51
|
Teng Y, Xu Y, Wang X, Christie P. Function of Biohydrogen Metabolism and Related Microbial Communities in Environmental Bioremediation. Front Microbiol 2019; 10:106. [PMID: 30837956 PMCID: PMC6383490 DOI: 10.3389/fmicb.2019.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023] Open
Abstract
Hydrogen (H2) metabolism has attracted considerable interest because the activities of H2-producing and consuming microbes shape the global H2 cycle and may have vital relationships with the global cycling of other elements. There are many pathways of microbial H2 emission and consumption which may affect the structure and function of microbial communities. A wide range of microbial groups employ H2 as an electron donor to catalyze the reduction of pollutants such as organohalides, azo compounds, and trace metals. Syntrophy coupled mutualistic interaction between H2-producing and H2-consuming microorganisms can transfer H2 and be accompanied by the removal of toxic compounds. Moreover, hydrogenases have been gradually recognized to have a key role in the progress of pollutant degradation. This paper reviews recent advances in elucidating role of H2 metabolism involved in syntrophy and hydrogenases in environmental bioremediation. Further investigations should focus on the application of bioenergy in bioremediation to make microbiological H2 metabolism a promising remediation strategy.
Collapse
Affiliation(s)
- Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
52
|
Abstract
Organohalide respiration (OHR) is an anaerobic metabolism by which bacteria conserve energy with the use of halogenated compounds as terminal electron acceptors. Genes involved in OHR are organized in reductive dehalogenase (rdh) gene clusters and can be found in relatively high copy numbers in the genomes of organohalide-respiring bacteria (OHRB). The minimal rdh gene set is composed by rdhA and rdhB, encoding the catalytic enzyme involved in reductive dehalogenation and its putative membrane anchor, respectively. In this chapter, we present the major findings concerning the regulatory strategies developed by OHRB to control the expression of the rdh gene clusters. The first section focuses on the description of regulation patterns obtained from targeted transcriptional analyses, and from transcriptomic and proteomic studies, while the second section offers a detailed overview of the biochemically characterized OHR regulatory proteins identified so far. Depending on OHRB, transcriptional regulators belonging to three different protein families are found in the direct vicinity of rdh gene clusters, suggesting that they activate the transcription of their cognate gene cluster. In this chapter, strong emphasis was laid on the family of CRP/FNR-type RdhK regulators which belong to members of the genera Dehalobacter and Desulfitobacterium. Whereas only chlorophenols have been identified as effectors for RdhK regulators, the protein sequence diversity suggests a broader organohalide spectrum. Thus, effector identification of new regulators offers a promising alternative to elucidate the substrates of yet uncharacterized reductive dehalogenases. Future work investigating the possible cross-talk between OHR regulators and their possible use as biosensors is discussed.
Collapse
|
53
|
Sims GK, Kanissery RG. Anaerobic Biodegradation of Pesticides. MICROORGANISMS FOR SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-7462-3_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
54
|
Sun Z, Rokita SE. Toward a Halophenol Dehalogenase from Iodotyrosine Deiodinase via Computational Design. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zuodong Sun
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Steven E. Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
55
|
Boyarskii VP, Sangaranarayanan MV, Boyarskaya IA, Tolstopyatova EG, Chulkova TG. Electrochemical Reduction of Trichlorobiphenyls: Mechanism and Regioselectivity. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
56
|
Jochum LM, Schreiber L, Marshall IPG, Jørgensen BB, Schramm A, Kjeldsen KU. Single-Cell Genomics Reveals a Diverse Metabolic Potential of Uncultivated Desulfatiglans-Related Deltaproteobacteria Widely Distributed in Marine Sediment. Front Microbiol 2018; 9:2038. [PMID: 30233524 PMCID: PMC6129605 DOI: 10.3389/fmicb.2018.02038] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Desulfatiglans-related organisms comprise one of the most abundant deltaproteobacterial lineages in marine sediments where they occur throughout the sediment column in a gradient of increasing sulfate and organic carbon limitation with depth. Characterized Desulfatiglans isolates are dissimilatory sulfate reducers able to grow by degrading aromatic hydrocarbons. The ecophysiology of environmental Desulfatiglans-populations is poorly understood, however, possibly utilization of aromatic compounds may explain their predominance in marine subsurface sediments. We sequenced and analyzed seven Desulfatiglans-related single-cell genomes (SAGs) from Aarhus Bay sediments to characterize their metabolic potential with regard to aromatic compound degradation and energy metabolism. The average genome assembly size was 1.3 Mbp and completeness estimates ranged between 20 and 50%. Five of the SAGs (group 1) originated from the sulfate-rich surface part of the sediment while two (group 2) originated from sulfate-depleted subsurface sediment. Based on 16S rRNA gene amplicon sequencing group 2 SAGs represent the more frequent types of Desulfatiglans-populations in Aarhus Bay sediments. Genes indicative of aromatic compound degradation could be identified in both groups, but the two groups were metabolically distinct with regard to energy conservation. Group 1 SAGs carry a full set of genes for dissimilatory sulfate reduction, whereas the group 2 SAGs lacked any genetic evidence for sulfate reduction. The latter may be due to incompleteness of the SAGs, but as alternative energy metabolisms group 2 SAGs carry the genetic potential for growth by acetogenesis and fermentation. Group 1 SAGs encoded reductive dehalogenase genes, allowing them to access organohalides and possibly conserve energy by their reduction. Both groups possess sulfatases unlike their cultured relatives allowing them to utilize sulfate esters as source of organic carbon and sulfate. In conclusion, the uncultivated marine Desulfatiglans populations are metabolically diverse, likely reflecting different strategies for coping with energy and sulfate limitation in the subsurface seabed.
