51
|
Ellrichmann G, Reick C, Saft C, Linker RA. The role of the immune system in Huntington's disease. Clin Dev Immunol 2013; 2013:541259. [PMID: 23956761 PMCID: PMC3727178 DOI: 10.1155/2013/541259] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/19/2013] [Indexed: 01/19/2023]
Abstract
Huntington's disease (HD) is characterized by a progressive course of disease until death 15-20 years after the first symptoms occur and is caused by a mutation with expanded CAG repeats in the huntingtin (htt) protein. Mutant htt (mhtt) in the striatum is assumed to be the main reason for neurodegeneration. Knowledge about pathophysiology has rapidly improved discussing influences of excitotoxicity, mitochondrial damage, free radicals, and inflammatory mechanisms. Both innate and adaptive immune systems may play an important role in HD. Activation of microglia with expression of proinflammatory cytokines, impaired migration of macrophages, and deposition of complement factors in the striatum indicate an activation of the innate immune system. As part of the adaptive immune system, dendritic cells (DCs) prime T-cell responses secreting inflammatory mediators. In HD, DCs may contain mhtt which brings the adaptive immune system into the focus of interest. These data underline an increasing interest in the peripheral immune system for pathomechanisms of HD. It is still unclear if neuroinflammation is a reactive process or if there is an active influence on disease progression. Further understanding the influence of inflammation in HD using mouse models may open various avenues for promising therapeutic approaches aiming at slowing disease progression or forestalling onset of disease.
Collapse
Affiliation(s)
- Gisa Ellrichmann
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany.
| | | | | | | |
Collapse
|
52
|
Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R, Fluder E, Clurman B, Melquist S, Narayanan M, Suver C, Shah H, Mahajan M, Gillis T, Mysore J, MacDonald ME, Lamb JR, Bennett DA, Molony C, Stone DJ, Gudnason V, Myers AJ, Schadt EE, Neumann H, Zhu J, Emilsson V. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 2013; 153:707-20. [PMID: 23622250 DOI: 10.1016/j.cell.2013.03.030] [Citation(s) in RCA: 1258] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 10/17/2012] [Accepted: 03/22/2013] [Indexed: 12/11/2022]
Abstract
The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain tissues from LOAD patients and nondemented subjects, and we demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune- and microglia-specific module that is dominated by genes involved in pathogen phagocytosis, contains TYROBP as a key regulator, and is upregulated in LOAD. Mouse microglia cells overexpressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a framework to test models of disease mechanisms underlying LOAD.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Carter RL, Chan AW. Pluripotent stem cells models for Huntington's disease: prospects and challenges. J Genet Genomics 2012; 39:253-9. [PMID: 22749012 PMCID: PMC4075320 DOI: 10.1016/j.jgg.2012.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 11/28/2022]
Abstract
Pluripotent cellular models have shown great promise in the study of a number of neurological disorders. Several advantages of using a stem cell model include the potential for cells to derive disease relevant neuronal cell types, providing a system for researchers to monitor disease progression during neurogenesis, along with serving as a platform for drug discovery. A number of stem cell derived models have been employed to establish in vitro research models of Huntington's disease that can be used to investigate cellular pathology and screen for drug and cell-based therapies. Although some progress has been made, there are a number of challenges and limitations that must be overcome before the true potential of this research strategy is achieved. In this article we review current stem cell models that have been reported, as well as discuss the issues that impair these studies. We also highlight the prospective application of Huntington's disease stem cell models in the development of novel therapeutic strategies and advancement of personalized medicine.
Collapse
Affiliation(s)
- Richard L. Carter
- Yerkes National Primate Research Center, 954 Gatewood Rd., N.E. Atlanta, GA 39329
- Genetic and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| | - Anthony W.S. Chan
- Yerkes National Primate Research Center, 954 Gatewood Rd., N.E. Atlanta, GA 39329
- Genetic and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| |
Collapse
|
54
|
Stress and aging induce distinct polyQ protein aggregation states. Proc Natl Acad Sci U S A 2012; 109:10587-92. [PMID: 22645345 DOI: 10.1073/pnas.1108766109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many age-related diseases are known to elicit protein misfolding and aggregation. Whereas environmental stressors, such as temperature, oxidative stress, and osmotic stress, can also damage proteins, it is not known whether aging and the environment impact protein folding in the same or different ways. Using polyQ reporters of protein folding in both Caenorhabditis elegans and mammalian cell culture, we show that osmotic stress, but not other proteotoxic stressors, induces rapid (minutes) cytoplasmic polyQ aggregation. Osmotic stress-induced polyQ aggregates could be distinguished from aging-induced polyQ aggregates based on morphological, biophysical, cell biological, and biochemical criteria, suggesting that they are a unique misfolded-protein species. The insulin-like growth factor signaling mutant daf-2, which inhibits age-induced polyQ aggregation and protects C. elegans from stress, did not prevent the formation of stress-induced polyQ aggregates. However, osmotic stress resistance mutants, which genetically activate the osmotic stress response, strongly inhibited the formation of osmotic polyQ aggregates. Our findings show that in vivo, the same protein can adopt distinct aggregation states depending on the initiating stressor and that stress and aging impact the proteome in related but distinct ways.
Collapse
|
55
|
Chafekar SM, Duennwald ML. Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin. PLoS One 2012; 7:e37929. [PMID: 22649566 PMCID: PMC3359295 DOI: 10.1371/journal.pone.0037929] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 04/30/2012] [Indexed: 01/02/2023] Open
Abstract
The molecular mechanisms by which polyglutamine (polyQ)-expanded huntingtin (Htt) causes neurodegeneration in Huntington's disease (HD) remain unclear. The malfunction of cellular proteostasis has been suggested as central in HD pathogenesis and also as a target of therapeutic interventions for the treatment of HD. We present results that offer a previously unexplored perspective regarding impaired proteostasis in HD. We find that, under non-stress conditions, the proteostatic capacity of cells expressing full length polyQ-expanded Htt is adequate. Yet, under stress conditions, the presence of polyQ-expanded Htt impairs the heat shock response, a key component of cellular proteostasis. This impaired heat shock response results in a reduced capacity to withstand the damage caused by cellular stress. We demonstrate that in cells expressing polyQ-expanded Htt the levels of heat shock transcription factor 1 (HSF1) are reduced, and, as a consequence, these cells have an impaired a heat shock response. Also, we found reduced HSF1 and HSP70 levels in the striata of HD knock-in mice when compared to wild-type mice. Our results suggests that full length, non-aggregated polyQ-expanded Htt blocks the effective induction of the heat shock response under stress conditions and may thus trigger the accumulation of cellular damage during the course of HD pathogenesis.
Collapse
Affiliation(s)
| | - Martin L. Duennwald
- Regenerative Biology Program, Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
56
|
Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington's disease patient cells. Mol Brain 2012; 5:17. [PMID: 22613578 PMCID: PMC3506453 DOI: 10.1186/1756-6606-5-17] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 05/21/2012] [Indexed: 02/08/2023] Open
Abstract
Background Huntington’s Disease (HD) is a devastating neurodegenerative disorder that clinically manifests as motor dysfunction, cognitive impairment and psychiatric symptoms. There is currently no cure for this progressive and fatal disorder. The causative mutation of this hereditary disease is a trinucleotide repeat expansion (CAG) in the Huntingtin gene that results in an expanded polyglutamine tract. Multiple mechanisms have been proposed to explain the preferential striatal and cortical degeneration that occurs with HD, including non-cell-autonomous contribution from astrocytes. Although numerous cell culture and animal models exist, there is a great need for experimental systems that can more accurately replicate the human disease. Human induced pluripotent stem cells (iPSCs) are a remarkable new tool to study neurological disorders because this cell type can be derived from patients as a renewable, genetically tractable source for unlimited cells that are difficult to acquire, such as neurons and astrocytes. The development of experimental systems based on iPSC technology could aid in the identification of molecular lesions and therapeutic treatments. Results We derived iPSCs from a father with adult onset HD and 50 CAG repeats (F-HD-iPSC) and his daughter with juvenile HD and 109 CAG repeats (D-HD-iPSC). These disease-specific iPSC lines were characterized by standard assays to assess the quality of iPSC lines and to demonstrate their pluripotency. HD-iPSCs were capable of producing phenotypically normal, functional neurons in vitro and were able to survive and differentiate into neurons in the adult mouse brain in vivo after transplantation. Surprisingly, when HD-iPSCs were directed to differentiate into an astrocytic lineage, we observed the presence of cytoplasmic, electron clear vacuoles in astrocytes from both F-HD-iPSCs and D-HD-iPSCs, which were significantly more pronounced in D-HD-astrocytes. Remarkably, the vacuolation in diseased astrocytes was observed under basal culture conditions without additional stressors and increased over time. Importantly, similar vacuolation phenotype has also been observed in peripheral blood lymphocytes from individuals with HD. Together, these data suggest that vacuolation may be a phenotype associated with HD. Conclusions We have generated a unique in vitro system to study HD pathogenesis using patient-specific iPSCs. The astrocytes derived from patient-specific iPSCs exhibit a vacuolation phenotype, a phenomenon previously documented in primary lymphocytes from HD patients. Our studies pave the way for future mechanistic investigations using human iPSCs to model HD and for high-throughput therapeutic screens.
