51
|
Jacobs JM, Pesce C, Lefeuvre P, Koebnik R. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas. FRONTIERS IN PLANT SCIENCE 2015; 6:431. [PMID: 26136759 PMCID: PMC4468381 DOI: 10.3389/fpls.2015.00431] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/27/2015] [Indexed: 05/05/2023]
Abstract
Pathogenic bacteria in the genus Xanthomonas cause diseases on over 350 plant species, including cannabis (Cannabis sativa L.). Because of regulatory limitations, the biology of the Xanthomonas-cannabis pathosystem remains largely unexplored. To gain insight into the evolution of Xanthomonas strains pathogenic to cannabis, we sequenced the genomes of two geographically distinct Xanthomonas strains, NCPPB 3753 and NCPPB 2877, which were previously isolated from symptomatic plant tissue in Japan and Romania. Comparative multilocus sequence analysis of housekeeping genes revealed that they belong to Group 2, which comprises most of the described species of Xanthomonas. Interestingly, both strains lack the Hrp Type III secretion system and do not contain any of the known Type III effectors. Yet their genomes notably encode two key Hrp pathogenicity regulators HrpG and HrpX, and hrpG and hrpX are in the same genetic organization as in the other Group 2 xanthomonads. Promoter prediction of HrpX-regulated genes suggests the induction of an aminopeptidase, a lipase and two polygalacturonases upon plant colonization, similar to other plant-pathogenic xanthomonads. Genome analysis of the distantly related Xanthomonas maliensis strain 97M, which was isolated from a rice leaf in Mali, similarly demonstrated the presence of HrpG, HrpX, and a HrpX-regulated polygalacturonase, and the absence of the Hrp Type III secretion system and known Type III effectors. Given the observation that some Xanthomonas strains across distinct taxa do not contain hrpG and hrpX, we speculate a stepwise evolution of pathogenicity, which involves (i) acquisition of key regulatory genes and cell wall-degrading enzymes, followed by (ii) acquisition of the Hrp Type III secretion system, which is ultimately accompanied by (iii) successive acquisition of Type III effectors.
Collapse
Affiliation(s)
- Jonathan M. Jacobs
- Institut de Recherche pour le Développement – Cirad – Université Montpellier, Interactions Plantes Microorganismes EnvironnementMontpellier, France
| | - Céline Pesce
- Institut de Recherche pour le Développement – Cirad – Université Montpellier, Interactions Plantes Microorganismes EnvironnementMontpellier, France
- Department of Applied Microbiology, Earth and Life Institute, Université Catholique de LouvainLouvain-la-Neuve, Belgium
| | - Pierre Lefeuvre
- Pôle de Protection des Plantes, Cirad, UMR Peuplements Végétaux et Bioagresseurs en Milieu TropicalSaint-Pierre, Ile de la Réunion, France
| | - Ralf Koebnik
- Institut de Recherche pour le Développement – Cirad – Université Montpellier, Interactions Plantes Microorganismes EnvironnementMontpellier, France
- *Correspondence: Ralf Koebnik, Institut de Recherche pour le Développement, UMR Interactions – Plantes – Microorganismes – Environnement, Génomique et Transcriptomique des Interactions Plantes-Procaryotes, 921 avenue Agropolis, 34394 Montpellier, France
| |
Collapse
|
52
|
Uzum Z, Silipo A, Lackner G, De Felice A, Molinaro A, Hertweck C. Structure, Genetics and Function of an Exopolysaccharide Produced by a Bacterium Living within Fungal Hyphae. Chembiochem 2014; 16:387-92. [DOI: 10.1002/cbic.201402488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 11/08/2022]
|
53
|
Andrade MO, Farah CS, Wang N. The post-transcriptional regulator rsmA/csrA activates T3SS by stabilizing the 5' UTR of hrpG, the master regulator of hrp/hrc genes, in Xanthomonas. PLoS Pathog 2014; 10:e1003945. [PMID: 24586158 PMCID: PMC3937308 DOI: 10.1371/journal.ppat.1003945] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/09/2014] [Indexed: 11/28/2022] Open
Abstract
