51
|
Edible Plant Sprouts: Health Benefits, Trends, and Opportunities for Novel Exploration. Nutrients 2021; 13:nu13082882. [PMID: 34445042 PMCID: PMC8398379 DOI: 10.3390/nu13082882] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
The consumption of plant sprouts as part of human day-to-day diets is gradually increasing, and their health benefit is attracting interest across multiple disciplines. The purpose of this review was to (a) critically evaluate the phytochemicals in selected sprouts (alfalfa, buckwheat, broccoli, and red cabbage), (b) describe the health benefits of sprouts, (c) assess the recent advances in sprout production, (d) rigorously evaluate their safety, and (e) suggest directions that merit special consideration for further novel research on sprouts. Young shoots are characterized by high levels of health-benefitting phytochemicals. Their utility as functional ingredients have been extensively described. Tremendous advances in the production and safety of sprouts have been made over the recent past and numerous reports have appeared in mainstream scientific journals describing their nutritional and medicinal properties. However, subjects such as application of sprouted seed flours in processed products, utilizing sprouts as leads in the synthesis of nanoparticles, and assessing the dynamics of a relationship between sprouts and gut health require special attention for future clinical exploration. Sprouting is an effective strategy allowing manipulation of phytochemicals in seeds to improve their health benefits.
Collapse
|
52
|
Akhila PP, Sunooj KV, Aaliya B, Navaf M, Sudheesh C, Sabu S, Sasidharan A, Mir SA, George J, Mousavi Khaneghah A. Application of electromagnetic radiations for decontamination of fungi and mycotoxins in food products: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
53
|
Gojković Cvjetković V, Marjanović‐Balaban Ž, Vujadinović D, Vukić M, Rajić D. Investigation of the effect of cold atmospheric plasma on gliadins and glutenins extracted from wheat flour samples. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vesna Gojković Cvjetković
- Faculty of Technology Zvornik University of East Sarajevo Zvornik Republic of Srpska, Bosnia and Herzegovina
| | | | - Dragan Vujadinović
- Faculty of Technology Zvornik University of East Sarajevo Zvornik Republic of Srpska, Bosnia and Herzegovina
| | - Milan Vukić
- Faculty of Technology Zvornik University of East Sarajevo Zvornik Republic of Srpska, Bosnia and Herzegovina
| | - Danijela Rajić
- Faculty of Technology Zvornik University of East Sarajevo Zvornik Republic of Srpska, Bosnia and Herzegovina
| |
Collapse
|
54
|
Rifna EJ, Misra NN, Dwivedi M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit Rev Food Sci Nutr 2021; 63:719-752. [PMID: 34309440 DOI: 10.1080/10408398.2021.1952923] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables are the most important commodities of trade value among horticultural produce. They are utilized as raw or processed, owing to the presence of health-promoting components. Significant quantities of waste are produced during fruits and vegetables processing that are majorly accounted by waste peels (∼90-92%). These wastes, however, are usually exceptionally abundant in bioactive molecules. Retrieving these valuable compounds is a core objective for the valorization of waste peel, besides making them a prevailing source of beneficial additives in food and pharmaceutical industry. The current review is focused on extraction of bioactive compounds derived from fruit and vegetable waste peels and highlights the supreme attractive conventional and non-conventional extraction techniques, such as microwave-assisted, ultrasound assisted, pulsed electric fields, pulsed ohmic heating, pressurized liquid extraction, supercritical fluid extraction, pressurized hot water, high hydrostatic pressure, dielectric barrier discharge plasma extraction, enzyme-assisted extraction and the application of "green" solvents say as well as their synergistic effects that have been applied to recover bioactive from waste peels. Superior yields achieved with non-conventional technologies were identified to be of chief interest, considering direct positive economic consequences. This review also emphasizes leveraging efficient, modern extraction technologies for valorizing abundantly available low-cost waste peel, to achieve economical substitutes, whilst safeguarding the environment and building a circular economy. It is supposed that the findings discussed though this review might be a valuable tool for fruit and vegetable processing industry to imply an economical and effectual sustainable extraction methods, converting waste peel by-product to a high added value functional product.
