51
|
Zhu J, Li X, Liu L, Li Y, Qi B, Jiang L. Preparation of spray-dried soybean oil body microcapsules using maltodextrin: Effects of dextrose equivalence. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
52
|
Zhou X, Sun R, Zhao J, Liu Z, Wang M, Wang K, Jiang L, Hou J, Jiang Z. Enzymatic activity and stability of soybean oil body emulsions recovered under neutral and alkaline conditions: Impacts of thermal treatments. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
53
|
Kergomard J, Carrière F, Barouh N, Villeneuve P, Vié V, Bourlieu C. Digestibility and oxidative stability of plant lipid assemblies: An underexplored source of potentially bioactive surfactants? Crit Rev Food Sci Nutr 2021:1-20. [PMID: 34839771 DOI: 10.1080/10408398.2021.2005532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Most lipids in our diet come under the form of triacylglycerols that are often redispersed and stabilized by surfactants in processed foods. In plant however, lipid assemblies constitute interesting sources of natural bioactive and functional ingredients. In most photosynthetic sources, polar lipids rich in ω3 fatty acids are concentrated. The objective of this review is to summarize all the knowledge about the physico-chemical composition, digestive behavior and oxidative stability of plant polar lipid assemblies to emphasize their potential as functional ingredients in human diet and their potentialities to substitute artificial surfactants/antioxidants. The specific composition of plant membrane assemblies is detailed, including plasma membranes, oil bodies, and chloroplast; emphasizing its concentration in phospholipids, galactolipids, peculiar proteins, and phenolic compounds. These molecular species are hydrolyzed by specific digestive enzymes in the human gastrointestinal tract and reduced the hydrolysis of triacylglycerols and their subsequent absorption. Galactolipids specifically can activate ileal break and intrinsically present an antioxidant (AO) activity and metal chelating activity. In addition, their natural association with phenolic compounds and their physical state (Lα state of digalactosyldiacylglycerols) in membrane assemblies can enhance their stability to oxidation. All these elements make plant membrane molecules and assemblies very promising components with a wide range of potential applications to vectorize ω3 polyunsaturated fatty acids, and equilibrate human diet.
Collapse
Affiliation(s)
- Jeanne Kergomard
- INRAE/UM/Institut Agro, UMR 1208 IATE, Montpellier France.,IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes 1 University, Rennes, France
| | - Frédéric Carrière
- Aix Marseille Université, CNRS, UMR7281 Bioénergétique et lngénierie des Protéines, Marseille, France
| | | | | | - Véronique Vié
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes 1 University, Rennes, France
| | | |
Collapse
|
54
|
Ding J, Dong Y, Huang G, Zhang Y, Jiang L, Sui X. Fabrication and characterization of β-carotene emulsions stabilized by soy oleosin and lecithin mixtures with a composition mimicking natural soy oleosomes. Food Funct 2021; 12:10875-10886. [PMID: 34622257 DOI: 10.1039/d1fo01462e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural soy oleosomes are known to have a remarkable stability, given the advantage of their sophisticated membrane. The aim of the present study is to examine the concept of fabricating a β-carotene emulsion stabilized by soy oleosin (OLE) and lecithin (LEC) mixtures mimicking the membrane composition of soy oleosomes while providing preferable stability and bioaccessibility. For this, the fabricated emulsion was characterized in terms of droplet size distribution, and emulsion structure, stability and digestion (release and absorption of lipophilic β-carotene). Compared to SPI/LEC (10 : 1) stabilized emulsions, the OLE/LEC (10 : 1) mixture stabilized emulsion exhibited the highest emulsifying activity index (EAI) and emulsifying stability index (ESI) values, and higher encapsulation efficiency. Results show that the β-carotene emulsion stabilized by OLE and LEC mixtures at the ratio of 10 : 1 (w/w) has the most uniform droplet distribution and highest stability. The in vitro gastrointestinal digestion test revealed that the β-carotene emulsion stabilized by OLE and LEC mixtures was digested more rapidly than the emulsion stabilized by soy protein isolate (SPI) and LEC mixtures. In turn, the bioaccessibility and cellular uptake of β-carotene were enhanced, resulting in a higher absorption, a desirable feature of nutrition delivery systems. Our results demonstrated a promising way to fabricate emulsions mimicking natural soy oleosomes.
Collapse
Affiliation(s)
- Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Guo Huang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
55
|
Effects of pH on the Composition and Physical Stability of Peanut Oil Bodies from Aqueous Enzymatic Extraction. J CHEM-NY 2021. [DOI: 10.1155/2021/2441385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peanut oil body (POB), which is rich in unsaturated fatty acids and bioactive substances, is widely used in cosmetics, food, and medicine. Compared with synthetic emulsifiers, peanut oil bodies have health advantages as natural emulsions. The physicochemical properties of oil bodies affect their food processing applications. To improve peanut oil body yield, cell-wall-breaking enzymes were screened for aqueous enzymatic extraction. The optimum conditions were as follows: enzymatic hydrolysis time, 2 h; material-to-liquid ratio, 1 : 5 (
); enzyme concentration, 2% (
); and temperature, 50°C. Oil body stability was closely related to pH. With increasing pH, the average particle size and zeta-potential of the oil bodies increased, indicating aggregation, as confirmed by microstructure analysis. At pH 11, exogenous proteins at the oil body interface were eluted, leaving endogenous proteins, which led to a decreased interfacial protein content and oil body aggregation. Therefore, oil body stability decreased under alkaline pH conditions, but no demulsification occurred.