Collapse
Affiliation(s)
- Lara M Jochum
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lars Schreiber
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Ian P G Marshall
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Bo B Jørgensen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper U Kjeldsen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
57
|
Nakamura R, Obata T, Nojima R, Hashimoto Y, Noguchi K, Ogawa T, Yohda M. Functional Expression and Characterization of Tetrachloroethene Dehalogenase From Geobacter sp. Front Microbiol 2018; 9:1774. [PMID: 30147676 PMCID: PMC6095959 DOI: 10.3389/fmicb.2018.01774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 07/16/2018] [Indexed: 11/13/2022] Open
Abstract
Reductive dehalogenase (RDase) consists of two parts, RdhA and RdhB. RdhA is the catalytic subunit, harboring a cobalamin cofactor and two Fe-S clusters. RdhA is anchored to the cytoplasmic membrane via the membrane anchoring subunit, RdhB. There are many genes encoding RDases in the genome of organohalide-respiring bacteria, including Dehalococcoides spp. However, most genes have not been functionally characterized. Biochemical studies on RDases have been hampered by difficulties encountered in their expression and purification. In this study, we have expressed, purified and characterized RdhA of RDase for tetrachloroethene (PceA) from Geobacter sp. PceA was expressed as a fusion protein with a trigger factor tag in Escherichia coli. PceA was purified and denatured in aerobic condition. Subsequently, this protein was refolded in the presence of FeCl3, Na2S and cobalamin in anaerobic condition. The reconstituted PceA exhibited dechlorination ability for tetrachloroethene. UV-Vis spectroscopy has shown that it contains cobalamin and Fe-S clusters. Since this method requires anaerobic manipulation only in the reconstituting process and has a relatively high yield, it will enable further biochemical studies of RDases.
Collapse
Affiliation(s)
- Ryuki Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomohiro Obata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryota Nojima
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yohey Hashimoto
- Department of Bioapplications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takahiro Ogawa
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
58
|
Wang S, Qiu L, Liu X, Xu G, Siegert M, Lu Q, Juneau P, Yu L, Liang D, He Z, Qiu R. Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Biotechnol Adv 2018; 36:1194-1206. [DOI: 10.1016/j.biotechadv.2018.03.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 01/08/2023]
|
59
|
Chekan JR, Moore BS. Preparation and Characterization of Tetrabromopyrrole Debrominase From Marine Proteobacteria. Methods Enzymol 2018; 605:253-265. [PMID: 29909826 PMCID: PMC6211843 DOI: 10.1016/bs.mie.2018.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While halogenases have been studied for decades, the first natural product dehalogenase was only recently described. This bacterial enzyme, Bmp8, catalyzes the reductive debromination of 2,3,4,5-tetrabromopyrrole to form 2,3,4-tribromopyrrole as part of the biosynthesis of pentabromopseudilin, a marine natural product. Bmp8 is hypothesized to utilize a catalytic mechanism analogous to the important human thyroid hormone deiodinase enzyme family, potentially enabling Bmp8 to serve as model system to study this conserved mechanism. Herein, we describe a method for the soluble expression and purification of Bmp8. Furthermore, we detail activity assay protocols to quantify both consumption of the tetrabromopyrrole substrate and formation of the tribromopyrrole product. These methods will enable further study of this unusual enzyme and its catalytic mechanism.