Collapse
Affiliation(s)
- E J Rifna
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
55
|
Makhaye G, Aremu AO, Gerrano AS, Tesfay S, Du Plooy CP, Amoo SO. Biopriming with Seaweed Extract and Microbial-Based Commercial Biostimulants Influences Seed Germination of Five Abelmoschus esculentus Genotypes. PLANTS 2021; 10:plants10071327. [PMID: 34209837 PMCID: PMC8309018 DOI: 10.3390/plants10071327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Seed germination is a crucial step in plant propagation, as it controls seedling production, stand establishment and ultimately crop yield. Approaches that can promote seed germination of valuable crops remain of great interest globally. The current study evaluated the effect of biostimulant (Kelpak® and plant-growth-promoting rhizobacteria—PGPR) biopriming on the seed germination of five (VI037996, VI046567, VI055421, VI050956, and VI033796) Abelmoschus esculentus genotypes. The germination responses of the bio-primed seeds were measured using six parameters, including final germination percentage (FGP), mean germination time (MGT), germination index (GI), coefficient of velocity of germination (CVG), germination rate index (GRI), and time spread of germination (TSG). Biostimulant application significantly affected MGT (1.1–2.2 days), CVG (1.4–5.9), and TSG (1.2–3.0 days). Genotype also significantly influenced the TSG (1–3 days). Significant interaction effect of biostimulant treatment and genotype was evident on the FGP, GI, and GRI of the germinated seeds. The most noteworthy effect was demonstrated by Kelpak® (1:100) applied to genotype VI037996, with significantly improved FGP (82%), GI (238), and GRI (77%/day) when compared to the control. Overall, the current findings suggest the potential stimulatory effect of biostimulants (especially Kelpak®) on the germination of Abelmoschus esculentus seeds. However, this influence was strongly dependent on the type of genotype.
Collapse
Affiliation(s)
- Gugulethu Makhaye
- Agricultural Research Council–Vegetables, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa; (G.M.); (A.S.G.); (C.P.D.P.)
- Discipline of Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa;
| | - Adeyemi O. Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2790, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
- Correspondence: (A.O.A.); (S.O.A.); Tel.: +27-18-389-2573 (A.O.A.); +27-12-808-8000 (S.O.A.)
| | - Abe Shegro Gerrano
- Agricultural Research Council–Vegetables, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa; (G.M.); (A.S.G.); (C.P.D.P.)
- Crop Science Department, Faculty of Natural and Agricultural Sciences, School of Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2790, South Africa
| | - Samson Tesfay
- Discipline of Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa;
| | - Christian P. Du Plooy
- Agricultural Research Council–Vegetables, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa; (G.M.); (A.S.G.); (C.P.D.P.)
| | - Stephen O. Amoo
- Agricultural Research Council–Vegetables, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa; (G.M.); (A.S.G.); (C.P.D.P.)
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2790, South Africa
- Correspondence: (A.O.A.); (S.O.A.); Tel.: +27-18-389-2573 (A.O.A.); +27-12-808-8000 (S.O.A.)
| |
Collapse
|
56
|
Acquah C, Ohemeng-Boahen G, Power KA, Tosh SM. The Effect of Processing on Bioactive Compounds and Nutritional Qualities of Pulses in Meeting the Sustainable Development Goal 2. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.681662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diversification of plant-based food sources is necessary to improve global food and nutritional security. Pulses have enormous nutritional and health benefits in preventing malnutrition and chronic diseases while contributing positively to reducing environmental footprint. Pulses are rich in diverse nutritional and non-nutritional constituents which can be classified as bioactive compounds due to their biological effect. These bioactive compounds include but are not limited to proteins, dietary fibres, resistant starch, polyphenols, saponins, lectins, phytic acids, and enzyme inhibitors. While these compounds are of importance in ensuring food and nutritional security, some of the bioactive constituents have ambivalent properties. These properties include having antioxidant, anti-hypertensive and prebiotic effects. Others have a deleterious effect of decreasing the digestibility and/or bioavailability of essential nutrients and are therefore termed antinutritional factors/compounds. Various processing techniques exist to reduce the content of antinutritional factors found in pulses. Traditional processing of pulses comprises soaking, dehulling, milling, germination, fermentation, and boiling, while examples of emerging processing techniques include microwaving, extrusion, and micronization. These processing techniques can be tailored to purpose and pulse type to achieve desired results. Herein, the nutritional qualities and properties of bioactive compounds found in pulses in meeting the sustainable development goals are presented. It also discusses the effect of processing techniques on the nutritional and non-nutritional constituents in pulses as well as the health and environmental benefits of pulse-diet consumption. Major challenges linked to pulses that could limit their potential of being ideal crops in meeting the sustainable development goal 2 agenda are highlighted.