Collapse
|
57
|
Sugaya K, Matsubara S. Quantitative connection between polyglutamine aggregation kinetics and neurodegenerative process in patients with Huntington's disease. Mol Neurodegener 2012; 7:20. [PMID: 22583646 PMCID: PMC3468392 DOI: 10.1186/1750-1326-7-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 04/16/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite enormous progress in elucidating the biophysics of aggregation, no cause-and-effect relationship between protein aggregation and neurodegenerative disease has been unequivocally established. Here, we derived several risk-based stochastic kinetic models that assess genotype/phenotype correlations in patients with Huntington's disease (HD) caused by the expansion of a CAG repeat. Fascinating disease-specific aspects of HD include the polyglutamine (polyQ)-length dependence of both age at symptoms onset and the propensity of the expanded polyQ protein to aggregate. In vitro, aggregation of polyQ peptides follows a simple nucleated growth polymerization pathway. Our models that reflect polyQ aggregation kinetics in a nucleated growth polymerization divided aggregate process into the length-dependent nucleation and the nucleation-dependent elongation. In contrast to the repeat-length dependent variability of age at onset, recent studies have shown that the extent of expansion has only a subtle effect on the rate of disease progression, suggesting possible differences in the mechanisms underlying the neurodegenerative process. RESULTS Using polyQ-length as an index, these procedures enabled us for the first time to establish a quantitative connection between aggregation kinetics and disease process, including onset and the rate of progression. Although the complexity of disease process in HD, the time course of striatal neurodegeneration can be precisely predicted by the mathematical model in which neurodegeneration occurs by different mechanisms for the initiation and progression of disease processes. Nucleation is sufficient to initiate neuronal loss as a series of random events in time. The stochastic appearance of nucleation in a cell population acts as the constant risk of neuronal cell damage over time, while elongation reduces the risk by nucleation in proportion to the increased extent of the aggregates during disease progression. CONCLUSIONS Our findings suggest that nucleation is a critical step in gaining toxic effects to the cell, and provide a new insight into the relationship between polyQ aggregation and neurodegenerative process in HD.
Collapse
Affiliation(s)
- Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan.
| | | |
Collapse
|
58
|
Benítez-Burraco A. Aspectos problemáticos del análisis genético de los trastornos específicos del lenguaje: FOXP2 como paradigma. Neurologia 2012; 27:225-33. [DOI: 10.1016/j.nrl.2011.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 01/05/2023] Open
|
59
|
Benítez-Burraco A. Problematic aspects of the genetic analysis of the specific disorders of the language: FOXP2 as paradigm. NEUROLOGÍA (ENGLISH EDITION) 2012. [DOI: 10.1016/j.nrleng.2012.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
60
|
Lajoie P, Snapp EL. Changes in BiP availability reveal hypersensitivity to acute endoplasmic reticulum stress in cells expressing mutant huntingtin. J Cell Sci 2011; 124:3332-43. [PMID: 21896647 DOI: 10.1242/jcs.087510] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is caused by expanded glutamine repeats within the huntingtin (Htt) protein. Mutant Htt (mHtt) in the cytoplasm has been linked to induction of the luminal endoplasmic reticulum (ER) stress pathway, the unfolded protein response (UPR). How mHtt impacts the susceptibility of the ER lumen to stress remains poorly understood. To investigate molecular differences in the ER in cells expressing mHtt, we used live-cell imaging of a sensitive reporter of the misfolded secretory protein burden, GFP fused to the ER chaperone BiP (also known as GRP78), which decreases in mobility as it binds increasing amounts of misfolded proteins. Striatal neurons expressing full-length mHtt showed no differences in BiP-GFP mobility and no evidence of UPR activation compared with wild-type cells at steady state. However, mHtt-expressing cells were acutely sensitive to misfolded secretory proteins. Treatment with ER stressors, tunicamycin or DTT, rapidly decreased BiP-GFP mobility in mHtt striatal cells and accelerated UPR activation compared with wild-type cells. mHtt-expressing cells exhibited decreased misfolded protein flux as a result of ER associated degradation (ERAD) dysfunction. Furthermore, UPR-adapted mHtt cells succumbed to misfolded protein stresses that could be tolerated by adapted wild-type cells. Thus, mHtt expression impairs misfolded secretory protein turnover, decreases the ER stress threshold, and increases cell vulnerability to insults.
Collapse
Affiliation(s)
- Patrick Lajoie
- Department Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | |
Collapse
|
61
|
Palliative Care in the Genomic Era. J Hosp Palliat Nurs 2011. [DOI: 10.1097/njh.0b013e31821adafd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
62
|
Abstract
Huntington's disease (HD) is the most common inherited neurodegenerative disease and is characterized by uncontrolled excessive motor movements and cognitive and emotional deficits. The mutation responsible for HD leads to an abnormally long polyglutamine (polyQ) expansion in the huntingtin (Htt) protein, which confers one or more toxic functions to mutant Htt leading to neurodegeneration. The polyQ expansion makes Htt prone to aggregate and accumulate, and manipulations that mitigate protein misfolding or facilitate the clearance of misfolded proteins tend to slow disease progression in HD models. This article will focus on HD and the evidence that it is a conformational disease.
Collapse
Affiliation(s)
- Steven Finkbeiner
- Gladstone Institute of Neurological Disease, Taube-Koret Center for Huntington's Disease Research, Departments of Neurology and Physiology, University of California, San Francisco, 94158, USA.
| |
Collapse
|
63
|
Myre MA, Lumsden AL, Thompson MN, Wasco W, MacDonald ME, Gusella JF. Deficiency of huntingtin has pleiotropic effects in the social amoeba Dictyostelium discoideum. PLoS Genet 2011; 7:e1002052. [PMID: 21552328 PMCID: PMC3084204 DOI: 10.1371/journal.pgen.1002052] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/02/2011] [Indexed: 11/24/2022] Open
Abstract
Huntingtin is a large HEAT repeat protein first identified in humans, where a polyglutamine tract expansion near the amino terminus causes a gain-of-function mechanism that leads to selective neuronal loss in Huntington's disease (HD). Genetic evidence in humans and knock-in mouse models suggests that this gain-of-function involves an increase or deregulation of some aspect of huntingtin's normal function(s), which remains poorly understood. As huntingtin shows evolutionary conservation, a powerful approach to discovering its normal biochemical role(s) is to study the effects caused by its deficiency in a model organism with a short life-cycle that comprises both cellular and multicellular developmental stages. To facilitate studies aimed at detailed knowledge of huntingtin's normal function(s), we generated a null mutant of hd, the HD ortholog in Dictyostelium discoideum. Dictyostelium cells lacking endogenous huntingtin were viable but during development did not exhibit the typical polarized morphology of Dictyostelium cells, streamed poorly to form aggregates by accretion rather than chemotaxis, showed disorganized F-actin staining, exhibited extreme sensitivity to hypoosmotic stress, and failed to form EDTA-resistant cell–cell contacts. Surprisingly, chemotactic streaming could be rescued in the presence of the bivalent cations Ca2+ or Mg2+ but not pulses of cAMP. Although hd− cells completed development, it was delayed and proceeded asynchronously, producing small fruiting bodies with round, defective spores that germinated spontaneously within a glassy sorus. When developed as chimeras with wild-type cells, hd− cells failed to populate the pre-spore region of the slug. In Dictyostelium, huntingtin deficiency is compatible with survival of the organism but renders cells sensitive to low osmolarity, which produces pleiotropic cell autonomous defects that affect cAMP signaling and as a consequence development. Thus, Dictyostelium provides a novel haploid organism model for genetic, cell biological, and biochemical studies to delineate the functions of the HD protein. Genetic evidence in humans and mouse models of Huntington's disease suggests that the disease mutation confers a deleterious gain-of-function on huntingtin that acts through the deregulation of some aspect of the protein's normal function(s). While huntingtin's function is poorly understood, its evolutionary conservation makes investigation of its physiological role in lower organisms an attractive route that has yet to be fully exploited. Therefore, we have used Dictyostelium discoideum to study the consequences of huntingtin (hd) deficiency. Developing Dictyostelium cells chemotax to form a multicellular slug that forms a fruiting body, comprising dormant spores encased above dead stalk cells. We found that hd− cells were hypersensitive to hypoosmotic stress. When starved, hd− cells aggregate by accretion, showed disorganized F-actin, and failed to form EDTA-resistant cell–cell contacts. Surprisingly, chemotactic signaling was rescued with Ca2+ or Mg2+ but not pulses of cAMP. Development of hd− mutants produced small fruiting bodies with round, defective spores, and when mixed with wild-type cells they didn't differentiate into spores. Our results are consistent with mammalian studies that show huntingtin is a multifunctional protein involved in many biochemical processes; and, importantly, they establish Dictyostelium as a valuable experimental organism for exploring in biochemical detail huntingtin's normal function(s).
