51
|
Ueno Y, Watanabe Y, Shibata A, Yoshikawa K, Takano T, Kohara M, Kitade Y. Synthesis of nuclease-resistant siRNAs possessing universal overhangs. Bioorg Med Chem 2009; 17:1974-81. [PMID: 19200743 DOI: 10.1016/j.bmc.2009.01.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 12/29/2022]
Abstract
RNA interference (RNAi) induced by small interfering RNA (siRNA) has emerged as a powerful technique for the silencing of gene expression at the post-transcriptional level. It has been shown that in the RNAi machinery, the 3'-overhang region of a guide strand (an antisense strand) of siRNA is recognized by the PAZ domain in the Argonaute protein, and the 2-nucleotide (nt) 3'-overhang is accommodated into a binding pocket composed of hydrophobic amino acids in the PAZ domain. Based on this background information, we designed and synthesized siRNAs possessing aromatic compounds at their 3'-overhang regions. It was found that the modified siRNAs possessing aromatic compounds are more potent than the siRNAs without the 3'-overhang regions. Further, the silencing activities of the modified siRNAs are almost equal to those of normal siRNAs with natural nucleosides at their 3'-overhang regions. We also found that the siRNAs possessing the aromatic compounds at their 3'-overhang region could be used to inhibit hepatitis C virus (HCV) replication. Moreover, the RNAs with aromatic groups at their 3'-ends were more resistant to nucleolytic degradation by snake venom phosphodiesterase (SVPD) (a 3'-exonuclease) than natural RNAs. The aromatic compounds described in this report do not have functional groups capable of forming hydrogen bonds with nucleobases. Therefore, we expect that they can serve as the universal overhang units that can improve the nuclease resistance of siRNAs.
Collapse
Affiliation(s)
- Yoshihito Ueno
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan.
| | | | | | | | | | | | | |
Collapse
|
52
|
Chumakov K, Ehrenfeld E. New generation of inactivated poliovirus vaccines for universal immunization after eradication of poliomyelitis. Clin Infect Dis 2008; 47:1587-92. [PMID: 18990066 PMCID: PMC2596976 DOI: 10.1086/593310] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Twenty years of global polio eradication efforts may soon eliminate the transmission of wild-type poliovirus. However, new information that has been learned about poliovirus, as well as the political realities of a modern world, demand that universal immunity against poliomyelitis be maintained, even after wild-type poliovirus is eradicated. Although 2 excellent vaccines have proven to be highly effective in the past, neither the live-attenuated vaccine nor the currently used inactivated vaccine are optimal for use in the posteradication era. Therefore, concerted efforts are urgently needed to develop a new generation of vaccine that is risk-free and affordable and can be produced on a global scale. Here, we discuss the desired properties of a vaccine and methods to create a new polio vaccine.
Collapse
Affiliation(s)
| | - Ellie Ehrenfeld
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| |
Collapse
|
53
|
Lv K, Guo Y, Zhang Y, Wang K, Li K, Zhu Y, Sun S. Transient inhibition of foot-and-mouth disease virus replication by siRNAs silencing VP1 protein coding region. Res Vet Sci 2008; 86:443-52. [PMID: 19062053 PMCID: PMC7127796 DOI: 10.1016/j.rvsc.2008.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 09/14/2008] [Accepted: 10/20/2008] [Indexed: 01/14/2023]
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of foot-and-mouth disease, a severe, clinically acute, vesicular disease of cloven-hoofed animals. RNA interference (RNAi) is a mechanism for silencing gene expression post-transcriptionally that is being exploited as a rapid antiviral strategy. To identify efficacious small interfering RNAs (siRNAs) to inhibit the replication of FMDV, candidate siRNAs corresponding to FMDV VP1 gene were designed and synthesized in vitro using T7 RNA polymerase. In reporter assays, five siRNAs showed significant sequence-specific silencing effects on the expression of VP1-EGFP fusion protein from plasmid pVP1-EGFP-N1, which was cotransfected with siRNA into 293T cells. Furthermore, using RT-qPCR, viral titration and viability assay, we identified VP1-siRNA517, VP1-siRNA113 and VP1-siRNA519 that transiently acted as potent inhibitors of FMDV replication when BHK-21 cells were infected with FMDV. In addition, variations within multiple regions of the quasispecies of FMDV were retrospectively revealed by sequencing of FMDV genes, and a single nucleotide substitution was identified as the main factor in resistance to RNAi. Our data demonstrated that the three siRNA molecules synthesized with T7 RNA polymerase could have transient inhibitory effects on the replication of FMDV.
