51
|
Song HG, Byeon SY, Chung GY, Jung SM, Choi JI, Shin HS. A systematic correlation analysis of carotenoids, chlorophyll, non-pigmented cell mass, and cell number for the blueprint of Dunaliella salina culture in a photobioreactor. Bioprocess Biosyst Eng 2018; 41:1295-1303. [PMID: 29808420 DOI: 10.1007/s00449-018-1957-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/23/2018] [Indexed: 11/24/2022]
Abstract
Microalgal carotenoids are attractive health ingredients, but their production should be optimized to improve cost-effectiveness. Understanding cellular physiology centered on carotenoid synthesis is the prerequisite for this work. Therefore, systematic correlation analyses were conducted among chlorophyll, carotenoids, non-pigmented cell mass, and cell number of Dunaliella salina in a specified condition over a relatively long culture time. First, an integrated correlation was performed: a temporal profile of the carotenoids was correlated with those of other factors, including chlorophyll, non-pigmented cell mass, and cell number. Pearson and Spearman correlation analyses were performed to identify linearity and monotonicity of the correlation, respectively, and then cross-correlation was executed to determine if the correlation had a time lag. Second, to understand the cellular potential of metabolism, the procedure was repeated to provide a data set composed of the specific synthesis rates of the factors or growth rate, which additionally provided kinetic correlations among the constituting components of the cell, excluding the effect of cell number. This systematic approach could generate a blueprint model that is composed of only what it needs, which could make it possible to efficiently control and optimize the process.
Collapse
Affiliation(s)
- Hyeon Gi Song
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Seon Yeong Byeon
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Goo Yong Chung
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Sang-Myung Jung
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Jung Il Choi
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Hwa Sung Shin
- Department of Biological Engineering, Inha University, Incheon, South Korea.
| |
Collapse
|
52
|
Dann M, Leister D. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0380. [PMID: 28808099 DOI: 10.1098/rstb.2016.0380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2017] [Indexed: 12/22/2022] Open
Abstract
Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Marcel Dann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
53
|
Corcoran AA, Saunders MA, Hanley AP, Lee PA, Lopez S, Ryan R, Yohn CB. Iterative screening of an evolutionary engineered Desmodesmus generates robust field strains with pesticide tolerance. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
54
|
Li Y, Xu Y, Zheng T, Wang H. Amino acids in cell wall of Gram-positive bacterium Micrococcus sp. hsn08 with flocculation activity on Chlorella vulgaris biomass. BIORESOURCE TECHNOLOGY 2018; 249:417-424. [PMID: 29065323 DOI: 10.1016/j.biortech.2017.10.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to investigate the flocculation mechanism by Gram-positive bacterium, Micrococcus sp. hsn08 as a means for harvesting Chlorella vulgaris biomass. Bacterial cells of Micrococcus sp. hsn08 were added into algal culture to harvest algal cells through direct contacting with algae to form flocs. Viability dependence test confirmed that flocculation activity does not depend on live bacteria, but on part of the peptidoglycan. The further investigation has determined that amino acids in cell wall play an important role to flocculate algal cells. Positively charged calcium can combine bacterial and algal cells together, and form a bridge between them, thereby forming the flocs, suggesting that ions bridging is the main flocculation mechanism. These results suggest that bacterial cells of Micrococcus sp. hsn08 can be applied to harvest microalgae biomass with the help of amino acids in cell wall.
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yanting Xu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Tianling Zheng
- State Key Laboratory of Marine Environmental Science, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
55
|
Sun H, Zhao W, Mao X, Li Y, Wu T, Chen F. High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:227. [PMID: 30151055 PMCID: PMC6100726 DOI: 10.1186/s13068-018-1225-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 05/13/2023]
Abstract
Microalgae are capable of producing sustainable bioproducts and biofuels by using carbon dioxide or other carbon substances in various cultivation modes. It is of great significance to exploit microalgae for the economical viability of biofuels and the revenues from high-value bioproducts. However, the industrial performance of microalgae is still challenged with potential conflict between cost of microalgae cultivation and revenues from them, which is mainly ascribed to the lack of comprehensive understanding of carbon metabolism and energy conversion. In this review, we provide an overview of the recent advances in carbon and energy fluxes of light-dependent reaction, Calvin-Benson-Bassham cycle, tricarboxylic acid cycle, glycolysis pathway and processes of product biosynthesis in microalgae, with focus on the increased photosynthetic and carbon efficiencies. Recent strategies for the enhanced production of bioproducts and biofuels from microalgae are discussed in detail. Approaches to alter microbial physiology by controlling light, nutrient and other environmental conditions have the advantages of increasing biomass concentration and product yield through the efficient carbon conversion. Engineering strategies by regulating carbon partitioning and energy route are capable of improving the efficiencies of photosynthesis and carbon conversion, which consequently realize high-value biomass. The coordination of carbon and energy fluxes is emerging as the potential strategy to increase efficiency of carbon fixation and product biosynthesis. To achieve more desirable high-value products, coordination of multi-stage cultivation with engineering and stress-based strategies occupies significant positions in a long term.
Collapse
Affiliation(s)
- Han Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Weiyang Zhao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Xuemei Mao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Yuelian Li
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
56
|
Strieth D, Ulber R, Muffler K. Application of phototrophic biofilms: from fundamentals to processes. Bioprocess Biosyst Eng 2017; 41:295-312. [PMID: 29198024 DOI: 10.1007/s00449-017-1870-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/24/2017] [Indexed: 01/31/2023]
Abstract
Biotechnological production of valuables by microorganisms is commonly achieved by cultivating the cells as suspended solids in an appropriate liquid medium. However, the main portion of these organisms features a surface-attached growth in their native habitats. The utilization of such biofilms shows significant challenges, e.g. concerning control of pH, nutrient supply, and heat/mass transfer. But the use of biofilms might also enable novel and innovative production processes addressing robustness and strength of the applied biocatalyst, for example if variable conditions might occur in the process or a feedstock (substrate) is changed in its composition. Besides the robustness of a biofilm, the high density of the immobilized biocatalyst facilitates a simple separation of the catalyst and the extracellular product, whereas intracellular target compounds occur in a concentrated form; thus, expenses for downstream processing can be drastically reduced. While phototrophic organisms feature a fabulous spectrum of metabolites ranging from biofuels to biologically active compounds, the low cell density of phototrophic suspension cultures is still limiting their application for production processes. The review is focusing on pro- and eukaryotic microalgae featuring the production of valuable compounds and highlights requirements for their cultivation as phototrophic biofilms, i.e. setup as well as operation of biofilm reactors, and modeling of phototrophic growth.