Collapse
Affiliation(s)
- Michael A. Myre
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| | - Amanda L. Lumsden
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Morgan N. Thompson
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Wilma Wasco
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Marcy E. MacDonald
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - James F. Gusella
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
64
|
Reinhart PH, Kaltenbach LS, Essrich C, Dunn DE, Eudailey JA, DeMarco CT, Turmel GJ, Whaley JC, Wood A, Cho S, Lo DC. Identification of anti-inflammatory targets for Huntington's disease using a brain slice-based screening assay. Neurobiol Dis 2011; 43:248-56. [PMID: 21458569 DOI: 10.1016/j.nbd.2011.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/02/2011] [Accepted: 03/23/2011] [Indexed: 10/18/2022] Open
Abstract
Huntington's disease (HD) is a late-onset, neurodegenerative disease for which there are currently no cures nor disease-modifying treatments. Here we report the identification of several potential anti-inflammatory targets for HD using an ex vivo model of HD that involves the acute transfection of human mutant huntingtin-based constructs into rat brain slices. This model recapitulates key components of the human disease, including the formation of intracellular huntingtin protein (HTT)-containing inclusions and the progressive neurodegeneration of striatal neurons-both occurring within the native tissue context of these neurons. Using this "high-throughput biology" screening platform, we conducted a hypothesis-neutral screen of a collection of drug-like compounds which identified several anti-inflammatory targets that provided neuroprotection against HTT fragment-induced neurodegeneration. The nature of these targets provide further support for non-cell autonomous mechanisms mediating significant aspects of neuropathogenesis induced by mutant HTT fragment proteins.
Collapse
Affiliation(s)
- Peter H Reinhart
- Discovery Neuroscience, Wyeth Research, Princeton, NJ 08543, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Panov AV, Kubalik N, Zinchenko N, Ridings DM, Radoff DA, Hemendinger R, Brooks BR, Bonkovsky HL. Metabolic and functional differences between brain and spinal cord mitochondria underlie different predisposition to pathology. Am J Physiol Regul Integr Comp Physiol 2011; 300:R844-54. [PMID: 21248309 DOI: 10.1152/ajpregu.00528.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunctions contribute to neurodegeneration, the locations of which vary among neurodegenerative diseases. To begin to understand what mechanisms may underlie higher vulnerability of the spinal cord motor neurons in amyotrophic lateral sclerosis, compared with brain mitochondria, we studied three major functions of rat brain mitochondria (BM) and spinal cord mitochondria (SCM) mitochondria: oxidative phosphorylation, Ca(2+) sequestration, and production of reactive oxygen species (ROS), using a new metabolic paradigm (Panov et al., J. Biol. Chem. 284: 14448-14456, 2009). We present data that SCM share some unique metabolic properties of the BM. However, SCM also have several distinctions from the BM: 1) With the exception of succinate, SCM show significantly lower rates of respiration with all substrates studied; 2) immunoblotting analysis showed that this may be due to 30-40% lower contents of respiratory enzymes and porin; 3) compared with BM, SCM sequestered 40-50% less Ca(2+), and the total tissue calcium content was 8 times higher in the spinal cord; 4) normalization for mitochondria from 1 g of tissue showed that BM can sequester several times more Ca(2+) than was available in the brain tissue, whereas SCM had the capacity to sequester only 10-20% of the total tissue Ca(2+); and 5) with succinate and succinate-containing substrate mixtures, SCM showed significantly higher state 4 respiration than BM and generated more ROS associated with the reverse electron transport. We conclude that SCM have an intrinsically higher risk of oxidative damage and overload with calcium than BM, and thus spinal cord may be more vulnerable under some pathologic conditions. (250).
Collapse
Affiliation(s)
- Alexander V Panov
- Carolinas Neuromuscular/Amyotrophic Lateral Sclerosis Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, North Carolina 28203, USA.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Huntington's disease is a progressive, fatal, neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene, which encodes an abnormally long polyglutamine repeat in the huntingtin protein. Huntington's disease has served as a model for the study of other more common neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. These disorders all share features including: delayed onset; selective neuronal vulnerability, despite widespread expression of disease-related proteins during the whole lifetime; abnormal protein processing and aggregation; and cellular toxic effects involving both cell autonomous and cell-cell interaction mechanisms. Pathogenic pathways of Huntington's disease are beginning to be unravelled, offering targets for treatments. Additionally, predictive genetic testing and findings of neuroimaging studies show that, as in some other neurodegenerative disorders, neurodegeneration in affected individuals begins many years before onset of diagnosable signs and symptoms of Huntington's disease, and it is accompanied by subtle cognitive, motor, and psychiatric changes (so-called prodromal disease). Thus, Huntington's disease is also emerging as a model for strategies to develop therapeutic interventions, not only to slow progression of manifest disease but also to delay, or ideally prevent, its onset.
Collapse
Affiliation(s)
- Christopher A Ross
- Departments of Psychiatry, Neurology, Pharmacology, and Neuroscience, and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
67
|
Lajoie P, Snapp EL. Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS One 2010; 5:e15245. [PMID: 21209946 PMCID: PMC3011017 DOI: 10.1371/journal.pone.0015245] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/16/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Aggregation and cytotoxicity of mutant proteins containing an expanded number of polyglutamine (polyQ) repeats is a hallmark of several diseases, including Huntington's disease (HD). Within cells, mutant Huntingtin (mHtt) and other polyglutamine expansion mutant proteins exist as monomers, soluble oligomers, and insoluble inclusion bodies (IBs). Determining which of these forms constitute a toxic species has proven difficult. Recent studies support a role for IBs as a cellular coping mechanism to sequester levels of potentially toxic soluble monomeric and oligomeric species of mHtt. METHODOLOGY/PRINCIPAL FINDINGS When fused to a fluorescent reporter (GFP) and expressed in cells, the soluble monomeric and oligomeric polyglutamine species are visually indistinguishable. Here, we describe two complementary biophysical fluorescence microscopy techniques to directly detect soluble polyglutamine oligomers (using Htt exon 1 or Htt(ex1)) and monitor their fates in live cells. Photobleaching analyses revealed a significant reduction in the mobilities of mHtt(ex1) variants consistent with their incorporation into soluble microcomplexes. Similarly, when fused to split-GFP constructs, both wildtype and mHtt(ex1) formed oligomers, as evidenced by the formation of a fluorescent reporter. Only the mHtt(ex1) split-GFP oligomers assembled into IBs. Both FRAP and split-GFP approaches confirmed the ability of mHtt(ex1) to bind and incorporate wildtype Htt into soluble oligomers. We exploited the irreversible binding of split-GFP fragments to forcibly increase levels of soluble oligomeric mHtt(ex1). A corresponding increase in the rate of IBs formation and the number formed was observed. Importantly, higher levels of soluble mHtt(ex1) oligomers significantly correlated with increased mutant cytotoxicity, independent of the presence of IBs. CONCLUSIONS/SIGNIFICANCE Our study describes powerful and sensitive tools for investigating soluble oligomeric forms of expanded polyglutamine proteins, and their impact on cell viability. Moreover, these methods should be applicable for the detection of soluble oligomers of a wide variety of aggregation prone proteins.
