidate reference genes applicable for quantitative RT-PCR analysis of gene expression during proliferation and adipogenesis of human ASCs with the immunophenotype DLK1+/CD34+/CD90+/CD105+/CD45−/CD31−. Methods We evaluated the applicability of 10 candidate reference genes (GAPDH, TBP, RPS18, EF1A, TFRC, GUSB, PSMD5, CCNA2, LMNA and MRPL19) using NormFinder, geNorm and BestKeeper software. Results The results indicate that EF1A and MRPL19 are the most reliable reference genes for quantitative RT-PCR analysis of proliferating ASCs. PSMD5 serves as the most reliable endogenous control in adipogenesis. CCNA2 and LMNA were among the least consistent genes. Conclusions Applying these findings for future gene expression analyses will help elucidate ASC biology. Electronic supplementary material The online version of this article (10.1186/s11658-019-0140-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudia Krautgasser
- 1Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Markus Mandl
- 1Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Florian M Hatzmann
- 1Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Petra Waldegger
- 1Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Monika Mattesich
- 2Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Werner Zwerschke
- 1Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| |
Collapse
|
53
|
Lambert JM, Anderson AK, Cowart LA. Sphingolipids in adipose tissue: What's tipping the scale? Adv Biol Regul 2018; 70:19-30. [PMID: 30473005 PMCID: PMC11129658 DOI: 10.1016/j.jbior.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 01/06/2023]
Abstract
Adipose tissue lies at the heart of obesity, mediating its many effects upon the rest of the body, with its unique capacity to expand and regenerate, throughout the lifespan of the organism. Adipose is appreciated as an endocrine organ, with its myriad adipokines that elicit both physiological and pathological outcomes. Sphingolipids, bioactive signaling molecules, affect many aspects of obesity and the metabolic syndrome. While sphingolipids are appreciated in the context of these diseases in other tissues, there are many discoveries yet to be uncovered in the adipose tissue. This review focuses on the effects of sphingolipids on various aspects of adipose function and dysfunction. The processes of adipogenesis, metabolism and thermogenesis, in addition to inflammation and insulin resistance are intimately linked to sphingolipids as discussed below.
Collapse
Affiliation(s)
- Johana M Lambert
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Andrea K Anderson
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, VA, USA.
| |
Collapse
|
54
|
Lecoutre S, Petrus P, Rydén M, Breton C. Transgenerational Epigenetic Mechanisms in Adipose Tissue Development. Trends Endocrinol Metab 2018; 29:675-685. [PMID: 30104112 DOI: 10.1016/j.tem.2018.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023]
Abstract
An adverse nutritional environment during the perinatal period increases the risk of adult-onset metabolic diseases, such as obesity, which may persist across generations. Adipose tissue (AT) from offspring of malnourished dams has been shown to display altered adipogenesis, lipogenesis, and adipokine expression, impaired thermogenesis, and low-grade inflammation. Although the exact mechanisms underlying these alterations remain unclear, epigenetic processes are believed to have an important role. In this review, we focus on epigenetic mechanisms in AT that may account for transgenerational dysregulation of adipocyte formation and adipose function. Understanding the complex interactions between maternal diet and epigenetic regulation of the AT in offspring may be valuable in improving preventive strategies against the obesity pandemic.
Collapse
Affiliation(s)
- Simon Lecoutre
- University of Lille, EA4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France; Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Paul Petrus
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Christophe Breton
- University of Lille, EA4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France.