Collapse
Affiliation(s)
- Jonathan R Chekan
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, United States
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, United States; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, United States.
| |
Collapse
|
60
|
Jugder BE, Payne KAP, Fisher K, Bohl S, Lebhar H, Manefield M, Lee M, Leys D, Marquis CP. Heterologous Production and Purification of a Functional Chloroform Reductive Dehalogenase. ACS Chem Biol 2018; 13:548-552. [PMID: 29363941 DOI: 10.1021/acschembio.7b00846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reductive dehalogenases (RDases) are key enzymes involved in the respiratory process of anaerobic organohalide respiring bacteria (ORB). Heterologous expression of respiratory RDases is desirable for structural and functional studies; however, there are few reports of successful expression of these enzymes. Dehalobacter sp. strain UNSWDHB is an ORB, whose preferred electron acceptor is chloroform. This study describes efforts to express recombinant reductive dehalogenase (TmrA), derived from UNSW DHB, using the heterologous hosts Escherichia coli and Bacillus megaterium. Here, we report the recombinant expression of soluble and functional TmrA, using B. megaterium as an expression host under a xylose-inducible promoter. Successful incorporation of iron-sulfur clusters and a corrinoid cofactor was demonstrated using UV-vis spectroscopic analyses. In vitro dehalogenation of chloroform using purified recombinant TmrA was demonstrated. This is the first known report of heterologous expression and purification of a respiratory reductive dehalogenase from an obligate organohalide respiring bacterium.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7 DN, United Kingdom
| | - Karl A. P. Payne
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7 DN, United Kingdom
| | - Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7 DN, United Kingdom
| | - Susanne Bohl
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Helene Lebhar
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mike Manefield
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Matthew Lee
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - David Leys
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7 DN, United Kingdom
| | - Christopher P. Marquis
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
61
|
Zhang S, Adrian L, Schüürmann G. Interaction Mode and Regioselectivity in Vitamin B 12-Dependent Dehalogenation of Aryl Halides by Dehalococcoides mccartyi Strain CBDB1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1834-1843. [PMID: 29283566 DOI: 10.1021/acs.est.7b04278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The bacterium Dehalococcoides, strain CBDB1, transforms aromatic halides through reductive dehalogenation. So far, however, the structures of its vitamin B12-containing dehalogenases are unknown, hampering clarification of the catalytic mechanism and substrate specificity as basis for targeted remediation strategies. This study employs a quantum chemical donor-acceptor approach for the Co(I)-substrate electron transfer. Computational characterization of the substrate electron affinity at carbon-halogen bonds enables discriminating aromatic halides ready for dehalogenation by strain CBDB1 (active substrates) from nondehalogenated (inactive) counterparts with 92% accuracy, covering 86 of 93 bromobenzenes, chlorobenzenes, chlorophenols, chloroanilines, polychlorinated biphenyls, and dibenzo-p-dioxins. Moreover, experimental regioselectivity is predicted with 78% accuracy by a site-specific parameter encoding the overlap potential between the Co(I) HOMO (highest occupied molecular orbital) and the lowest-energy unoccupied sigma-symmetry substrate MO (σ*), and the observed dehalogenation pathways are rationalized with a success rate of 81%. Molecular orbital analysis reveals that the most reactive unoccupied sigma-symmetry orbital of carbon-attached halogen X (σC-X*) mediates its reductive cleavage. The discussion includes predictions for untested substrates, thus providing opportunities for targeted experimental investigations. Overall, the presently introduced orbital interaction model supports the view that with bacterial strain CBDB1, an inner-sphere electron transfer from the supernucleophile B12 Co(I) to the halogen substituent of the aromatic halide is likely to represent the rate-determining step of the reductive dehalogenation.
Collapse
Affiliation(s)
- Shangwei Zhang
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
- Technical University Bergakademie Freiberg , Institute for Organic Chemistry, Leipziger Straße 29, 09596 Freiberg, German y
| | - Lorenz Adrian
- UFZ Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
- Technische Universität Berlin , Chair of Geobiotechnology, Ackerstraße 76, 13355 Berlin, Germany
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
- Technical University Bergakademie Freiberg , Institute for Organic Chemistry, Leipziger Straße 29, 09596 Freiberg, German y
| |
Collapse
|
62
|
Leitner S, Reichenauer TG, Watzinger A. Impact of sorption processes on PCE concentrations in organohalide-respiring aquifer sediment samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1061-1069. [PMID: 29751409 DOI: 10.1016/j.scitotenv.2017.09.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 06/08/2023]
Abstract
The evaluation of groundwater contaminant e.g. tetrachloroethene (PCE) degradation processes requires complete quantification of and pathway analysis of the groundwater contaminant under investigation. For example the reduction of PCE concentrations in the groundwater by unknown dissolution and/or sorption processes will impede interpretation of the fate and behaviour of such contaminants. In the present study PCE dissolution and sorption processes during anaerobic microbial degradation of chlorinated ethenes were investigated. For this purpose, microcosms were prepared using sediment samples from a PCE-contaminated aquifer, which in previous studies had demonstrated anaerobic organohalide respiration of PCE. Solid/water distribution coefficients (kd) of PCE were determined and validated by loss-on-ignition (LOI) and PCE sorption experiments. The determined kd magnitudes indicated methodological congruency, yielding values for sediment samples within a range of 1.15±0.02 to 5.93±0.34L·kg-1. The microcosm experiment showed lower PCE concentrations than expected, based on spiked PCE and observed anaerobic microbial degradation processes. Nevertheless the amount of PCE spike added was completely recovered albeit in the form of lower chlorinated metabolites. A delay due to dissolution processes was not responsible for this phenomenon. Sorption to sediments could only partially explain the reduction of PCE in the water phase. Accordingly, the results point to reversible sorption processes of PCE, possibly onto bacterial cell compartments and/or exopolymeric substances.
