51
|
Ma H, Siu WS, Leung PC. The Potential of MSC-Based Cell-Free Therapy in Wound Healing-A Thorough Literature Review. Int J Mol Sci 2023; 24:ijms24119356. [PMID: 37298306 DOI: 10.3390/ijms24119356] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
A wound is an interruption of the normal anatomic structure and function of the skin, which is critical in protecting against foreign pathogens, regulating body temperature and water balance. Wound healing is a complex process involving various phases, including coagulation, inflammation, angiogenesis, re-epithelialization, and re-modeling. Factors such as infection, ischemia, and chronic diseases such as diabetes can compromise wound healing, leading to chronic and refractory ulcers. Mesenchymal stem cells (MSCs) have been used to treat various wound models due to their paracrine activity (secretome) and extracellular vehicles (exosomes) that contain several molecules, including long non-coding RNAs (lncRNAs), micro-RNAs (miRNAs), proteins, and lipids. Studies have shown that MSCs-based cell-free therapy using secretome and exosomes has great potential in regenerative medicine compared to MSCs, as there are fewer safety concerns. This review provides an overview of the pathophysiology of cutaneous wounds and the potential of MSCs-based cell-free therapy in each phase of wound healing. It also discusses clinical studies of MSCs-based cell-free therapies.
Collapse
Affiliation(s)
- Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wing-Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
52
|
Badimon A, Torrente D, Norris EH. Vascular Dysfunction in Alzheimer's Disease: Alterations in the Plasma Contact and Fibrinolytic Systems. Int J Mol Sci 2023; 24:7046. [PMID: 37108211 PMCID: PMC10138543 DOI: 10.3390/ijms24087046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting millions of people worldwide. The classical hallmarks of AD include extracellular beta-amyloid (Aβ) plaques and neurofibrillary tau tangles, although they are often accompanied by various vascular defects. These changes include damage to the vasculature, a decrease in cerebral blood flow, and accumulation of Aβ along vessels, among others. Vascular dysfunction begins early in disease pathogenesis and may contribute to disease progression and cognitive dysfunction. In addition, patients with AD exhibit alterations in the plasma contact system and the fibrinolytic system, two pathways in the blood that regulate clotting and inflammation. Here, we explain the clinical manifestations of vascular deficits in AD. Further, we describe how changes in plasma contact activation and the fibrinolytic system may contribute to vascular dysfunction, inflammation, coagulation, and cognitive impairment in AD. Given this evidence, we propose novel therapies that may, alone or in combination, ameliorate AD progression in patients.
Collapse
Affiliation(s)
| | | | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
53
|
Ji H, Li Y, Su B, Zhao W, Kizhakkedathu JN, Zhao C. Advances in Enhancing Hemocompatibility of Hemodialysis Hollow-Fiber Membranes. ADVANCED FIBER MATERIALS 2023; 5:1-43. [PMID: 37361105 PMCID: PMC10068248 DOI: 10.1007/s42765-023-00277-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 06/28/2023]
Abstract
Hemodialysis, the most common modality of renal replacement therapy, is critically required to remove uremic toxins from the blood of patients with end-stage kidney disease. However, the chronic inflammation, oxidative stress as well as thrombosis induced by the long-term contact of hemoincompatible hollow-fiber membranes (HFMs) contribute to the increase in cardiovascular diseases and mortality in this patient population. This review first retrospectively analyzes the current clinical and laboratory research progress in improving the hemocompatibility of HFMs. Details on different HFMs currently in clinical use and their design are described. Subsequently, we elaborate on the adverse interactions between blood and HFMs, involving protein adsorption, platelet adhesion and activation, and the activation of immune and coagulation systems, and the focus is on how to improve the hemocompatibility of HFMs in these aspects. Finally, challenges and future perspectives for improving the hemocompatibility of HFMs are also discussed to promote the development and clinical application of new hemocompatible HFMs. Graphical Abstract
Collapse
Affiliation(s)
- Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207 China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| |
Collapse
|
54
|
Cutter B, Lum ZC, Giordani M, Meehan JP. Utility of D-dimer in total joint arthroplasty. World J Orthop 2023; 14:90-102. [PMID: 36998388 PMCID: PMC10044320 DOI: 10.5312/wjo.v14.i3.90] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/22/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
As the number of patients receiving total joint replacements continues to rise, considerable attention has been directed towards the early detection and prevention of postoperative complications. While D-dimer has long been studied as a diagnostic tool in venous thromboembolism (VTE), this assay has recently received considerable attention in the diagnosis of periprosthetic joint infection (PJI). D-dimer values are substantially elevated in the acute postoperative period after total joint arthroplasty, with levels often exceeding the standard institutional cutoff for VTE (500 µg/L). The utility of D-dimer in detecting VTE after total joint replacement is currently limited, and more research to assess its value in the setting of contemporary prophylaxis protocols is warranted. Recent literature supports D-dimer as a good to excellent biomarker for the diagnosis of chronic PJI, especially when using serum sample technique. Providers should exercise caution when interpreting D-dimer levels in patients with inflammatory and hypercoagulability disorders, as the diagnostic value is decreased. The updated 2018 Musculoskeletal Infection Society criteria, which includes D-dimer levels > 860 µg/L as a minor criterion, may be the most accurate for diagnosing chronic PJI to date. Larger prospective trials with transparent lab testing protocols are needed to establish best assay practices and optimal cutoff values for D-dimer in the diagnosis of PJI. This review summarizes the most current literature on the value of D-dimer in total joint arthroplasty and elucidates areas for future progress.
Collapse
Affiliation(s)
- Brenden Cutter
- Department of Orthopedic Surgery, Valley Orthopedic Surgery Residency/Valley Consortium for Medical Education, Modesto, CA 95351, United States
| | - Zachary C Lum
- Department of Orthopaedics, Adult Reconstruction Division, University of California, Davis Medical Center, Sacramento, CA 95817, United States
| | - Mauro Giordani
- Department of Orthopaedics, Adult Reconstruction Division, University of California, Davis Medical Center, Sacramento, CA 95817, United States
| | - John P Meehan
- Department of Orthopaedics, Adult Reconstruction Division, University of California, Davis Medical Center, Sacramento, CA 95817, United States
| |
Collapse
|
55
|
Müller R, Freitag-Wolf S, Weiner J, Chopra A, Top T, Dommisch H, Schaefer AS. Case-only design identifies interactions of genetic risk variants at SIGLEC5 and PLG with the lncRNA CTD-2353F22.1 implying the importance of periodontal wound healing for disease aetiology. J Clin Periodontol 2023; 50:90-101. [PMID: 36129033 DOI: 10.1111/jcpe.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
AIM The basis of phenotypic variation of periodontitis is genetic variability. Disease relevant effects of individual risk alleles are considered to result from genetic interactions. We investigated gene × gene (G×G) interactions of suggestive periodontitis susceptibility alleles. MATERIALS AND METHODS We used the case-only design and investigated single-nucleotide polymorphism (SNPs) that showed associations in our recent genome-wide association study (GWAS) and GWAS meta-analysis with p < 5 × 10-6 . CRISPR-dCas9 gene activation followed by RNA-sequencing and gene-set enrichment analyses elucidated differentially expressed genes and gene networks. With the databases of SNPInspector and Transfac professional, luciferase reporter gene assays and antibody electrophoretic mobility shift experiments, we analysed allele-specific effects on transcription factor binding. RESULTS SNPs at the genes sialic acid binding Ig-like lectin 5 (SIGLEC5) and plasminogen (PLG) showed G×G interactions with rs1122900 at the long non-coding RNA (lncRNA) CTD-2353F22. Associated chromatin cis-activated CTD-2353F22.1 6.5-fold (p = .003), indicating CTD-2353F22.1 as target gene of this interaction. CTD-2353F22.1 regulated GADD45A (padj < 4.9 × 10-11 , log2 fold change (FC) = -0.55), THBS1, SERPINE1 and Tissue Factor F3 (padj < 5 × 10-7 , log2 FC ≥ -0.35) and the gene set "angiogenesis" (area under the curve = 0.71, padj = 8.2 × 10-5 ). rs1122900 effect C-allele decreased reporter gene activity (5.5-fold, p = .0003) and PRDM14 binding (76%). CONCLUSIONS CTD-2353F22.1 mediates interaction of SIGLEC5 and PLG, together with genes that function in periodontal wound healing.
Collapse
Affiliation(s)
- Ricarda Müller
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Berlin Institute of Health, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - January Weiner
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - Avneesh Chopra
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Berlin Institute of Health, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tugba Top
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Berlin Institute of Health, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Henrik Dommisch
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Berlin Institute of Health, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arne S Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Berlin Institute of Health, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
56
|
Platelet-Rich Plasma Gel Matrix (PRP-GM): Description of a New Technique. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120817. [PMID: 36551023 PMCID: PMC9774306 DOI: 10.3390/bioengineering9120817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022]
Abstract
Several musculoskeletal conditions are triggered by inflammatory processes that occur along with imbalances between anabolic and catabolic events. Platelet-rich plasma (PRP) is an autologous product derived from peripheral blood with inherent immunomodulatory and anabolic properties. The clinical efficacy of PRP has been evaluated in several musculoskeletal conditions, including osteoarthritis, tendinopathy, and osteonecrosis. When used in combination with hyaluronic acid (HA), a common treatment alternative, the regenerative properties of PRP are significantly enhanced and may provide additional benefits in terms of clinical outcomes. Recently, a new PRP-derived product has been reported in the literature and is being referred to as "plasma gel". Plasma gels are obtained by polymerizing plasmatic proteins, which form solid thermal aggregates cross-linked with fibrin networks. Plasma gels are considered to be a rich source of growth factors and provide chemotactic, migratory, and proliferative properties. Additionally, clot formation and the associated fibrinolytic reactions play an additional role in tissue repair. There are only a few scientific articles focusing on plasma gels. Historically, they have been utilized in the fields of aesthetics and dentistry. Given that the combination of three products (PRP, HA, and plasma gel) could enhance tissue repair and wound healing, in this technical note, we propose a novel regenerative approach, named "PRP-HA cellular gel matrix" (PRP-GM), in which leukocyte-rich PRP (LR-PRP) is mixed with a plasma gel (obtained by heating the plasma up) and HA in one syringe using a three-way stopcock. The final product contains a fibrin-albumin network entangled with HA's polymers, in which the cells and biomolecules derived from PRP are attached and released gradually as fibrinolytic reactions and hyaluronic acid degradation occur. The presence of leukocytes, especially monocytes and macrophages, promotes tissue regeneration, as type 2 macrophages (M2) possess an anti-inflammatory feature. In addition, HA promotes the viscosuplementation of the joint and induces an anti-inflammatory response, resulting in pain relief. This unique combination of biological molecules may contribute to the optimization of regenerative protocols suitable for the treatment of degenerative musculoskeletal diseases.