| |
Collapse
|
55
|
Petrus P, Mejhert N, Corrales P, Lecoutre S, Li Q, Maldonado E, Kulyté A, Lopez Y, Campbell M, Acosta JR, Laurencikiene J, Douagi I, Gao H, Martínez-Álvarez C, Hedén P, Spalding KL, Vidal-Puig A, Medina-Gomez G, Arner P, Rydén M. Transforming Growth Factor-β3 Regulates Adipocyte Number in Subcutaneous White Adipose Tissue. Cell Rep 2018; 25:551-560.e5. [DOI: 10.1016/j.celrep.2018.09.069] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/31/2018] [Accepted: 09/21/2018] [Indexed: 11/15/2022] Open
|
56
|
Abstract
Adipose morphology is defined as the number and size distribution of adipocytes (fat cells) within adipose tissue. Adipose tissue with fewer but larger adipocytes is said to have a 'hypertrophic' morphology, whereas adipose with many adipocytes of a smaller size is said to have a 'hyperplastic' morphology. Hypertrophic adipose morphology is positively associated with insulin resistance, diabetes and cardiovascular disease. By contrast, hyperplastic morphology is associated with improved metabolic parameters. These phenotypic associations suggest that adipose morphology influences risk of cardiometabolic disease. Intriguingly, monozygotic twin studies have determined that adipose morphology is in part determined genetically. Therefore, identifying the genetic regulation of adipose morphology may help us to predict, prevent and ameliorate insulin resistance and associated metabolic diseases. Here, we review the current literature regarding adipose morphology in relation to: (1) metabolic and medical implications; (2) the methods used to assess adipose morphology; and (3) transcriptional differences between morphologies. We further highlight three mechanisms that have been hypothesized to promote adipocyte hypertrophy and thus to regulate adipose morphology.
Collapse
Affiliation(s)
- Panna Tandon
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Rebecca Wafer
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - James E N Minchin
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| |
Collapse
|
57
|
Gao Z, Daquinag AC, Su F, Snyder B, Kolonin MG. PDGFRα/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development 2018; 145:dev.155861. [PMID: 29158445 DOI: 10.1242/dev.155861] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
The relative abundance of thermogenic beige adipocytes and lipid-storing white adipocytes in adipose tissue underlie its metabolic activity. The roles of adipocyte progenitor cells, which express PDGFRα or PDGFRβ, in adipose tissue function have remained unclear. Here, by defining the developmental timing of PDGFRα and PDGFRβ expression in mouse subcutaneous and visceral adipose depots, we uncover depot specificity of pre-adipocyte delineation. We demonstrate that PDGFRα expression precedes PDGFRβ expression in all subcutaneous but in only a fraction of visceral adipose stromal cells. We show that high-fat diet feeding or thermoneutrality in early postnatal development can induce PDGFRβ+ lineage recruitment to generate white adipocytes. In contrast, the contribution of PDGFRβ+ lineage to beige adipocytes is minimal. We provide evidence that human adipose tissue also contains distinct progenitor populations differentiating into beige or white adipocytes, depending on PDGFRβ expression. Based on PDGFRα or PDGFRβ deletion and ectopic expression experiments, we conclude that the PDGFRα/PDGFRβ signaling balance determines progenitor commitment to beige (PDGFRα) or white (PDGFRβ) adipogenesis. Our study suggests that adipocyte lineage specification and metabolism can be modulated through PDGFR signaling.