Collapse
|
57
|
Liu H, Li Z, Zhang X, Liu Y, Hu J, Yang C, Zhao X. The effects of ultrasound on the growth, nutritional quality and microbiological quality of sprouts. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
58
|
Iqdiam BM, Feizollahi E, Arif MF, Jeganathan B, Vasanthan T, Thilakarathna MS, Roopesh MS. Reduction of T-2 and HT-2 mycotoxins by atmospheric cold plasma and its impact on quality changes and germination of wheat grains. J Food Sci 2021; 86:1354-1371. [PMID: 33682128 DOI: 10.1111/1750-3841.15658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/25/2022]
Abstract
Wheat (Triticum aestivum) is susceptible to mycotoxin contamination, which can result in significant health risks and economic losses. This research examined the ability of air atmospheric cold plasma (air-ACP) treatment to reduce pure and spiked T-2 and HT-2 mycotoxins' concentration on wheat grains. This study also evaluated the effect of ACP treatment using different gases on wheat grain germination parameters. The T-2 and HT-2 mycotoxin solutions applied on round cover-glass were placed on microscopy slides and wheat grains (0.5 g) were individually spiked with T-2 and HT-2 on their surfaces. Samples were then dried at room temperature (∼24 °C) and treated by air-ACP for 1 to 10 min. Ten minutes of air-ACP treatment significantly reduced pure T-2 and HT-2 concentrations by 63.63% and 51.5%, respectively. For mycotoxin spiked on wheat grains, 10 min air-ACP treatment significantly decreased T-2 and HT-2 concentrations up to 79.8% and 70.4%, respectively. No significant change in the measured quality and color parameters was observed in the ACP-treated samples. Wheat grain germination parameters were not significantly different, when treated with ACP using different gases. Air-ACP treatment and ACP treatment using 80% nitrogen + 20% oxygen improved the germination of wheat grains by 10% and 6%, respectively. This study demonstrated that ACP is an innovative technology with the potential to improve the safety of wheat grains by reducing T-2/HT-2 mycotoxins with an additional advantage of improving their germination. PRACTICAL APPLICATION: Atmospheric cold plasma (ACP) technology has a huge potential to degrade mycotoxins in food grains. This study evaluated the efficacy of ACP to reduce two major mycotoxins (T-2 and HT-2 toxins) in wheat grains. The results of this study will help to develop and scale-up the ACP technology for mycotoxin degradation in grains.
Collapse
Affiliation(s)
- Basheer M Iqdiam
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Ehsan Feizollahi
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Muhammad Faisal Arif
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Brasathe Jeganathan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Thava Vasanthan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Malinda S Thilakarathna
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - M S Roopesh
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| |
Collapse
|
59
|
KİBAR B. Ultraviyole-C ve Ultrason Uygulamalarının Domates ve Hıyarda Fide Gelişimi Üzerine Etkilerinin Belirlenmesi. ULUSLARARASI TARIM VE YABAN HAYATI BILIMLERI DERGISI 2020. [DOI: 10.24180/ijaws.814388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
60
|
Chaple S, Sarangapani C, Jones J, Carey E, Causeret L, Genson A, Duffy B, Bourke P. Effect of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L.) grain and wheat flour. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102529] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
61
|
The Combination of Simultaneous Plasma Treatment with Mg Nanoparticles Deposition Technique for Better Mung Bean Seeds Germination. Processes (Basel) 2020. [DOI: 10.3390/pr8121575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A novel method based on the combination of simultaneous cold plasma treatment with Mg nanoparticles deposition, applied to Mung bean seeds by improving their quality, is presented. The SRIM simulation reveals that only the very top layer of the seeds surface can be altered by the plasma. The experimental analysis indicates surface composition changes with a polar groups formation. These groups initiate the shift of surface characteristics from hydrophobic to hydrophilic. The chemical bond analysis shows the formation of MgO and Mg(OH)2 compounds, which acts as a positive factor for seeds germination and growth. The germination experiments showed a 70% outcome with an average of 73.9 mm sprouts length after 30 min of plasma treatment compared to the initial seeds (40% outcome and 71.3 mm sprouts length).
Collapse
|
62
|
Perspectives on the Use of Germinated Legumes in the Bread Making Process, A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nowadays, it may be noticed that there is an increased interest in using germinated seeds in the daily diet. This high interest is due to the fact that in a germinated form, the seeds are highly improved from a nutritional point of view with multiple benefits for the human body. The purpose of this review was to update the studies made on the possibilities of using different types of germinated legume seeds (such as lentil, chickpea, soybean, lupin, bean) in order to obtain bakery products of good quality. This review highlights the aspects related to the germination process of the seeds, the benefits of the germination process on the seeds from a nutritional point of view, and the effects of the addition of flour from germinated seeds on the rheological properties of the wheat flour dough, but also on the physico–chemical and sensory characteristics of the bakery products obtained. All these changes on the bread making process and bread quality depend on the level and type of legume seed subjected to the germination process which are incorporated in wheat flour.