Collapse
|
57
|
George A, Martin P. Wound Healing Insights from Flies and Fish. Cold Spring Harb Perspect Biol 2022; 14:a041217. [PMID: 35817511 PMCID: PMC9620851 DOI: 10.1101/cshperspect.a041217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
All organisms from single-cell amoebae through to Homo sapiens have evolved strategies for repairing wounds as an essential homeostatic mechanism for rebuilding their outer barrier layers after damage. In multicellular animals, this outer barrier layer is the skin, and, for more than a century, scientists have been attempting to unravel the mechanisms underpinning skin repair because of its clear clinical relevance to pathologies that range from chronic nonhealing wounds, through to excessive scarring. Most of these studies have been in rabbits and rodents, or in in vitro scratch wound models, but in the last decades, two newcomer model organisms to wound healing studies-flies and fish-have brought genetic tractability and unparalleled opportunities for live imaging to the field. These two models are complementary to one another, and to mouse and in vitro approaches, and thus offer different insights into various aspects of the wound repair process.
Collapse
Affiliation(s)
- Anne George
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Paul Martin
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
58
|
Immunothrombosis and the Role of Platelets in Venous Thromboembolic Diseases. Int J Mol Sci 2022; 23:ijms232113176. [PMID: 36361963 PMCID: PMC9656618 DOI: 10.3390/ijms232113176] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Venous thromboembolism (VTE) is the third leading cardiovascular cause of death and is conventionally treated with anticoagulants that directly antagonize coagulation. However, recent data have demonstrated that also platelets play a crucial role in VTE pathophysiology. In the current review, we outline how platelets are involved during all stages of experimental venous thrombosis. Platelets mediate initiation of the disease by attaching to the vessel wall upon which they mediate leukocyte recruitment. This process is referred to as immunothrombosis, and within this novel concept inflammatory cells such as leukocytes and platelets directly drive the progression of VTE. In addition to their involvement in immunothrombosis, activated platelets can directly drive venous thrombosis by supporting coagulation and secreting procoagulant factors. Furthermore, fibrinolysis and vessel resolution are (partly) mediated by platelets. Finally, we summarize how conventional antiplatelet therapy can prevent experimental venous thrombosis and impacts (recurrent) VTE in humans.
Collapse
|
59
|
Temporal Release and Denature of Several Mediators in Pure Platelet-Rich Plasma and Temperature-Induced Platelet Lysates Derived from a Similar Bovine Platelet Concentrate. Vet Med Int 2022; 2022:2609508. [PMID: 36193256 PMCID: PMC9525800 DOI: 10.1155/2022/2609508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
There is scarce information about bovine platelet-rich plasma/platelet-rich gel (PRP/PRG) and related hemocomponents (HCs), such as platelet lysates (PLs), including growth factor (GF) and cytokine concentrations, and how the stability of these biomolecules could be affected by time and temperature. This study aimed to evaluate the release and stability of transforming growth factor beta 1 (TGF-β1), interleukin 4 (IL-4), and tumor necrosis factor alpha (TNF-α) contained in bovine pure PRP (P-PRP) and temperature-induced PL (TIPL) coming from a similar platelet concentrate (PC) at 4 and 37°C at 3 and 96 h. Platelet concentrates (PCs) presented a 1.7-fold concentration of platelets (PLTs) with negligible counts of white blood cells (WBCs) when compared to the counts for these cells in whole blood. TGF-β1 concentrations were significantly lowest in plasma followed by TIPL, chemical-induced PL (CIPL), and P-PRP. IL-4 and TNF-α concentrations did not differ between HCs. TGF-β1 concentrations were negatively affected in P-PRPs stored at 4°C at 3 and 96 h, whereas those from P-PRP maintained at 37°C presented similar concentrations to TIPL stored at both temperatures over time. IL-4 and TNF-α concentrations were not affected by time or temperature in any of the HCs evaluated. Pure PRGs released additional quantities of GF and cytokines over time when compared with HCs stored over 96 h at 4 and 37°C. The method, either chemical or physical, used for platelet activation or damage produces a different GF and cytokine release pattern, which makes to each evaluated HCs different despite they come from a similar bovine PC. P-PRP activated with calcium gluconate and maintained at 37°C, which polymerizes in P-PRG, showed the best GF and cytokine release/denature profile compared with the rest of the HCs evaluated.
Collapse
|
60
|
Liu K, Cheng H, Guo Y, Liu Y, Li L, Zhang X. Autologous platelet‐rich plasma intrauterine perfusion to improve pregnancy outcomes after implantation failure: A systematic review and meta‐analysis. J Obstet Gynaecol Res 2022; 48:3137-3151. [DOI: 10.1111/jog.15431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Kepeng Liu
- First Clinical Medical College of LanZhou University Lanzhou GanSu PR China
| | - Hui Cheng
- Clinical Laboratory, Affiliated Hospital of Northwest Minzu University Lanzhou GanSu PR China
| | - Yaqiong Guo
- Clinical Laboratory, Affiliated Hospital of Northwest Minzu University Lanzhou GanSu PR China
| | - Yuan Liu
- Clinical Laboratory, Affiliated Hospital of Northwest Minzu University Lanzhou GanSu PR China
| | - Lifei Li
- The Reproductive Medicine Special Hospital of the 1st Hospital of Lanzhou University Lanzhou GanSu PR China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu Province Lanzhou GanSu PR China
| | - Xuehong Zhang
- The Reproductive Medicine Special Hospital of the 1st Hospital of Lanzhou University Lanzhou GanSu PR China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu Province Lanzhou GanSu PR China
| |
Collapse
|
61
|
Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application. Molecules 2022; 27:molecules27175580. [PMID: 36080341 PMCID: PMC9458019 DOI: 10.3390/molecules27175580] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic ulcers are among the main causes of morbidity and mortality due to the high probability of infection and sepsis and therefore exert a significant impact on public health resources. Numerous types of dressings are used for the treatment of skin ulcers-each with different advantages and disadvantages. Bacterial cellulose (BC) has received enormous interest in the cosmetic, pharmaceutical, and medical fields due to its biological, physical, and mechanical characteristics, which enable the creation of polymer composites and blends with broad applications. In the medical field, BC was at first used in wound dressings, tissue regeneration, and artificial blood vessels. This material is suitable for treating various skin diseases due its considerable fluid retention and medication loading properties. BC membranes are used as a temporary dressing for skin treatments due to their excellent fit to the body, reduction in pain, and acceleration of epithelial regeneration. BC-based composites and blends have been evaluated and synthesized both in vitro and in vivo to create an ideal microenvironment for wound healing. This review describes different methods of producing and handling BC for use in the medical field and highlights the qualities of BC in detail with emphasis on biomedical reports that demonstrate its utility. Moreover, it gives an account of biomedical applications, especially for tissue engineering and wound dressing materials reported until date. This review also includes patents of BC applied as a wound dressing material.
Collapse
|
62
|
Liang Z, Han G, Luo Z, Li B, Liu W, Shen C. Effects of Periplaneta americana extracts on the growth and proliferation of cutaneous interstitial cells in cutaneous-wound healing. Front Pharmacol 2022; 13:920855. [PMID: 36105218 PMCID: PMC9465176 DOI: 10.3389/fphar.2022.920855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Cutaneous-wound healing requires a coordinated reaction of multiple cells, including interstitial cells. Impaired recovery of cutaneous wounds can lead to various adverse health outcomes. Kangfuxin (KFX), an extract obtained from Periplaneta americana, is beneficial in cutaneous-wound healing. In this study, we isolated dermal cells from suckling mice and established a mouse model of cutaneous injury to evaluate the therapeutic effects of KFX. Cell biology experiments indicated that treatment with KFX improved cell proliferation and migration and also repaired cutaneous wounds in the animal model. Activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway was the core molecular mechanism of KFX. Our study provides a theoretical and practical basis for the clinical application of KFX in cutaneous-wound healing.
Collapse
Affiliation(s)
- Zheng Liang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guiqi Han
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zecheng Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baojie Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wentao Liu
- The First Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chongyang Shen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chongyang Shen,
| |
Collapse
|
63
|
Huang HH, Chen ZH, Nguyen DT, Tseng CM, Chen CS, Chang JH. Blood Coagulation on Titanium Dioxide Films with Various Crystal Structures on Titanium Implant Surfaces. Cells 2022; 11:cells11172623. [PMID: 36078030 PMCID: PMC9454428 DOI: 10.3390/cells11172623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Titanium (Ti) is one of the most popular implant materials, and its surface titanium dioxide (TiO2) provides good biocompatibility. The coagulation of blood on Ti implants plays a key role in wound healing and cell growth at the implant site; however, researchers have yet to fully elucidate the mechanism underlying this process on TiO2. Methods: This study examined the means by which blood coagulation was affected by the crystal structure of TiO2 thin films (thickness < 50 nm), including anatase, rutile, and mixed anatase/rutile. The films were characterized in terms of roughness using an atomic force microscope, thickness using an X-ray photoelectron spectrometer, and crystal structure using transmission electron microscopy. The surface energy and dielectric constant of the surface films were measured using a contact angle goniometer and the parallel plate method, respectively. Blood coagulation properties (including clotting time, factor XII contact activation, fibrinogen adsorption, fibrin attachment, and platelet adhesion) were then assessed on the various test specimens. Results: All of the TiO2 films were similar in terms of surface roughness, thickness, and surface energy (hydrophilicity); however, the presence of rutile structures was associated with a higher dielectric constant, which induced the activation of factor XII, the formation of fibrin network, and platelet adhesion. Conclusions: This study provides detailed information related to the effects of TiO2 crystal structures on blood coagulation properties on Ti implant surfaces.
Collapse
Affiliation(s)
- Her-Hsiung Huang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei 103, Taiwan
- Correspondence: (H.-H.H.); (C.-S.C.)
| | - Zhi-Hwa Chen
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Diem Thuy Nguyen
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chuan-Ming Tseng
- Department of Materials Engineering and Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Chiang-Sang Chen
- Department of Orthopedics, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Department of Materials and Textiles, Asia Eastern University of Science and Technology, New Taipei City 220, Taiwan
- Correspondence: (H.-H.H.); (C.-S.C.)
| | - Jean-Heng Chang
- Dental Department, Cheng Hsin General Hospital, Taipei 112, Taiwan
| |
Collapse
|
64
|
Huang C, Xu X, Fu J, Yu DG, Liu Y. Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers (Basel) 2022; 14:3266. [PMID: 36015523 PMCID: PMC9415690 DOI: 10.3390/polym14163266] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
Bleeding control plays a very important role in worldwide healthcare, which also promotes research and development of wound dressings. The wound healing process involves four stages of hemostasis, inflammation, proliferation and remodeling, which is a complex process, and wound dressings play a huge role in it. Electrospinning technology is simple to operate. Electrospun nanofibers have a high specific surface area, high porosity, high oxygen permeability, and excellent mechanical properties, which show great utilization value in the manufacture of wound dressings. As one of the most popular reactive and functional synthetic polymers, polyacrylonitrile (PAN) is frequently explored to create nanofibers for a wide variety of applications. In recent years, researchers have invested in the application of PAN nanofibers in wound dressings. Research on spun nanofibers is reviewed, and future development directions and prospects of electrospun PAN nanofibers for wound dressings are proposed.