Collapse
Affiliation(s)
- Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Alexes C Daquinag
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Fei Su
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Brad Snyder
- Department of Surgery, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
58
|
Kumari M, Heeren J, Scheja L. Regulation of immunometabolism in adipose tissue. Semin Immunopathol 2017; 40:189-202. [PMID: 29209828 DOI: 10.1007/s00281-017-0668-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022]
|
59
|
Wang W, Meng X, Yang C, Fang D, Wang X, An J, Zhang J, Wang L, Lu T, Ruan HB, Gao Y. Brown adipose tissue activation in a rat model of Parkinson's disease. Am J Physiol Endocrinol Metab 2017; 313:E731-E736. [PMID: 28851733 DOI: 10.1152/ajpendo.00049.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/15/2017] [Accepted: 08/26/2017] [Indexed: 12/21/2022]
Abstract
Loss of body weight and fat mass is one of the nonmotor symptoms of Parkinson's disease (PD). Weight loss is due primarily to reduced energy intake and increased energy expenditure. Whereas inadequate energy intake in PD patients is caused mainly by appetite loss and impaired gastrointestinal absorption, the underlying mechanisms for increased energy expenditure remain largely unknown. Brown adipose tissue (BAT), a key thermogenic tissue in humans and other mammals, plays an important role in thermoregulation and energy metabolism; however, it has not been tested whether BAT is involved in the negative energy balance in PD. Here, using the 6-hydroxydopamine (6-OHDA) rat model of PD, we found that the activity of sympathetic nerve (SN), the expression of Ucp1 in BAT, and thermogenesis were increased in PD rats. BAT sympathetic denervation blocked sympathetic activity and decreased UCP1 expression in BAT and attenuated the loss of body weight in PD rats. Interestingly, sympathetic denervation of BAT was associated with decreased sympathetic tone and lipolysis in retroperitoneal and epididymal white adipose tissue. Our data suggeste that BAT-mediated thermogenesis may contribute to weight loss in PD.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiangzhi Meng
- Cancer Hospital of HuanXing ChaoYang District Beijing, Beijing, China; and
| | - Chun Yang
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dongliang Fang
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xuemeng Wang
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiaqiang An
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingyi Zhang
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lulu Wang
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tao Lu
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Yan Gao
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China;
| |
Collapse
|
60
|
Chen SH, Chao PM. Prenatal PPARα activation by clofibrate increases subcutaneous fat browning in male C57BL/6J mice fed a high-fat diet during adulthood. PLoS One 2017; 12:e0187507. [PMID: 29095960 PMCID: PMC5667850 DOI: 10.1371/journal.pone.0187507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/22/2017] [Indexed: 12/04/2022] Open
Abstract
We tested the hypothesis that prenatal administration of PPARα agonist clofibrate may permanently increase browning capacity of developing white adipose tissue (WAT). Pregnant C57BL/6J mice were fed a basal diet, without (C) or with 0.5% clofibrate (CF, a PPARα agonist) throughout pregnancy. After parturition, only male offspring were used; all suckled their mothers (who were eating the C diet) and after weaning, they ate a standard chow diet for 4 wk, followed by a high-fat diet (HFD) for 5 wk. Administration of CF up-regulated serum concentrations and hepatic expression of FGF21 in fetuses, with a return to basal levels after CF withdrawal. At postnatal day 84 (P84), CF-offspring had significantly higher expression of thermogenic genes (Ucp1, Cidea, Ppara Ppargc1a, Cpt1b) and UCP1 protein levels in response to HFD in inguinal fat, but not in retroperitoneal (combined with perirenal) or epididymal fat. Based on UCP1 levels in inguinal fat on P7, P14, and P21, appearance of the transient brown-adipocyte phenotype seemed to be hastened by CF exposure. We concluded that giving CF to pregnant mice programmed greater HFD-induced WAT browning in subcutaneous, but not in visceral fat, in their male offspring at adulthood.