Collapse
Affiliation(s)
- Ke Lv
- Department of Medical Genetics, Second Military Medical University, 800 XiangYin Road, Shanghai 200433, PR China
| | | | | | | | | | | | | |
Collapse
|
54
|
Barnes D, Kunitomi M, Vignuzzi M, Saksela K, Andino R. Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines. Cell Host Microbe 2008; 4:239-48. [PMID: 18779050 DOI: 10.1016/j.chom.2008.08.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/28/2008] [Accepted: 08/12/2008] [Indexed: 01/11/2023]
Abstract
Live attenuated vaccines remain the safest, most cost-effective intervention against viral infections. Because live vaccine strains are generated empirically and the basis for attenuation is usually ill defined, many important viruses lack an efficient live vaccine. Here, we present a general strategy for the rational design of safe and effective live vaccines that harnesses the microRNA-based gene-silencing machinery to control viral replication. Using poliovirus as a model, we demonstrate that insertion of small miRNA homology sequences into a viral genome can restrict its tissue tropism, thereby preventing pathogenicity and yielding an attenuated viral strain. Poliovirus strains engineered to become targets of neuronal-specific miRNAs lost their ability to replicate in the central nervous system, leading to significant attenuation of neurovirulence in infected animals. Importantly, these viruses retained the ability to replicate in nonneuronal tissues. As a result, these engineered miRNA-regulated viruses elicited strong protective immunity in mice without producing disease.
Collapse
Affiliation(s)
- Dwight Barnes
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-2280, USA
| | | | | | | | | |
Collapse
|
55
|
van Rij RP. Virus meets RNAi. Symposium on antiviral applications of RNA interference. EMBO Rep 2008; 9:725-9. [PMID: 18636088 DOI: 10.1038/embor.2008.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 06/17/2008] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen Centre for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
56
|
The Caenorhabditis elegans rsd-2 and rsd-6 genes are required for chromosome functions during exposure to unfavorable environments. Genetics 2008; 178:1875-93. [PMID: 18430922 DOI: 10.1534/genetics.107.085472] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In Caenorhabditis elegans, exogenous dsRNA can elicit systemic RNAi, a process that requires the function of many genes. Considering that the activities of many of these genes are also required for normal development, it is surprising that exposure to high concentrations of dsRNA does not elicit adverse consequences to animals. Here, we report inducible phenotypes in attenuated C. elegans strains reared in environments that include nonspecific dsRNA and elevated temperature. Under these conditions, chromosome integrity is compromised in RNAi-defective strains harboring mutations in rsd-2 or rsd-6. Specifically, rsd-2 mutants display defects in transposon silencing, while meiotic chromosome disjunction is affected in rsd-6 mutants. RSD-2 proteins localize to multiple cellular compartments, including the nucleolus and cytoplasmic compartments that, in part, are congruent with calreticulin and HAF-6. We considered that the RNAi defects in rsd-2 mutants might have relevance to membrane-associated functions; however, endomembrane compartmentalization and endocytosis/exocytosis markers in rsd-2 and rsd-6 mutants appear normal. The mutants also possess environmentally sensitive defects in cell-autonomous RNAi elicited from transgene-delivered dsRNAs. Thus, the ultimate functions of rsd-2 and rsd-6 in systemic RNAi are remarkably complex and environmentally responsive.