The RsmA/CsrA family of the post-transcriptional regulators of bacteria is involved in the regulation of many cellular processes, including pathogenesis. In this study, we demonstrated that rsmA not only is required for the full virulence of the phytopathogenic bacterium Xanthomonas citri subsp. citri (XCC) but also contributes to triggering the hypersensitive response (HR) in non-host plants. Deletion of rsmA resulted in significantly reduced virulence in the host plant sweet orange and a delayed and weakened HR in the non-host plant Nicotiana benthamiana. Microarray, quantitative reverse-transcription PCR, western-blotting, and GUS assays indicated that RsmA regulates the expression of the type 3 secretion system (T3SS) at both transcriptional and post-transcriptional levels. The regulation of T3SS by RsmA is a universal phenomenon in T3SS-containing bacteria, but the specific mechanism seems to depend on the interaction between a particular bacterium and its hosts. For Xanthomonads, the mechanism by which RsmA activates T3SS remains unknown. Here, we show that RsmA activates the expression of T3SS-encoding hrp/hrc genes by directly binding to the 5′ untranslated region (UTR) of hrpG, the master regulator of the hrp/hrc genes in XCC. RsmA stabilizes hrpG mRNA, leading to increased accumulation of HrpG proteins and subsequently, the activation of hrp/hrc genes. The activation of the hrp/hrc genes by RsmA via HrpG was further supported by the observation that ectopic overexpression of hrpG in an rsmA mutant restored its ability to cause disease in host plants and trigger HR in non-host plants. RsmA also stabilizes the transcripts of another T3SS-associated hrpD operon by directly binding to the 5′ UTR region. Taken together, these data revealed that RsmA primarily activates T3SS by acting as a positive regulator of hrpG and that this regulation is critical to the pathogenicity of XCC. Pathogenic bacteria demonstrate sophisticated capacity to regulate gene expression to meet requirements of living in different environmental niches, including in the hosts. The activation of the Type 3 secretion system (T3SS) genes in response to the host enviroment is under the control of several factors, such as the post-transcriptional regulator RsmA/CsrA. Here, we show that RsmA contributes to the pathogenicity of Xanthomonas citri in host plants and the HR-triggering activity in non-host plants by regulating the expression of T3SS-encoding hrp/hrc genes. RsmA directly interacts with the 5′ UTRs of hrpG and hrpD mRNAs, which leads to increased HrpG protein levels by stabilizing the hrpG transcript. Further, overexpression of hrpG in an rsmA mutant restored its pathogenicity and ability to cause HR. The deletion of rsmA did not affect the phosphorylation of HrpG, which is also required for T3SS activation. This work provides mechanistic insights for the first time into RsmA-mediated regulation of T3SS gene expression by acting as a positive regulator of hrpG at the post-transcription level.
Collapse
Affiliation(s)
- Maxuel O. Andrade
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Chuck S. Farah
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
54
|
Zuluaga AP, Puigvert M, Valls M. Novel plant inputs influencing Ralstonia solanacearum during infection. Front Microbiol 2013; 4:349. [PMID: 24312090 PMCID: PMC3834233 DOI: 10.3389/fmicb.2013.00349] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/04/2013] [Indexed: 11/17/2022] Open
Abstract
Ralstonia solanacearum is a soil and water-borne pathogen that can infect a wide range of plants and cause the devastating bacterial wilt disease. To successfully colonize a host, R. solanacearum requires the type III secretion system (T3SS), which delivers bacterial effector proteins inside the plant cells. HrpG is a central transcriptional regulator that drives the expression of the T3SS and other virulence determinants. hrpG transcription is highly induced upon plant cell contact and its product is also post-transcriptionally activated by metabolic signals present when bacteria are grown in minimal medium (MM). Here, we describe a transcriptional induction of hrpG at early stages of bacterial co-culture with plant cells that caused overexpression of the downstream T3SS effector genes. This induction was maintained in a strain devoid of prhA, the outer membrane receptor that senses bacterial contact with plant cells, demonstrating that this is a response to an unknown signal. Induction was unaffected after disruption of the known R. solanacearum pathogenicity regulators, indicating that it is controlled by a non-described system. Moreover, plant contact-independent signals are also important in planta, as shown by the hrpG induction triggered by apoplastic and xylem extracts. We also found that none of the amino acids or sugars present in the apoplast and xylem saps studied correlated with hrpG induction. This suggests that a small molecule or an environmental condition is responsible for the T3SS gene expression inside the plants. Our results also highlight the abundance and diversity of possible carbon, nitrogen and energy sources likely used by R. solanacearum during growth in planta.