Collapse
Affiliation(s)
- Szu-Han Chen
- Institute of Nutrition, China Medical University, Taichung, Taiwan
| | - Pei-Min Chao
- Institute of Nutrition, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
61
|
Li L, Li B, Li M, Niu C, Wang G, Li T, Król E, Jin W, Speakman JR. Brown adipocytes can display a mammary basal myoepithelial cell phenotype in vivo. Mol Metab 2017; 6:1198-1211. [PMID: 29031720 PMCID: PMC5641686 DOI: 10.1016/j.molmet.2017.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023] Open
Abstract
Objective Previous work has suggested that white adipocytes may also show a mammary luminal secretory cell phenotype during lactation. The capacity of brown and beige/brite adipocytes to display a mammary cell phenotype and the levels at which they demonstrate such phenotypes in vivo is currently unknown. Methods To investigate the putative adipocyte origin of mammary gland cells, we performed genetic lineage-labeling experiments in BAT and the mammary glands. Results These studies indicated that the classic brown adipocytes (Ucp1+) and subcutaneous beige/brite adipocytes (Ucp1−/+) were found in the mammary gland during lactation, when they exhibited a mammary myoepithelial phenotype. Up to 2.5% of the anterior dorsal interscapular mammary myoepithelial cell population had a brown adipocyte origin with an adipose and myoepithelial gene signature during lactation. Eliminating these cells, along with all the brown adipocytes, significantly slowed offspring growth, potentially demonstrating their functional importance. Additionally, we showed mammary epithelial lineage Mmtv+ and Krt14+ cells expressed brown adipocyte markers after weaning, demonstrating that mammary gland cells can display an adipose phenotype. Conclusions The identification of a brown adipocyte origin of mammary myoepithelial cells provides a novel perspective on the interrelationships between adipocytes and mammary cells with implications for our understanding of obesity and breast cancer. Brown adipocytes can show a mammary myoepithelial cell phenotype in vivo. Myf5+/Ucp1+ myoepithelial cells express an adipose and myoepithelial signature. Mammary-derived epithelial cells can display adipose features after weaning.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoqun Niu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanlin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Elżbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
| |
Collapse
|
62
|
McGowan SE, McCoy DM. Glucocorticoids Retain Bipotent Fibroblast Progenitors during Alveolar Septation in Mice. Am J Respir Cell Mol Biol 2017; 57:111-120. [PMID: 28530121 DOI: 10.1165/rcmb.2016-0376oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoids have been widely used and exert pleiotropic effects on alveolar structure and function, but do not improve the long-term clinical outcomes for patients with bronchopulmonary dysplasia, emphysema, or interstitial lung diseases. Treatments that foster alveolar regeneration could substantially improve the long-term outcomes for such patients. One approach to alveolar regeneration is to stimulate and guide intrinsic alveolar progenitors along developmental pathways used during secondary septation. Other investigators and we have identified platelet-derived growth factor receptor-α-expressing fibroblast subpopulations that are alternatively skewed toward myofibroblast or lipofibroblast phenotypes. In this study, we administered either the glucocorticoid receptor agonist dexamethasone (Dex) or the antagonist mifepristone to mice during the first postnatal week and evaluated their effects on cellular proliferation and adoption of α-smooth muscle actin and lipid droplets (markers of the myofibroblast and lipofibroblast phenotypes, respectively). We observed that Dex increased the relative abundance of fibroblasts with progenitor characteristics, i.e., containing both α-smooth muscle actin and lipid droplets, uncoupling protein-1 (a marker of brown and beige adipocytes), delta-like ligand-1, and stem cell antigen-1. Dex enhanced signaling through the Smad1/5 pathway, which increased uncoupling protein-1 in a lung fibroblast progenitor cell line. We conclude that glucocorticoid receptor manipulation can sustain fibroblast plasticity, and posit that targeting downstream glucocorticoid responsive pathways could steer fibroblast progenitors along more desirable regenerative pathways.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service and.,Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Diann M McCoy
- Department of Veterans Affairs Research Service and.,Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
63
|
Jiang Y, Berry DC, Jo A, Tang W, Arpke RW, Kyba M, Graff JM. A PPARγ transcriptional cascade directs adipose progenitor cell-niche interaction and niche expansion. Nat Commun 2017. [PMID: 28649987 PMCID: PMC5490270 DOI: 10.1038/ncomms15926] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Adipose progenitor cells (APCs) reside in a vascular niche, located within the perivascular compartment of adipose tissue blood vessels. Yet, the signals and mechanisms that govern adipose vascular niche formation and APC niche interaction are unknown. Here we show that the assembly and maintenance of the adipose vascular niche is controlled by PPARγ acting within APCs. PPARγ triggers a molecular hierarchy that induces vascular sprouting, APC vessel niche affinity and APC vessel occupancy. Mechanistically, PPARγ transcriptionally activates PDGFRβ and VEGF. APC expression and activation of PDGFRβ promotes the recruitment and retention of APCs to the niche. Pharmacologically, targeting PDGFRβ disrupts APC niche contact thus blocking adipose tissue expansion. Moreover, enhanced APC expression of VEGF stimulates endothelial cell proliferation and expands the adipose niche. Consequently, APC niche communication and retention are boosted by VEGF thereby impairing adipogenesis. Our data indicate that APCs direct adipose tissue niche expansion via a PPARγ-initiated PDGFRβ and VEGF transcriptional axis. Adipocyte progenitor cells (APCs) are found tethered to adipose tissue blood vessel walls and can differentiate into adipocytes. Here the authors show that PPARγ controls angiogenesis by stimulating APC–blood vessel interaction and retention via a transcriptional network that includes PDGFRβ and VEGF.