Collapse
Affiliation(s)
- D Strieth
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - R Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - K Muffler
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Berlinstr. 109, 55411, Bingen, Germany.
| |
Collapse
|
57
|
Chentir I, Hamdi M, Doumandji A, HadjSadok A, Ouada HB, Nasri M, Jridi M. Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety. Int J Biol Macromol 2017; 105:1412-1420. [DOI: 10.1016/j.ijbiomac.2017.07.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
|
58
|
Rocha RP, Machado M, Vaz MGMV, Vinson CC, Leite M, Richard R, Mendes LBB, Araujo WL, Caldana C, Martins MA, Williams TC, Nunes-Nesi A. Exploring the metabolic and physiological diversity of native microalgal strains (Chlorophyta) isolated from tropical freshwater reservoirs. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
59
|
Microalgae biorefineries: The Brazilian scenario in perspective. N Biotechnol 2017; 39:90-98. [DOI: 10.1016/j.nbt.2016.04.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 11/19/2022]
|
60
|
Arai S, Hayashihara K, Kanamoto Y, Shimizu K, Hirokawa Y, Hanai T, Murakami A, Honda H. Alcohol‐tolerant mutants of cyanobacterium
Synechococcus elongatus
PCC 7942 obtained by single‐cell mutant screening system. Biotechnol Bioeng 2017; 114:1771-1778. [DOI: 10.1002/bit.26307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/02/2017] [Accepted: 04/04/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Sayuri Arai
- Department of BiotechnologyGraduate School of EngineeringNagoya UniversityFuro‐choChikusa‐kuNagoyaAichi464‐8603Japan
| | | | - Yuki Kanamoto
- Kobe University Research Center for Inland SeasAwajiHyogoJapan
| | - Kazunori Shimizu
- Department of BiotechnologyGraduate School of EngineeringNagoya UniversityFuro‐choChikusa‐kuNagoyaAichi464‐8603Japan
| | - Yasutaka Hirokawa
- Laboratory for BioinformaticsGraduate School of Systems Life SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| | - Taizo Hanai
- Laboratory for BioinformaticsGraduate School of Systems Life SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| | - Akio Murakami
- Kobe University Research Center for Inland SeasAwajiHyogoJapan
| | - Hiroyuki Honda
- Department of BiotechnologyGraduate School of EngineeringNagoya UniversityFuro‐choChikusa‐kuNagoyaAichi464‐8603Japan
| |
Collapse
|
61
|
Benvenuti G, Ruiz J, Lamers PP, Bosma R, Wijffels RH, Barbosa MJ. Towards microalgal triglycerides in the commodity markets. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:188. [PMID: 28725268 PMCID: PMC5514516 DOI: 10.1186/s13068-017-0873-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/11/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Microalgal triglycerides (TAGs) hold great promise as sustainable feedstock for commodity industries. However, to determine research priorities and support business decisions, solid techno-economic studies are essential. Here, we present a techno-economic analysis of two-step TAG production (growth reactors are operated in continuous mode such that multiple batch-operated stress reactors are inoculated and harvested sequentially) for a 100-ha plant in southern Spain using vertically stacked tubular photobioreactors. The base case is established with outdoor pilot-scale data and based on current process technology. RESULTS For the base case, production costs of 6.7 € per kg of biomass containing 24% TAG (w/w) were found. Several scenarios with reduced production costs were then presented based on the latest biological and technological advances. For instance, much effort should focus on increasing the photosynthetic efficiency during the stress and growth phases, as this is the most influential parameter on production costs (30 and 14% cost reduction from base case). Next, biological and technological solutions should be implemented for a reduction in cooling requirements (10 and 4.5% cost reduction from base case when active cooling is avoided and cooling setpoint is increased, respectively). When implementing all the suggested improvements, production costs can be decreased to 3.3 € per kg of biomass containing 60% TAG (w/w) within the next 8 years. CONCLUSIONS With our techno-economic analysis, we indicated a roadmap for a substantial cost reduction. However, microalgal TAGs are not yet cost efficient when compared to their present market value. Cost-competiveness strictly relies on the valorization of the whole biomass components and on cheaper PBR designs (e.g. plastic film flat panels). In particular, further research should focus on the development and commercialization of PBRs where active cooling is avoided and stable operating temperatures are maintained by the water basin in which the reactor is placed.
Collapse
Affiliation(s)
- Giulia Benvenuti
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Jesús Ruiz
- Algades–Alga, Development, Engineering and Services, S.L., c. Margaritas, Costa Oeste, El Puerto de Santa María, 11500 Cádiz, Spain
| | - Packo P. Lamers
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Rouke Bosma
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - René H. Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Maria J. Barbosa
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
62
|
Berepiki A, Hitchcock A, Moore CM, Bibby TS. Tapping the Unused Potential of Photosynthesis with a Heterologous Electron Sink. ACS Synth Biol 2016; 5:1369-1375. [PMID: 27437951 DOI: 10.1021/acssynbio.6b00100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increasing the efficiency of the conversion of light energy to products by photosynthesis represents a grand challenge in biotechnology. Photosynthesis is limited by the carbon-fixing enzyme Rubisco resulting in much of the absorbed energy being wasted as heat or fluorescence or lost as excess reductant via alternative electron dissipation pathways. To harness this wasted reductant, we engineered the model cyanobacterium Synechococcus PCC 7002 to express the mammalian cytochrome P450 CYP1A1 to serve as an artificial electron sink for excess electrons derived from light-catalyzed water-splitting. This improved photosynthetic efficiency by increasing the maximum rate of photosynthetic electron flow by 31.3%. A simple fluorescent assay for CYP1A1 activity demonstrated that the P450 was functional in the absence of its native reductase, that activity was light-dependent and scaled with irradiance. We show for the first time in live cells that photosynthetic reductant can be redirected to power a heterologous cytochrome P450. Furthermore, Synechococcus PCC 7002 expressing CYP1A1 degraded the herbicide atrazine, which is a widespread environmental pollutant.
Collapse
Affiliation(s)
- Adokiye Berepiki
- Ocean
and Earth Sciences, National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| | - Andrew Hitchcock
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - C. Mark Moore
- Ocean
and Earth Sciences, National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| | - Thomas S. Bibby
- Ocean
and Earth Sciences, National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
63
|
Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 2016; 34:1159-1179. [DOI: 10.1016/j.biotechadv.2016.08.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/22/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022]
|
64
|
Fermoso FG, Beltran C, Jimenez A, Fernández MJ, Rincón B, Borja R, Jeison D. Screening of biomethane production potential from dominant microalgae. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:1062-1067. [PMID: 27409043 DOI: 10.1080/10934529.2016.1198627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of microalgae for biomethane production has been considerably increasing during the recent years. In this study, four dominant species belonging to the genera Scenedesmus, Chlorella, Dunaliella and Nostoc were selected. The influence of different genera with several morphological, structural and physicochemical characteristics on methane production was assessed in biochemical methane potential (BMP) tests. The ultimate methane yield values were 332 ± 24, 211 ± 2, 63 ± 17 and 28 ± 10 mL CH4/g VSadded for Scenedesmus obliquus, Chlorella sorokiniana, Dunaliella salina and Nostoc sp., respectively. The highest methane production was achieved by microalga species that had no complex cell wall or wall basically composed by proteins and simple sugars such as in S. obliquus, whereas lower methane yields were found for D. salina and Nostoc sp., due to the salinity effects and cell wall composition in terms of complex polysaccharide and glycolipid layers, respectively. Kinetic constant values obtained in the BMP tests ranged between 1.00 ± 0.08 and 0.097 ± 0.005 days(-1) for D. salina and S. obliquus, respectively.