Collapse
Affiliation(s)
- Simon Leitner
- AIT Austrian Institute of Technology GmbH, Center for Energy, Environmental Resources and Technologies, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Thomas G Reichenauer
- AIT Austrian Institute of Technology GmbH, Center for Energy, Environmental Resources and Technologies, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Andrea Watzinger
- AIT Austrian Institute of Technology GmbH, Center for Energy, Environmental Resources and Technologies, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| |
Collapse
|
63
|
Weatherill JJ, Atashgahi S, Schneidewind U, Krause S, Ullah S, Cassidy N, Rivett MO. Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical processes and in-situ transformation potential. WATER RESEARCH 2018; 128:362-382. [PMID: 29126033 DOI: 10.1016/j.watres.2017.10.059] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/12/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
Chlorinated ethenes (CEs) are legacy contaminants whose chemical footprint is expected to persist in aquifers around the world for many decades to come. These organohalides have been reported in river systems with concerning prevalence and are thought to be significant chemical stressors in urban water ecosystems. The aquifer-river interface (known as the hyporheic zone) is a critical pathway for CE discharge to surface water bodies in groundwater baseflow. This pore water system may represent a natural bioreactor where anoxic and oxic biotransformation process act in synergy to reduce or even eliminate contaminant fluxes to surface water. Here, we critically review current process understanding of anaerobic CE respiration in the competitive framework of hyporheic zone biogeochemical cycling fuelled by in-situ fermentation of natural organic matter. We conceptualise anoxic-oxic interface development for metabolic and co-metabolic mineralisation by a range of aerobic bacteria with a focus on vinyl chloride degradation pathways. The superimposition of microbial metabolic processes occurring in sediment biofilms and bulk solute transport delivering reactants produces a scale dependence in contaminant transformation rates. Process interpretation is often confounded by the natural geological heterogeneity typical of most riverbed environments. We discuss insights from recent field experience of CE plumes discharging to surface water and present a range of practical monitoring technologies which address this inherent complexity at different spatial scales. Future research must address key dynamics which link supply of limiting reactants, residence times and microbial ecophysiology to better understand the natural attenuation capacity of hyporheic systems.
Collapse
Affiliation(s)
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Uwe Schneidewind
- Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen, Germany
| | - Stefan Krause
- School of Geography, Earth and Environmental Science, University of Birmingham, UK
| | - Sami Ullah
- School of Geography, Earth and Environmental Science, University of Birmingham, UK
| | | | - Michael O Rivett
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK; GroundH(2)O Plus Ltd., Quinton, Birmingham, UK
| |
Collapse
|
64
|
Leitner S, Berger H, Gorfer M, Reichenauer TG, Watzinger A. Isotopic effects of PCE induced by organohalide-respiring bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24803-24815. [PMID: 28913587 DOI: 10.1007/s11356-017-0075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Reductive dechlorination performed by organohalide-respiring bacteria (OHRB) enables the complete detoxification of certain emerging groundwater pollutants such as perchloroethene (PCE). Environmental samples from a contaminated site incubated in a lab-scale microcosm (MC) study enable documentation of such reductive dechlorination processes. As compound-specific isotope analysis is used to monitor PCE degradation processes, nucleic acid analysis-like 16S-rDNA analysis-can be used to determine the key OHRB that are present. This study applied both methods to laboratory MCs prepared from environmental samples to investigate OHRB-specific isotope enrichment at PCE dechlorination. This method linkage can enhance the understanding of isotope enrichment patterns of distinct OHRB, which further contribute to more accurate evaluation, characterisation and prospection of natural attenuation processes. Results identified three known OHRB genera (Dehalogenimonas, Desulfuromonas, Geobacter) in diverse abundance within MCs. One species of Dehalogenimonas was potentially involved in complete reductive dechlorination of PCE to ethene. Furthermore, the isotopic effects of PCE degradation were clustered and two isotope enrichment factors (ε) (- 11.6‰, - 1.7‰) were obtained. Notably, ε values were independent of degradation rates and kinetics, but did reflect the genera of the dechlorinating OHRB.