Collapse
Affiliation(s)
- Yuwei Jiang
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daniel C Berry
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ayoung Jo
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Wei Tang
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Robert W Arpke
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jonathan M Graff
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
64
|
Wu B, An C, Li Y, Yin Z, Gong L, Li Z, Liu Y, Heng BC, Zhang D, Ouyang H, Zou X. Reconstructing Lineage Hierarchies of Mouse Uterus Epithelial Development Using Single-Cell Analysis. Stem Cell Reports 2017. [PMID: 28625536 PMCID: PMC5511104 DOI: 10.1016/j.stemcr.2017.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The endometrial layer comprises luminal and glandular epithelia that both develop from the same simple layer of fetal uterine epithelium. Mechanisms of uterine epithelial progenitor self-renewal and differentiation are unclear. This study aims to systematically analyze the molecular and cellular mechanisms of uterine epithelial development by single-cell analysis. An integrated set of single-cell transcriptomic data of uterine epithelial progenitors and their differentiated progenies is provided. Additionally the unique molecular signatures of these cells, characterized by sequential upregulation of specific epigenetic and metabolic activities, and activation of unique signaling pathways and transcription factors, were also investigated. Finally a unique subpopulation of early progenitor, as well as differentiated luminal and glandular lineages, were identified. A complex cellular hierarchy of uterine epithelial development was thus delineated. Our study therefore systematically decoded molecular markers and a cellular program of uterine epithelial development that sheds light on uterine developmental biology. Single-cell transcriptome of mouse uterine epithelial development is provided Epithelial progenitors during early development of uterine epithelia is identified Molecular cascades orchestrating uterine epithelial development are dissected Cellular hierarchical map of uterine epithelial development is reconstructed
Collapse
Affiliation(s)
- Bingbing Wu
- Department of Gynecology, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang 310003, PR China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Chengrui An
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Yu Li
- Department of Gynecology, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang 310003, PR China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Zi Yin
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Lin Gong
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Zhenli Li
- Department of Pathology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yixiao Liu
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Boon Chin Heng
- Department of Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Dandan Zhang
- Department of Pathology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Hongwei Ouyang
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, PR China.
| | - Xiaohui Zou
- Department of Gynecology, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang 310003, PR China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China.