Collapse
Affiliation(s)
- Fernando G Fermoso
- a Food Biotechnology Department, Instituto de la Grasa (C.S.I.C.) , Sevilla , Spain
| | - Carolina Beltran
- a Food Biotechnology Department, Instituto de la Grasa (C.S.I.C.) , Sevilla , Spain
- b Scientific and Technological Bioresource Nucleus, Universidad de La Frontera , Temuco , Chile
| | - Antonia Jimenez
- c Department of Physical, Chemical, and Natural Systems , Universidad Pablo de Olavide , Sevilla , Spain
| | - María José Fernández
- a Food Biotechnology Department, Instituto de la Grasa (C.S.I.C.) , Sevilla , Spain
- c Department of Physical, Chemical, and Natural Systems , Universidad Pablo de Olavide , Sevilla , Spain
| | - Bárbara Rincón
- a Food Biotechnology Department, Instituto de la Grasa (C.S.I.C.) , Sevilla , Spain
| | - Rafael Borja
- a Food Biotechnology Department, Instituto de la Grasa (C.S.I.C.) , Sevilla , Spain
| | - David Jeison
- b Scientific and Technological Bioresource Nucleus, Universidad de La Frontera , Temuco , Chile
- d Department of Chemical Engineering , Universidad de La Frontera , Temuco , Chile
| |
Collapse
|
65
|
Koti S, Govumoni SP, Gentela J, Venkateswar Rao L. Enhanced bioethanol production from wheat straw hemicellulose by mutant strains of pentose fermenting organisms Pichia stipitis and Candida shehatae. SPRINGERPLUS 2016; 5:1545. [PMID: 27652118 PMCID: PMC5020006 DOI: 10.1186/s40064-016-3222-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/05/2016] [Indexed: 11/10/2022]
Abstract
The main aim of the present study was to mutate yeast strains, Pichia stipitis NCIM 3498 and Candida shehatae NCIM 3501 and assess the mutant's ability to utilize, ferment wheat straw hemicellulose with enhanced ethanol yield. The organisms were subjected to random mutagenesis using physical (ultraviolet radiation) and chemical (ethidium bromide) mutagens. The mutant and wild strains were used to ferment the hemicellulosic hydrolysates of wheat straw obtained by 2 % dilute sulphuric acid and enzymatic hydrolysis by crude xylanase separately. Among all the mutant strains, PSUV9 and CSEB7 showed enhanced ethanol production (12.15 ± 0.57, 9.55 ± 0.47 g/L and yield 0.450 ± 0.009, 0.440 ± 0.001 g/g) as compared to the wild strains (8.28 ± 0.54, 7.92 ± 0.89 g/L and yield 0.380 ± 0.006 and 0.370 ± 0.002 g/g) in both the hydrolysates. The mutant strains were also checked for their consistency in ethanol production and found stable for 19 cycles in hemicellulosic hydrolysates of wheat straw. A novel element in the present study was introduction of chemical mutagenesis in wild type as well as UV induced mutants. This combination of treatments i.e., UV followed by chemical mutagenesis was practically successful.
Collapse
Affiliation(s)
- Sravanthi Koti
- Department of Microbiology, Osmania University, Hyderabad, Telangana state 500 007 India
| | | | - Jahnavi Gentela
- Department of Microbiology, Osmania University, Hyderabad, Telangana state 500 007 India
| | - L. Venkateswar Rao
- Department of Microbiology, Osmania University, Hyderabad, Telangana state 500 007 India
| |
Collapse
|
66
|
Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria. Metab Eng 2016; 38:217-227. [PMID: 27497972 DOI: 10.1016/j.ymben.2016.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/28/2016] [Accepted: 08/04/2016] [Indexed: 11/20/2022]
Abstract
Increasing photosynthetic efficiency is crucial to increasing biomass production to meet the growing demands for food and energy. Previous theoretical arithmetic analysis suggests that the light reactions and dark reactions are imperfectly coupled due to shortage of ATP supply, or accumulation of NADPH. Here we hypothesized that solely increasing NADPH consumption might improve the coupling of light reactions and dark reactions, thereby increasing the photosynthetic efficiency and biomass production. To test this hypothesis, an NADPH consumption pathway was constructed in cyanobacterium Synechocystis sp. PCC 6803. The resulting extra NADPH-consuming mutant grew much faster and achieved a higher biomass concentration. Analyses of photosynthesis characteristics showed the activities of photosystem II and photosystem I and the light saturation point of the NADPH-consuming mutant all significantly increased. Thus, we demonstrated that introducing extra NADPH consumption ability is a promising strategy to increase photosynthetic efficiency and to enable utilization of high-intensity lights.
Collapse
|
67
|
Huang JY, Chiu YF, Ortega JM, Wang HT, Tseng TS, Ke SC, Roncel M, Chu HA. Mutations of Cytochrome b559 and PsbJ on and near the QC Site in Photosystem II Influence the Regulation of Short-Term Light Response and Photosynthetic Growth of the Cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 2016; 55:2214-26. [DOI: 10.1021/acs.biochem.6b00133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jine-Yung Huang
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Fang Chiu
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - José M. Ortega
- Instituto
de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, 41092 Seville, Spain
| | - Hsing-Ting Wang
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tien-Sheng Tseng
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shyue-Chu Ke
- Department
of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Mercedes Roncel
- Instituto
de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, 41092 Seville, Spain
| | - Hsiu-An Chu
- Institute
of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
68
|
Optimization of spectral light quality for growth and product formation in different microalgae using a continuous photobioreactor. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
69
|
Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Sci Rep 2016; 6:21155. [PMID: 26852806 PMCID: PMC4745075 DOI: 10.1038/srep21155] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/30/2015] [Indexed: 12/02/2022] Open
Abstract
Microalgae possess great potential as a source of sustainable energy, but the intrinsic inefficiency of photosynthesis is a major challenge to realize this potential. Photosynthetic organisms evolved phototaxis to find optimal light condition for photosynthesis. Here we report a microfluidic screening using competitive phototaxis of the model alga, Chlamydomonas reinhardtii, for rapid isolation of strains with improved photosynthetic efficiencies. We demonstrated strong relationship between phototaxis and photosynthetic efficiency by quantitative analysis of phototactic response at the single-cell level using a microfluidic system. Based on this positive relationship, we enriched the strains with improved photosynthetic efficiency by isolating cells showing fast phototactic responses from a mixture of 10,000 mutants, thereby greatly improving selection efficiency over 8 fold. Among 147 strains isolated after screening, 94.6% showed improved photoautotrophic growth over the parental strain. Two mutants showed much improved performances with up to 1.9- and 8.1-fold increases in photoautotrophic cell growth and lipid production, respectively, a substantial improvement over previous approaches. We identified candidate genes that might be responsible for fast phototactic response and improved photosynthesis, which can be useful target for further strain engineering. Our approach provides a powerful screening tool for rapid improvement of microalgal strains to enhance photosynthetic productivity.
Collapse
|
70
|
Repeated cultivation: non-cell disruption extraction of astaxanthin for Haematococcus pluvialis. Sci Rep 2016; 6:20578. [PMID: 26838183 PMCID: PMC4738327 DOI: 10.1038/srep20578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022] Open
Abstract
The operation of cell disruption is indispensable but cost much in microalgae industry. To be simplified, two different reaction mechanisms await in the cell to respond to moderated or stressed environment. The physical and chemical changes of enzyme and turgor pressure of cell in this conversion play an important role in the enhancement of biomass and metabolites. Repeated turgor pressure (based on the structure and mechanics of cell wall) and converted enzyme system (based on photosynthesis) were used to loosen cell wall and then repeated cultivation of Haematococcus pluvialis for astaxanthin extraction was proposed. There was no significant difference of extraction yield between the broken cell (94.75 ± 3.13%) and non-broken cell (92.32 ± 3.24%) treated by the repeated cultivation. Meanwhile, fed-batch culture according to the relationship among pH and nutrient concentration was used to enhance the biomass of Haematococcus pluvialis with the dry cell weight of 1.63 ± 0.07 g/L.