Collapse
Affiliation(s)
- Patrick Lajoie
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erik Lee Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
68
|
Gohil VM, Offner N, Walker JA, Sheth SA, Fossale E, Gusella JF, MacDonald ME, Neri C, Mootha VK. Meclizine is neuroprotective in models of Huntington's disease. Hum Mol Genet 2010; 20:294-300. [PMID: 20977989 DOI: 10.1093/hmg/ddq464] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Defects in cellular energy metabolism represent an early feature in a variety of human neurodegenerative diseases. Recent studies have shown that targeting energy metabolism can protect against neuronal cell death in such diseases. Here, we show that meclizine, a clinically used drug that we have recently shown to silence oxidative metabolism, suppresses apoptotic cell death in a murine cellular model of polyglutamine (polyQ) toxicity. We further show that this protective effect extends to neuronal dystrophy and cell death in Caenorhabditis elegans and Drosophila melanogaster models of polyQ toxicity. Meclizine's mechanism of action is not attributable to its anti-histaminergic or anti-muscarinic activity, but rather, strongly correlates with its ability to suppress mitochondrial respiration. Since meclizine is an approved drug that crosses the blood-brain barrier, it may hold therapeutic potential in the treatment of polyQ toxicity disorders, such as Huntington's disease.
Collapse
Affiliation(s)
- Vishal M Gohil
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Persistence of morning anticipation behavior and high amplitude morning startle response following functional loss of small ventral lateral neurons in Drosophila. PLoS One 2010; 5:e11628. [PMID: 20661292 PMCID: PMC2905440 DOI: 10.1371/journal.pone.0011628] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 06/09/2010] [Indexed: 11/20/2022] Open
Abstract
Light-activated large ventral lateral clock neurons (large LNv) modulate behavioral arousal and sleep in Drosophila while their counterparts, the small LNv (s-LNv) are important for circadian behavior. Recently, it has been proposed that the pattern of day-night locomotor behavioral activity is mediated by two anatomically distinct oscillators composed of a morning oscillator in the small LNv and an evening oscillator in the lateral dorsal neurons and an undefined number of dorsal pacemaker neurons. This contrasts with a circuit described by network models which are not as anatomically constrained. By selectively ablating the small LNv while sparing the large LNv, we tested the relative importance of the small and large LNv for regulating morning behavior of animals living in standard light/dark cycles. Behavioral anticipation of the onset of morning and the high amplitude morning startle response which coincides with light onset are preserved in small LNv functionally-ablated animals. However, the amplitude of the morning behavioral peak is severely attenuated in these animals during the transition from regular light/dark cycles to constant darkness, providing further support that small LNv are necessary for circadian behavior. The large LNv, in combination with the network of other circadian neurons, in the absence of functional small LNv are sufficient for the morning anticipation and the high amplitude light-activated morning startle response.
Collapse
|
70
|
Abstract
Thanks to the revolutions in information technology, human "-omics" research, and intricate medical device development, academic health centers (AHCs) now have an unparalleled potential to become translational engines that both generate basic science advances and then translate them into human studies and, ultimately, into improved health care. However, AHC infrastructures have traditionally been optimized to foster basic research. Now modifications must be made to meet these expanded roles of AHCs, from providing fundamental biomedical insights to first-in-human interventions and, if warranted, to larger randomized clinical trials. Eventually, AHCs must integrate these improved treatments into patient care. Challenges to this process have been defined by the Institute of Medicine. Building the appropriate infrastructures for human investigation and stabilizing the careers of young physicians essential to these translational events have become critical needs that will require systemic investments if AHCs are to respond to these biological revolutions and fulfill their promise.
Collapse
Affiliation(s)
- William F Crowley
- Harvard Reproductive Endocrine Sciences Center, Department of Medicine, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
71
|
Łabaj PP, Leparc GG, Bardet AF, Kreil G, Kreil DP. Single amino acid repeats in signal peptides. FEBS J 2010; 277:3147-57. [DOI: 10.1111/j.1742-4658.2010.07720.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
72
|
Neuroinflammation in Huntington's disease. J Neural Transm (Vienna) 2010; 117:1001-8. [PMID: 20535620 DOI: 10.1007/s00702-010-0430-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/22/2010] [Indexed: 01/17/2023]
Abstract
Huntington's disease (HD) is a monogenic neurodegenerative disease characterized by abnormal motor movements, personality changes and early death. In contrast to other neurodegenerative diseases, very little is known about the role of neuroinflammation in HD. While the current data clearly demonstrate the existence of inflammatory processes in HD pathophysiology, the question of whether neuroinflammation is purely reactive or might actively participate in disease pathogenesis is currently a matter of ongoing research and debate. This review will try to shed some light on the current state of research in this area and provide an outlook on potential future developments.
Collapse
|
73
|
Ross CA, Shoulson I. Huntington disease: pathogenesis, biomarkers, and approaches to experimental therapeutics. Parkinsonism Relat Disord 2010; 15 Suppl 3:S135-8. [PMID: 20082975 DOI: 10.1016/s1353-8020(09)70800-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Huntington disease (HD) is characterized by motor, cognitive and behavioral abnormalities that typically emerge in adulthood in persons who have inherited the mutant gene. HD has a single genetic cause, a well-defined neuropathology, and informative pre-manifest predictive genetic testing. Thus, it has been possible to develop imaging biomarkers of HD progression, not just in the period of manifest illness, but also in the prodromal or "premanifest" period. Striatal atrophy is the most studied, and shows steady progression beginning in the prodromal period beginning up to 15 years before predicted onset, and continuing through the period of manifest illness. Therapeutic targets for HD include the huntingtin protein itself, either by reducing its levels with antisense oligonucleotides or siRNA, or potentially by intervening via posttranslational modifications such as phosphorylation, acetylation, SUMOylation, or proteolytic cleavage. Other strategies involve bolstering the cell's ability to deal with abnormal proteins, either via chaperones or protein degradation machinery. It may be possible to counteract the abnormal transcription caused by mutant huntingtin, with histone deacetylase inhibitors, or to enhance relevant gene products such as Brain Derived Neurotrophic Factor (BDNF). Another tactic is to enhance cellular metabolic defenses, such as with creatine or Coenzyme Q10. Strategies are being devised to use biomarkers, and administer therapeutic agents which can be given safely for long periods of time during the proodromal period, with a goal not just to slow progression, but to delay, or conceivably even prevent, the onset of clinical HD.
Collapse
Affiliation(s)
- Christopher A Ross
- Professor of Psychiatry, Neurology, Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, CMSC 8-121, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | | |
Collapse
|
74
|
Sathyasaikumar KV, Stachowski EK, Amori L, Guidetti P, Muchowski PJ, Schwarcz R. Dysfunctional kynurenine pathway metabolism in the R6/2 mouse model of Huntington's disease. J Neurochem 2010; 113:1416-25. [PMID: 20236387 DOI: 10.1111/j.1471-4159.2010.06675.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Elevated concentrations of neurotoxic metabolites of the kynurenine pathway (KP) of tryptophan degradation may play a causative role in Huntington's disease (HD). The brain levels of one of these compounds, 3-hydroxykynurenine (3-HK), are increased in both HD and several mouse models of the disease. In the present study, we examined this impairment in greater detail using the R6/2 mouse, a well-established animal model of HD. Initially, mutant and age-matched wild-type mice received an intrastriatal injection of (3)H-tryptophan to assess the acute, local de novo production of kynurenine, the immediate bioprecursor of 3-HK, in vivo. No effect of genotype was observed between 4 and 12 weeks of age. In contrast, intrastriatally applied (3)H-kynurenine resulted in significantly increased neosynthesis of (3)H-3-HK, but not other tritiated KP metabolites, in the R6/2 striatum. Subsequent ex vivo studies in striatal, cortical and cerebellar tissue revealed substantial increases in the activity of the biosynthetic enzyme of 3-HK, kynurenine 3-monooxygenase and significant reductions in the activity of its degradative enzyme, kynureninase, in HD mice starting at 4 weeks of age. Decreased kynureninase activity was most evident in the cortex and preceded the increase in kynurenine 3-monooxygenase activity. The activity of other KP enzymes showed no consistent brain abnormalities in the mutant mice. These findings suggest that impairments in its immediate metabolic enzymes jointly account for the abnormally high brain levels of 3-HK in the R6/2 model of HD.