Collapse
Affiliation(s)
- Simon Leitner
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Harald Berger
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Markus Gorfer
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Thomas G Reichenauer
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Andrea Watzinger
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria.
| |
Collapse
|
65
|
Liu J, Lopez N, Ahn Y, Goldberg T, Bromberg Y, Kerkhof LJ, Häggblom MM. Novel reductive dehalogenases from the marine sponge associated bacterium Desulfoluna spongiiphila. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:537-549. [PMID: 28618195 DOI: 10.1111/1758-2229.12556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/08/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Desulfoluna spongiiphila strain AA1 is an organohalide respiring bacterium, isolated from the marine sponge Aplysina aerophoba, that can use brominated and iodinated phenols, in addition to sulfate and thiosulfate as terminal electron acceptors. The genome of Desulfoluna spongiiphila strain AA1 is approximately 6.5 Mb. Three putative reductive dehalogenase (rdhA) genes involved in respiratory metabolism of organohalides were identified within the sequence. Conserved motifs found in respiratory reductive dehalogenases (a twin arginine translocation signal sequence and two iron-sulfur clusters) were present in all three putative AA1 rdhA genes. Transcription of one of the three rdhA genes was significantly upregulated during respiration of 2,6-dibromophenol and sponge extracts. Strain AA1 appears to have the ability to synthesize cobalamin, the key cofactor of most characterized reductive dehalogenase enzymes. The genome contains genes involved in cobalamin synthesis and uptake and can grow without cobalamin supplementation. Identification of this target gene associated with debromination lays the foundation for understanding how dehalogenating bacteria control the fate of organohalide compounds in sponges and their role in a symbiotic organobromine cycle. In the sponge environment, D. spongiiphila strain AA1 may thus take advantage of both brominated compounds and sulfate as electron acceptors for respiration.
Collapse
Affiliation(s)
- Jie Liu
- Departments of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nora Lopez
- Departments of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Youngbeom Ahn
- Departments of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Tatyana Goldberg
- Department for Bioinformatics and Computational Biology, Technical University Munich, Garching, 85748, Germany
| | - Yana Bromberg
- Departments of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Lee J Kerkhof
- Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Max M Häggblom
- Departments of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
66
|
Kunze C, Diekert G, Schubert T. Subtle changes in the active site architecture untangled overlapping substrate ranges and mechanistic differences of two reductive dehalogenases. FEBS J 2017; 284:3520-3535. [DOI: 10.1111/febs.14258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/20/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Cindy Kunze
- Department of Applied and Ecological Microbiology; Institute of Microbiology; Friedrich Schiller University; Jena Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology; Institute of Microbiology; Friedrich Schiller University; Jena Germany
| | - Torsten Schubert
- Department of Applied and Ecological Microbiology; Institute of Microbiology; Friedrich Schiller University; Jena Germany
| |
Collapse
|
67
|
Vergani L, Mapelli F, Marasco R, Crotti E, Fusi M, Di Guardo A, Armiraglio S, Daffonchio D, Borin S. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation. Front Microbiol 2017; 8:1385. [PMID: 28790991 PMCID: PMC5524726 DOI: 10.3389/fmicb.2017.01385] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs), together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP) traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed among the isolates according to in vitro assays. PGP tested in vivo on tomato plants using eleven selected bacterial isolates, confirmed the promotion and protection potential of the rhizosphere bacteria. Different spontaneous plant species naturally selected in a historical chronically polluted site showed to determine the enrichment of peculiar bacterial communities in the soil fractions associated to the roots. All the rhizosphere communities, nevertheless, hosted bacteria with degradation/detoxification and PGP potential, putatively sustaining the natural attenuation process.