Collapse
|
71
|
Choi HI, Kim JYH, Kwak HS, Sung YJ, Sim SJ. Quantitative analysis of the chemotaxis of a green alga, Chlamydomonas reinhardtii, to bicarbonate using diffusion-based microfluidic device. BIOMICROFLUIDICS 2016; 10:014121. [PMID: 26958101 PMCID: PMC4769253 DOI: 10.1063/1.4942756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/12/2016] [Indexed: 05/24/2023]
Abstract
There is a growing interest in the photosynthetic carbon fixation by microalgae for the production of valuable products from carbon dioxide (CO2). Microalgae are capable of transporting bicarbonate (HCO3 (-)), the most abundant form of inorganic carbon species in the water, as a source of CO2 for photosynthesis. Despite the importance of HCO3 (-) as the carbon source, little is known about the chemotactic response of microalgae to HCO3 (-). Here, we showed the chemotaxis of a model alga, Chlamydomonas reinhardtii, towards HCO3 (-) using an agarose gel-based microfluidic device with a flow-free and stable chemical gradient during the entire assay period. The device was validated by analyzing the chemotactic responses of C. reinhardtii to the previously known chemoattractants (NH4Cl and CoCl2) and chemotactically neutral molecule (NaCl). We found that C. reinhardtii exhibited the strongest chemotactic response to bicarbonate at the concentration of 26 mM in a microfluidic device. The chemotactic response to bicarbonate showed a circadian rhythm with a peak during the dark period and a valley during the light period. We also observed the changes in the chemotaxis to bicarbonate by an inhibitor of bicarbonate transporters and a mutation in CIA5, a transcriptional regulator of carbon concentrating mechanism, indicating the relationship between chemotaxis to bicarbonate and inorganic carbon metabolism in C. reinhardtii. To the best of our knowledge, this is the first report of the chemotaxis of C. reinhardtii towards HCO3 (-), which contributes to the understanding of the physiological role of the chemotaxis to bicarbonate and its relevance to inorganic carbon utilization.
Collapse
Affiliation(s)
- Hong Il Choi
- Department of Chemical and Biological Engineering, Korea University , Seoul 136-713, South Korea
| | - Jaoon Young Hwan Kim
- Department of Chemical and Biological Engineering, Korea University , Seoul 136-713, South Korea
| | - Ho Seok Kwak
- Department of Chemical and Biological Engineering, Korea University , Seoul 136-713, South Korea
| | - Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University , Seoul 136-713, South Korea
| | | |
Collapse
|
72
|
Abstract
Plant and algal oils are some of the most energy-dense renewable compounds provided by nature. Triacylglycerols (TAGs) are the major constituent of plant oils, which can be converted into fatty acid methyl esters commonly known as biodiesel. As one of the most efficient producers of TAGs, photosynthetic microalgae have attracted substantial interest for renewable fuel production. Currently, the big challenge of microalgae based TAGs for biofuels is their high cost compared to fossil fuels. A conundrum is that microalgae accumulate large amounts of TAGs only during stress conditions such as nutrient deprivation and temperature stress, which inevitably will inhibit growth. Thus, a better understanding of why and how microalgae induce TAG biosynthesis under stress conditions would allow the development of engineered microalgae with increased TAG production during conditions optimal for growth. Land plants also synthesize TAGs during stresses and we will compare new findings on environmental stress-induced TAG accumulation in plants and microalgae especially in the well-characterized model alga Chlamydomonas reinhardtii and a biotechnologically relevant genus Nannochloropsis.
Collapse
Affiliation(s)
- Zhi-Yan Du
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
73
|
Sheets JP, Yang L, Ge X, Wang Z, Li Y. Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 44:94-115. [PMID: 26235446 DOI: 10.1016/j.wasman.2015.07.037] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/08/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
Effective treatment and reuse of the massive quantities of agricultural and food wastes generated daily has the potential to improve the sustainability of food production systems. Anaerobic digestion (AD) is used throughout the world as a waste treatment process to convert organic waste into two main products: biogas and nutrient-rich digestate, called AD effluent. Biogas can be used as a source of renewable energy or transportation fuels, while AD effluent is traditionally applied to land as a soil amendment. However, there are economic and environmental concerns that limit widespread land application, which may lead to underutilization of AD for the treatment of agricultural and food wastes. To combat these constraints, existing and novel methods have emerged to treat or reuse AD effluent. The objective of this review is to analyze several emerging methods used for efficient treatment and reuse of AD effluent. Overall, the application of emerging technologies is limited by AD effluent composition, especially the total solid content. Some technologies, such as composting, use the solid fraction of AD effluent, while most other technologies, such as algae culture and struvite crystallization, use the liquid fraction. Therefore, dewatering of AD effluent, reuse of the liquid and solid fractions, and land application could all be combined to sustainably manage the large quantities of AD effluent produced. Issues such as pathogen regrowth and prevalence of emerging organic micro-pollutants are also discussed.
Collapse
Affiliation(s)
- Johnathon P Sheets
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096, USA
| | - Liangcheng Yang
- Department of Health Sciences, Illinois State University, 324 Felmley Hall, Normal, IL 61790, USA
| | - Xumeng Ge
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096, USA
| | - Zhiwu Wang
- The Ohio State University ATI, 1328 Dover Rd, Wooster, OH 44691, USA
| | - Yebo Li
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096, USA.
| |
Collapse
|
74
|
Barbera E, Sforza E, Bertucco A. Maximizing the production of Scenedesmus obliquus in photobioreactors under different irradiation regimes: experiments and modeling. Bioprocess Biosyst Eng 2015; 38:2177-88. [DOI: 10.1007/s00449-015-1457-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/07/2015] [Indexed: 11/29/2022]
|
75
|
Gong F, Liu G, Zhai X, Zhou J, Cai Z, Li Y. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:86. [PMID: 26097503 PMCID: PMC4475311 DOI: 10.1186/s13068-015-0268-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/05/2015] [Indexed: 06/01/2023]
Abstract
BACKGROUND Production of fuels from the abundant and wasteful CO2 is a promising approach to reduce carbon emission and consumption of fossil fuels. Autotrophic microbes naturally assimilate CO2 using energy from light, hydrogen, and/or sulfur. However, their slow growth rates call for investigation of the possibility of heterotrophic CO2 fixation. Although preliminary research has suggested that CO2 fixation in heterotrophic microbes is feasible after incorporation of a CO2-fixing bypass into the central carbon metabolic pathway, it remains unclear how much and how efficient that CO2 can be fixed by a heterotrophic microbe. RESULTS A simple metabolic flux index was developed to indicate the relative strength of the CO2-fixation flux. When two sequential enzymes of the cyanobacterial Calvin cycle were incorporated into an E. coli strain, the flux of the CO2-fixing bypass pathway accounts for 13 % of that of the central carbon metabolic pathway. The value was increased to 17 % when the carbonic anhydrase involved in the cyanobacterial carbon concentrating mechanism was introduced, indicating that low intracellular CO2 concentration is one limiting factor for CO2 fixation in E. coli. The engineered CO2-fixing E. coli with carbonic anhydrase was able to fix CO2 at a rate of 19.6 mg CO2 L(-1) h(-1) or the specific rate of 22.5 mg CO2 g DCW(-1) h(-1). This CO2-fixation rate is comparable with the reported rates of 14 autotrophic cyanobacteria and algae (10.5-147.0 mg CO2 L(-1) h(-1) or the specific rates of 3.5-23.7 mg CO2 g DCW(-1) h(-1)). CONCLUSIONS The ability of CO2 fixation was created and improved in E. coli by incorporating partial cyanobacterial Calvin cycle and carbon concentrating mechanism, respectively. Quantitative analysis revealed that the CO2-fixation rate of this strain is comparable with that of the autotrophic cyanobacteria and algae, demonstrating great potential of heterotrophic CO2 fixation.