Collapse
Affiliation(s)
- A Paola Zuluaga
- Departament de Genètica, Universitat de Barcelona Barcelona, Spain ; Centre for Research in Agricultural Genomics (CSIC-IRTA-UB-UAB) Bellaterra, Spain
| | | | | |
Collapse
|
55
|
Bowden SD, Hale N, Chung JCS, Hodgkinson JT, Spring DR, Welch M. Surface swarming motility by Pectobacterium atrosepticum is a latent phenotype that requires O antigen and is regulated by quorum sensing. Microbiology (Reading) 2013; 159:2375-2385. [DOI: 10.1099/mic.0.070748-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Steven D. Bowden
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Nicola Hale
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Jade C. S. Chung
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | | | - David R. Spring
- Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
56
|
Peeters N, Guidot A, Vailleau F, Valls M. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. MOLECULAR PLANT PATHOLOGY 2013; 14:651-62. [PMID: 23718203 PMCID: PMC6638647 DOI: 10.1111/mpp.12038] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
UNLABELLED Ralstonia solanacearum is a soil-borne bacterium causing the widespread disease known as bacterial wilt. Ralstonia solanacearum is also the causal agent of Moko disease of banana and brown rot of potato. Since the last R. solanacearum pathogen profile was published 10 years ago, studies concerning this plant pathogen have taken a genomic and post-genomic direction. This was pioneered by the first sequenced and annotated genome for a major plant bacterial pathogen and followed by many more genomes in subsequent years. All molecular features studied now have a genomic flavour. In the future, this will help in connecting the classical field of pathology and diversity studies with the gene content of specific strains. In this review, we summarize the recent research on this bacterial pathogen, including strain classification, host range, pathogenicity determinants, regulation of virulence genes, type III effector repertoire, effector-triggered immunity, plant signalling in response to R. solanacearum, as well as a review of different new pathosystems. TAXONOMY Bacteria; Proteobacteria; β subdivision; Ralstonia group; genus Ralstonia. DISEASE SYMPTOMS Ralstonia solanacearum is the agent of bacterial wilt of plants, characterized by a sudden wilt of the whole plant. Typically, stem cross-sections will ooze a slimy bacterial exudate. In the case of Moko disease of banana and brown rot of potato, there is also visible bacterial colonization of banana fruit and potato tuber. DISEASE CONTROL As a soil-borne pathogen, infected fields can rarely be reused, even after rotation with nonhost plants. The disease is controlled by the use of resistant and tolerant plant cultivars. The prevention of spread of the disease has been achieved, in some instances, by the application of strict prophylactic sanitation practices. USEFUL WEBSITES Stock centre: International Centre for Microbial Resources-French Collection for Plant-associated Bacteria CIRM-CFBP, IRHS UMR 1345 INRA-ACO-UA, 42 rue Georges Morel, 49070 Beaucouzé Cedex, France, http://www.angers-nantes.inra.fr/cfbp/. Ralstonia Genome browser: https://iant.toulouse.inra.fr/R.solanacearum. GMI1000 insertion mutant library: https://iant.toulouse.inra.fr/R.solanacearumGMI1000/GenomicResources. MaGe Genome Browser: https://www.genoscope.cns.fr/agc/microscope/mage/viewer.php?