Collapse
|
56
|
Güneş R, Gülseren İ. FT-IR spectroscopy based investigation of stability in wheat germ oil body emulsions as affected by general processing treatments. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00897-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
57
|
Farooq S, Abdullah, Zhang H, Weiss J. A comprehensive review on polarity, partitioning, and interactions of phenolic antioxidants at oil-water interface of food emulsions. Compr Rev Food Sci Food Saf 2021; 20:4250-4277. [PMID: 34190411 DOI: 10.1111/1541-4337.12792] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/07/2021] [Accepted: 05/23/2021] [Indexed: 11/27/2022]
Abstract
There has been a growing interest in developing effective strategies to inhibit lipid oxidation in emulsified food products by utilization of natural phenolic antioxidants owing to their growing popularity over the past decades. However, due to the complexity of emulsified systems, the inhibition mechanism of phenolic antioxidants against lipid oxidation is rather complicated and not yet fully understood. In order to highlight the importance of polarity of phenolic antioxidants in emulsified systems according to the polar paradox, this review covers the recent progress on chemical, enzymatic, and chemoenzymatic lipophilization techniques used to modify the polarity of antioxidants. The partitioning behavior of phenolic antioxidants at the oil-water interface, which can be influenced by the presence of synthetic surfactants and/or antioxidant emulsifiers (e.g., polysaccharides, proteins, and phospholipids), is discussed. In addition, the emerging phenolic antioxidants among phenolic acids, flavonoids, tocopherols, and stilbenes applied in food emulsions are elaborated. As well, the interactions of polar-nonpolar antioxidants are stressed as a promising strategy to induce synergistic interactions at oil-water interface for improved oxidative stability of emulsions.
Collapse
Affiliation(s)
- Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Abdullah
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
58
|
Wang J, Tang J, Ruan S, Lv R, Zhou J, Tian J, Cheng H, Xu E, Liu D. A comprehensive review of cereal germ and its lipids: Chemical composition, multi-objective process and functional application. Food Chem 2021; 362:130066. [PMID: 34098434 DOI: 10.1016/j.foodchem.2021.130066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/15/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022]
Abstract
Cereal germ (CG), a by-product of grain milling, has drawn much attention in the food industry because of its nutritional and functional advantages. Nowadays, the utilization of cereal germ from animal feeds to foodstuff is a popular trend. CGs have high content of polyunsaturated fatty acids in their lipids (43.9-64.9% of total fatty acids), but they are also induced to oxidative rancidity under the catalytic reaction of enzymes. Chemical and structural properties of lipids in CGs are affected by different treatments. Thermal and non-thermal effects prevent lipid oxidation or promote lipid combination with starch/protein in CG. Thus, the functional properties and final quality of CG are directly changed. In this review, the chemical composition and application of CGs especially the endogenous lipids are summarized and the effects of various processes on CG lipids/matrices are discussed for CG future development.
Collapse
Affiliation(s)
- Jingyi Wang
- College of Biosystems Engineering and Food Science, National Local Joint Engineering Laboratory for Intelligent Food Processing Technology and Equipment, Zhejiang Key Laboratory of Agricultural Products Processing Technology, Zhejiang Food Processing Technology and Equipment Engineering Laboratory, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Junyu Tang
- College of Biosystems Engineering and Food Science, National Local Joint Engineering Laboratory for Intelligent Food Processing Technology and Equipment, Zhejiang Key Laboratory of Agricultural Products Processing Technology, Zhejiang Food Processing Technology and Equipment Engineering Laboratory, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; School of Mechanical and Energy Engineering, Ningbotech University, Ningbo 315100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Shaolong Ruan
- College of Biosystems Engineering and Food Science, National Local Joint Engineering Laboratory for Intelligent Food Processing Technology and Equipment, Zhejiang Key Laboratory of Agricultural Products Processing Technology, Zhejiang Food Processing Technology and Equipment Engineering Laboratory, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; School of Mechanical and Energy Engineering, Ningbotech University, Ningbo 315100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ruiling Lv
- School of Mechanical and Energy Engineering, Ningbotech University, Ningbo 315100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jianwei Zhou
- School of Mechanical and Energy Engineering, Ningbotech University, Ningbo 315100, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National Local Joint Engineering Laboratory for Intelligent Food Processing Technology and Equipment, Zhejiang Key Laboratory of Agricultural Products Processing Technology, Zhejiang Food Processing Technology and Equipment Engineering Laboratory, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National Local Joint Engineering Laboratory for Intelligent Food Processing Technology and Equipment, Zhejiang Key Laboratory of Agricultural Products Processing Technology, Zhejiang Food Processing Technology and Equipment Engineering Laboratory, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National Local Joint Engineering Laboratory for Intelligent Food Processing Technology and Equipment, Zhejiang Key Laboratory of Agricultural Products Processing Technology, Zhejiang Food Processing Technology and Equipment Engineering Laboratory, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National Local Joint Engineering Laboratory for Intelligent Food Processing Technology and Equipment, Zhejiang Key Laboratory of Agricultural Products Processing Technology, Zhejiang Food Processing Technology and Equipment Engineering Laboratory, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|