Collapse
Affiliation(s)
- Fuyu Gong
- />CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing, 100101 China
- />University of the Chinese Academy of Sciences, Beijing, China
| | - Guoxia Liu
- />CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing, 100101 China
| | - Xiaoyun Zhai
- />CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing, 100101 China
- />University of the Chinese Academy of Sciences, Beijing, China
| | - Jie Zhou
- />CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing, 100101 China
| | - Zhen Cai
- />CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing, 100101 China
| | - Yin Li
- />CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing, 100101 China
| |
Collapse
|
76
|
Sutherland DL, Howard-Williams C, Turnbull MH, Broady PA, Craggs RJ. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production. BIORESOURCE TECHNOLOGY 2015; 184:222-229. [PMID: 25453429 DOI: 10.1016/j.biortech.2014.10.074] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
With microalgal biofuels currently receiving much attention, there has been renewed interest in the combined use of high rate algal ponds (HRAP) for wastewater treatment and biofuel production. This combined use of HRAPs is considered to be an economically feasible option for biofuel production, however, increased microalgal productivity and nutrient removal together with reduced capital costs are needed before it can be commercially viable. Despite HRAPs being an established technology, microalgal photosynthesis and productivity is still limited in these ponds and is well below the theoretical maximum. This paper critically evaluates the parameters that limit microalgal light absorption and photosynthesis in wastewater HRAPs and examines biological, chemical and physical options for improving light absorption and utilisation, with the view of enhancing biomass production and nutrient removal.
Collapse
Affiliation(s)
- Donna L Sutherland
- National Institute of Water and Atmospheric Research Ltd. (NIWA), PO Box 8602, Christchurch, New Zealand; Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Clive Howard-Williams
- National Institute of Water and Atmospheric Research Ltd. (NIWA), PO Box 8602, Christchurch, New Zealand.
| | - Matthew H Turnbull
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Paul A Broady
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Rupert J Craggs
- National Institute of Water and Atmospheric Research Ltd. (NIWA), PO Box 11-115, Hamilton 3200, New Zealand.
| |
Collapse
|
77
|
Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V. Functional ingredients from microalgae. Food Funct 2015; 5:1669-85. [PMID: 24957182 DOI: 10.1039/c4fo00125g] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A wide variety of natural sources are under investigation to evaluate their possible use for new functional ingredient formulation. Some records attested the traditional and ancient use of wild harvested microalgae as human food but their cultivation for different purposes started about 40 years ago. The most popular species are Arthrospira (traditional name, Spirulina), Chlorella spp., Dunaliella spp. and Haematococcus spp. Microalgae provide a bewildering array of opportunities to develop healthier food products using innovative approaches and a number of different strategies. Compared to other natural sources of bioactive ingredients, microalgae have many advantages such as their huge biodiversity, the possibility to grow in arid land and with limited fresh water consumption and the flexibility of their metabolism, which could be adapted to produce specific molecules. All these factors led to very sustainable production making microalgae eligible as one of the most promising foods for the future, particularly as source of proteins, lipids and phytochemicals. In this work, a revision of the knowledge about the use of microalgae as food and as a source of functional ingredients has been performed. The most interesting results in the field are presented and commented upon, focusing on the different species of microalgae and the activity of the nutritionally relevant compounds. A summary of the health effects obtained together with pros and cons in the adoption of this natural source as functional food ingredients is also proposed.
Collapse
Affiliation(s)
- Silvia Buono
- CRIAcq, University of Naples Federico II, Parco Gussone Ed 77, 80055 Portici, Italy.
| | | | | | | | | |
Collapse
|
78
|
Bywaters KF, Fritsen CH. Biomass and neutral lipid production in geothermal microalgal consortia. Front Bioeng Biotechnol 2015; 2:82. [PMID: 25763368 PMCID: PMC4329875 DOI: 10.3389/fbioe.2014.00082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/13/2014] [Indexed: 11/13/2022] Open
Abstract
Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems - in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L(-1) day(-1). The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L(-1 )day(-1); the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.
Collapse
Affiliation(s)
- Kathryn F Bywaters
- Division of Earth and Ecosystem Sciences, Desert Research Institute , Reno, NV , USA ; Graduate Program of Environmental Science, University of Nevada Reno , Reno, NV , USA
| | - Christian H Fritsen
- Division of Earth and Ecosystem Sciences, Desert Research Institute , Reno, NV , USA
| |
Collapse
|
79
|
Biogenesis of light harvesting proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:861-71. [PMID: 25687893 DOI: 10.1016/j.bbabio.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 11/20/2022]
Abstract
The LHC family includes nuclear-encoded, integral thylakoid membrane proteins, most of which coordinate chlorophyll and xanthophyll chromophores. By assembling with the core complexes of both photosystems, LHCs form a flexible peripheral moiety for enhancing light-harvesting cross-section, regulating its efficiency and providing protection against photo-oxidative stress. Upon its first appearance, LHC proteins underwent evolutionary diversification into a large protein family with a complex genetic redundancy. Such differentiation appears as a crucial event in the adaptation of photosynthetic organisms to changing environmental conditions and land colonization. The structure of photosystems, including nuclear- and chloroplast-encoded subunits, presented the cell with a number of challenges for the control of the light harvesting function. Indeed, LHC-encoding messages are translated in the cytosol, and pre-proteins imported into the chloroplast, processed to their mature size and targeted to the thylakoids where are assembled with chromophores. Thus, a tight coordination between nuclear and plastid gene expression, in response to environmental stimuli, is required to adjust LHC composition during photoacclimation. In recent years, remarkable progress has been achieved in elucidating structure, function and regulatory pathways involving LHCs; however, a number of molecular details still await elucidation. In this review, we will provide an overview on the current knowledge on LHC biogenesis, ranging from organization of pigment-protein complexes to the modulation of gene expression, import and targeting to the photosynthetic membranes, and regulation of LHC assembly and turnover. Genes controlling these events are potential candidate for biotechnological applications aimed at optimizing light use efficiency of photosynthetic organisms. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
|
80
|
Hayes CJ, Burgess DR, Manion JA. Combustion Pathways of Biofuel Model Compounds. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.apoc.2015.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
81
|
Terashima M, Freeman ES, Jinkerson RE, Jonikas MC. A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:147-59. [PMID: 25267488 PMCID: PMC4280329 DOI: 10.1111/tpj.12682] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 08/22/2014] [Accepted: 09/19/2014] [Indexed: 05/22/2023]
Abstract
There is significant interest in farming algae for the direct production of biofuels and valuable lipids. Chlamydomonas reinhardtii is the leading model system for studying lipid metabolism in green algae, but current methods for isolating mutants of this organism with a perturbed lipid content are slow and tedious. Here, we present the Chlamydomonas high-lipid sorting (CHiLiS) strategy, which enables enrichment of high-lipid mutants by fluorescence-activated cell sorting (FACS) of pooled mutants stained with the lipid-sensitive dye Nile Red. This method only takes 5 weeks from mutagenesis to mutant isolation. We developed a staining protocol that allows quantification of lipid content while preserving cell viability. We improved separation of high-lipid mutants from the wild type by using each cell's chlorophyll fluorescence as an internal control. We initially demonstrated 20-fold enrichment of the known high-lipid mutant sta1 from a mixture of sta1 and wild-type cells. We then applied CHiLiS to sort thousands of high-lipid cells from a pool of about 60,000 mutants. Flow cytometry analysis of 24 individual mutants isolated by this approach revealed that about 50% showed a reproducible high-lipid phenotype. We further characterized nine of the mutants with the highest lipid content by flame ionization detection and mass spectrometry lipidomics. All mutants analyzed had a higher triacylglycerol content and perturbed whole-cell fatty acid composition. One arbitrarily chosen mutant was evaluated by microscopy, revealing larger lipid droplets than the wild type. The unprecedented throughput of CHiLiS opens the door to a systems-level understanding of green algal lipid biology by enabling genome-saturating isolation of mutants in key genes.