Collapse
Affiliation(s)
- Korrapati V Sathyasaikumar
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | | | | | | | | | | |
Collapse
|
75
|
van Ham TJ, Breitling R, Swertz MA, Nollen EAA. Neurodegenerative diseases: Lessons from genome-wide screens in small model organisms. EMBO Mol Med 2010; 1:360-70. [PMID: 20049741 PMCID: PMC3378155 DOI: 10.1002/emmm.200900051] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Various age-related neurodegenerative diseases, including Parkinson's disease, polyglutamine expansion diseases and Alzheimer's disease, are associated with the accumulation of misfolded proteins in aggregates in the brain. How and why these proteins form aggregates and cause disease is still poorly understood. Small model organisms—the baker's yeast Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster—have been used to model these diseases and high-throughput genetic screens using these models have led to the identification of a large number of genes that modify aggregation and toxicity of the disease proteins. In this review, we revisit these models and provide a comprehensive comparison of the genetic screens performed so far. Our integrative analysis highlights alterations of a wide variety of basic cellular processes. Not all disease proteins are influenced by alterations in the same cellular processes and despite the unifying theme of protein misfolding and aggregation, the pathology of each of the age-related misfolding disorders can be induced or influenced by a disease-protein-specific subset of molecular processes.
Collapse
Affiliation(s)
- Tjakko J van Ham
- Department of Genetics, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
76
|
Seong IS, Woda JM, Song JJ, Lloret A, Abeyrathne PD, Woo CJ, Gregory G, Lee JM, Wheeler VC, Walz T, Kingston RE, Gusella JF, Conlon RA, MacDonald ME. Huntingtin facilitates polycomb repressive complex 2. Hum Mol Genet 2009; 19:573-83. [PMID: 19933700 PMCID: PMC2807366 DOI: 10.1093/hmg/ddp524] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Huntington's disease (HD) is caused by expansion of the polymorphic polyglutamine segment in the huntingtin protein. Full-length huntingtin is thought to be a predominant HEAT repeat α-solenoid, implying a role as a facilitator of macromolecular complexes. Here we have investigated huntingtin's domain structure and potential intersection with epigenetic silencer polycomb repressive complex 2 (PRC2), suggested by shared embryonic deficiency phenotypes. Analysis of a set of full-length recombinant huntingtins, with different polyglutamine regions, demonstrated dramatic conformational flexibility, with an accessible hinge separating two large α-helical domains. Moreover, embryos lacking huntingtin exhibited impaired PRC2 regulation of Hox gene expression, trophoblast giant cell differentiation, paternal X chromosome inactivation and histone H3K27 tri-methylation, while full-length endogenous nuclear huntingtin in wild-type embryoid bodies (EBs) was associated with PRC2 subunits and was detected with trimethylated histone H3K27 at Hoxb9. Supporting a direct stimulatory role, full-length recombinant huntingtin significantly increased the histone H3K27 tri-methylase activity of reconstituted PRC2 in vitro, and structure–function analysis demonstrated that the polyglutamine region augmented full-length huntingtin PRC2 stimulation, both in HdhQ111 EBs and in vitro, with reconstituted PRC2. Knowledge of full-length huntingtin's α-helical organization and role as a facilitator of the multi-subunit PRC2 complex provides a novel starting point for studying PRC2 regulation, implicates this chromatin repressive complex in a neurodegenerative disorder and sets the stage for further study of huntingtin's molecular function and the impact of its modulatory polyglutamine region.
Collapse
Affiliation(s)
- Ihn Sik Seong
- Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Hu J, Dodd DW, Hudson RHE, Corey DR. Cellular localization and allele-selective inhibition of mutant huntingtin protein by peptide nucleic acid oligomers containing the fluorescent nucleobase [bis-o-(aminoethoxy)phenyl]pyrrolocytosine. Bioorg Med Chem Lett 2009; 19:6181-4. [PMID: 19783436 PMCID: PMC2770837 DOI: 10.1016/j.bmcl.2009.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 12/16/2022]
Abstract
Peptide nucleic acid (PNA) is a successful DNA/RNA mimic. A major challenge for research is to invent chemically modified PNAs that retain the favorable properties of the parent compound while improving biological recognition. Here, we test modified PNAs containing [bis-o-(aminoethoxy)phenyl]pyrrolocytosine bases designed to engage guanine with an additional hydrogen bond. We observe elevated melting temperatures, localization to cellular compartments, and allele-selective inhibition of mutant huntingtin protein expression.
Collapse
Affiliation(s)
- Jiaxin Hu
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, 6001 Forest Park Road TX 75390, USA
| | - David W. Dodd
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Robert H. E. Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - David R. Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, 6001 Forest Park Road TX 75390, USA
| |
Collapse
|
78
|
Hu J, Matsui M, Corey DR. Allele-selective inhibition of mutant huntingtin by peptide nucleic acid-peptide conjugates, locked nucleic acid, and small interfering RNA. Ann N Y Acad Sci 2009; 1175:24-31. [PMID: 19796074 DOI: 10.1111/j.1749-6632.2009.04975.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to inhibit expression of a mutant allele while retaining expression of a wild-type protein might provide a useful approach to treating Huntington's Disease (HD) and other inherited pathologies. The mutant form of huntingtin (HTT), the protein responsible for HD, is encoded by an mRNA containing an expanded CAG repeat. We demonstrate that peptide nucleic acid conjugates and locked nucleic acids complementary to the CAG repeat selectively block expression of mutant HTT. The selectivity of inhibition is at least as good as that shown by a small interfering RNA targeted to a deletion polymorphism. Our data suggest that antisense oligomers are promising subjects for further development as an anti-HD therapeutic strategy.
Collapse
Affiliation(s)
- Jiaxin Hu
- Department of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9041, USA
| | | | | |
Collapse
|
79
|
Darnell GD, Derryberry J, Kurutz JW, Meredith SC. Mechanism of cis-inhibition of polyQ fibrillation by polyP: PPII oligomers and the hydrophobic effect. Biophys J 2009; 97:2295-305. [PMID: 19843462 PMCID: PMC2764074 DOI: 10.1016/j.bpj.2009.07.062] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 06/26/2009] [Accepted: 07/01/2009] [Indexed: 10/20/2022] Open
Abstract
PolyQ peptides teeter between polyproline II (PPII) and beta-sheet conformations. In tandem polyQ-polyP peptides, the polyP segment tips the balance toward PPII, increasing the threshold number of Gln residues needed for fibrillation. To investigate the mechanism of cis-inhibition by flanking polyP segments on polyQ fibrillation, we examined short polyQ, polyP, and tandem polyQ-polyP peptides. These polyQ peptides have only three glutamines and cannot form beta-sheet fibrils. We demonstrate that polyQ-polyP peptides form small, soluble oligomers at high concentrations (as shown by size exclusion chromatography and diffusion coefficient measurements) with PPII structure (as shown by circular dichroism spectroscopy and (3)J(HN-C alpha) constants of Gln residues from constant time correlation spectroscopy NMR). Nuclear Overhauser effect spectroscopy and molecular modeling suggest that self-association of these peptides occurs as a result of both hydrophobic and steric effects. Pro side chains present three methylenes to solvent, favoring self-association of polyP through the hydrophobic effect. Gln side chains, with two methylene groups, can adopt a conformation similar to that of Pro side chains, also permitting self-association through the hydrophobic effect. Furthermore, steric clashes between Gln and Pro side chains to the C-terminal side of the polyQ segment favor adoption of the PPII-like structure in the polyQ segment. The conformational adaptability of the polyQ segment permits the cis-inhibitory effect of polyP segments on fibrillation by the polyQ segments in proteins such as huntingtin.