Collapse
Affiliation(s)
- Nemo Peeters
- INRA UMR441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), 24 chemin de Borde Rouge-Auzeville CS 52627, 31326, Castanet Tolosan Cedex, France
| | | | | | | |
Collapse
|
57
|
Cui Y, Zou L, Zou H, Li Y, Zakria M, Chen G. HrpE3 is a type III effector protein required for full virulence of Xanthomonas oryzae pv. oryzicola in rice. MOLECULAR PLANT PATHOLOGY 2013; 14:678-92. [PMID: 23672717 PMCID: PMC6638819 DOI: 10.1111/mpp.12039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) is the causal agent of bacterial leaf streak, a devastating disease in rice. Xoc uses a type III secretion (T3S) system, which is encoded by the hrp-hrc-hpa (hypersensitive response and pathogenicity, hrp-conserved and hrp-associated) genes, to inject repertoires of T3S effectors (T3Es) into plant cells. Many of the hrp-hrc-hpa genes have roles in pathogenesis, but the role of hrpE3, which shows homology to hpaE in X. campestris pv. vesicatoria (Xcv), is poorly understood. In this study, hrpE3 was shown to be transcribed independent of the hrpD operon, and its expression was dependent on a promoter within hpaB. The expression of hrpE3 was positively regulated by HrpG and HrpX, a finding probably caused by an imperfect plant-inducible promoter (PIP) box (TTCGT-N16 -TTCGA) in the hrpE3 promoter. The secretion of HrpE3 was dependent on T3S, and subcellular localization of HrpE3 was cytoplasmic and nuclear in plant cells. A mutation in hrpE3 reduced the virulence of Xoc by decreasing disease lesion length and bacterial growth in planta. Full virulence was restored to the mutant when Xoc hrpE3, but not Xcv hpaE, was expressed in trans. The differences in transcription, secretion via the T3S system and bacterial virulence in plants were attributed to N-terminal amino acid differences between Xoc HrpE3 and Xcv HpaE. Collectively, the results demonstrate that hrpE3 encodes a T3E protein which is delivered into the plant cell through the T3S system, localizes to the cytoplasm and nucleus, and is required for full virulence in rice.
Collapse
Affiliation(s)
- Yiping Cui
- Department of Plant Pathology, Nanjing Agricultural University/Key Laboratory of Monitoring and Management for Plant Diseases and Insects, Ministry of Agriculture of China, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
58
|
Panijel M, Chalupowicz L, Sessa G, Manulis-Sasson S, Barash I. Global regulatory networks control the hrp regulon of the gall-forming bacterium Pantoea agglomerans pv. gypsophilae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1031-1043. [PMID: 23745675 DOI: 10.1094/mpmi-04-13-0097-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Gall formation by Pantoea agglomerans pv. gypsophilae is dependent on the hypersensitive response and pathogenicity (hrp) system. Previous studies demonstrated that PagR and PagI, regulators of the quorum-sensing system, induce expression of the hrp regulatory cascade (i.e., hrpXY, hrpS, and hrpL) that activates the HrpL regulon. Here, we isolated the genes of the Gac/Rsm global regulatory pathway (i.e., gacS, gacA, rsmB, and csrD) and of the post-transcriptional regulator rsmA. Our results demonstrate that PagR and PagI also upregulate expression of the Gac/Rsm pathway. PagR acts as a transcriptional activator of each of the hrp regulatory genes and gacA in a N-butanoyl-L-homoserine lactone-dependent manner as shown by gel shift experiments. Mutants of the Gac/Rsm genes or overexpression of rsmA significantly reduced Pantoea agglomerans virulence and colonization of gypsophila. Overexpression of rsmB sRNA abolished gall formation, colonization, and hypersensitive reaction on nonhost plants and prevented transcription of the hrp regulatory cascade, indicating a lack of functional type III secretion system. Expression of rsmB sRNA in the background of the csrD null mutant suggests that CsrD may act as a safeguard for preventing excessive production of rsmB sRNA. Results presented indicate that the hrp regulatory cascade is controlled directly by PagR and indirectly by RsmA, whereas deficiency in RsmA activity is epistatic to PagR induction.