Collapse
Affiliation(s)
- Mia Terashima
- Department of Plant Biology, Carnegie Institution for Science260 Panama Street, Stanford, CA, 94305, USA
| | - Elizabeth S Freeman
- Department of Plant Biology, Carnegie Institution for Science260 Panama Street, Stanford, CA, 94305, USA
- Department of Biology, Stanford UniversityStanford, CA, 94305, USA
| | - Robert E Jinkerson
- Department of Plant Biology, Carnegie Institution for Science260 Panama Street, Stanford, CA, 94305, USA
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science260 Panama Street, Stanford, CA, 94305, USA
- *For correspondence (e-mail )
| |
Collapse
|
82
|
Dall'Osto L, Ünlü C, Cazzaniga S, van Amerongen H. Disturbed excitation energy transfer in Arabidopsis thaliana mutants lacking minor antenna complexes of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1981-1988. [DOI: 10.1016/j.bbabio.2014.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
|
83
|
Cazzaniga S, Dall’Osto L, Szaub J, Scibilia L, Ballottari M, Purton S, Bassi R. Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:157. [PMID: 25352913 PMCID: PMC4210543 DOI: 10.1186/s13068-014-0157-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/07/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND The utilization of biomass from microalgae for biofuel production is one of the key elements for the development of a sustainable and secure energy supply. Among the different microalgae, Chlorella species are of interest because of their high productivity, high lipid content, and resistance to the high light conditions typical of photobioreactors. However, the economic feasibility of growing algae at an industrial scale is yet to be realized, in part because of biological constraints that limit biomass yield. A key issue is the inefficient use of light due to uneven light distribution, and the dissipation of excess absorbed light as heat. The successful implementation of biofuel production facilities requires the development of algal strains with enhanced light use efficiency in photobioreactors. Such domestication strategies include decreasing the absorption cross section in order to enhance light penetration, increasing the size of metabolic sinks per chlorophyll and minimizing feedback energy dissipation. RESULTS In this work we applied random mutagenesis and phenotypic selection to the thermotolerant, fast-growing Chlorella species, C. sorokiniana. Truncated antenna mutants (TAMs) were selected that exhibited a lower fluorescence yield than the wild-type (WT) strain. Six putatively interesting mutants were selected by high throughput fluorescence video imaging, two of which, TAM-2 and TAM-4, were found to have approximately half the chlorophyll content per cell and LHCII complement per PSII with respect to the WT. In batch culture, TAM-2 showed an increased photon use efficiency, yielding a higher Pmax at saturating irradiances with respect to the WT. Cultivation of TAM-2 in both laboratory-scale and outdoor photobioreactors showed higher productivity than WT, with a 30% higher biomass yield in dense cell suspensions typical of industrial photobioreactors. CONCLUSIONS These results suggest that generation of mutants with low chlorophyll content can significantly improve the light-to-biomass conversion efficiency of C. sorokiniana under mass culture conditions. However, owing to the lack of sexual reproduction in this species, the presence of additional mutations might affect growth rate, suggesting that selection should include evaluation of multiple independent mutants for each desired phenotype.
Collapse
Affiliation(s)
- Stefano Cazzaniga
- />Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie, Verona, 15-37134 Italy
| | - Luca Dall’Osto
- />Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie, Verona, 15-37134 Italy
| | - Joanna Szaub
- />Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT UK
| | - Luca Scibilia
- />Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie, Verona, 15-37134 Italy
| | - Matteo Ballottari
- />Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie, Verona, 15-37134 Italy
| | - Saul Purton
- />Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT UK
| | - Roberto Bassi
- />Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie, Verona, 15-37134 Italy
| |
Collapse
|
84
|
Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G. Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 2014; 32:1476-93. [PMID: 25449285 DOI: 10.1016/j.biotechadv.2014.10.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 01/05/2023]
Abstract
In the last few years, there has been an intense interest in using microalgal lipids in food, chemical and pharmaceutical industries and cosmetology, while a noteworthy research has been performed focusing on all aspects of microalgal lipid production. This includes basic research on the pathways of solar energy conversion and on lipid biosynthesis and catabolism, and applied research dealing with the various biological and technical bottlenecks of the lipid production process. In here, we review the current knowledge in microalgal lipids with respect to their metabolism and various biotechnological applications, and we discuss potential future perspectives. The committing step in fatty acid biosynthesis is the carboxylation of acetyl-CoA to form malonyl-CoA that is then introduced in the fatty acid synthesis cycle leading to the formation of palmitic and stearic acids. Oleic acid may also be synthesized after stearic acid desaturation while further conversions of the fatty acids (i.e. desaturations, elongations) occur after their esterification with structural lipids of both plastids and the endoplasmic reticulum. The aliphatic chains are also used as building blocks for structuring storage acylglycerols via the Kennedy pathway. Current research, aiming to enhance lipogenesis in the microalgal cell, is focusing on over-expressing key-enzymes involved in the earlier steps of the pathway of fatty acid synthesis. A complementary plan would be the repression of lipid catabolism by down-regulating acylglycerol hydrolysis and/or β-oxidation. The tendency of oleaginous microalgae to synthesize, apart from lipids, significant amounts of other energy-rich compounds such as sugars, in processes competitive to lipogenesis, deserves attention since the lipid yield may be considerably increased by blocking competitive metabolic pathways. The majority of microalgal production occurs in outdoor cultivation and for this reason biotechnological applications face some difficulties. Therefore, algal production systems need to be improved and harvesting systems need to be more effective in order for their industrial applications to become more competitive and economically viable. Besides, a reduction of the production cost of microalgal lipids can be achieved by combining lipid production with other commercial applications. The combined production of bioactive products and lipids, when possible, can support the commercial viability of both processes. Hydrophobic compounds can be extracted simultaneously with lipids and then purified, while hydrophilic compounds such as proteins and sugars may be extracted from the defatted biomass. The microalgae also have applications in environmental biotechnology since they can be used for bioremediation of wastewater and to monitor environmental toxicants. Algal biomass produced during wastewater treatment may be further valorized in the biofuel manufacture. It is anticipated that the high microalgal lipid potential will force research towards finding effective ways to manipulate biochemical pathways involved in lipid biosynthesis and towards cost effective algal cultivation and harvesting systems, as well.