Collapse
Affiliation(s)
- Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Antonio Di Guardo
- Department of Science and High Technology, University of InsubriaComo, Italy
| | | | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| |
Collapse
|
68
|
Jugder BE, Bohl S, Lebhar H, Healey RD, Manefield M, Marquis CP, Lee M. A bacterial chloroform reductive dehalogenase: purification and biochemical characterization. Microb Biotechnol 2017. [PMID: 28631300 PMCID: PMC5658581 DOI: 10.1111/1751-7915.12745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We report herein the purification of a chloroform (CF)-reducing enzyme, TmrA, from the membrane fraction of a strict anaerobe Dehalobacter sp. strain UNSWDHB to apparent homogeneity with an approximate 23-fold increase in relative purity compared to crude lysate. The membrane fraction obtained by ultracentrifugation was solubilized in Triton X-100 in the presence of glycerol, followed by purification by anion exchange chromatography. The molecular mass of the purified TmrA was determined to be 44.5 kDa by SDS-PAGE and MALDI-TOF/TOF. The purified dehalogenase reductively dechlorinated CF to dichloromethane in vitro with reduced methyl viologen as the electron donor at a specific activity of (1.27 ± 0.04) × 103 units mg protein-1 . The optimum temperature and pH for the activity were 45°C and 7.2, respectively. The UV-visible spectrometric analysis indicated the presence of a corrinoid and two [4Fe-4S] clusters, predicted from the amino acid sequence. This is the first report of the production, purification and biochemical characterization of a CF reductive dehalogenase.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Susanne Bohl
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Department of Biotechnology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
| | - Helene Lebhar
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Robert D Healey
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mike Manefield
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Christopher P Marquis
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Matthew Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
69
|
Affiliation(s)
- Maeva Fincker
- Department of Civil and Environmental Engineering and Department of Chemical Engineering, Stanford University, Stanford, California 94305;,
| | - Alfred M. Spormann
- Department of Civil and Environmental Engineering and Department of Chemical Engineering, Stanford University, Stanford, California 94305;,
| |
Collapse
|
70
|
Chatzikonstantinou M, Vlachakis D, Chronopoulou E, Papageorgiou L, Papageorgiou AC, Labrou NE. The glutathione transferase family of Chlamydomonas reinhardtii: Identification and characterization of novel sigma class-like enzymes. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
71
|
Dolinová I, Štrojsová M, Černík M, Němeček J, Macháčková J, Ševců A. Microbial degradation of chloroethenes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13262-13283. [PMID: 28378313 DOI: 10.1007/s11356-017-8867-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/17/2017] [Indexed: 05/28/2023]
Abstract
Contamination by chloroethenes has a severe negative effect on both the environment and human health. This has prompted intensive remediation activity in recent years, along with research into the efficacy of natural microbial communities for degrading toxic chloroethenes into less harmful compounds. Microbial degradation of chloroethenes can take place either through anaerobic organohalide respiration, where chloroethenes serve as electron acceptors; anaerobic and aerobic metabolic degradation, where chloroethenes are used as electron donors; or anaerobic and aerobic co-metabolic degradation, with chloroethene degradation occurring as a by-product during microbial metabolism of other growth substrates, without energy or carbon benefit. Recent research has focused on optimising these natural processes to serve as effective bioremediation technologies, with particular emphasis on (a) the diversity and role of bacterial groups involved in dechlorination microbial processes, and (b) detection of bacterial enzymes and genes connected with dehalogenation activity. In this review, we summarise the different mechanisms of chloroethene bacterial degradation suitable for bioremediation and provide a list of dechlorinating bacteria. We also provide an up-to-date summary of primers available for detecting functional genes in anaerobic and aerobic bacteria degrading chloroethenes metabolically or co-metabolically.
Collapse
Affiliation(s)
- Iva Dolinová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Martina Štrojsová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Jan Němeček
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Jiřina Macháčková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
| |
Collapse
|
72
|
Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem Rev 2017; 117:5619-5674. [PMID: 28106994 PMCID: PMC5575885 DOI: 10.1021/acs.chemrev.6b00571] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
| | | | - Alessandra S. Eustáquio
- College of Pharmacy, Department of Medicinal Chemistry & Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago
| | - Abrahim A. El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
73
|
Alfán-Guzmán R, Ertan H, Manefield M, Lee M. Isolation and Characterization of Dehalobacter sp. Strain TeCB1 Including Identification of TcbA: A Novel Tetra- and Trichlorobenzene Reductive Dehalogenase. Front Microbiol 2017; 8:558. [PMID: 28421054 PMCID: PMC5379058 DOI: 10.3389/fmicb.2017.00558] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
Dehalobacter sp. strain TeCB1 was isolated from groundwater near Sydney, Australia, that is polluted with a range of organochlorines. The isolated strain is able to grow by reductive dechlorination of 1,2,4,5-tetrachlorobenzene to 1,3- and 1,4-dichlorobenzene with 1,2,4-trichlorobenzene being the intermediate daughter product. Transient production of 1,2-dichlorobenzene was detected with subsequent conversion to monochlorobenzene. The dehalogenation capability of strain TeCB1 to respire 23 alternative organochlorines was examined and shown to be limited to the use of 1,2,4,5-tetrachlorobenzene and 1,2,4-trichlorobenzene. Growth on 1,2,4-trichlorobenzene resulted in the production of predominantly 1,3- and 1,4-dichlorobenzene. The inability of strain TeCB1 to grow on 1,2-dichlorobenzene indicated that the production of monochlorobenzene during growth on 1,2,4,5-tetarchlorobezene was cometabolic. The annotated genome of strain TeCB1 contained only one detectable 16S rRNA gene copy and genes for 23 full-length and one truncated Reductive Dehalogenase (RDase) homologs, five unique to strain TeCB1. Identification and functional characterization of the 1,2,4,5-tetrachlorobenzene and 1,2,4-trichlorobenzene RDase (TcbA) was achieved using native-PAGE coupled with liquid chromatography tandem mass spectrometry. Interestingly, TcbA showed higher amino acid identity with tetrachloroethene reductases PceA (95% identity) from Dehalobacter restrictus PER-K23 and Desulfitobacterium hafniense Y51 than with the only other chlorinated benzene reductase [i.e., CbrA (30% identity)] functionally characterized to date.