Collapse
Affiliation(s)
- Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xizi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhao Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yanbo Liu
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
65
|
Fan C, Xu Q, Hao R, Wang C, Que Y, Chen Y, Yang C, Chang J. Multi-functional wound dressings based on silicate bioactive materials. Biomaterials 2022; 287:121652. [PMID: 35785753 DOI: 10.1016/j.biomaterials.2022.121652] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
Most traditional wound dressings passively offer a protective barrier for the wounds, which lacks the initiative in stimulating tissue regeneration. In addition, cutaneous wound healing is usually accompanied by various complicated conditions, including bacterial infection, skin cancer, and damaged skin appendages, bringing further challenges for wound management in clinic. Therefore, an ideal wound dressing should not only actively stimulate wound healing but also hold multi-functions for solving problems associated with different specific wound conditions. Recent studies have demonstrated that silicate bioceramics and bioglasses are one type of promising materials for the development of wound dressings, as they can actively accelerate wound healing by regulating endothelial cells, dermal fibroblasts, macrophages, and epidermal cells. In particular, silicate-based biomaterials can be further functionalized by specific structural design or doping with functional components, which endow materials with enhanced bioactivities or expanded physicochemical properties such as photothermal, photodynamic, chemodynamic, or imaging properties. The functionalized materials can be used to address wound healing with different demands including but not limited to antibacterial, anticancer, skin appendages regeneration, and wound monitoring. In this review, we summarized the current research on the development of silicate-based multi-functional wound dressings and prospected the development of advanced wound dressings in the future.
Collapse
Affiliation(s)
- Chen Fan
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Qing Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
| | - Ruiqi Hao
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Chun Wang
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Yumei Que
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Yanxin Chen
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Chen Yang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| | - Jiang Chang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, PR China.
| |
Collapse
|
66
|
Liu E, Gao H, Zhao Y, Pang Y, Yao Y, Yang Z, Zhang X, Wang Y, Yang S, Ma X, Zeng J, Guo J. The potential application of natural products in cutaneous wound healing: A review of preclinical evidence. Front Pharmacol 2022; 13:900439. [PMID: 35935866 PMCID: PMC9354992 DOI: 10.3389/fphar.2022.900439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Under normal circumstances, wound healing can be summarized as three processes. These include inflammation, proliferation, and remodeling. The vast majority of wounds heal rapidly; however, a large percentage of nonhealing wounds have still not been studied significantly. The factors affecting wound nonhealing are complex and diverse, and identifying an effective solution from nature becomes a key goal of research. This study aimed to highlight and review the mechanisms and targets of natural products (NPs) for treating nonhealing wounds. The results of relevant studies have shown that the effects of NPs are associated with PI3K-AKT, P38MAPK, fibroblast growth factor, MAPK, and ERK signaling pathways and involve tumor growth factor (TNF), vascular endothelial growth factor, TNF-α, interleukin-1β, and expression of other cytokines and proteins. The 25 NPs that contribute to wound healing were systematically summarized by an inductive collation of the six major classes of compounds, including saponins, polyphenols, flavonoids, anthraquinones, polysaccharides, and others, which will further direct the attention to the active components of NPs and provide research ideas for further development of new products for wound healing.
Collapse
Affiliation(s)
- E Liu
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjin Gao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YiJia Zhao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobing Pang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Neijiang Hospital of Traditional Chinese Medicine, Neijiang, China
| | - Zhengru Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueer Zhang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YanJin Wang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siming Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jing Guo
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| |
Collapse
|
67
|
Thachil J, Favaloro EJ, Lippi G. D-dimers-"Normal" Levels versus Elevated Levels Due to a Range of Conditions, Including "D-dimeritis," Inflammation, Thromboembolism, Disseminated Intravascular Coagulation, and COVID-19. Semin Thromb Hemost 2022; 48:672-679. [PMID: 35803265 DOI: 10.1055/s-0042-1748193] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
D-dimers reflect a breakdown product of fibrin. The current narrative review outlines how D-dimers can arise in normal individuals, as well as in patients suffering from a wide range of disease states. D-dimers in normal individuals without evident thrombosis can arise from background fibrinolytic activity in various tissues, including kidney, mammary and salivary glands, which ensures smooth flow of arising fluids where any blood contamination could be immediately lysed. In addition, healthy individuals can also regularly sustain minor injuries, often unbeknown to them, and wound healing follows clot formation in these situations. D-dimers can also arise in anxiety and following exercise, and are also markers of inflammation. Lung inflammation (triggered by microbes or foreign particles) is perhaps also particularly relevant, since the hemostasis system and fibrinolysis help to trap and remove such debris. Lung inflammation in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may contribute to D-dimer levels additive to thrombosis in patients with COVID-19 (coronavirus disease 2019). Indeed, severe COVID-19 can lead to multiple activation events, including inflammation, primary and secondary hemostasis, and fibrinolysis, all of which may contribute to cumulative D-dimer development. Finally, D-dimer testing has also found a role in the diagnosis and triaging of the so-called (COVID-19) vaccine-induced thrombotic thrombocytopenia.
Collapse
Affiliation(s)
- Jecko Thachil
- Department of Haematology, Manchester University Hospitals, Manchester, United Kingdom
| | - Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia.,Sydney Centres for Thrombosis and Haemostasis, Westmead, New South Wales, Australia.,Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University Hospital of Verona, Verona, Italy
| |
Collapse
|
68
|
Custo S, Baron B, Felice A, Seria E. A comparative profile of total protein and six angiogenically-active growth factors in three platelet products. GMS INTERDISCIPLINARY PLASTIC AND RECONSTRUCTIVE SURGERY DGPW 2022; 11:Doc06. [PMID: 35909816 PMCID: PMC9284722 DOI: 10.3205/iprs000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
OBJECTIVES Platelet-derived products have been shown as promising novel therapeutic agents for chronic wounds. However, their clinical use requires a greater degree of method standardisation, part of which involved more extensive cataloguing of their biochemical composition. This study aimed to quantify and compare total protein and 6 angiogenically-active growth factors in three distinct platelet products. METHODS Platelet Lysate (PL, n=5), Calcium-activated Platelet Rich Plasma (Ca-PRP, n=5) and Platelet-Rich Fibrin (PRF, n=5) were prepared from pooled platelet apheresis products (n=10). Ca-PRP and PRF were prepared from the same units (n=5) by activation with 20 mmolL-1 calcium chloride. PL was prepared from the remaining (n=5) units using an established lysate. Total protein was quantified with the Bradford Assay. Sandwich enzyme-linked immunosorbent assay was used to quantify six growth factors: epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), stromal cell derived growth factor-1α (SDF-1α), endostatin, and transforming growth factor-β1 (TGF-β1). RESULTS Protein retrieval differed significantly (p<0.05) between the three products: PL (11.35±0.80 mg/mL) < Ca-PRP (20.44±8.17 mg/mL) < PRF (40.67±3.13 mg/mL). Growth factor yield was considerable in all three products and differed significantly for: VEGF (PL<PRF); EGF (Ca-PRP<PRF); HFG (PL<Ca-PRP); Endostatin (PL<Ca-PRP, PRF<Ca-PRP, PL<PRF) and TGF-β1 (Ca-PRP<PL, Ca-PRP<PRF). CONCLUSIONS Platelet apheresis products contain a substantial quantity of the investigated pro- and anti-angiogenic growth factors. Their release varies depending on the manufacturing protocol used. Clinically, alternate products could thus be combined to provide a therapeutically optimal mix of growth factors.
Collapse
Affiliation(s)
- Scott Custo
- Department of Physiology & Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, Malta,Centre for Molecular Medicine & Biobanking, University of Malta, Msida, Malta,*To whom correspondence should be addressed: Scott Custo, Department of Physiology & Biochemistry, Biomedical Science Building, University of Malta, Msida, MSD 2080, Malta, E-mail:
| | - Byron Baron
- Centre for Molecular Medicine & Biobanking, University of Malta, Msida, Malta
| | - Alex Felice
- Department of Physiology & Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, Malta,Centre for Molecular Medicine & Biobanking, University of Malta, Msida, Malta,Division of Clinical Genetics, Department of Pathology, Mater Dei Hospital, Msida, Malta
| | - Elisa Seria
- Department of Physiology & Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, Malta,Centre for Molecular Medicine & Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
69
|
Liu H, Li D, Sun T, Deng H, Li L, Cai J, Shen C. Platelet distribution width associated with short-term prognosis and cost in paediatrics with partial-thickness thermal burns: A retrospective comparative study. Int Wound J 2022; 19:1853-1859. [PMID: 35706362 DOI: 10.1111/iwj.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 12/01/2022] Open
Abstract
Platelets exert important roles in burn wound healing and involving in inflammatory regulation and tissue repair. Platelet distribution width (PDW) is an indicator representing platelet morphology and activation. In this study, we try to evaluate the value of PDW in predicting short-term prognosis and cost of paediatrics with partial-thickness thermal burns. This retrospective study enrolled 73 children with partial-thickness thermal burns. The Ability of PDW to predict wound healing was evaluated by receiver operating characteristic (ROC) curve. All 73 patients were assigned into high and low PDW group according to optimal cut-off value from ROC curve. Associations between PDW and 2-weeks healing rate, time to wound healing, in-hospital cost and length of stay were evaluated. Furthermore, Univariate and multivariate logistic regression analysis were used to furtherly evaluate the significance of PDW in wound healing. We found that all baseline characteristics between groups were comparable (all P > .05). High PDW group had a significant higher 2-weeks wound healing rate than those with a low PDW (66.7% versus 32.6%, P < .01). Moreover, the mean time to wound healing of high PDW was obviously shorter than that of low PDW group (15.4 ± 10.1 vs 20.7 ± 10.9, P = .04). Univariate (OR: 0.24, 95%CI: 0.09-0.65, P < .01) and multivariate (OR: 0.15, 95CI%:0.05-0.52, P < .01) analysis confirmed PDW as an independent marker for wound healing. Patients in high PDW group had a significant lower medical burden than low PDW group, including in-hospital cost (13.7 ± 10.6 vs 21.9 ± 16.7, ×103RMB, P = .02) and length of stay (12.2 ± 8.8 vs 19.0 ± 10.8 days, P < .01). In conclusion, PDW can sever as a potential indictor to predict the short-term prognosis of paediatrics with partial thickness thermal burns.