Collapse
Affiliation(s)
- Stamatia Bellou
- Division of Genetics, Cell & Development Biology, Department of Biology, University of Patras, Patras 26504, Greece
| | - Mohammed N Baeshen
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed M Elazzazy
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki 12622, Giza, Egypt
| | - Dimitra Aggeli
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Fotoon Sayegh
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - George Aggelis
- Division of Genetics, Cell & Development Biology, Department of Biology, University of Patras, Patras 26504, Greece; Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
85
|
Marcati A, Ursu AV, Laroche C, Soanen N, Marchal L, Jubeau S, Djelveh G, Michaud P. Extraction and fractionation of polysaccharides and B-phycoerythrin from the microalga Porphyridium cruentum by membrane technology. ALGAL RES 2014. [DOI: 10.1016/j.algal.2014.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
86
|
Advances in the Production of High-Value Products by Microalgae. Ind Biotechnol (New Rochelle N Y) 2014. [DOI: 10.1089/ind.2013.0039] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
87
|
Dassey AJ, Hall SG, Theegala CS. An analysis of energy consumption for algal biodiesel production: Comparing the literature with current estimates. ALGAL RES 2014. [DOI: 10.1016/j.algal.2013.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
88
|
Shen Y. Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Adv 2014. [DOI: 10.1039/c4ra06441k] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Utilizing the energy, nutrients and CO2held within residual waste materials to provide all necessary inputs except for sunlight, the cultivation of algae becomes a closed-loop engineered ecosystem. Developing this green biotechnology is a tangible step towards a waste-free sustainable society.
Collapse
Affiliation(s)
- Yafei Shen
- Department of Environmental Science and Technology
- Interdisciplinary Graduate School of Science and Engineering
- Tokyo Institute of Technology
- Yokohama, Japan
| |
Collapse
|
89
|
Razeghifard R. Algal biofuels. PHOTOSYNTHESIS RESEARCH 2013; 117:207-19. [PMID: 23605290 DOI: 10.1007/s11120-013-9828-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/10/2013] [Indexed: 05/12/2023]
Abstract
The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.
Collapse
Affiliation(s)
- Reza Razeghifard
- Division of Math Science & Technology, Farquhar College of Arts & Science, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA,
| |
Collapse
|
90
|
Winck FV, Páez Melo DO, González Barrios AF. Carbon acquisition and accumulation in microalgae Chlamydomonas: Insights from "omics" approaches. J Proteomics 2013; 94:207-18. [PMID: 24120529 DOI: 10.1016/j.jprot.2013.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/29/2013] [Accepted: 09/26/2013] [Indexed: 11/16/2022]
Abstract
UNLABELLED Understanding the processes and mechanisms of carbon acquisition and accumulation in microalgae is fundamental to enhance the cellular capabilities aimed to environmental and industrial applications. The "omics" approaches have greatly contributed to expanding the knowledge on these carbon-related cellular responses, reporting large data sets on microalgae transcriptome, proteome and metabolome. This review emphasizes the advances made on Chlamydomonas exploration; however, some knowledge acquired from studying this model organism, may be extrapolated to close algae species. The large data sets available for this organism revealed the identity of a vast range of genes and proteins which are integrating carbon-related mechanisms. Nevertheless, these data sets have also highlighted the need for integrative analysis in order to fully explore the information enclosed. Here, some of the main results from "omics" approaches which may contribute to the understanding of carbon acquisition and accumulation in Chlamydomonas were reviewed and possible applications were discussed. BIOLOGICAL SIGNIFICANCE A number of important publications in the field of "omics" technologies have been published reporting studies of the model green microalga Chlamydomonas reinhardtii and related to microalgal biomass production. However, there are only few attempts to integrate these data. Publications showing the results from "omics" approaches, such as transcriptome, metabolome and proteome, focused in the study of mechanisms of carbon acquisition and accumulation in microalgae were reviewed. This review contributes to highlight the knowledge recently generated on such "omics" studies and it discusses how these results may be important for the advance of applied sciences, such as microalgae biotechnology.
Collapse
Affiliation(s)
- Flavia Vischi Winck
- Department of Chemical Engineering, Universidad de los Andes, Grupo de Diseño de Productos y Procesos, Bogotá 111711, Colombia.
| | | | | |
Collapse
|
91
|
McKew BA, Lefebvre SC, Achterberg EP, Metodieva G, Raines CA, Metodiev MV, Geider RJ. Plasticity in the proteome of Emiliania huxleyi CCMP 1516 to extremes of light is highly targeted. THE NEW PHYTOLOGIST 2013; 200:61-73. [PMID: 23750769 DOI: 10.1111/nph.12352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/01/2013] [Indexed: 05/22/2023]
Abstract
Optimality principles are often applied in theoretical studies of microalgal ecophysiology to predict changes in allocation of resources to different metabolic pathways, and optimal acclimation is likely to involve changes in the proteome, which typically accounts for > 50% of cellular nitrogen (N). We tested the hypothesis that acclimation of the microalga Emiliania huxleyi CCMP 1516 to suboptimal vs supraoptimal light involves large changes in the proteome as cells rebalance the capacities to absorb light, fix CO2 , perform biosynthesis and resist photooxidative stress. Emiliania huxleyi was grown in nutrient-replete continuous culture at 30 (LL) and 1000 μmol photons m(-2) s(-1) (HL), and changes in the proteome were assessed by LC-MS/MS shotgun proteomics. Changes were most evident in proteins involved in the light reactions of photosynthesis; the relative abundance of photosystem I (PSI) and PSII proteins was 70% greater in LL, light-harvesting fucoxanthin-chlorophyll proteins (Lhcfs) were up to 500% greater in LL and photoprotective LI818 proteins were 300% greater in HL. The marked changes in the abundances of Lhcfs and LI818s, together with the limited plasticity in the bulk of the E. huxleyi proteome, probably reflect evolutionary pressures to provide energy to maintain metabolic capabilities in stochastic light environments encountered by this species in nature.
Collapse
Affiliation(s)
- Boyd A McKew
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | | | - Eric P Achterberg
- National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Gergana Metodieva
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Christine A Raines
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Metodi V Metodiev
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Richard J Geider
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| |
Collapse
|
92
|
Chisti Y. Constraints to commercialization of algal fuels. J Biotechnol 2013; 167:201-14. [DOI: 10.1016/j.jbiotec.2013.07.020] [Citation(s) in RCA: 510] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 01/01/2023]
|
93
|
Devos Y, Aguilera J, Diveki Z, Gomes A, Liu Y, Paoletti C, du Jardin P, Herman L, Perry JN, Waigmann E. EFSA's scientific activities and achievements on the risk assessment of genetically modified organisms (GMOs) during its first decade of existence: looking back and ahead. Transgenic Res 2013; 23:1-25. [PMID: 23963741 DOI: 10.1007/s11248-013-9741-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/14/2013] [Indexed: 12/13/2022]
Abstract
Genetically modified organisms (GMOs) and derived food and feed products are subject to a risk analysis and regulatory approval before they can enter the market in the European Union (EU). In this risk analysis process, the role of the European Food Safety Authority (EFSA), which was created in 2002 in response to multiple food crises, is to independently assess and provide scientific advice to risk managers on any possible risks that the use of GMOs may pose to human and animal health and the environment. EFSA's scientific advice is elaborated by its GMO Panel with the scientific support of several working groups and EFSA's GMO Unit. This review presents EFSA's scientific activities and highlights its achievements on the risk assessment of GMOs for the first 10 years of its existence. Since 2002, EFSA has issued 69 scientific opinions on genetically modified (GM) plant market registration applications, of which 62 for import and processing for food and feed uses, six for cultivation and one for the use of pollen (as or in food), and 19 scientific opinions on applications for marketing products made with GM microorganisms. Several guidelines for the risk assessment of GM plants, GM microorganisms and GM animals, as well as on specific issues such as post-market environmental monitoring (PMEM) were elaborated. EFSA also provided scientific advice upon request of the European Commission on safeguard clause and emergency measures invoked by EU Member States, annual PMEM reports, the potential risks of new biotechnology-based plant breeding techniques, evaluations of previously assessed GMOs in the light of new scientific publications, and the use of antibiotic resistance marker genes in GM plants. Future challenges relevant to the risk assessment of GMOs are discussed. EFSA's risk assessments of GMO applications ensure that data are analysed and presented in a way that facilitates scientifically sound decisions that protect human and animal health and the environment.