| |
Collapse
|
65
|
Guénantin AC, Briand N, Capel E, Dumont F, Morichon R, Provost C, Stillitano F, Jeziorowska D, Siffroi JP, Hajjar RJ, Fève B, Hulot JS, Collas P, Capeau J, Vigouroux C. Functional Human Beige Adipocytes From Induced Pluripotent Stem Cells. Diabetes 2017; 66:1470-1478. [PMID: 28270520 PMCID: PMC5440013 DOI: 10.2337/db16-1107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 03/02/2017] [Indexed: 12/25/2022]
Abstract
Activation of thermogenic beige adipocytes has recently emerged as a promising therapeutic target in obesity and diabetes. Relevant human models for beige adipocyte differentiation are essential to implement such therapeutic strategies. We report a straightforward and efficient protocol to generate functional human beige adipocytes from human induced pluripotent stem cells (hiPSCs). Without overexpression of exogenous adipogenic genes, our method recapitulates an adipogenic developmental pathway through successive mesodermal and adipogenic progenitor stages. hiPSC-derived adipocytes are insulin sensitive and display beige-specific markers and functional properties, including upregulation of thermogenic genes, increased mitochondrial content, and increased oxygen consumption upon activation with cAMP analogs. Engraftment of hiPSC-derived adipocytes in mice produces well-organized and vascularized adipose tissue, capable of β-adrenergic-responsive glucose uptake. Our model of human beige adipocyte development provides a new and scalable tool for disease modeling and therapeutic screening.
Collapse
Affiliation(s)
- Anne-Claire Guénantin
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMR_S938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Paris, France
- Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, U.K
| | - Nolwenn Briand
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMR_S938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Emilie Capel
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMR_S938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Florent Dumont
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris, France
| | - Romain Morichon
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMR_S938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Claire Provost
- Plateforme LIMP, UMS28 Phénotypage du petit animal, Université Pierre et Marie Curie, Paris, France
| | - Francesca Stillitano
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dorota Jeziorowska
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S1166, Institute of Cardiometabolism and Nutrition, France
| | - Jean-Pierre Siffroi
- Sorbonne Universités, Université Pierre et Marie Curie, Assistance Publique-Hôspitaux de Paris, Service de Génétique et d'Embryologie Médicales, Hôpital Trousseau, Paris, France
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Bruno Fève
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMR_S938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Paris, France
- Assistance Publique-Hôspitaux de Paris, Service d'Endocrinologie, Hôpital Saint-Antoine, Paris, France
| | - Jean-Sébastien Hulot
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S1166, Institute of Cardiometabolism and Nutrition, France
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Jacqueline Capeau
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMR_S938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Corinne Vigouroux
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMR_S938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Paris, France
- Assistance Publique-Hôspitaux de Paris, Service d'Endocrinologie, Hôpital Saint-Antoine, Paris, France
- Assistance Publique-Hôspitaux de Paris, Laboratoire Commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
66
|
Hörl S, Ejaz A, Ernst S, Mattesich M, Kaiser A, Jenewein B, Zwierzina ME, Hammerle S, Miggitsch C, Mitterberger-Vogt MC, Krautgasser C, Pierer G, Zwerschke W. CD146 (MCAM) in human cs-DLK1 -/cs-CD34 + adipose stromal/progenitor cells. Stem Cell Res 2017; 22:1-12. [PMID: 28549249 DOI: 10.1016/j.scr.2017.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 12/27/2022] Open
Abstract
To precisely characterize CD146 in adipose stromal/progenitor cells (ASCs) we sorted the stromal vascular faction (SVF) of human abdominal subcutaneous white adipose tissue (sWAT) according to cell surface (cs) expression of CD146, DLK1 and CD34. This test identified three main SVF cell populations: ~50% cs-DLK1-/cs-CD34+/cs-CD146- ASCs, ~7.5% cs-DLK1+/cs-CD34dim/+/cs-CD146+ and ~7.5% cs-DLK1+/cs-CD34dim/+/cs-CD146- cells. All cells contained intracellular CD146. Whole mount fluorescent IHC staining of small vessels detected CD146+ endothelial cells (CD31+/CD34+/CD146+) and pericytes (CD31-/CD34-/CD146+ ASCs). The cells in the outer adventitial layer showed the typical ASC morphology, were strongly CD34+ and contained low amounts of intracellular CD146 protein (CD31-/CD34+/CD146+). Additionally, we detected wavy CD34-/CD146+ and CD34dim/CD146+ cells. CD34dim/CD146+ cells were slightly more bulky than CD34-/CD146+ cells. Both CD34-/CD146+ and CD34dim/CD146+ cells were detached from the inner pericyte layer and protruded into the outer adventitial layer. Cultured early passage ASCs contained low levels of CD146 mRNA, which was expressed in two different splicing variants, at a relatively high amount of the CD146-long form and at a relatively low amount of the CD146-short form. ASCs contained low levels of CD146 protein, which consisted predominantly long form and a small amount of short form. The CD146 protein was highly stable, and the majority of the protein was localized in the Golgi apparatus. In conclusion, the present study contributes to a better understanding of the spatial localization of CD34+/CD146+ and CD34-/CD146+ cells in the adipose niche of sWAT and identifies CD146 as intracellular protein in cs-DLK1-/cs-CD34+/cs-CD146- ASCs.