Collapse
Affiliation(s)
- Hailiang Liu
- From Department of Burns and Plastic Surgery, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dongjie Li
- From Department of Burns and Plastic Surgery, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tianjun Sun
- From Department of Burns and Plastic Surgery, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huping Deng
- From Department of Burns and Plastic Surgery, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ligen Li
- From Department of Burns and Plastic Surgery, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianhua Cai
- From Department of Burns and Plastic Surgery, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chuanan Shen
- From Department of Burns and Plastic Surgery, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
70
|
Eremenko E, Ding J, Kwan P, Tredget EE. The Biology of Extracellular Matrix Proteins in Hypertrophic Scarring. Adv Wound Care (New Rochelle) 2022; 11:234-254. [PMID: 33913776 DOI: 10.1089/wound.2020.1257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Significance: Hypertrophic scars (HTS) are a fibroproliferative disorder that occur following deep dermal injury and affect up to 72% of burn patients. These scars result in discomfort, impaired mobility, disruption of normal function and cosmesis, and significant psychological distress. Currently, there are no satisfactory methods to treat or prevent HTS, as the cellular and molecular mechanisms are complex and incompletely understood. This review summarizes the biology of proteins in the dermal extracellular matrix (ECM), which are involved in wound healing and hypertrophic scarring. Recent Advances: New basic research continues toward understanding the diversity of cellular and molecular mechanisms of normal wound healing and hypertrophic scarring. Broadening the understanding of these mechanisms creates insight into novel methods for preventing and treating HTS. Critical Issues: Although there is an abundance of research conducted on collagen in the ECM and its relationship to HTS, there is a significant gap in understanding the role of proteoglycans and their specific isoforms in dermal fibrosis. Future Directions: Exploring the biological roles of ECM proteins and their unique isoforms in HTS, mature scars, and normal skin will further the understanding of abnormal wound healing and create a more robust understanding of what constitutes dermal fibrosis. Research into the biological roles of ECM protein isoforms and their regulation during wound healing warrants a more extensive investigation to identify their distinct biological functions in cellular processes and outcomes.
Collapse
Affiliation(s)
- Elizabeth Eremenko
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
| | - Jie Ding
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
| | - Peter Kwan
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
- Division of Plastic Surgery, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Edward E. Tredget
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
- Division of Plastic Surgery, Department of Surgery, University of Alberta, Edmonton, Canada
| |
Collapse
|
71
|
CCR2 monocytes repair cerebrovascular damage caused by chronic social defeat stress. Brain Behav Immun 2022; 101:346-358. [PMID: 35063606 DOI: 10.1016/j.bbi.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Immune surveillance of the brain plays an important role in health and disease. Peripheral leukocytes patrol blood-brain barrier interfaces, and after injury, monocytes cross the cerebrovasculature and follow a pattern of pro- and anti-inflammatory activity leading to tissue repair. We have shown that chronic social defeat (CSD) causes scattered vasculature disruptions. Here, we assessed CCR2+ monocyte trafficking to the vascular injury sites in Ccr2wt/rfp reporter mice both during CSD and one week following CSD cessation. We found that CSD for 14 days induced microhemorrhages where plasma fibrinogen leaked into perivascular spaces, but it did not affect the distribution or density of CCR2rfp+ monocytes in the brain. However, after recovery from CSD, many vascularly adhered CCR2+ cells were detected, and gene expression of the CCR2 chemokine receptor ligands CCL7 and CCL12, but not CCL2, was elevated in endothelial cells. Adhered CCR2+ cells were mostly the non-classical, anti-inflammatory Ly6Clo type, and they phagocytosed fibrinogen in perivascular spaces. In CCR2-deficient Ccr2rfp/rfp mice, fibrinogen levels remained elevated in recovery. Fibrinogen infused intracerebroventricularly induced CCR2+ cells to adhere to the vasculature and phagocytose perivascular fibrinogen in Ccr2wt/rfp but not Ccr2rfp/rfp mice. Depletion of monocytes with clodronate liposomes during CSD recovery prevented fibrinogen clearance and blocked behavioral recovery. We hypothesize that peripheral CCR2+ monocytes are not elevated in the brain on day 14 at the end of CSD and do not contribute to its behavioral effects at that time, but in recovery following cessation of stress, they enter the brain and exert restorative functions mediating vascular repair and normalization of behavior.
Collapse
|
72
|
Wang Z, Qi F, Luo H, Xu G, Wang D. Inflammatory Microenvironment of Skin Wounds. Front Immunol 2022; 13:789274. [PMID: 35300324 PMCID: PMC8920979 DOI: 10.3389/fimmu.2022.789274] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a dynamic and highly regulated process that can be separated into three overlapping and interdependent phases: inflammation, proliferation, and remodelling. This review focuses on the inflammation stage, as it is the key stage of wound healing and plays a vital role in the local immune response and determines the progression of wound healing. Inflammatory cells, the main effector cells of the inflammatory response, have been widely studied, but little attention has been paid to the immunomodulatory effects of wound healing in non-inflammatory cells and the extracellular matrix. In this review, we attempt to deepen our understanding of the wound-healing microenvironment in the inflammatory stage by focusing on the interactions between cells and the extracellular matrix, as well as their role in regulating the immune response during the inflammatory stage. We hope our findings will provide new ideas for promoting tissue regeneration through immune regulation.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Fang Qi
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Han Luo
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Guangchao Xu
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Dali Wang
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
73
|
Advanced drug delivery systems containing herbal components for wound healing. Int J Pharm 2022; 617:121617. [PMID: 35218900 DOI: 10.1016/j.ijpharm.2022.121617] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 12/18/2022]
Abstract
Management of chronic wound has an immense impact on social and economic conditions in the world. Healthcare costs, aging population, physical trauma, and comorbidities of diabetes and obesity seem to be the major factors of this increasing incidence of chronic wounds. Conditions of chronic wound could not restore functional epidermis; thus, delaying the closure of the wound opening in an expected manner. Failures in restoration of skin integrity delay healing due to changes in skin pathology, such as chronic ulceration or nonhealing. The role of different traditional medicines has been explored for use in the healing of cutaneous wounds, where several phytochemicals, such as flavonoids, alkaloids, phenolic acids, tannins are known to provide potential wound healing properties. However, the delivery of plant-based therapeutics could be improved by the novel platform of nanotechnology. Thus, the objectives of novel delivery strategies of principal bioactive from plant sources are to accelerate the wound healing process, avoid wound complications and enhance patient compliance. Therefore, the opportunities of nanotechnology-based drug delivery of natural wound healing therapeutics have been included in the present discussion with special emphasis on nanofibers, vesicular structures, nanoparticles, nanoemulsion, and nanogels.
Collapse
|
74
|
Bilgiç T, İnce Ü, Narter F. Autologous omentum transposition for regeneration of a renal injury model in rats. Mil Med Res 2022; 9:1. [PMID: 34983664 PMCID: PMC8725455 DOI: 10.1186/s40779-021-00361-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND After renal trauma, surgical treatment is vital, but sometimes there may be loss of function due to fibrosis. This study aimed to evaluate the effect of autologous omentum flaps on injured renal tissues in a rat model. METHODS A total of 30 Wistar albino rats were included and randomly divided equally into a control group and four intervention groups. Iatrogenic renal injuries were repaired using a surgical technique (primary repair 1 group and primary repair 2 group) or transposition of the autologous omentum (omentum repair 1 group and omentum repair 2 group). Blood samples were taken preoperatively and on the 1st and 7th postoperative days in all groups and on the 18th postoperative day in the control and two intervention groups. All rats were sacrificed on the 7th or 18th day postoperatively, and their right kidneys were taken for histopathological evaluation. RESULTS The mean urea level significantly decreased from day 1 to day 7 and from day 1 to day 18 in the omentum repair 2 group (P = 0.005 and P = 0.004, respectively). There were no other significant changes in urea or creatinine levels within the intervention groups (P > 0.05). There was no significant correlation between the urea and creatinine levels and the histological scores (P > 0.05). The primary repair 1 and 2 groups had significantly higher median granulation and inflammation scores in the kidney specimen than the control and omentum repair groups (P < 0.05). The omentum repair 2 group had significantly lower median granulation and inflammation scores in the surrounding tissues than the primary repair 2 group (P < 0.05). The completion score for the healing process in the kidney specimen was significantly higher in the omentum repair groups than in the primary repair groups (P < 0.05). The omentum repair 2 group had significantly lower median granulation and inflammation scores in the surrounding tissues than the primary repair 2 group (P < 0.05). Granulation degree in the kidney specimen was strongly and positively correlated with the inflammation degree (r = 0.824, P < 0.001) and foreign body reaction in the kidney specimen (r = 0.872, P < 0.001) and a strong and negative correlation with the healing process completion score in the kidney (r = - 0.627, P = 0.001). Inflammation degree in the kidney specimen was strongly and positively correlated with the foreign body reaction in the kidney specimen (r = 0.731, P = 0.001) and strongly and negatively correlated with the healing process completion score in the kidney specimen (r = - 0.608, P = 0.002). CONCLUSION Autologous omentum tissue for kidney injury repair attenuated inflammation and granulation. Additionally, the use of omental tissue to facilitate healing of kidney injury may theoretically lead to a more effective healing process and reduced fibrosis and tissue and function loss.
Collapse
Affiliation(s)
- Tayfun Bilgiç
- Acıbadem Kadıkoy Hospital of General Surgery, Istanbul, 34718 Turkey
| | - Ümit İnce
- Department of Pathology, Acıbadem Mehmet Ali Aydınlar University, Istanbul, 34684 Turkey
| | - Fehmi Narter
- Department of Urology, Acıbadem Mehmet Ali Aydınlar University, Istanbul, 34684 Turkey
| |
Collapse
|
75
|
Mo F, Zhang M, Duan X, Lin C, Sun D, You T. Recent Advances in Nanozymes for Bacteria-Infected Wound Therapy. Int J Nanomedicine 2022; 17:5947-5990. [PMID: 36510620 PMCID: PMC9739148 DOI: 10.2147/ijn.s382796] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial-infected wounds are a serious threat to public health. Bacterial invasion can easily delay the wound healing process and even cause more serious damage. Therefore, effective new methods or drugs are needed to treat wounds. Nanozyme is an artificial enzyme that mimics the activity of a natural enzyme, and a substitute for natural enzymes by mimicking the coordination environment of the catalytic site. Due to the numerous excellent properties of nanozymes, the generation of drug-resistant bacteria can be avoided while treating bacterial infection wounds by catalyzing the sterilization mechanism of generating reactive oxygen species (ROS). Notably, there are still some defects in the nanozyme antibacterial agents, and the design direction is to realize the multifunctionalization and intelligence of a single system. In this review, we first discuss the pathophysiology of bacteria infected wound healing, the formation of bacterial infection wounds, and the strategies for treating bacterially infected wounds. In addition, the antibacterial advantages and mechanism of nanozymes for bacteria-infected wounds are also described. Importantly, a series of nanomaterials based on nanozyme synthesis for the treatment of infected wounds are emphasized. Finally, the challenges and prospects of nanozymes for treating bacterial infection wounds are proposed for future research in this field.