Collapse
Affiliation(s)
- Mary Panijel
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
59
|
Yuan Z, Wang L, Sun S, Wu Y, Qian W. Genetic and Proteomic Analyses of a Xanthomonas campestris pv. campestris purC Mutant Deficient in Purine Biosynthesis and Virulence. J Genet Genomics 2013; 40:473-87. [DOI: 10.1016/j.jgg.2013.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 01/12/2023]
|
60
|
Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 2013; 14:17477-500. [PMID: 24065091 PMCID: PMC3794736 DOI: 10.3390/ijms140917477] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/23/2013] [Accepted: 08/16/2013] [Indexed: 11/17/2022] Open
Abstract
With the emergence of antibiotic-resistant strains of bacteria, the available options for treating bacterial infections have become very limited, and the search for a novel general antibacterial therapy has received much greater attention. Quorum quenching can be used to control disease in a quorum sensing system by triggering the pathogenic phenotype. The interference with the quorum sensing system by the quorum quenching enzyme is a potential strategy for replacing traditional antibiotics because the quorum quenching strategy does not aim to kill the pathogen or limit cell growth but to shut down the expression of the pathogenic gene. Quorum quenching enzymes have been identified in quorum sensing and non-quorum sensing microbes, including lactonase, acylase, oxidoreductase and paraoxonase. Lactonase is widely conserved in a range of bacterial species and has variable substrate spectra. The existence of quorum quenching enzymes in the quorum sensing microbes can attenuate their quorum sensing, leading to blocking unnecessary gene expression and pathogenic phenotypes. In this review, we discuss the physiological function of quorum quenching enzymes in bacterial infection and elucidate the enzymatic protection in quorum sensing systems for host diseases and their application in resistance against microbial diseases.
Collapse
|
61
|
Lysobacter enzymogenes uses two distinct cell-cell signaling systems for differential regulation of secondary-metabolite biosynthesis and colony morphology. Appl Environ Microbiol 2013; 79:6604-16. [PMID: 23974132 DOI: 10.1128/aem.01841-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysobacter enzymogenes is a ubiquitous environmental bacterium that is emerging as a potentially novel biological control agent and a new source of bioactive secondary metabolites, such as the heat-stable antifungal factor (HSAF) and photoprotective polyene pigments. Thus far, the regulatory mechanism(s) for biosynthesis of these bioactive secondary metabolites remains largely unknown in L. enzymogenes. In the present study, the diffusible signal factor (DSF) and diffusible factor (DF)-mediated cell-cell signaling systems were identified for the first time from L. enzymogenes. The results show that both Rpf/DSF and DF signaling systems played critical roles in modulating HSAF biosynthesis in L. enzymogenes. Rpf/DSF signaling and DF signaling played negative and positive effects in polyene pigment production, respectively, with DF playing a more important role in regulating this phenotype. Interestingly, only Rpf/DSF, but not the DF signaling system, regulated colony morphology of L. enzymgenes. Both Rpf/DSF and DF signaling systems were involved in the modulation of expression of genes with diverse functions in L. enzymogenes, and their own regulons exhibited only a few loci that were regulated by both systems. These findings unveil for the first time new roles of the Rpf/DSF and DF signaling systems in secondary metabolite biosynthesis of L. enzymogenes.
Collapse
|
62
|
Li RF, Lu GT, Li L, Su HZ, Feng GF, Chen Y, He YQ, Jiang BL, Tang DJ, Tang JL. Identification of a putative cognate sensor kinase for the two-component response regulator HrpG, a key regulator controlling the expression of the hrp genes in Xanthomonas campestris pv. campestris. Environ Microbiol 2013; 16:2053-71. [PMID: 23906314 DOI: 10.1111/1462-2920.12207] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/10/2013] [Accepted: 06/30/2013] [Indexed: 11/29/2022]
Abstract
The bacterial phytopathogen Xanthomonas campestris pv. campestris (Xcc) relies on the hrp (hypersensitive response and pathogenicity) genes to cause disease and induce hypersensitive response (HR). The hrp genes of bacterial phytopathogens are divided into two groups. Xcc hrp genes belong to group II. It has long been known that the group II hrp genes are activated by an AraC-type transcriptional regulator whose expression is controlled by a two-component system (TCS) response regulator (named HrpG in Xcc). However, no cognate sensor kinase has yet been identified. Here, we present evidence showing that the Xcc open-reading frame XC_3670 encodes a TCS sensor kinase (named HpaS). Mutation of hpaS almost completely abolished the HR induction and virulence. Bacterial two-hybrid and protein pull-down assays revealed that HpaS physically interacted with HrpG. Phos-tag™ SDS-PAGE analysis showed that mutation in hpaS reduced markedly the phosphorylation of HrpG in vivo. These data suggest that HpaS and HrpG are most likely to form a TCS. We also showed that XC_3669 (named hpaR2), which is adjacent to hpaS and encodes a putative TCS response regulator, is required for full virulence but not HR induction. HpaR2 also physically interacted with HpaS, suggesting that HpaS may also form another TCS with HpaR2.