Collapse
Affiliation(s)
- Ricardo Alfán-Guzmán
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, SydneyNSW, Australia
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, SydneyNSW, Australia.,Department of Molecular Biology and Genetics, Istanbul UniversityIstanbul, Turkey
| | - Mike Manefield
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, SydneyNSW, Australia
| | - Matthew Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, SydneyNSW, Australia
| |
Collapse
|
74
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
75
|
Khaibulova TS, Boyarskaya IA, Polukeev VA, Boyarskii VP. Regioselectivity of the methanolysis of polychlorinated biphenyls. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216100121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
76
|
Jugder BE, Ertan H, Wong YK, Braidy N, Manefield M, Marquis CP, Lee M. Genomic, transcriptomic and proteomic analyses of Dehalobacter UNSWDHB in response to chloroform. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:814-824. [PMID: 27452500 DOI: 10.1111/1758-2229.12444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Organohalide respiring bacteria (ORB) are capable of utilising organohalides as electron acceptors for the generation of cellular energy and consequently play an important role in the turnover of natural and anthropogenically-derived organohalides. In this study, the response of a Dehalobacter sp. strain UNSWDHB to the addition of trichloromethane (TCM) after a 50 h period of its absence (suffocation) was evaluated from a transcriptomic and proteomic perspective. The up-regulation of TCM reductive dehalogenase genes (tmrABC) and their gene products (TmrABC) was confirmed at both transcriptional and proteomic levels. Other findings include the upregulation of various hydrogenases (membrane-associated Ni-Fe hydrogenase complexes and soluble Fe-Fe hydrogenases), formate dehydrogenases, complex I and a pyrophosphate-energized proton pump. The elevated expression of enzymes associated with carbon metabolism, including complete Wood Ljungdahl pathway, during TCM respiration raises interesting questions on possible fates of intracellular formate and its potential role in the physiology of this bacterium. Overall, the findings presented here provide a broader view on the bioenergetics and general physiology of Dehalobacter UNSWDHB cells actively respiring with TCM.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
- Department of Molecular Biology and Genetics, Istanbul University, Turkey
| | - Yie Kuan Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Nady Braidy
- Faculty of Medicine, School of Psychiatry, Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia
| | - Michael Manefield
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Christopher P Marquis
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Matthew Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
77
|
El Gamal A, Agarwal V, Rahman I, Moore BS. Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles. J Am Chem Soc 2016; 138:13167-13170. [PMID: 27676265 DOI: 10.1021/jacs.6b08512] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enzymes capable of performing dehalogenating reactions have attracted tremendous contemporary attention due to their potential application in the bioremediation of anthropogenic polyhalogenated persistent organic pollutants. Nature, in particular the marine environment, is also a prolific source of polyhalogenated organic natural products. The study of the biosynthesis of these natural products has furnished a diverse array of halogenation biocatalysts, but thus far no examples of dehalogenating enzymes have been reported from a secondary metabolic pathway. Here we show that the penultimate step in the biosynthesis of the highly brominated marine bacterial product pentabromopseudilin is catalyzed by an unusual debrominase Bmp8 that utilizes a redox thiol mechanism to remove the C-2 bromine atom of 2,3,4,5-tetrabromopyrrole to facilitate oxidative coupling to 2,4-dibromophenol. To the best of our knowledge, Bmp8 is first example of a dehalogenating enzyme from the established genetic and biochemical context of a natural product biosynthetic pathway.