Collapse
Affiliation(s)
- Susanne Hörl
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Asim Ejaz
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Sebastian Ernst
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Monika Mattesich
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Andreas Kaiser
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Brigitte Jenewein
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Marit E Zwierzina
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Sarina Hammerle
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Carina Miggitsch
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Maria C Mitterberger-Vogt
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Claudia Krautgasser
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria.
| |
Collapse
|
67
|
Effect of High Glucose Levels on White Adipose Cells and Adipokines-Fuel for the Fire. Int J Mol Sci 2017; 18:ijms18050944. [PMID: 28468243 PMCID: PMC5454857 DOI: 10.3390/ijms18050944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/04/2023] Open
Abstract
White adipocytes release adipokines that influence metabolic and vascular health. Hypertrophic obesity is associated with adipose tissue malfunctioning, leading to inflammation and insulin resistance. When pancreatic islet β cells can no longer compensate, the blood glucose concentration rises (hyperglycemia), resulting in type 2 diabetes. Hyperglycaemia may further aggravate adipose cell dysfunction in ~90% of patients with type 2 diabetes who are obese or overweight. This review will focus on the effects of high glucose levels on human adipose cells and the regulation of adipokines.
Collapse
|
68
|
Lewitt MS. The Role of the Growth Hormone/Insulin-Like Growth Factor System in Visceral Adiposity. BIOCHEMISTRY INSIGHTS 2017; 10:1178626417703995. [PMID: 28469442 PMCID: PMC5404904 DOI: 10.1177/1178626417703995] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/19/2017] [Indexed: 12/18/2022]
Abstract
There is substantial evidence that the growth hormone (GH)/insulin-like growth factor (IGF) system is involved in the pathophysiology of obesity. Both GH and IGF-I have direct effects on adipocyte proliferation and differentiation, and this system is involved in the cross-talk between adipose tissue, liver, and pituitary. Transgenic animal models have been of importance in identifying mechanisms underlying these interactions. It emerges that this system has key roles in visceral adiposity, and there is a rationale for targeting this system in the treatment of visceral obesity associated with GH deficiency, metabolic syndrome, and lipodystrophies. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health, Nursing & Midwifery, University of the West of Scotland, Paisley, UK
| |
Collapse
|
69
|
Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional Regulation of Adipogenesis. Compr Physiol 2017; 7:635-674. [PMID: 28333384 DOI: 10.1002/cphy.c160022] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adipocytes are the defining cell type of adipose tissue. Once considered a passive participant in energy storage, adipose tissue is now recognized as a dynamic organ that contributes to several important physiological processes, such as lipid metabolism, systemic energy homeostasis, and whole-body insulin sensitivity. Therefore, understanding the mechanisms involved in its development and function is of great importance. Adipocyte differentiation is a highly orchestrated process which can vary between different fat depots as well as between the sexes. While hormones, miRNAs, cytoskeletal proteins, and many other effectors can modulate adipocyte development, the best understood regulators of adipogenesis are the transcription factors that inhibit or promote this process. Ectopic expression and knockdown approaches in cultured cells have been widely used to understand the contribution of transcription factors to adipocyte development, providing a basis for more sophisticated in vivo strategies to examine adipogenesis. To date, over two dozen transcription factors have been shown to play important roles in adipocyte development. These transcription factors belong to several families with many different DNA-binding domains. While peroxisome proliferator-activated receptor gamma (PPARγ) is undoubtedly the most important transcriptional modulator of adipocyte development in all types of adipose tissue, members of the CCAAT/enhancer-binding protein, Krüppel-like transcription factor, signal transducer and activator of transcription, GATA, early B cell factor, and interferon-regulatory factor families also regulate adipogenesis. The importance of PPARγ activity is underscored by several covalent modifications that modulate its activity and its ability to modulate adipocyte development. This review will primarily focus on the transcriptional control of adipogenesis in white fat cells and on the mechanisms involved in this fine-tuned developmental process. © 2017 American Physiological Society. Compr Physiol 7:635-674, 2017.