Collapse
Affiliation(s)
- Rui-Fang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Qian G, Zhou Y, Zhao Y, Song Z, Wang S, Fan J, Hu B, Venturi V, Liu F. Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola. J Proteome Res 2013; 12:3327-41. [PMID: 23688240 DOI: 10.1021/pr4001543] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quorum sensing (QS) in Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is mediated by the diffusible signal factor (DSF). DSF-mediating QS has been shown to control virulence and a set of virulence-related functions; however, the expression profiles and functions of extracellular proteins controlled by DSF signal remain largely unclear. In the present study, 33 DSF-regulated extracellular proteins, whose functions include small-protein mediating QS, oxidative adaptation, macromolecule metabolism, cell structure, biosynthesis of small molecules, intermediary metabolism, cellular process, protein catabolism, and hypothetical function, were identified by proteomics in Xoc. Of these, 15 protein encoding genes were in-frame deleted, and 4 of them, including three genes encoding type II secretion system (T2SS)-dependent proteins and one gene encoding an Ax21 (activator of XA21-mediated immunity)-like protein (a novel small-protein type QS signal) were determined to be required for full virulence in Xoc. The contributions of these four genes to important virulence-associated functions, including bacterial colonization, extracellular polysaccharide, cell motility, biofilm formation, and antioxidative ability, are presented. To our knowledge, our analysis is the first complete list of DSF-regulated extracellular proteins and functions in a Xanthomonas species. Our results show that DSF-type QS played critical roles in regulation of T2SS and Ax21-mediating QS, which sheds light on the role of DSF signaling in Xanthomonas.
Collapse
Affiliation(s)
- Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Qian G, Liu C, Wu G, Yin F, Zhao Y, Zhou Y, Zhang Y, Song Z, Fan J, Hu B, Liu F. AsnB, regulated by diffusible signal factor and global regulator Clp, is involved in aspartate metabolism, resistance to oxidative stress and virulence in Xanthomonas oryzae pv. oryzicola. MOLECULAR PLANT PATHOLOGY 2013; 14:145-57. [PMID: 23157387 PMCID: PMC6638903 DOI: 10.1111/j.1364-3703.2012.00838.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak in rice, which is a destructive disease worldwide. Xoc virulence factors are regulated by diffusible signal factor (DSF) and the global regulator Clp. In this study, we have demonstrated that asnB (XOC_3054), encoding an asparagine synthetase, is a novel virulence-related gene regulated by both DSF and Clp in Xoc. A sequence analysis revealed that AsnB is highly conserved in Xanthomonas. An asnB mutation in Xoc dramatically impaired pathogen virulence and growth rate in host rice, but did not affect the ability to trigger the hypersensitive response in nonhost (plant) tobacco. Compared with the wild-type strain, the asnB deletion mutant was unable to grow in basic MMX (-) medium (a minimal medium without ammonium sulphate as the nitrogen source) with or without 10 tested nitrogen sources, except asparagine. The disruption of asnB impaired pathogen resistance to oxidative stress and reduced the transcriptional expression of oxyR, katA and katG, which encode three important proteins responsible for hydrogen peroxide (H(2)O(2)) sensing and detoxification in Xanthomonas in the presence of H(2)O(2), and nine important known Xoc virulence-related genes in plant cell-mimicking medium. Furthermore, the asnB mutation did not affect extracellular protease activity, extracellular polysaccharide production, motility or chemotaxis. Taken together, our results demonstrate the role of asnB in Xanthomonas for the first time.