Collapse
Affiliation(s)
- Gregory D. Darnell
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | | | - Josh W. Kurutz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Stephen C. Meredith
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
- Department of Pathology, University of Chicago, Chicago, Illinois
| |
Collapse
|
80
|
Abstract
For almost three decades, Huntington's disease has been a prototype for the application of genetic strategies to human disease. HD, the Huntington's disease gene, was the first autosomal defect mapped using only DNA markers, a finding in 1983 that helped to spur similar studies in many other disorders and contributed to the concept of the human genome project. The search for the genetic defect itself pioneered many mapping and gene-finding technologies, and culminated in the identification of the HD gene, its mutation and its novel protein product in 1993. Since that time, extensive investigations into the pathogenic mechanism have utilized the knowledge of the disease gene and its defect but, with notable exceptions, have rarely relied for guidance on the genetic findings in human patients to interpret the relevance of findings in non-human model systems. However, the human patient still has much to teach us through a detailed analysis of genotype and phenotype. Such studies have implicated the existence of genetic modifiers - genes whose natural polymorphic variation contributes to altering the development of Huntington's disease symptoms. The search for these modifiers, much as the search for the HD gene did in the past, offers to open new entrées into the process of Huntington's disease pathogenesis by unlocking the biochemical changes that occur many years before diagnosis, and thereby providing validated target proteins and pathways for development of rational therapeutic interventions.
Collapse
Affiliation(s)
- James F Gusella
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | | |
Collapse
|
81
|
Sarantseva SV, Schwarzman AL. Modern genetic approaches to searching for targets for medicinal preparations. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409070011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
82
|
Subramaniam S, Sixt KM, Barrow R, Snyder SH. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 2009; 324:1327-30. [PMID: 19498170 DOI: 10.1126/science.1172871] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Huntington's disease (HD) is caused by a polyglutamine repeat in the protein huntingtin (Htt) with mutant Htt (mHtt) expressed throughout the body and similarly in all brain regions. Yet, HD neuropathology is largely restricted to the corpus striatum. We report that the small guanine nucleotide-binding protein Rhes, which is localized very selectively to the striatum, binds physiologically to mHtt. Using cultured cells, we found Rhes induces sumoylation of mHtt, which leads to cytotoxicity. Thus, Rhes-mHtt interactions can account for the localized neuropathology of HD.
Collapse
Affiliation(s)
- Srinivasa Subramaniam
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
83
|
Prudencio M, Hart PJ, Borchelt DR, Andersen PM. Variation in aggregation propensities among ALS-associated variants of SOD1: correlation to human disease. Hum Mol Genet 2009; 18:3217-26. [PMID: 19483195 PMCID: PMC2722984 DOI: 10.1093/hmg/ddp260] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To date, 146 different mutations in superoxide dismutase 1 (SOD1) have been identified in patients with familial amyotrophic lateral sclerosis (ALS). The mean age of disease onset in patients inheriting mutations in SOD1 is 45-47 years of age. However, although the length of disease duration is highly variable, there are examples of consistent disease durations associated with specific mutations (e. g. A4V, less than 2 years). In the present study, we have used a large set of data from SOD1-associated ALS pedigrees to identify correlations between disease features and biochemical/biophysical properties of more than 30 different variants of mutant SOD1. Using a reliable cell culture assay, we show that all ALS-associated mutations in SOD1 increase the inherent aggregation propensity of the protein. However, the relative propensity to do so varied considerably among mutants. We were not able to explain the variation in aggregation rates by differences in known protein properties such as enzyme activity, protein thermostability, mutation position or degree of change in protein charge. Similarly, we were not able to explain variability in the duration of disease in SOD1-associated ALS pedigrees by these properties. However, we find that the majority of pedigrees in which patients exhibit reproducibly short disease durations are associated with mutations that show a high inherent propensity to induce aggregation of SOD1.
Collapse
Affiliation(s)
- Mercedes Prudencio
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | | | | |
Collapse
|
84
|
Rubio I, Rodríguez-Navarro JA, Tomás-Zapico C, Ruíz C, Casarejos MJ, Perucho J, Gómez A, Rodal I, Lucas JJ, Mena MA, de Yébenes JG. Effects of partial suppression of parkin on huntingtin mutant R6/1 mice. Brain Res 2009; 1281:91-100. [PMID: 19464273 DOI: 10.1016/j.brainres.2009.05.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by an expansion of polyglutamines which makes huntingtin more resistant to degradation. Parkin is an ubiquitin ligase which promotes proteosomal degradation of abnormal proteins. We investigated whether partial suppression of parkin increases HD phenotype. We studied the behavior and brain histology and biochemistry of the mice produced by interbreeding of R6/1 (model of HD in mice) with Park-2(-/-) (parkin null mice): R6/1, WT (wild-type), PK(+/-) (hemizygotic deletion of Park-2) and R6/1/PK(+/-). R6/1 and R6/1/PK(+/-) mice had abnormal motor and exploratory behavior. R6/1/PK(+/-) mice were more akinetic. These two groups of mice had severe but similar loss of nigrostriatal dopamine neurons and monoamine levels in striatum. R6/1/PK(+/-) mice had fewer huntingtin inclusions and a greater number of TUNEL(+) cells than R6/1 in striatum but there were no differences in the hippocampus. DARPP-32 protein was equally reduced in striatum of R6/1 and R6/1/PK(+/-) mice. Striatal levels of GSH were increased, of HSP-70 reduced and of CHIP unchanged in both R6/1 and R6/1/PK(+/-) mice. LC-3 II/I ratios were significantly increased in striatum of R6/1/PK(+/-) mice. Partial suppression of parkin slightly aggravates the phenotype in R6/1 mice, confirming a pathogenic role of the UPS in the processing of mutant huntingtin. The absence of massive additional cellular lesions in R6/1/PK(+/-) mice suggests the existence of compensatory mechanisms, such as autophagy, for the processing of huntingtin.
Collapse
Affiliation(s)
- Isabel Rubio
- Servicio de Neurología, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Hu J, Matsui M, Gagnon KT, Schwartz JC, Gabillet S, Arar K, Wu J, Bezprozvanny I, Corey DR. Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat Biotechnol 2009; 27:478-84. [PMID: 19412185 PMCID: PMC2765218 DOI: 10.1038/nbt.1539] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 04/03/2009] [Indexed: 11/09/2022]
Abstract
Expanded trinucleotide repeats cause many neurological diseases. These include Machado-Joseph disease (MJD) and Huntington's disease (HD), which are caused by expanded CAG repeats within an allele of the ataxin-3 (ATXN3) and huntingtin (HTT) genes, respectively. Silencing expression of these genes is a promising therapeutic strategy, but indiscriminate inhibition of both the mutant and wild-type alleles may lead to toxicity, and allele-specific approaches have required polymorphisms that differ among individuals. We report that peptide nucleic acid and locked nucleic acid antisense oligomers that target CAG repeats can preferentially inhibit mutant ataxin-3 and HTT protein expression in cultured cells. Duplex RNAs were less selective than single-stranded oligomers. The activity of the peptide nucleic acids does not involve inhibition of transcription, and differences in mRNA secondary structure or the number of oligomer binding sites may be important. Antisense oligomers that discriminate between wild-type and mutant genes on the basis of repeat length may offer new options for developing treatments for MJD, HD and related hereditary diseases.