Collapse
Affiliation(s)
- Paula Mota de Sá
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Allison J Richard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Hardy Hang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
70
|
Fernandez-Marcos PJ, Serrano M. Young and Lean: Elimination of Senescent Cells Boosts Adaptive Thermogenesis. Cell Metab 2017; 25:226-228. [PMID: 28178562 DOI: 10.1016/j.cmet.2017.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Thermogenesis converts the chemical energy of nutrients into heat, and this is associated to improved metabolic performance. In a previous issue of Cell Metabolism, Berry et al. (2017) reported that the progenitors of thermogenic beige adipocytes lose functionality with aging, and this process can be reversed with strategies that eliminate senescent cells.
Collapse
Affiliation(s)
| | - Manuel Serrano
- Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain.
| |
Collapse
|
71
|
Minchin JEN, Rawls JF. In vivo imaging and quantification of regional adiposity in zebrafish. Methods Cell Biol 2016; 138:3-27. [PMID: 28129849 DOI: 10.1016/bs.mcb.2016.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adipose tissues (ATs) are lipid-rich structures that supply and sequester energy-dense lipid in response to the energy status of an organism. As such, ATs provide an organism energetic insurance during periods of adverse physiological burden. ATs are deposited in diverse anatomical locations, and excessive accumulation of particular regional ATs modulates disease risk. Therefore, a model system that facilitates the visualization and quantification of regional adiposity holds significant biomedical promise. The zebrafish (Danio rerio) has emerged as a new model system for AT research in which the entire complement of regional ATs can be imaged and quantified in live individuals. Here we present detailed methods for labeling adipocytes in live zebrafish using fluorescent lipophilic dyes, and for identifying and quantifying regional zebrafish ATs.
Collapse
Affiliation(s)
- J E N Minchin
- University of Edinburgh, Edinburgh, United Kingdom; Duke University, Durham, NC, United States
| | - J F Rawls
- Duke University, Durham, NC, United States
| |
Collapse
|
72
|
Is the Mouse a Good Model of Human PPARγ-Related Metabolic Diseases? Int J Mol Sci 2016; 17:ijms17081236. [PMID: 27483259 PMCID: PMC5000634 DOI: 10.3390/ijms17081236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022] Open
Abstract
With the increasing number of patients affected with metabolic diseases such as type 2 diabetes, obesity, atherosclerosis and insulin resistance, academic researchers and pharmaceutical companies are eager to better understand metabolic syndrome and develop new drugs for its treatment. Many studies have focused on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ), which plays a crucial role in adipogenesis and lipid metabolism. These studies have been able to connect this transcription factor to several human metabolic diseases. Due to obvious limitations concerning experimentation in humans, animal models—mainly mouse models—have been generated to investigate the role of PPARγ in different tissues. This review focuses on the metabolic features of human and mouse PPARγ-related diseases and the utility of the mouse as a model.
Collapse
|