Collapse
Affiliation(s)
- Fayin Mo
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Minjun Zhang
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xuewei Duan
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Chuyan Lin
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Correspondence: Duanping Sun; Tianhui You, Email ;
| | - Tianhui You
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
76
|
Zhang K, Chai B, Ji H, Chen L, Ma Y, Zhu L, Xu J, Wu Y, Lan Y, Li H, Feng Z, Xiao J, Zhang H, Xu K. Bioglass promotes wound healing by inhibiting endothelial cell pyroptosis through regulation of the connexin 43/reactive oxygen species (ROS) signaling pathway. J Transl Med 2022; 102:90-101. [PMID: 34521991 DOI: 10.1038/s41374-021-00675-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 11/08/2022] Open
Abstract
Bioactive glass (BG) has recently shown great promise in soft tissue repair, especially in wound healing; however, the underlying mechanism remains unclear. Pyroptosis is a novel type of programmed cell death that is involved in various traumatic injury diseases. Here, we hypothesized that BG may promote wound healing through suppression of pyroptosis. To test this scenario, we investigated the possible effect of BG on pyroptosis in wound healing both in vivo and in vitro. This study showed that BG can accelerate wound closure, granulation formation, collagen deposition, and angiogenesis. Moreover, western blot analysis and immunofluorescence staining revealed that BG inhibited the expression of pyroptosis-related proteins in vivo and in vitro. In addition, while BG regulated the expression of connexin43 (Cx43), it inhibited reactive oxygen species (ROS) production. Cx43 activation and inhibition experiments further indicate that BG inhibited pyroptosis in endothelial cells by decreasing Cx43 expression and ROS levels. Taken together, these studies suggest that BG promotes wound healing by inhibiting pyroptosis via Cx43/ROS signaling pathway.
Collapse
Affiliation(s)
- Kailun Zhang
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Bo Chai
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Hao Ji
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Liuqing Chen
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Yanbing Ma
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Lifei Zhu
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Jingyu Xu
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Yanqing Wu
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Yinan Lan
- Department of Orthopedic Surgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hao Li
- Department of Orthopedics Surgery, Lishui People's Hospital, The sixth affiliated hospital of Wenzhou medical university, Lishui, Zhejiang, China
| | - Zhiguo Feng
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Ke Xu
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China.
| |
Collapse
|
77
|
Chittasupho C, Manthaisong A, Okonogi S, Tadtong S, Samee W. Effects of Quercetin and Curcumin Combination on Antibacterial, Antioxidant, In Vitro Wound Healing and Migration of Human Dermal Fibroblast Cells. Int J Mol Sci 2021; 23:ijms23010142. [PMID: 35008566 PMCID: PMC8745450 DOI: 10.3390/ijms23010142] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022] Open
Abstract
Wound healing impairment due to a postponed, incomplete, or uncoordinated healing process has been a challenging clinical problem. Much research has focused on wound care, particularly on discovery of new therapeutic approaches for acute and chronic wounds. This study aims to evaluate the effect of the combination of quercetin and curcuminoids at three different ratios on the antimicrobial, antioxidant, cell migration and wound healing properties. The antioxidant activities of quercetin, curcuminoids and the mixtures were tested by DPPH and ABTS free radical scavenging assays. The disc diffusion method was performed to determine the antibacterial activities of quercetin, curcuminoids and the mixtures against S. aureus and P. aeruginosa. The cytotoxicity and cell migratory enhancing effects of quercetin, curcuminoids and the mixtures against human dermal fibroblasts were investigated by MTT assay, scratch assay and Transwell migration assay, respectively. The results showed the synergism of the quercetin and curcuminoid combination to inhibit the growth of S. aureus and P. aeruginosa, with the inhibition zone ranging from 7.06 ± 0.25 to 8.78 ± 0.38 mm, respectively. The DPPH free radical scavenging assay demonstrated that the combination of quercetin and curcuminoids yielded lower IC50 values (15.38–23.70 µg/mL) than curcuminoids alone (25.75 µg/mL). Quercetin and a 3:1 quercetin/curcuminoid mixture at non-toxic concentrations showed the ability to stimulate the migration of fibroblasts across the matrix, whereas only quercetin alone accelerated the wound closure of fibroblasts. In conclusion, the mixture of quercetin and curcuminoids at a 3:1 ratio was the best formulations for use in wound healing due to the antimicrobial, antioxidant and cell-migration-enhancing activities.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand; (C.C.); (S.O.)
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Amornrat Manthaisong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nahon Nayok 26120, Thailand;
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand; (C.C.); (S.O.)
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nahon Nayok 26120, Thailand
- Correspondence: (S.T.); (W.S.); Tel.: +66-3739-5094 (S.T. & W.S.); Fax: +66-3739-5096 (S.T. & W.S.)
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nahon Nayok 26120, Thailand;
- Correspondence: (S.T.); (W.S.); Tel.: +66-3739-5094 (S.T. & W.S.); Fax: +66-3739-5096 (S.T. & W.S.)
| |
Collapse
|
78
|
Chen ZY, Zhang LF, Zhang YQ, Zhou Y, Li XY, Huang XF. Blood tests for prediction of deep endometriosis: A case-control study. World J Clin Cases 2021; 9:10805-10815. [PMID: 35047592 PMCID: PMC8678869 DOI: 10.12998/wjcc.v9.i35.10805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Deep endometriosis (DE) is the most aggressive subtype of endometriosis. The diagnosis may be challenging, and no biomarkers that can discriminate women with DE from those without DE have been developed.
AIM To evaluate the role of blood hemostatic parameters and inflammatory indices in the prediction of DE.
METHODS This case-control study was performed at the Women’s Hospital, Zhejiang University School of Medicine between January 2015 and December 2016. Women with DE and women with benign gynecologic disease (control group) eligible for gynecological surgery were enrolled. Routine plasma hemostatic parameters and inflammatory indices were obtained before surgery. Univariate and multivariate analysis were performed. Receiver operating characteristic (ROC) curves were generated, and areas under the curve (AUC) were calculated to assess the predictive values of the selected parameters.
RESULTS A total of 126 women were enrolled, including 31 with DE and 95 controls. Plasma fibrinogen (Fg, P < 0.01), international normalized ratio (P < 0.05), and C-reactive protein levels (P < 0.01) were significantly higher in women with DE compared with controls. Plasma hemoglobin (HB) levels (P < 0.05) and shortened thrombin time (P < 0.05) were significantly lower in women with DE than in controls. Plasma Fg levels [adjusted OR (aOR) 2.12, 95%confidence interval (CI): 1.31-3.75] and plasma HB levels (aOR 0.48, 95%CI: 0.29-0.78) were significantly associated with DE (both P < 0.05). ROC analysis showed that the diagnostic value of Fg or HB alone for DE was limited. The AUC of the combination of both markers as a dual marker index was 0.773 with improved sensitivity (67.7%) and specificity (78.9%) at cutoffs of 3.09 g/L and 126 g/L, respectively.
CONCLUSION The combination of Fg and HB was a reliable predictor of DE. A larger study is needed to confirm the findings.
Collapse
Affiliation(s)
- Zheng-Yun Chen
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Li-Feng Zhang
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Yong-Qing Zhang
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Yong Zhou
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Xiao-Yong Li
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Xiu-Feng Huang
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
79
|
Rafie M, Meshkini A. Tailoring the proliferation of fibroblast cells by multiresponsive and thermosensitive stem cells composite F127 hydrogel containing folic acid.MgO:ZnO/chitosan hybrid microparticles for skin regeneration. Eur J Pharm Sci 2021; 167:106031. [PMID: 34601068 DOI: 10.1016/j.ejps.2021.106031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/06/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
In this study, biodegradable and thermosensitive F127 hydrogel containing folic acid.MgO:ZnO/chitosan hybrid particles (FMZC) was fabricated as a 3D mesenchymal stem cells (MSCs) delivery vehicle for regenerative medicine and wound healing purposes, in such a way to be responsive to lysozyme and UVA irradiation. The results showed that F127 hydrogel containing FMZC is a suitable and nontoxic construct for encapsulation of MSCs in the presence of lysozyme and UVA irradiation, bearing high stem cell viability and proliferation. The final hydrogel, MSC&FMZC, in response to lysozyme induced a higher proliferation rate and migration in human foreskin fibroblast cells (HFF). These phenomena were attributed to the released F.MgO:ZnO nanocomposites from chitosan microparticles and paracrine factors from MSCs within the hydrogel, resulting in synergistic biological effects. Moreover, lysozyme-treated MSC&FMZC hydrogel showed higher antibacterial and anti-biofilm activity against both Gram-positive and Gram-negative bacteria than bare hydrogel. However, a significant increase in the antibacterial activity of MSC&FMZC was observed as the treated bacteria were subjected to UVA irradiation owing to the photocatalytic activity of F.MgO:ZnO nanocomposites. Regarding the antibacterial activity and stimulating skin cell behavior of MSC&FMZC hydrogel that can promote the regenerative activities of skin, it could be considered as a promising scaffold for bacteria-accompanied wound healing.
Collapse
Affiliation(s)
- Malihe Rafie
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Azadeh Meshkini
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
80
|
Pliszczak-Król A, Kiełbowicz Z, Król J, Antończyk A, Gemra M, Skrzypczak P, Prządka P, Zalewski D, Bieżyński J, Nicpoń J. Parameters of Hemostasis in Sheep Implanted with Composite Scaffold Settled by Stimulated Mesenchymal Stem Cells-Evaluation of the Animal Model. MATERIALS 2021; 14:ma14226934. [PMID: 34832335 PMCID: PMC8622787 DOI: 10.3390/ma14226934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022]
Abstract
Implantation of composite scaffolds could be potentially associated with the risk of hemostatic disturbances in a recipient. However, there is a lack of information on possible alterations in clotting mechanisms resulting from such a procedure. The aim of the present work was to investigate changes in hemostatic parameters in sheep implanted with a scaffold composed of poly(ε-caprolactone) and hydroxyapatite and tricalcium phosphate (9:4.5:4.5), settled previously with mesenchymal stem cells stimulated by fibroblast growth factor-2 and bone morphogenetic protein-2. Nine Merino sheep were examined for 7 days, and measurements of clotting times (PT, aPTT), activities of antithrombin, protein C and clotting factors II-XII, and concentrations of fibrinogen and D-dimer were carried out before and 1 h, 24 h, 3 days and 7 days after scaffold implantation. The introduction of scaffold initially resulted in a slowdown of the clotting processes (most evident 24 h after surgery); PT and aPTT increased to 14.8 s and 33.9 s, respectively. From the third day onwards, most of these alterations began to return to normal values. The concentration of fibrinogen rose throughout the observation period (up to 8.4 g/L), mirroring the ongoing inflammatory reaction. However, no signals of significant disturbances in hemostatic processes were detected in the sheep tested.