Collapse
|
63
|
Wang J, Bian Z, Wang S, Zhang L. Effects of ultrasonic waves, microwaves, and thermal stress treatment on the germination of Tartary buckwheat seeds. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jianfei Wang
- Biological and Chemical Engineering Institute Anhui Polytechnic University Wuhu China
| | - Zixiu Bian
- Biological and Chemical Engineering Institute Anhui Polytechnic University Wuhu China
| | - Shunmin Wang
- Biological and Chemical Engineering Institute Anhui Polytechnic University Wuhu China
| | - Lixia Zhang
- Research Institute of Agricultural Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| |
Collapse
|
64
|
Fan L, Liu X, Ma Y, Xiang Q. Effects of plasma-activated water treatment on seed germination and growth of mung bean sprouts. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1778326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Liumin Fan
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR People’s Republic of China
| | - Xiufang Liu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR People’s Republic of China
| | - Yunfang Ma
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR People’s Republic of China
| | - Qisen Xiang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR People’s Republic of China
| |
Collapse
|
65
|
Babaei‐Ghaghelestany A, Alebrahim MT, MacGregor DR, Khatami SA, Hasani Nasab Farzaneh R. Evaluation of ultrasound technology to break seed dormancy of common lambsquarters ( Chenopodium album). Food Sci Nutr 2020; 8:2662-2669. [PMID: 32566183 PMCID: PMC7300057 DOI: 10.1002/fsn3.1547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 12/03/2022] Open
Abstract
Although seed dormancy is advantageous for annual plants in the wild, unsynchronized germination in the laboratory leads to increased error in measurements. Therefore, techniques to promote and synchronize germination are routinely used. Ultrasound is one of the newest methods for breaking dormancy in weed seeds. We have investigated whether ultrasonic waves can be used to break seed dormancy of common lambsquarters (Chenopodium album), a highly competitive annual weed that leads to significant reduction of yields of corn, soybeans, and sugar beets. Ultrasonic waves with frequency of 35 kH were applied for 0 (control), 5, 10, 15, and 30 min using a completely randomized design. The results showed that the use of ultrasound waves generally enhanced the traits under investigation in the treated samples compared with the control sample. The maximum enhancement of germination percentage (180%), seedling dry weight (78%), and seedling vigor index I (271%) and II (392%) was seen in the common lambsquarters samples treated with ultrasound for 15 min and seedling length (40%) at 30 min compared with the control samples. Radical lengths were not statistically different from controls under any treatment and plumule length only increased marginally. These changes are reflected in seedling vigor index I and II measurements. For some of these traits, increasing the length of ultrasound treatment to 30 min had negative effects. These results demonstrate that ultrasound technology can be used as a quick, and efficient nondestructive method to break seed dormancy in common lambsquarters.
Collapse
Affiliation(s)
| | | | - Dana R. MacGregor
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | | | | |
Collapse
|
66
|
Paul A, Radhakrishnan M, Anandakumar S, Shanmugasundaram S, Anandharamakrishnan C. Disinfestation techniques for major cereals: A status report. Compr Rev Food Sci Food Saf 2020; 19:1125-1155. [DOI: 10.1111/1541-4337.12555] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/25/2020] [Accepted: 02/24/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Anjaly Paul
- Centre of Excellence in Nonthermal ProcessingIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| | - Mahendran Radhakrishnan
- Centre of Excellence in Nonthermal ProcessingIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| | - Sugumar Anandakumar
- Department of Food Packaging and System DevelopmentIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| | - Saravanan Shanmugasundaram
- Planning and Monitoring CellIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| | - Chinnaswamy Anandharamakrishnan
- Computational Modeling and Nano Scale Processing UnitIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| |
Collapse
|
67
|
Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances. Food Res Int 2019; 126:108654. [DOI: 10.1016/j.foodres.2019.108654] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022]
|
68
|
Liu B, Liu X, Liu F, Ma H, Ma B, Zhang W, Peng L. Growth improvement of Lolium multiflorum Lam. induced by seed inoculation with fungus suspension of Xerocomus badius and Serendipita indica. AMB Express 2019; 9:145. [PMID: 31515637 PMCID: PMC6742681 DOI: 10.1186/s13568-019-0865-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
In this study, a pot experiment was carried out in greenhouse to investigate the potentials of Xerocomus badius and Serendipita indica to penetrate and colonize roots of ryegrass (Lolium multiflorum Lam.) and to induce beneficial effects on seed germination and seedling growth. The results showed that X. badius and S. indica successfully colonized in the root system of L. multiflorum seedlings and the root colonization rate was 72.65% and 88.42%, respectively. By microscopy, the hyphae, chlamydospores and spores produced by S. indica were observed in roots cortex of L. multiflorum seedlings. In comparison with the non-inoculated seedlings, seedlings inoculated with X. badius and S. indica showed significant increase in growth parameters with plant height, basal diameter, biomass accumulation, relative growth rate, leaf relative water content and chlorophyll content. Also, we found that seedlings inoculated with S. indica exhibited a greater growth-promotion as compared with X. badius-inoculated seedlings. No significant influence of the two fungus application has been observed with respect to seed germination. It suggested that well establishments of mutualistic symbiosis between L. multiflorum and X. badius or S. indica were not so essential to seed germination but contributed highly to the survival and growth of the seedlings.
Collapse
|