Collapse
Affiliation(s)
- Abrahim El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, Scripps Institution of Oceanography, University of California, San Diego , San Diego, California 92093, United States
| | - Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, Scripps Institution of Oceanography, University of California, San Diego , San Diego, California 92093, United States
| | - Imran Rahman
- Center for Oceans and Human Health, Scripps Institution of Oceanography, Scripps Institution of Oceanography, University of California, San Diego , San Diego, California 92093, United States
| | - Bradley S Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, Scripps Institution of Oceanography, University of California, San Diego , San Diego, California 92093, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , San Diego, California 92093, United States
| |
Collapse
|
78
|
Montelius M, Svensson T, Lourino-Cabana B, Thiry Y, Bastviken D. Chlorination and dechlorination rates in a forest soil - A combined modelling and experimental approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 554-555:203-210. [PMID: 26950634 DOI: 10.1016/j.scitotenv.2016.02.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
Much of the total pool of chlorine (Cl) in soil consists of naturally produced organic chlorine (Clorg). The chlorination of bulk organic matter at substantial rates has been experimentally confirmed in various soil types. The subsequent fates of Clorg are important for ecosystem Cl cycling and residence times. As most previous research into dechlorination in soils has examined either single substances or specific groups of compounds, we lack information about overall bulk dechlorination rates. Here we assessed bulk organic matter chlorination and dechlorination rates in coniferous forest soil based on a radiotracer experiment conducted under various environmental conditions (additional water, labile organic matter, and ammonium nitrate). Experiment results were used to develop a model to estimate specific chlorination (i.e., fraction of Cl(-) transformed to Clorg per time unit) and specific dechlorination (i.e., fraction of Clorg transformed to Cl(-) per time unit) rates. The results indicate that chlorination and dechlorination occurred simultaneously under all tested environmental conditions. Specific chlorination rates ranged from 0.0005 to 0.01 d(-1) and were hampered by nitrogen fertilization but were otherwise similar among the treatments. Specific dechlorination rates were 0.01-0.03d(-1) and were similar among all treatments. This study finds that soil Clorg levels result from a dynamic equilibrium between the chlorination and rapid dechlorination of some Clorg compounds, while another Clorg pool is dechlorinated more slowly. Altogether, this study demonstrates a highly active Cl cycling in soils.
Collapse
Affiliation(s)
- Malin Montelius
- Department of Thematic Studies - Environmental Change, Linköping University, 581 83 Linköping, Sweden.
| | - Teresia Svensson
- Department of Thematic Studies - Environmental Change, Linköping University, 581 83 Linköping, Sweden
| | | | - Yves Thiry
- Andra, Research and Development Division, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France
| | - David Bastviken
- Department of Thematic Studies - Environmental Change, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
79
|
Ding W, Li Q, Jia Y, Ji X, Qianzhu H, Zhang Q. Emerging Diversity of the Cobalamin-Dependent Methyltransferases Involving Radical-Based Mechanisms. Chembiochem 2016; 17:1191-7. [PMID: 27028019 DOI: 10.1002/cbic.201600107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Indexed: 11/10/2022]
Abstract
Cobalamins comprise a group of cobalt-containing organometallic cofactors that play important roles in cellular metabolism. Although many cobalamin-dependent methyltransferases (e.g., methionine synthase MetH) have been extensively studied, a new group of methyltransferases that are cobalamin-dependent and utilize radical chemistry in catalysis is just beginning to be appreciated. In this Concept article, we summarize recent advances in the understanding of the radical-based and cobalamin-dependent methyltransferases and discuss the functional and mechanistic diversity of this emerging class of enzymes.
Collapse
Affiliation(s)
- Wei Ding
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qien Li
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Youli Jia
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Haocheng Qianzhu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
80
|
Jugder BE, Ertan H, Bohl S, Lee M, Marquis CP, Manefield M. Organohalide Respiring Bacteria and Reductive Dehalogenases: Key Tools in Organohalide Bioremediation. Front Microbiol 2016; 7:249. [PMID: 26973626 PMCID: PMC4771760 DOI: 10.3389/fmicb.2016.00249] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/15/2016] [Indexed: 01/31/2023] Open
Abstract
Organohalides are recalcitrant pollutants that have been responsible for substantial contamination of soils and groundwater. Organohalide-respiring bacteria (ORB) provide a potential solution to remediate contaminated sites, through their ability to use organohalides as terminal electron acceptors to yield energy for growth (i.e., organohalide respiration). Ideally, this process results in non- or lesser-halogenated compounds that are mostly less toxic to the environment or more easily degraded. At the heart of these processes are reductive dehalogenases (RDases), which are membrane bound enzymes coupled with other components that facilitate dehalogenation of organohalides to generate cellular energy. This review focuses on RDases, concentrating on those which have been purified (partially or wholly) and functionally characterized. Further, the paper reviews the major bacteria involved in organohalide breakdown and the evidence for microbial evolution of RDases. Finally, the capacity for using ORB in a bioremediation and bioaugmentation capacity are discussed.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia; Department of Molecular Biology and Genetics, Istanbul UniversityIstanbul, Turkey
| | - Susanne Bohl
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia; Department of Biotechnology, Mannheim University of Applied SciencesMannheim, Germany
| | - Matthew Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| | - Christopher P Marquis
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| | - Michael Manefield
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|