Collapse
Affiliation(s)
- Aleksandra Pliszczak-Król
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-6-6409-2994
| | - Zdzisław Kiełbowicz
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Jarosław Król
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Agnieszka Antończyk
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Marianna Gemra
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Piotr Skrzypczak
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Przemysław Prządka
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Dariusz Zalewski
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Janusz Bieżyński
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Jakub Nicpoń
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| |
Collapse
|
81
|
Kędzierska M, Blilid S, Miłowska K, Kołodziejczyk-Czepas J, Katir N, Lahcini M, El Kadib A, Bryszewska M. Insight into Factors Influencing Wound Healing Using Phosphorylated Cellulose-Filled-Chitosan Nanocomposite Films. Int J Mol Sci 2021; 22:11386. [PMID: 34768816 PMCID: PMC8583768 DOI: 10.3390/ijms222111386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
Marine polysaccharides are believed to be promising wound-dressing nanomaterials because of their biocompatibility, antibacterial and hemostatic activity, and ability to easily shape into transparent films, hydrogels, and porous foams that can provide a moist micro-environment and adsorb exudates. Current efforts are firmly focused on the preparation of novel polysaccharide-derived nanomaterials functionalized with chemical objects to meet the mechanical and biological requirements of ideal wound healing systems. In this contribution, we investigated the characteristics of six different cellulose-filled chitosan transparent films as potential factors that could help to accelerate wound healing. Both microcrystalline and nano-sized cellulose, as well as native and phosphorylated cellulose, were used as fillers to simultaneously elucidate the roles of size and functionalization. The assessment of their influences on hemostatic properties indicated that the tested nanocomposites shorten clotting times by affecting both the extrinsic and intrinsic pathways of the blood coagulation system. We also showed that all biocomposites have antioxidant capacity. Moreover, the cytotoxicity and genotoxicity of the materials against two cell lines, human BJ fibroblasts and human KERTr keratinocytes, was investigated. The nature of the cellulose used as a filler was found to influence their cytotoxicity at a relatively low level. Potential mechanisms of cytotoxicity were also investigated; only one (phosphorylated microcellulose-filled chitosan films) of the compounds tested produced reactive oxygen species (ROS) to a small extent, and some films reduced the level of ROS, probably due to their antioxidant properties. The transmembrane mitochondrial potential was very slightly lowered. These biocompatible films showed no genotoxicity, and very importantly for wound healing, most of them significantly accelerated migration of both fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Sara Blilid
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Fès 30070, Morocco; (S.B.); (N.K.); (A.E.K.)
- Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials, Faculty of Sciences and Technologies, Cadi Ayyad University, Marrakech 40000, Morocco;
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Joanna Kołodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Fès 30070, Morocco; (S.B.); (N.K.); (A.E.K.)
| | - Mohammed Lahcini
- Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials, Faculty of Sciences and Technologies, Cadi Ayyad University, Marrakech 40000, Morocco;
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Fès 30070, Morocco; (S.B.); (N.K.); (A.E.K.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.M.); (M.B.)
| |
Collapse
|
82
|
Kim M, Lee H, Krecker MC, Bukharina D, Nepal D, Bunning TJ, Tsukruk VV. Switchable Photonic Bio-Adhesive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103674. [PMID: 34476859 DOI: 10.1002/adma.202103674] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/25/2021] [Indexed: 06/13/2023]
Abstract
A soft photonic bio-adhesive material is designed with real-time colorimetrical monitoring of switchable adhesion by integrating a responsive bio-photonic matrix with mobile hydrogen-binding networking. Synergetic materials sequencing creates a unique iridescent appearance directly coupled with both adhesive ability and shearing strength, in a highly reversible manner. The responsive photonic materials, having a physically hydrogen-bonded chiral nematic organization, vary their adhesion strength due to a transition in cohesive and interfacial failure mechanism in humid surroundings. The bright color appearance shifts from blue to red to transparent and back due to a change in pitch length of the chiral helicoidal organization that also triggers coupled changes in both mechanical strength and interfacial adhesion. Such reversible strength-adhesion-iridescence triple-coupling phenomenon is further explored for design of super-strong switchable bio-adhesives for synthetic/biological surfaces with quick remotely triggered sticky-to-nonsticky transitions, removable conformal soft stickers, and wound dressings with visual monitoring of the healing process, to colorimetric stickers for contaminated respiratory masks.
Collapse
Affiliation(s)
- Minkyu Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hansol Lee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Michelle C Krecker
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Daria Bukharina
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dhriti Nepal
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Timothy J Bunning
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
83
|
Scaled preparation of extracellular vesicles from conditioned media. Adv Drug Deliv Rev 2021; 177:113940. [PMID: 34419502 DOI: 10.1016/j.addr.2021.113940] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) especially of mesenchymal stem/stomal cells (MSCs) are increasingly considered as biotherapeutic agents for a variety of different diseases. For translating them effectively into the clinics, scalable production processes fulfilling good manufacturing practice (GMP) are needed. Like for other biotherapeutic agents, the manufacturing of EV products can be subdivided in the upstream and downstream processing and the subsequent quality control, each of them containing several unit operations. During upstream processing (USP), cells are isolated, stored (cell banking) and expanded; furthermore, EV-containing conditioned media are produced. During downstream processing (DSP), conditioned media (CM) are processed to obtain concentrated and purified EV products. CM are either stored until DSP or are directly processed. As first unit operation in DSP, clarification removes remaining cells, debris and other larger impurities. The key operations of each EV DSP is volume-reduction combined with purification of the concentrated EVs. Most of the EV preparation methods used in conventional research labs including differential centrifugation procedures are limited in their scalability. Consequently, it is a major challenge in the therapeutic EV field to identify appropriate EV concentration and purification methods allowing scale up. As EVs share several features with enveloped viruses, that are used for more than two decades in the clinics now, several principles can be adopted to EV manufacturing. Here, we introduce and discuss volume reducing and purification methods frequently used for viruses and analyze their value for the manufacturing of EV-based therapeutics.
Collapse
|
84
|
Superior Technique for the Production of Agarose Dressing Containing Sericin and Its Wound Healing Property. Polymers (Basel) 2021; 13:polym13193370. [PMID: 34641182 PMCID: PMC8512865 DOI: 10.3390/polym13193370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
Finding a simple and eco-friendly production technique that matches to the natural agent and results in a truly valuable natural scaffold production is still limited amongst the intensively competitive natural scaffold development. Therefore, the purpose of this study was to develop natural scaffolds that were environmentally friendly, low cost, and easily produced, using natural agents and a physical crosslinking technique. These scaffolds were prepared from agarose and sericin using the freeze-drying method (D) or freeze-thawing together with the freeze-drying method (TD). Moreover, plasticizers were added into the scaffold to improve their properties. Their physical, mechanical, and biological properties were investigated. The results showed that scaffolds that were prepared using the TD method had stronger bonding between sericin and other compounds, leading to a low swelling ratio and low protein release of the scaffolds. This property may be applied in the development of further material as a controlled drug release scaffold. Adding plasticizers, especially glycerin, into the scaffolds significantly increased elongation properties, leading to an increase in elasticity of the scaffold. Moreover, all scaffolds could activate cell migration, which had an advantage on wound healing acceleration. Accordingly, this study was successful in developing natural scaffolds using natural agents and simple and green crosslinking methods.
Collapse
|
85
|
Kanikarla Marie P, Fowlkes NW, Afshar-Kharghan V, Martch SL, Sorokin A, Shen JP, Morris VK, Dasari A, You N, Sood AK, Overman MJ, Kopetz S, Menter DG. The Provocative Roles of Platelets in Liver Disease and Cancer. Front Oncol 2021; 11:643815. [PMID: 34367949 PMCID: PMC8335590 DOI: 10.3389/fonc.2021.643815] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Both platelets and the liver play important roles in the processes of coagulation and innate immunity. Platelet responses at the site of an injury are rapid; their immediate activation and structural changes minimize the loss of blood. The majority of coagulation proteins are produced by the liver—a multifunctional organ that also plays a critical role in many processes: removal of toxins and metabolism of fats, proteins, carbohydrates, and drugs. Chronic inflammation, trauma, or other causes of irreversible damage to the liver can dysregulate these pathways leading to organ and systemic abnormalities. In some cases, platelet-to-lymphocyte ratios can also be a predictor of disease outcome. An example is cirrhosis, which increases the risk of bleeding and prothrombotic events followed by activation of platelets. Along with a triggered coagulation cascade, the platelets increase the risk of pro-thrombotic events and contribute to cancer progression and metastasis. This progression and the resulting tissue destruction is physiologically comparable to a persistent, chronic wound. Various cancers, including colorectal cancer, have been associated with increased thrombocytosis, platelet activation, platelet-storage granule release, and thrombosis; anti-platelet agents can reduce cancer risk and progression. However, in cancer patients with pre-existing liver disease who are undergoing chemotherapy, the risk of thrombotic events becomes challenging to manage due to their inherent risk for bleeding. Chemotherapy, also known to induce damage to the liver, further increases the frequency of thrombotic events. Depending on individual patient risks, these factors acting together can disrupt the fragile balance between pro- and anti-coagulant processes, heightening liver thrombogenesis, and possibly providing a niche for circulating tumor cells to adhere to—thus promoting both liver metastasis and cancer-cell survival following treatment (that is, with minimal residual disease in the liver).
Collapse
Affiliation(s)
- Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie L Martch
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy You
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David George Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
86
|
Zhao Z, Zhang J, Dong JF. Platelets fuel mesenchymal stem cells by providing live mitochondria. J Thromb Haemost 2021; 19:1603-1606. [PMID: 33890412 DOI: 10.1111/jth.15295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Zilong Zhao
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-Fei Dong
- BloodWorks Research Institute, Seattle, WA, USA
- Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| |
Collapse
|
87
|
Carletto B, Koga AY, Novatski A, Mainardes RM, Lipinski LC, Farago PV. Ursolic acid-loaded lipid-core nanocapsules reduce damage caused by estrogen deficiency in wound healing. Colloids Surf B Biointerfaces 2021; 203:111720. [PMID: 33819820 DOI: 10.1016/j.colsurfb.2021.111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The skin aging process in women is accelerated due to decreases in serum estrogen levels triggered by the menopause process. Hence, poly(L-lactic acid) lipid-core nanocapsules containing ursolic acid (NPLA-UA) were developed using the interfacial deposition of the preformed polymer methodology as a strategy to reduce damages to the healing process caused by hormonal deficiency in ovariectomized rats. The colloidal suspensions of nanocapsules presented adequate size and morphology (254 and 375 nm), negative zeta potential (-31 and -37 mV), high encapsulation efficiency (99.89 %), and amorphous character. The analyses performed in an in vivo healing trial showed that the treatment with NPLA-UA resulted in faster wound retraction with less inflammatory response. In addition, the angiogenic process was stimulated increased synthesis of dermal collagen occurred. Ursolic acid-loaded, lipid-core nanocapsules are suitable for treating skin changes triggered by decreased estrogen in menopause.
Collapse
Affiliation(s)
- Bruna Carletto
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil.
| | - Adriana Yuriko Koga
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil
| | - Andressa Novatski
- Department of Physics, State University of Ponta Grossa, Paraná, Brazil
| | | | | | - Paulo Vitor Farago
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil
| |
Collapse
|
88
|
Chu C, Zhao X, Rung S, Xiao W, Liu L, Qu Y, Man Y. Application of biomaterials in periodontal tissue repair and reconstruction in the presence of inflammation under periodontitis through the foreign body response: Recent progress and perspectives. J Biomed Mater Res B Appl Biomater 2021; 110:7-17. [PMID: 34142745 DOI: 10.1002/jbm.b.34891] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Periodontitis would cause dental tissue damage locally. Biomaterials substantially affect the surrounding immune microenvironment through treatment-oriented local inflammatory remodeling in dental periodontitis. This remodeling process is conducive to wound healing and periodontal tissue regeneration. Recent progress in understanding the foreign body response (FBR) and immune regulation, including cell heterogeneity, and cell-cell and cell-material interactions, has provided new insights into the design criteria for biomaterials applied in treatment of periodontitis. This review discusses recent progress and perspectives in the immune regulation effects of biomaterials to augment or reconstruct soft and hard tissue in an inflammatory microenvironment of periodontitis.