Collapse
Affiliation(s)
- Yann Devos
- GMO Unit, European Food Safety Authority (EFSA), Via Carlo Magno 1, 43126, Parma, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Bazilian M, Davis R, T. Pienkos P, Arent D. The Energy-Water-Food Nexus Through the Lens of Algal Systems. Ind Biotechnol (New Rochelle N Y) 2013. [DOI: 10.1089/ind.2013.1579] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Ryan Davis
- National Renewable Energy Laboratory, Golden, CO
| | | | - Douglas Arent
- Joint Institute for Strategic Energy Analysis, Golden, CO
| |
Collapse
|
95
|
Highly valuable microalgae: biochemical and topological aspects. ACTA ACUST UNITED AC 2013; 40:781-96. [DOI: 10.1007/s10295-013-1281-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
Abstract
The past decade has seen a surge in the interest in microalgae culture for biodiesel production and other applications as renewable biofuels as an alternative to petroleum transport fuels. The development of new technologies for the culture of these photosynthetic microorganisms and improved knowledge of their biochemical composition has spurred innovation in the field of high-value biomolecules. These developments are only economically viable if all the microalgae fractions are valorized in a biorefinery strategy. Achieving this objective requires an understanding of microalgae content and the cellular localization of the main biomolecular families in order to develop efficient harvest and sequential recovery technologies. This review summarizes the state of the art in microalgae compositions and topologies using some examples of the main industrially farmed microalgae.
Collapse
|
96
|
Abdelaziz AEM, Leite GB, Hallenbeck PC. Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply. ENVIRONMENTAL TECHNOLOGY 2013; 34:1783-805. [PMID: 24350435 DOI: 10.1080/09593330.2013.827748] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Microalgae hold promise for the production of sustainable replacement of fossil fuels due to their high growth rates, ability to grow on non-arable land and their high content, under the proper conditions, of high energy compounds that can be relatively easily chemically converted to fuels using existing technology. However, projected large-scale algal production raises a number of sustainability concerns concerning land use, net energy return, water use and nutrient supply. The state-of-the-art of algal production of biofuels is presented with emphasis on some possible avenues to provide answers to the sustainability questions that have been raised. Here, issues concerning algal strains and supply of nutrients for large-scale production are discussed. Since sustainability concerns necessitate the use of wastewaters for supply of bulk nutrients, emphasis is placed on the composition and suitability of different wastewater streams. At the same time, algal cultivation has proven useful in waste treatment processes, and thus this aspect is also treated in some detail.
Collapse
Affiliation(s)
- Ahmed E M Abdelaziz
- Département de microbiologie et immunologie, Université de Montréal, CP 6128, Centre-ville, Montréal, Canada PQ H3C 3J7
| | - Gustavo B Leite
- Département de microbiologie et immunologie, Université de Montréal, CP 6128, Centre-ville, Montréal, Canada PQ H3C 3J7
| | - Patrick C Hallenbeck
- Département de microbiologie et immunologie, Université de Montréal, CP 6128, Centre-ville, Montréal, Canada PQ H3C 3J7
| |
Collapse
|
97
|
Abdelaziz AEM, Leite GB, Hallenbeck PC. Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels. ENVIRONMENTAL TECHNOLOGY 2013; 34:1807-36. [PMID: 24350436 DOI: 10.1080/09593330.2013.831487] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In order to ensure the sustainability of algal biofuel production, a number of issues need to be addressed. Previously, we reviewed some of the questions in this area involving algal species and the important challenges of nutrient supply and how these might be met. Here, we take up issues involving harvesting and the conversion ofbiomass to biofuels. Advances in both these areas are required if these third-generation fuels are to have a sufficiently high net energy ratio and a sustainable footprint. A variety of harvesting technologies are under investigation and recent studies in this area are presented and discussed. A number of different energy uses are available for algal biomass, each with their own advantages as well as challenges in terms of efficiencies and yields. Recent advances in these areas are presented and some of the especially promising conversion processes are highlighted.
Collapse
Affiliation(s)
- Ahmed E M Abdelaziz
- Département de microbiologie et immunologie, Université de Montréal, CP 6128 Centre-Ville, Montréal, Quebec, Canada PQ H3C 3J7
| | - Gustavo B Leite
- Département de microbiologie et immunologie, Université de Montréal, CP 6128 Centre-Ville, Montréal, Quebec, Canada PQ H3C 3J7
| | - Patrick C Hallenbeck
- Département de microbiologie et immunologie, Université de Montréal, CP 6128 Centre-Ville, Montréal, Quebec, Canada PQ H3C 3J7
| |
Collapse
|
98
|
Nelson DR, Mengistu S, Ranum P, Celio G, Mashek M, Mashek D, Lefebvre PA. New lipid-producing, cold-tolerant yellow-green alga isolated from the Rocky Mountains of Colorado. Biotechnol Prog 2013; 29:853-61. [PMID: 23754623 DOI: 10.1002/btpr.1755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 05/08/2013] [Indexed: 11/11/2022]
Abstract
A new strain of yellow-green algae (Xanthophyceae, Heterokonta), tentatively named Heterococcus sp. DN1 (UTEX accession number UTEX ZZ885), was discovered among snow fields in the Rocky Mountains. Axenic cultures of H. sp. DN1 were isolated and their cellular morphology, growth, and composition of lipids were characterized. H. sp. DN1 was found to grow at temperatures approaching freezing to accumulate large intracellular stores of lipids. H. sp. DN1 produces the highest quantity of lipids when grown undisturbed with high light in low temperatures. Of particular interest was the accumulation of eicosapentaenoic acid, known to be important for human nutrition, and palmitoleic acid, known to improve biodiesel feedstock properties.
Collapse
Affiliation(s)
- David R Nelson
- Dept. of Plant Biology, University of Minnesota, St. Paul, MN, USA.
| | | | | | | | | | | | | |
Collapse
|
99
|
Lee SJ, Lee SJ, Lee DW. Design and development of synthetic microbial platform cells for bioenergy. Front Microbiol 2013; 4:92. [PMID: 23626588 PMCID: PMC3630320 DOI: 10.3389/fmicb.2013.00092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/03/2013] [Indexed: 12/26/2022] Open
Abstract
The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy.
Collapse
Affiliation(s)
- Sang Jun Lee
- Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology Daejeon, South Korea
| | | | | |
Collapse
|
100
|
“Plant Cell Wall Structure-Pretreatment” the Critical Relationship in Biomass Conversion to Fermentable Sugars. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2013. [DOI: 10.1007/978-94-007-6052-3_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|