Collapse
Affiliation(s)
- Jiaxin Hu
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Illuzzi J, Yerkes S, Parekh-Olmedo H, Kmiec EB. DNA breakage and induction of DNA damage response proteins precede the appearance of visible mutant huntingtin aggregates. J Neurosci Res 2009; 87:733-47. [PMID: 18831068 DOI: 10.1002/jnr.21881] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that follows an autosomal-dominant inheritance pattern. The pathogenesis of the disease depends on the degree of expansion of triplet (CAG) repeats located in the first exon on the gene. An expanded polyglutamine tract within the protein huntingtin (Htt) enables a gain-of-function phenotype that is often exhibited by a dysfunctional oligomerization process and the formation of protein aggregates. How this process leads to neurodegeneration remains undefined. We report that expression of a Htt-fragment containing an expanded glutamine tract induces DNA damage and activates the DNA damage response pathway. Both single-strand and double-strand breaks are observed as the mutant protein accumulates in the cell; these breaks precede the appearance of detectable protein aggregates containing mutant Htt. We also observe activation of H2AX, ATM, and p53 in cells expressing mutant Htt, a predictable response in cells containing chromosomal breakage. Expression of wild-type Htt does not affect the integrity of DNA, nor does it activate the same pathway. Furthermore, DNA damage and activated H2AX are present in HD transgenic mice before the formation of mutant Htt aggregates and HD pathogenesis. Taken together, our data suggest that the expression of mutant Htt causes an accumulation of DNA breaks that activates the DNA damage response pathway, a process that can disable cell function. Because these events can lead to apoptosis, it is possible that the DNA damage response pathway activated by single- and double-strand breaks that we found contributes to neurodegeneration.
Collapse
Affiliation(s)
- Jennifer Illuzzi
- Department of Biological Sciences, University of Delaware, Delaware Biotechnology Institute, Newark, Delaware 19711, USA
| | | | | | | |
Collapse
|
87
|
Hoffner G, Souès S, Djian P. Aggregation of expanded huntingtin in the brains of patients with Huntington disease. Prion 2009; 1:26-31. [PMID: 19172113 DOI: 10.4161/pri.1.1.4056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Huntingtin containing an expanded polyglutamine causes neuronal death and Huntington disease. Although expanded huntingtin is found in virtually every cell type, its toxicity is limited to neurons of certain areas of the brain, such as cortex and caudate/putamen. In affected areas of the brain, expanded huntingtin is not found in its intact monomeric form. It is found instead in the form of N-terminal fragments, oligomers and polymers, all of which accumulate in the cortex. Whereas the oligomer is mostly soluble, the polymers and the fragments associate with each other and with other proteins to form the insoluble inclusions characteristic of the disease. It is likely that the aggregates containing expanded huntingtin are toxic to neurons, but it remains to be determined whether the oligomer or the inclusion is the toxic species.
Collapse
Affiliation(s)
- Guylaine Hoffner
- Unité Propre de Recherche 2228 du Centre National de la Recherche Scientifique, Institut Interdisciplinaire des Sciences du Vivant des Saints-Pères, Université René Descartes, Paris, France
| | | | | |
Collapse
|
88
|
Díaz-Hernández M, Díez-Zaera M, Sánchez-Nogueiro J, Gómez-Villafuertes R, Canals JM, Alberch J, Miras-Portugal MT, Lucas JJ. Altered P2X7‐receptor level and function in mouse models of Huntington's disease and therapeutic efficacy of antagonist administration. FASEB J 2009; 23:1893-906. [DOI: 10.1096/fj.08-122275] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Miguel Díaz-Hernández
- Centro de Biología Molecular “Severo Ochoa”Consejo Superior de Investigaciònes CientificasUniversidad Autonóma de MadridMadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasInstituto de Salud Carlos IIIMadridSpain
- Departamento de Bioquímica y Biología Molecular IVFacultad de VeterinariaUniversidad Complutense de MadridMadridSpain
| | - María Díez-Zaera
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasInstituto de Salud Carlos IIIMadridSpain
| | - Jesús Sánchez-Nogueiro
- Centro de Biología Molecular “Severo Ochoa”Consejo Superior de Investigaciònes CientificasUniversidad Autonóma de MadridMadridSpain
- Departamento de Bioquímica y Biología Molecular IVFacultad de VeterinariaUniversidad Complutense de MadridMadridSpain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular IVFacultad de VeterinariaUniversidad Complutense de MadridMadridSpain
| | - Josep M. Canals
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasInstituto de Salud Carlos IIIMadridSpain
- Departament de Biologia Cellular i Anatomia PatolôgicaFacultat de MedicinaInstitut d'Investigacions Biomèdiques August Pi i SunyerUniversitat de BarcelonaBarcelonaSpain
| | - Jordi Alberch
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasInstituto de Salud Carlos IIIMadridSpain
- Departament de Biologia Cellular i Anatomia PatolôgicaFacultat de MedicinaInstitut d'Investigacions Biomèdiques August Pi i SunyerUniversitat de BarcelonaBarcelonaSpain
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IVFacultad de VeterinariaUniversidad Complutense de MadridMadridSpain
| | - José J. Lucas
- Centro de Biología Molecular “Severo Ochoa”Consejo Superior de Investigaciònes CientificasUniversidad Autonóma de MadridMadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
89
|
Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons. J Neurosci 2009; 28:13285-95. [PMID: 19052220 DOI: 10.1523/jneurosci.4393-08.2008] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A variety of neurological disorders and polyglutamine (polyQ) diseases are caused by misfolded proteins. The common feature of these diseases is late-onset cellular degeneration that selectively affects neurons in distinct brain regions. polyQ diseases, including Huntington's disease (HD), present a clear case of selective neurodegeneration caused by polyQ expansion-induced protein misfolding, which also leads to predominant inclusions in neuronal nuclei. It remains unclear how these ubiquitously expressed disease proteins selectively kill neurons. In HD, mutant huntingtin accumulates in both neurons and glia, but more neuronal cells display huntingtin aggregates. These aggregates colocalize with components of the ubiquitin-proteasome system (UPS), which plays a critical role in clearing misfolded proteins. Using fluorescent reporters that reflect cellular UPS activity, we found that UPS activity in cultured neurons and glia decreases in a time-dependent manner. Importantly, UPS activity is lower in neurons than in glia and also lower in the nucleus than the cytoplasm. By expressing the UPS reporters in glia and neurons in the mouse brain, we also observed an age-dependent decrease in UPS activity, which is more pronounced in neurons than glial cells. Although brain UPS activities were similar between wild-type and HD 150Q knock-in mice, inhibiting the UPS markedly increases the accumulation of mutant htt in cultured glial cells. These findings suggest that the lower neuronal UPS activity may account for the preferential accumulation of misfolded proteins in neurons, as well as their selective vulnerability.
Collapse
|
90
|
Acevedo-Arozena A, Wells S, Potter P, Kelly M, Cox RD, Brown SDM. ENU mutagenesis, a way forward to understand gene function. Annu Rev Genomics Hum Genet 2008; 9:49-69. [PMID: 18949851 DOI: 10.1146/annurev.genom.9.081307.164224] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arguably, the main challenge for contemporary genetics is to understand the function of every gene in a mammalian genome. The mouse has emerged as a model for this task because its genome can be manipulated in a number of ways to study gene function or mimic disease states. Two complementary genetic approaches can be used to generate mouse models. A reverse genetics or gene-driven approach (gene to phenotype) starts from a known gene and manipulates the genome to create genetically modified mice, such as knockouts. Alternatively, a forward genetics or phenotype-driven approach (phenotype to gene) involves screening mice for mutant phenotypes without previous knowledge of the genetic basis of the mutation. N-ethyl-N-nitrosourea (ENU) mutagenesis has been widely used for both approaches to generate mouse mutants. Here we review progress in ENU mutagenesis screening, with an emphasis on creating mouse models for human disorders.
Collapse
|
91
|
Fondon JW, Hammock EAD, Hannan AJ, King DG. Simple sequence repeats: genetic modulators of brain function and behavior. Trends Neurosci 2008; 31:328-34. [PMID: 18550185 DOI: 10.1016/j.tins.2008.03.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 02/03/2023]
Affiliation(s)
- John W Fondon
- McDermott Center for Human Growth and Development and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
92
|
Wang CE, Tydlacka S, Orr AL, Yang SH, Graham RK, Hayden MR, Li S, Chan AWS, Li XJ. Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a pathogenic mechanism in Huntington's disease. Hum Mol Genet 2008; 17:2738-51. [PMID: 18558632 DOI: 10.1093/hmg/ddn175] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A number of mouse models expressing mutant huntingtin (htt) with an expanded polyglutamine (polyQ) domain are useful for studying the pathogenesis of Huntington's disease (HD) and identifying appropriate therapies. However, these models exhibit neurological phenotypes that differ in their severity and nature. Understanding how transgenic htt leads to variable neuropathology in animal models would shed light on the pathogenesis of HD and help us to choose HD models for investigation. By comparing the expression of mutant htt at the transcriptional and protein levels in transgenic mice expressing N-terminal or full-length mutant htt, we found that the accumulation and aggregation of mutant htt in the brain is determined by htt context. HD mouse models demonstrating more severe phenotypes show earlier accumulation of N-terminal mutant htt fragments, which leads to the formation of htt aggregates that are primarily present in neuronal nuclei and processes, as well as glial cells. Similarly, transgenic monkeys expressing exon-1 htt with a 147-glutamine repeat (147Q) died early and showed abundant neuropil aggregates in swelling neuronal processes. Fractionation of HD150Q knock-in mice brains revealed an age-dependent accumulation of N-terminal mutant htt fragments in the nucleus and synaptosomes, and this accumulation was most pronounced in the striatum due to decreased proteasomal activity. Our findings suggest that the neuropathological phenotypes of HD stem largely from the accumulation of N-terminal mutant htt fragments and that this accumulation is determined by htt context and cell-type-dependent clearance of mutant htt.