Collapse
|
57
|
Sugrue RJ, Tan BH, Yeo DSY, Sutejo R. Antiviral Drugs for the Control of Pandemic Influenza Virus. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2008. [DOI: 10.47102/annals-acadmedsg.v37n6p518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the advent of an influenza virus pandemic it is likely that the administration of antiviral drugs will be an important first line of defence against the virus. The drugs currently in use are effective against seasonal influenza virus infection, and some cases have been used in the treatment of patients infected with the avian H5N1 influenza virus. However, it is becoming clear that the emergence of drug-resistant viruses will potentially be a major problem in the future efforts to control influenza virus infection. In addition, during a new pandemic, sufficient quantities of these agents will need to be distributed to many different parts of the world, possibly at short notice. In this review we provide an overview of some of the drugs that are currently available for the treatment and prevention of influenza virus infection. In addition, basic research on influenza virus is providing a much better understanding of the biology of the virus, which is offering the possibility of new anti-influenza virus drugs. We therefore also review some new antiviral strategies that are being reported in the scientific literature, which may form the basis of the next generation of antiviral strategies during a future influenza virus pandemic.
Key words: Antiviral, Amantadine, Pandemic influenza virus, Oseltamivir, siRNA
Collapse
|
58
|
Song J, Giang A, Lu Y, Pang S, Chiu R. Multiple shRNA expressing vector enhances efficiency of gene silencing. BMB Rep 2008; 41:358-62. [DOI: 10.5483/bmbrep.2008.41.5.358] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
59
|
Singh SK. RNA interference and its therapeutic potential against HIV infection. Expert Opin Biol Ther 2008; 8:449-61. [PMID: 18352849 DOI: 10.1517/14712598.8.4.449] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND HIV-1 infection is the major cause of AIDS. RNA interference (RNAi) has great potential to work as a powerful tool against HIV infection. Therefore, the possibilities of use of siRNA (small-interfering RNA) as a tool to deal with HIV infection are discussed in this article. OBJECTIVE Highly active anti retroviral therapy (HAART) has been successful in reducing the rate of progression to AIDS, but HIV utilizes various tricks to escape from the inhibitory effect of HAART. Therefore, new tools are required to delay progression of infection or block the replication cycle of HIV. METHODS This article has been written on the basis of informations available in the form of published literature in various journals. CONCLUSION RNAi is a very promising strategy that in principle will provide many new targets against HIV infection. The mechanism of sequence complementarity utilized by siRNAs against their targets provides a new approach to fight against HIV infection. However, this technology still needs many fine refinements before its potential for HIV treatment strategies can be utilized. This review discusses the possibilities of using siRNA as a therapeutic tool for HIV treatment.
Collapse
Affiliation(s)
- Sunit K Singh
- Centre for Cellular and Molecular Biology, Section of Infectious Diseases & Immunobiology, Room No: S107, South Wing (Ground Floor), Uppal Road, Hyderabad-500007, AP, India.
| |
Collapse
|
60
|
Jia H, Ge X, Guo X, Yang H, Yu K, Chen Z, Chen Y, Cha Z. Specific small interfering RNAs-mediated inhibition of replication of porcine encephalomyocarditis virus in BHK-21 cells. Antiviral Res 2008; 79:95-104. [PMID: 18243347 DOI: 10.1016/j.antiviral.2007.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 10/15/2007] [Accepted: 12/03/2007] [Indexed: 01/01/2023]
Abstract
Encephalomyocarditis virus (EMCV) is recognized as a pathogen inducing acute myocarditis and sudden death in preweaned piglets and severe reproductive failure in sows. In this study, eight specific small interfering RNA (siRNA) duplexes targeting different genomic regions of EMCV BJC3 were designed and their ability to inhibit virus replication in BHK-21 cells was investigated. The results showed that BHK-21 cells transfected with siRNA duplexes to 2C gene (JH-4,666, BJC-1,739), 2B gene (BJC-807), 3C gene (BJC-2,363) and 3D gene (BJC-3269) were specifically resistant to EMCV infection when exposed to 500 times the 50% cell culture infective dose (CCID(50)) of EMCV. The levels of the 3D gene in the transfected cells were obviously decreased. IFA and Western blotting analysis confirmed that the expression of VP1 protein in cell culture transfected with the siRNAs was apparently reduced. Of the five siRNAs, JH-4,666, BJC-2,363 and BJC-3,269 were the most effective. Combination of the siRNA duplexes enhanced the inhibition of EMCV replication. Our data indicated that specific siRNAs are able to inhibit the replication of porcine encephalomyocarditis virus in BHK-21 cells, suggesting that RNAi might provide a new approach to prevent EMCV infection.