Collapse
Affiliation(s)
- Chenyu Chu
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiwen Zhao
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shengan Rung
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenlan Xiao
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yili Qu
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Man
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
89
|
Correa-Gallegos D, Rinkevich Y. Cutting into wound repair. FEBS J 2021; 289:5034-5048. [PMID: 34137168 DOI: 10.1111/febs.16078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
The skin is home to an assortment of fibroblastic lineages that shape the wound repair response toward scars or regeneration. In this review, we discuss the distinct embryonic origins, anatomic locations, and functions of fibroblastic lineages, and how these distinct lineages of fibroblasts dictate the skin's wound response across injury depths, anatomic locations, and embryonic development to promote either scarring or regeneration. We highlight the supportive role of the fascia in dictating scarring outcomes; we then discuss recent findings that indicate fascia mobilization by its resident fibroblasts supersede the classical de novo deposition program of wound matrix formation. These recent findings reconfigure our traditional view of wound repair and present exciting new therapeutic avenues to treat scarring and fibrosis across a range of medical settings.
Collapse
Affiliation(s)
- Donovan Correa-Gallegos
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
90
|
Shariati A, Moradabadi A, Ghaznavi-Rad E, Dadmanesh M, Komijani M, Nojoomi F. Investigation into antibacterial and wound healing properties of platelets lysate against Acinetobacter baumannii and Klebsiella pneumoniae burn wound infections. Ann Clin Microbiol Antimicrob 2021; 20:40. [PMID: 34044843 PMCID: PMC8161565 DOI: 10.1186/s12941-021-00442-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background and aim Treatment of burn wound infections has become a global challenge due to the spread of multidrug-resistant bacteria; therefore, the development of new treatment options for the mentioned infections is essential. Platelets have drawn much attention for this purpose because they are a safe and cost-effective source of different antimicrobial peptides and growth factors. The present study evaluated antibacterial effects and wound healing properties of Platelet-derived Biomaterial (PdB) against Acinetobacter baumannii and Klebsiella pneumoniae burn wound infections. Methods PdB was prepared through the freezing and thawing process and then, in vitro antibacterial effect was determined by disk diffusion and broth microdilution methods. Afterward, burn wound was inflicted on 56 rats, infected with both bacteria, and topical administration was performed to evaluate antibacterial effects and wound healing properties of PdB. Results In vitro results showed that PdB inhibited the growth of A. baumannii in the highest dose (0.5), while we did not detect any inhibitory effects against K. pneumoniae. By contrast, PdB significantly inhibited the growth of bacteria in treated animal wounds compared to the control groups (P value < 0.05). Macroscopic assessments pointed to the significant enhancement of wound closure in the treated animals. In addition, histopathological examination demonstrated that treatment of rats with PdB led to a considerable increase in re-epithelialization and attenuated the formation of granulation tissue (P value < 0.05). Conclusion The use of topical PdB is an attractive strategy for treating A. baumannii and K. pneumoniae burn wound infections because it inhibits bacterial growth and promotes wound healing properties.
Collapse
Affiliation(s)
- Aref Shariati
- Microbiology Department, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Moradabadi
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Ehsanollah Ghaznavi-Rad
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Dadmanesh
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran.,Department of Infectious Diseases, School of Medicine, Aja University of Medical Sciences, Tehran, IR, Iran
| | - Majid Komijani
- Department of Biology, Faculty of Science, Arak University, 38156-8-8349, Arak, Iran
| | - Farshad Nojoomi
- Microbiology Department, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
91
|
Dos Santos RG, Santos GS, Alkass N, Chiesa TL, Azzini GO, da Fonseca LF, Dos Santos AF, Rodrigues BL, Mosaner T, Lana JF. The regenerative mechanisms of platelet-rich plasma: A review. Cytokine 2021; 144:155560. [PMID: 34004552 DOI: 10.1016/j.cyto.2021.155560] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/17/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Orthobiologics continue to gain popularity in many areas of medical science, especially in the field of regenerative medicine. Platelet-rich plasma derivatives are orthobiologic tools of particular interest. These biologic products can be obtained via centrifugation of a patient's whole blood and the components can then be subsequently isolated, concentrated and ultimately administered into injured tissues, particularly in areas where standard healing is disrupted. The elevated concentration of platelets above the basal value enables accelerated growth of various tissues with minimal side effects. The application of autologous orthobiologics is a relatively new biotechnology undergoing expansion which continues to reveal optimistic results in the stimulation and enhanced healing of various sorts of tissue injuries. The local release of growth factors and cytokines contained in platelet alpha granules accelerates and ameliorates tissue repair processes, mimicking and supporting standard wound healing. This effect is greatly enhanced upon combination with the fibrinolytic system, which are essential for complete regeneration. Fibrinolytic reactions can dictate proper cellular recruitment of certain cell populations such as mesenchymal stem cells and other immunomodulatory agents. Additionally, these reactions also control proteolytic activity in areas of wound healing and regenerative processes of mesodermal tissues including bone, cartilage, and muscle, which makes it particularly valuable for musculoskeletal health, for instance. Although many investigations have demonstrated significant results with platelet-rich plasma derivatives, further studies are still warranted.
Collapse
Affiliation(s)
- Rafael Gonzalez Dos Santos
- IOC - Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd Floor, Room #29, Zip Code 13334-170, Indaiatuba, SP, Brazil.
| | - Gabriel Silva Santos
- IOC - Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd Floor, Room #29, Zip Code 13334-170, Indaiatuba, SP, Brazil.
| | - Natasha Alkass
- Queensland University of Technology, 2 George St, Zip Code 4000, Brisbane, Queensland, Australia.
| | - Tania Liana Chiesa
- QML Pathology, 11 Riverview Place, Murarrie, Zip Code 4172, Brisbane, Queensland, Australia.
| | - Gabriel Ohana Azzini
- IOC - Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd Floor, Room #29, Zip Code 13334-170, Indaiatuba, SP, Brazil.
| | - Lucas Furtado da Fonseca
- Universidade Federal De São Paulo - Escola Paulista de Medicina, 715 Napoleão de Barros St, Vila Clementino, Zip Code 04024-002, São Paulo, SP, Brazil.
| | - Antonio Fernando Dos Santos
- FARMERP- Faculdade de Medicina de São José do Rio Preto, 5416 Brigadeiro Faria Lima Avenue, Vila Sao Pedro, Zip Code 15090-000, São José do Rio Preto, SP, Brazil.
| | - Bruno Lima Rodrigues
- IOC - Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd Floor, Room #29, Zip Code 13334-170, Indaiatuba, SP, Brazil.
| | - Tomas Mosaner
- IOC - Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd Floor, Room #29, Zip code 13334-170, Indaiatuba, SP, Brazil.
| | - José Fábio Lana
- IOC - Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue - 2nd Floor, Room #29, Zip Code 13334-170, Indaiatuba, SP, Brazil.
| |
Collapse
|
92
|
Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of Acute and Chronic Wound Healing. Biomolecules 2021; 11:700. [PMID: 34066746 PMCID: PMC8150999 DOI: 10.3390/biom11050700] [Citation(s) in RCA: 411] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Skin wounds greatly affect the global healthcare system, creating a substantial burden on the economy and society. Moreover, the situation is exacerbated by low healing rates, which in fact are overestimated in reports. Cutaneous wounds are generally classified into acute and chronic. The immune response plays an important role during acute wound healing. The activation of immune cells and factors initiate the inflammatory process, facilitate wound cleansing and promote subsequent tissue healing. However, dysregulation of the immune system during the wound healing process leads to persistent inflammation and delayed healing, which ultimately result in chronic wounds. The microenvironment of a chronic wound is characterized by high quantities of pro-inflammatory macrophages, overexpression of inflammatory mediators such as TNF-α and IL-1β, increased activity of matrix metalloproteinases and abundance of reactive oxygen species. Moreover, chronic wounds are frequently complicated by bacterial biofilms, which perpetuate the inflammatory phase. Continuous inflammation and microbial biofilms make it very difficult for the chronic wounds to heal. In this review, we discuss the role of innate and adaptive immunity in the pathogenesis of acute and chronic wounds. Furthermore, we review the latest immunomodulatory therapeutic strategies, including modifying macrophage phenotype, regulating miRNA expression and targeting pro- and anti-inflammatory factors to improve wound healing.
Collapse
Affiliation(s)
- Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Kuat Kassymbek
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Shiro Jimi
- Central Lab for Pathology and Morphology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan;
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| |
Collapse
|
93
|
Introduction to a review series on platelets and cancer. Blood 2021; 137:3151-3152. [PMID: 33940613 DOI: 10.1182/blood.2020010237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Platelets are critical for hemostasis and thrombosis, but recent research highlights their role in many other processes, including inflammation, wound healing, and lymphangiogenesis. Edited by José López, this series focuses on the emerging role of platelets in cancer, influencing tumor growth and metastasis, immune evasion, and tumor angiogenesis. The reviews present the current understanding of mutual cross talk between platelets and tumors, communication mediated by RNA transfer and extracellular vesicles, and the potential of antiplatelet agents for cancer treatment.
Collapse
|
94
|
Ekambaram R, Sugumar M, Swaminathan E, Micheal Raj AP, Dharmalingam S. Design and fabrication of electrospun Morinda citrifolia-based nanofibrous scaffold as skin wound dressing material: in vitroand in silicoanalysis. Biomed Mater 2021; 16. [PMID: 33725680 DOI: 10.1088/1748-605x/abef59] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/16/2021] [Indexed: 11/11/2022]
Abstract
Wound healing is an urgent problem that impacts quality of life, and the need for biomaterials suitable for the treatment of skin wound healing disease is increasing annually. Innovative biomaterials and treatments for skin abrasions are being relentlessly researched and established in order to improve treatment efficacy. Here, we describe a novel electrospun polymeric nanofibrous scaffold enriched with pharmaceutical bioactive materials extracted fromMorinda citrifolia(MC), which demonstrated efficient skin wound healing therapy due to its excellent human skin keratinocyte proliferation and adhesion inin vitroanalysis. Surface morphological analysis was used to reveal the nano-architectural structure of the electrospun scaffolds. The fabricated nanofibers displayed good antibacterial efficacy by creating an inhibitory zone for the pathogenic microbes studied. MC supported active healing due to the presence of pharmaceuticals associated with wound healing, as revealed by the results of gas chromatography-mass spectrometry and the prediction of activity spectra for substances (PASS) analysis. Since MC is a multi-potential therapeutic herbal plant, it was found that the linoleic acid, olelic acid, and diethyl phthalate present in the extract supported the wound healing proteins glycogen-synthase-kinase-3-β-protein and Protein Data Bank-1Q5K with binding energies of -4.6, -5.2, and -5.9 kcal mol-1, as established by the results ofin silicoanalysis. Thus, by being hydrophilic in nature, targeting wound proteins, increasing the proliferation and adhesion of keratinocytes and combating pathogens, the nanofibrous scaffolds endowed with MC extract proved to be an effective therapeutic material for skin wound dressing applications.