Collapse
Affiliation(s)
- Chuan-En Wang
- Department of Human Genetics, Emory University School ofMedicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Moe SE, Sorbo JG, Holen T. Huntingtin triplet-repeat locus is stable under long-term Fen1 knockdown in human cells. J Neurosci Methods 2008; 171:233-8. [DOI: 10.1016/j.jneumeth.2008.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/16/2008] [Accepted: 03/20/2008] [Indexed: 11/29/2022]
|
94
|
Ravina B, Romer M, Constantinescu R, Biglan K, Brocht A, Kieburtz K, Shoulson I, McDermott MP. The relationship between CAG repeat length and clinical progression in Huntington's disease. Mov Disord 2008; 23:1223-7. [DOI: 10.1002/mds.21988] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
95
|
Wang J, Wang CE, Orr A, Tydlacka S, Li SH, Li XJ. Impaired ubiquitin-proteasome system activity in the synapses of Huntington's disease mice. ACTA ACUST UNITED AC 2008; 180:1177-89. [PMID: 18362179 PMCID: PMC2290845 DOI: 10.1083/jcb.200709080] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is caused by the expansion of a polyglutamine tract in the N-terminal region of huntingtin (htt) and is characterized by selective neurodegeneration. In addition to forming nuclear aggregates, mutant htt accumulates in neuronal processes as well as synapses and affects synaptic function. However, the mechanism for the synaptic toxicity of mutant htt remains to be investigated. We targeted fluorescent reporters for the ubiquitin–proteasome system (UPS) to presynaptic or postsynaptic terminals of neurons. Using these reporters and biochemical assays of isolated synaptosomes, we found that mutant htt decreases synaptic UPS activity in cultured neurons and in HD mouse brains that express N-terminal or full-length mutant htt. Given that the UPS is a key regulator of synaptic plasticity and function, our findings offer insight into the selective neuronal dysfunction seen in HD and also establish a method to measure synaptic UPS activity in other neurological disease models.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
96
|
Affiliation(s)
- Jason R Thomas
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61822, USA
| | | |
Collapse
|
97
|
Abstract
AIM To assess the progress and impact of genetic studies in the addictions arena and to present this information in a form accessible to the general readership of Addiction. METHODS Review of the evidence that genes are involved in addiction, approaches to their identification, current findings and the potential implications. RESULTS Family, twin and adoption studies provide strong evidence that addiction runs in families and that this is determined in part by genetic factors. Two main molecular genetic approaches, namely linkage and association, have been adopted to identify the specific genes involved. Both methods are fraught with problems. Linkage is limited by issues of sensitivity, and association by false positives. Perhaps the strongest finding in psychiatric genetics to date is the impressive effect that a single genetic variant, in the aldehyde dehydrogenase 2 gene, has on drinking behaviour and reducing the risk of developing alcohol dependence. Other findings are currently less robust; however, the implications of elucidating the genetic underpinning of addiction will be profound. CONCLUSIONS Addiction genetics is a developing science that has yet to prove its worth in the clinical setting.
Collapse
Affiliation(s)
- David Ball
- Institute of Psychiatry, King's College London, De Crespigny Park, London, UK.
| |
Collapse
|
98
|
Gusella JF, MacDonald ME. Expanding the notion of disease in Huntington's disease. Biol Psychiatry 2007; 62:1340. [PMID: 18054536 DOI: 10.1016/j.biopsych.2007.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/12/2007] [Indexed: 11/26/2022]
Affiliation(s)
- James F Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | |
Collapse
|
99
|
Darnell G, Orgel JPRO, Pahl R, Meredith SC. Flanking polyproline sequences inhibit beta-sheet structure in polyglutamine segments by inducing PPII-like helix structure. J Mol Biol 2007; 374:688-704. [PMID: 17945257 DOI: 10.1016/j.jmb.2007.09.023] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 09/05/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Polyglutamine (poly(Q)) expansion is associated with protein aggregation into beta-sheet amyloid fibrils and neuronal cytotoxicity. In the mutant poly(Q) protein huntingtin, associated with Huntington's disease, both aggregation and cytotoxicity may be abrogated by a polyproline (poly(P)) domain flanking the C terminus of the poly(Q) region. To understand structural changes that may occur with the addition of the poly(P) sequence, we synthesized poly(Q) peptides with 3-15 glutamine residues and a corresponding set of poly(Q) peptides flanked on the C terminus by 11 proline residues (poly(Q)-poly(P)), as occurs in the huntingtin sequence. The shorter soluble poly(Q) peptides (three or six glutamine residues) showed polyproline type II-like (PPII)-like helix conformation when examined by circular dichroism spectroscopy and were monomers as judged by size-exclusion chromatography (SEC), while the longer poly(Q) peptides (nine or 15 glutamine residues) showed a beta-sheet conformation by CD and defined oligomers by SEC. Soluble poly(Q)-poly(P) peptides showed PPII-like content but SEC showed poorly defined, overlapping oligomeric peaks, and as judged by CD these peptides retained significant PPII-like structure with increasing poly(Q) length. More importantly, addition of the poly(P) domain increased the threshold for fibril formation to approximately 15 glutamine residues. X-ray diffraction, electron microscopy, and film CD showed that, while poly(Q) peptides with >or=6 glutamine residues formed beta-sheet-rich fibrils, only the longest poly(Q)-poly(P) peptide (15 glutamine residues) did so. From these and other observations, we propose that poly(Q) domains exist in a "tug-of-war" between two conformations, a PPII-like helix and a beta-sheet, while the poly(P) domain is conformationally constrained into a proline type II helix (PPII). Addition of poly(P) to the C terminus of a poly(Q) domain induces a PPII-like structure, which opposes the aggregation-prone beta-sheet. These structural observations may shed light on the threshold phenomenon of poly(Q) aggregation, and support the hypothesized evolution of "protective" poly(P) tracts adjacent to poly(Q) aggregation domains.
Collapse
Affiliation(s)
- Gregory Darnell
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
100
|
Nithianantharajah J, Hannan AJ. Dynamic mutations as digital genetic modulators of brain development, function and dysfunction. Bioessays 2007; 29:525-35. [PMID: 17508392 DOI: 10.1002/bies.20589] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A substantial portion of the human genome has been found to consist of simple sequence repeats, including microsatellites and minisatellites. Microsatellites, tandem repeats of 1-6 nucleotides, form the template for dynamic mutations, which involve heritable changes in the lengths of repeat sequences. In recent years, a large number of human disorders have been found to be caused by dynamic mutations, the most common of which are trinucleotide repeat expansion diseases. Dynamic mutations are common to numerous nervous system disorders, including Huntington's disease, various spinocerebellar ataxias, fragile X syndrome, fragile X tremor/ataxia syndrome, Friedreich ataxia and other neurodegenerative disorders. The involvement of dynamic mutations in brain disorders will be reviewed, with a focus on the large group caused by CAG/glutamine repeat expansions. We will also outline a proposed role of tandem repeat polymorphisms (TRPs), with unique 'digital' genetic distributions, in modulating brain development and normal function, so as to generate additional mutational diversity upon which natural selection may act.
Collapse
Affiliation(s)
- Jess Nithianantharajah
- Howard Florey Institute, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | | |
Collapse
|