Collapse
Affiliation(s)
- Hong Jia
- Key Laboratory of Preventive Veterinary Medicine of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Members of the Ribonuclease III (RNase III) family are double-stranded (ds) RNA-specific endoribonucleases, characterized by a signature motif in their active centers and a 2-nucleotide (nt) 3' overhang in their products. Dicer functions as a dsRNA-processing enzyme, producing small interfering RNA (siRNA) of approx. 24 nt in length (approx. 20-basepair RNA duplex with a 2-nt 3' overhang on each end). Bacterial RNase III functions not only as a processing enzyme, but also as a binding protein that binds dsRNA without cleaving it. As a processing enzyme it produces siRNA-like RNA of approx. 13 nt in length (approx. 9-basepair duplex with a 2-nt 3' overhang on each end) as well as various types of mature RNA. Dicer is structurally most complicated member of the family; bacterial RNase III is comparatively much simpler. One structure is known for Dicer in its RNA-free form (MacRae, Zhou, Li, Repic, Brooks, Cande, Adams, and Doudna, Science 311:195-198); many structures are available for bacterial RNase III, including the first catalytic complex of the entire family (Gan, Tropea, Austin, Court, Waugh, and Ji, Cell 124:355-366). In light of the structural and biochemical information on the RNase III proteins and the structure of a non-Dicer PAZ (Piwi Argonaute Zwille) domain in complex with a 7-basepair RNA duplex with a 2-nt 3' overhang on each end (Ma, Ye, and Patel, Nature 429:318-322), the structure and function of Dicer is being elucidated.
Collapse
|
62
|
Gan J, Shaw G, Tropea JE, Waugh DS, Court DL, Ji X. A stepwise model for double-stranded RNA processing by ribonuclease III. Mol Microbiol 2007; 67:143-54. [PMID: 18047582 DOI: 10.1111/j.1365-2958.2007.06032.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RNA interference is mediated by small interfering RNAs produced by members of the ribonuclease III (RNase III) family represented by bacterial RNase III and eukaryotic Rnt1p, Drosha and Dicer. For mechanistic studies, bacterial RNase III has been a valuable model system for the family. Previously, we have shown that RNase III uses two catalytic sites to create the 2-nucleotide (nt) 3' overhangs in its products. Here, we present three crystal structures of RNase III in complex with double-stranded RNA, demonstrating how Mg(2+) is essential for the formation of a catalytically competent protein-RNA complex, how the use of two Mg(2+) ions can drive the hydrolysis of each phosphodiester bond, and how conformational changes in both the substrate and the protein are critical elements for assembling the catalytic complex. Moreover, we have modelled a protein-substrate complex and a protein-reaction intermediate (transition state) complex on the basis of the crystal structures. Together, the crystal structures and the models suggest a stepwise mechanism for RNase III to execute the phosphoryl transfer reaction.
Collapse
Affiliation(s)
- Jianhua Gan
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
63
|
Marques JT, Carthew RW. A call to arms: coevolution of animal viruses and host innate immune responses. Trends Genet 2007; 23:359-64. [PMID: 17467114 DOI: 10.1016/j.tig.2007.04.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/29/2007] [Accepted: 04/20/2007] [Indexed: 01/22/2023]
Abstract
Virus infection is generally disadvantageous to the host and strongly selects for host antiviral mechanisms. Therefore, viruses must develop counter-mechanisms to guarantee their survival. This arms race between pathogen and host leads to positive selection for both cellular antiviral mechanisms and viral inhibitors of such mechanisms. Here, we characterize this arms race in the context of the RNA interference (RNAi) pathway, which is used as an innate immune response against viral infection by animals. We review how RNAi is used as an antiviral strategy and the mechanisms that viruses have evolved to suppress the RNAi response.