Collapse
Affiliation(s)
| | - Moogambigai Sugumar
- Department of Mechanical Engineering, Anna University, Chennai, Tamil Nadu, India
| | | | | | | |
Collapse
|
95
|
Zhao M, Shi J, Cai W, Liu K, Shen K, Li Z, Wang Y, Hu D. Advances on Graphene-Based Nanomaterials and Mesenchymal Stem Cell-Derived Exosomes Applied in Cutaneous Wound Healing. Int J Nanomedicine 2021; 16:2647-2665. [PMID: 33854313 PMCID: PMC8040697 DOI: 10.2147/ijn.s300326] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
Graphene is a new type of carbon nanomaterial discovered after fullerene and carbon nanotube. Due to the excellent biological properties such as biocompatibility, cell proliferation stimulating, and antibacterial properties, graphene and its derivatives have become emerging candidates for the development of novel cutaneous wound dressings and composite scaffolds. On the other hand, pre-clinical research on exosomes derived from mesenchymal stem cells (MSC-Exos) has been intensified for cell-free treatment in wound healing and cutaneous regeneration, via ameliorating the damaged microenvironment of the wound site. Here, we provide a comprehensive understanding of the latest studies and observations on the various effects of graphene-based nanomaterials (GBNs) and MSC-Exos during the cutaneous wound repair process, as well as the putative mechanisms thereof. In addition, we propose the possible forward directions of GBNs and MSC-Exos applications, expecting to promote the clinical transformation.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Kaituo Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Zichao Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| |
Collapse
|
96
|
Kolev K, Medcalf RL. Editorial: Fibrinolysis in Immunity. Front Immunol 2021; 11:582. [PMID: 32296445 PMCID: PMC7137896 DOI: 10.3389/fimmu.2020.00582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Krasimir Kolev
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
97
|
Lana JF, da Fonseca LF, Azzini G, Santos G, Braga M, Cardoso Junior AM, Murrell WD, Gobbi A, Purita J, Percope de Andrade MA. Bone Marrow Aspirate Matrix: A Convenient Ally in Regenerative Medicine. Int J Mol Sci 2021; 22:ijms22052762. [PMID: 33803231 PMCID: PMC7963152 DOI: 10.3390/ijms22052762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
The rise in musculoskeletal disorders has prompted medical experts to devise novel effective alternatives to treat complicated orthopedic conditions. The ever-expanding field of regenerative medicine has allowed researchers to appreciate the therapeutic value of bone marrow-derived biological products, such as the bone marrow aspirate (BMA) clot, a potent orthobiologic which has often been dismissed and regarded as a technical complication. Numerous in vitro and in vivo studies have contributed to the expansion of medical knowledge, revealing optimistic results concerning the application of autologous bone marrow towards various impactful disorders. The bone marrow accommodates a diverse family of cell populations and a rich secretome; therefore, autologous BMA-derived products such as the “BMA Matrix”, may represent a safe and viable approach, able to reduce the costs and some drawbacks linked to the expansion of bone marrow. BMA provides —it eliminates many hurdles associated with its preparation, especially in regards to regulatory compliance. The BMA Matrix represents a suitable alternative, indicated for the enhancement of tissue repair mechanisms by modulating inflammation and acting as a natural biological scaffold as well as a reservoir of cytokines and growth factors that support cell activity. Although promising, more clinical studies are warranted in order to further clarify the efficacy of this strategy.
Collapse
Affiliation(s)
- José Fábio Lana
- IOC—Instituto do Osso e da Cartilagem, 1386 Presidente Kennedy Avenue, Indaiatuba 13334-170, Brazil; (J.F.L.); (G.A.)
| | | | - Gabriel Azzini
- IOC—Instituto do Osso e da Cartilagem, 1386 Presidente Kennedy Avenue, Indaiatuba 13334-170, Brazil; (J.F.L.); (G.A.)
| | - Gabriel Santos
- IOC—Instituto do Osso e da Cartilagem, 1386 Presidente Kennedy Avenue, Indaiatuba 13334-170, Brazil; (J.F.L.); (G.A.)
- Correspondence:
| | - Marcelo Braga
- Hospital São Judas Tadeu, 150 Cel. João Notini St, Divinópolis 35500-017, Brazil;
| | - Alvaro Motta Cardoso Junior
- Núcleo Avançado de Estudos em Ortopedia e Neurocirurgia, 2144 Ibirapuera Avenue, São Paulo 04028-001, Brazil;
| | - William D. Murrell
- Abu Dhabi Knee and Sports Medicine, Healthpoint Hospital, Zayed Sports City, Between Gate 1 and 6, Abu Dhabi 00000 (P. O. Box No. 112308), United Arab Emirates;
- 411th Hospital Center, Bldg 938, Birmingham Ave, Naval Air Station, Jacksonville, FL 32212, USA
| | - Alberto Gobbi
- O.A.S.I. Bioresearch Foundation Gobbi Onlus, 20133 Milano, Italy;
| | - Joseph Purita
- Institute of Regenerative Medicine, Boca Raton, FL 33432, USA;
| | | |
Collapse
|
98
|
Hajipour H, Farzadi L, Latifi Z, Keyhanvar N, Navali N, Fattahi A, Nouri M, Dittrich R. An update on platelet-rich plasma (PRP) therapy in endometrium and ovary related infertilities: clinical and molecular aspects. Syst Biol Reprod Med 2021; 67:177-188. [PMID: 33632047 DOI: 10.1080/19396368.2020.1862357] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Administration of platelet-rich plasma (PRP) is one of the well-recommended strategies for the treatment of endometrium- and ovary-associated infertility. Due to the autologous source of PRP, minimal risks for disease transmission and immunogenic and allergic responses are expected in this method. Despite the extensive use of PRP in medicine, its precise mechanism of action in endometrial and ovarian tissues is still unknown. Nevertheless, the induction of cell proliferation, chemotaxis, regeneration, extracellular matrix synthesis, remodeling, angiogenesis, and epithelialization are the main pathways for PRP to affect female reproductive organs. Given the promising results of previous studies, it is necessary to standardize PRP preparation protocols for different therapeutic purposes and also clearly determine appropriate inclusion and exclusion criteria for recruiting patients. In the current review, we presented a summary of studies on PRP therapy for endometrium- and ovary-associated infertility with a focus on the possible mechanisms by which PRP enhances endometrial receptivity and regenerates ovarian function.Abbreviations: PRP: platelet-rich plasma; ART: assisted reproductive technology; POF: premature ovarian failure; TGF: transforming growth factors; PDGF: platelet-derived growth factors; IGF-I: insulin-like growth factor-1; HGF: hepatocyte growth factor; EGF: epidermal growth factor; FGF: fibroblast growth factor; VEGF: vascular endothelial growth factor; ADP: adenosine diphosphate, ATP: adenosine triphosphate; PDGF: platelet-derived growth factor; COX2: cyclooxygenase-2; TP53: tumor protein 53; ER-α: estrogen receptors alpha; ER-β: estrogen receptors beta; PR: progesterone receptor; RIF: recurrent implantation failure; G-CSF: granulocyte colony-stimulating factor; iNOS: inducible nitric oxide synthase; NF-kβ: nuclear factor kappa beta; MMPs: matrix metalloproteinases; Col1a1: collagen type I alpha 1; IL: interleukin; FSH: follicle-stimulating hormone; AMH: anti-Mullerian hormone; GDF-9: growth differentiation factor 9.
Collapse
Affiliation(s)
- Hamed Hajipour
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Keyhanvar
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Navali
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,OB/GYN, Friedrich-Alexander-Universität Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ralf Dittrich
- OB/GYN, Friedrich-Alexander-Universität Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
99
|
Song M, Fitch ZW, Samy KP, Martin BM, Gao Q, Patrick Davis R, Leopardi FV, Huffman N, Schmitz R, Devi GR, Collins BH, Kirk AD. Coagulation, inflammation, and CD46 transgene expression in neonatal porcine islet xenotransplantation. Xenotransplantation 2021; 28:e12680. [PMID: 33619844 DOI: 10.1111/xen.12680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Thrombosis is a known consequence of intraportal islet transplantation, particularly for xenogeneic islets. To define the origins of thrombosis after islet xenotransplantation and relate it to early inflammation, we examined porcine islets transplanted into non-human primates using a dual-transplant model to directly compare islet characteristics. METHODS α1,3-Galactosyltransferase gene-knockout (GTKO) islets with and without expression of the human complement regulatory transgene CD46 (hCD46) were studied. Biologically inert polyethylene microspheres were used to examine the generic pro-thrombotic effects of particle embolization. Immunohistochemistry was performed 1 and 24 hours after transplantation. RESULTS Xeno-islet transplantation activated both extrinsic and intrinsic coagulation pathways. The intrinsic pathway was also initiated by microsphere embolization, while extrinsic pathway tissue factor (TF) and platelet aggregation were more specific to engrafted islets. hCD46 expression significantly reduced TF, platelet, fibrin, and factor XIIIa accumulation in and around islets but did not alter intrinsic factor activation. Layers of TF+ cells emerged around islets within 24 hours, particularly co-localized with vimentin, and identified as CD3+ and CD68+ cells inflammatory cells. CONCLUSIONS These findings detail the origins of thrombosis following islet xenotransplantation, relate it to early immune activation, and suggest a role for transgenic hCD46 expression in its mitigation. Layers of TF-positive inflammatory cells and fibroblasts around islets at 24 hours may have important roles in the progressive events of thrombosis, inflammatory cell recruitment, rejection, and the ultimate outcome of transplanted grafts. These suggest that the strategies targeting these elements could yield more progress toward successful xenogeneic islet engraftment and survival.
Collapse
Affiliation(s)
- Mingqing Song
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Zachary W Fitch
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Kannan P Samy
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Benjamin M Martin
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Francis V Leopardi
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Niki Huffman
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Robin Schmitz
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Gayathri R Devi
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Bradley H Collins
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
100
|
Yan P, Daliri EBM, Oh DH. New Clinical Applications of Electrolyzed Water: A Review. Microorganisms 2021; 9:136. [PMID: 33435548 PMCID: PMC7827692 DOI: 10.3390/microorganisms9010136] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
As the situation of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is still deteriorating, there has been a huge increase in the demand and use of disinfectants. Electrolyzed water (EW), as a novel broad-spectrum disinfectant and cleaner, has been widely used for several years. EW can be produced in an electrolysis chamber which contains dilute salt and tap water. It is an effective antimicrobial and antibiofilm agent, with several advantages such as on-the-spot, cheap, environmentally friendly and safe for human beings. Therefore, EW holds potential significance for high-risk settings in hospitals and other clinical facilities. EW can also be applied for wound healing, advanced tissue care, and dental clinics. The present review article highlights the latest developments and new perspectives of EW, especially in clinical fields. Furthermore, the main action modes of antibiofilm and antimicrobial will be summarized.
Collapse
Affiliation(s)
| | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (P.Y.); (E.B.-M.D.)
| |
Collapse
|