Collapse
Affiliation(s)
- Joao T Marques
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
64
|
Aalto AP, Sarin LP, van Dijk AA, Saarma M, Poranen MM, Arumäe U, Bamford DH. Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage phi6 RNA-dependent RNA polymerase. RNA (NEW YORK, N.Y.) 2007; 13:422-9. [PMID: 17237359 PMCID: PMC1800515 DOI: 10.1261/rna.348307] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The discovery of RNA interference (RNAi) has revolutionized biological research and has a huge potential for therapy. Since small double-stranded RNAs (dsRNAs) are required for various RNAi applications, there is a need for cost-effective methods for producing large quantities of high-quality dsRNA. We present two novel, flexible virus-based systems for the efficient production of dsRNA: (1) an in vitro system utilizing the combination of T7 RNA polymerase and RNA-dependent RNA polymerase (RdRP) of bacteriophage 6 to generate dsRNA molecules of practically unlimited length, and (2) an in vivo RNA replication system based on carrier state bacterial cells containing the 6 polymerase complex to produce virtually unlimited amounts of dsRNA of up to 4.0 kb. We show that pools of small interfering RNAs (siRNAs) derived from dsRNA produced by these systems significantly decreased the expression of a transgene (eGFP) in HeLa cells and blocked endogenous pro-apoptotic BAX expression and subsequent cell death in cultured sympathetic neurons.
Collapse
Affiliation(s)
- Antti P Aalto
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
65
|
Zhou JF, Hua XG, Cui L, Zhu JG, Miao DN, Zou Y, He XZ, Su WG. Effective inhibition of porcine transmissible gastroenteritis virus replication in ST cells by shRNAs targeting RNA-dependent RNA polymerase gene. Antiviral Res 2007; 74:36-42. [PMID: 17287033 PMCID: PMC7114347 DOI: 10.1016/j.antiviral.2006.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 12/17/2006] [Accepted: 12/29/2006] [Indexed: 11/22/2022]
Abstract
Transmissible gastroenteritis virus (TGEV) is identified as one of the most important pathogenic agents during swine enteric infection, leading to high mortality in neonatal pigs and severe annual economic loss in swine-producing areas. Up to date, various vaccines developed against TGEV still need to be improved. To exploit the possibility of using RNA interference (RNAi) as a strategy against TGEV infection, two shRNA-expressing plasmids (pEGFP-U6/P1 and pEGFP-U6/P2) targeting the RNA-dependent RNA polymerase (RdRp) gene of TGEV were constructed and transfected into swine testicular (ST) cells. The cytopathic effect (CPE) and MTS assays demonstrated that both shRNAs were capable of protecting cells against TGEV invasion with very high specificity and efficiency. A real-time quantitative RT-PCR further confirmed that the amounts of viral RNAs in cell cultures pre-transfected with the two plasmids were reduced by 95.2% and up to 100%, respectively. Our results suggest that RNAi might be a promising new strategy against TGEV infection.
Collapse
Affiliation(s)
- Jun-fang Zhou
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 2678 Qixin Road, Shanghai 201101, China
| | | | | | | | | | | | | | | |
Collapse
|
66
|
van Rij RP, Saleh MC, Berry B, Foo C, Houk A, Antoniewski C, Andino R. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev 2006; 20:2985-95. [PMID: 17079687 PMCID: PMC1620017 DOI: 10.1101/gad.1482006] [Citation(s) in RCA: 460] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most organisms have evolved defense mechanisms to protect themselves from viruses and other pathogens. Arthropods lack the protein-based adaptive immune response found in vertebrates. Here we show that the central catalytic component of the RNA-induced silencing complex (RISC), the nuclease Argonaute 2 (Ago-2), is essential for antiviral defense in adult Drosophila melanogaster. Ago-2-defective flies are hypersensitive to infection with a major fruit fly pathogen, Drosophila C virus (DCV), and with Cricket Paralysis virus (CrPV). Increased mortality in ago-2 mutant flies was associated with a dramatic increase in viral RNA accumulation and virus titers. The physiological significance of this antiviral mechanism is underscored by our finding that DCV encodes a potent suppressor of RNA interference (RNAi). This suppressor binds long double-stranded RNA (dsRNA) and inhibits Dicer-2-mediated processing of dsRNA into short interfering RNA (siRNA), but does not bind short siRNAs or disrupt the microRNA (miRNA) pathway. Based on these results we propose that RNAi is a major antiviral immune defense mechanism in Drosophila.
Collapse
Affiliation(s)
- Ronald P van Rij
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|