Collapse
Affiliation(s)
- Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Fernandes N, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Community structure and functional gene profile of bacteria on healthy and diseased thalli of the red seaweed Delisea pulchra. PLoS One 2012; 7:e50854. [PMID: 23226544 PMCID: PMC3513314 DOI: 10.1371/journal.pone.0050854] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/29/2012] [Indexed: 12/13/2022] Open
Abstract
Disease is increasingly viewed as a major factor in the ecology of marine communities and its impact appears to be increasing with environmental change, such as global warming. The temperate macroalga Delisea pulchra bleaches in Southeast Australia during warm summer periods, a phenomenon which previous studies have indicated is caused by a temperature induced bacterial disease. In order to better understand the ecology of this disease, the bacterial communities associated with threes type of samples was investigated using 16S rRNA gene and environmental shotgun sequencing: 1) unbleached (healthy) D. pulchra 2) bleached parts of D. pulchra and 3) apparently healthy tissue adjacent to bleached regions. Phylogenetic differences between healthy and bleached communities mainly reflected relative changes in the taxa Colwelliaceae, Rhodobacteraceae, Thalassomonas and Parvularcula. Comparative metagenomics showed clear difference in the communities of healthy and diseased D. pulchra as reflected by changes in functions associated with transcriptional regulation, cation/multidrug efflux and non-ribosomal peptide synthesis. Importantly, the phylogenetic and functional composition of apparently healthy tissue adjacent to bleached sections of the thalli indicated that changes in the microbial communities already occur in the absence of visible tissue damage. This shift in unbleached sections might be due to the decrease in furanones, algal metabolites which are antagonists of bacterial quorum sensing. This study reveals the complex shift in the community composition associated with bleaching of Delisea pulchra and together with previous studies is consistent with a model in which elevated temperatures reduce levels of chemical defenses in stressed thalli, leading to colonization or proliferation by opportunistic pathogens or scavengers.
Collapse
Affiliation(s)
- Neil Fernandes
- The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Peter Steinberg
- The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore, Singapore
| | - Doug Rusch
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Torsten Thomas
- The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
66
|
Karki HS, Barphagha IK, Ham JH. A conserved two-component regulatory system, PidS/PidR, globally regulates pigmentation and virulence-related phenotypes of Burkholderia glumae. MOLECULAR PLANT PATHOLOGY 2012; 13:785-94. [PMID: 22364153 PMCID: PMC6638751 DOI: 10.1111/j.1364-3703.2012.00787.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Burkholderia glumae is a rice pathogenic bacterium that causes bacterial panicle blight. Some strains of this pathogen produce dark brown pigments when grown on casamino-acid peptone glucose (CPG) agar medium. A pigment-positive and highly virulent strain of B. glumae, 411gr-6, was randomly mutagenized with mini-Tn5gus, and the resulting mini-Tn5gus derivatives showing altered pigmentation phenotypes were screened on CPG agar plates to identify the genetic elements governing the pigmentation of B. glumae. In this study, a novel two-component regulatory system (TCRS) composed of the PidS sensor histidine kinase and the PidR response regulator was identified as an essential regulatory factor for pigmentation. Notably, the PidS/PidR TCRS was also required for the elicitation of the hypersensitive response on tobacco leaves, indicating the dependence of the hypersensitive response and pathogenicity (Hrp) type III secretion system of B. glumae on this regulatory factor. In addition, B. glumae mutants defective in the PidS/PidR TCRS showed less production of the phytotoxin, toxoflavin, and less virulence on rice panicles and onion bulbs relative to the parental strain, 411gr-6. The presence of highly homologous PidS and PidR orthologues in other Burkholderia species suggests that PidS/PidR-family TCRSs may exert the same or similar functions in different Burkholderia species, including both plant and animal pathogens.
Collapse
Affiliation(s)
- Hari Sharan Karki
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
67
|
Qian G, Zhang Y, Zhou Y, Liu C, Zhao Y, Song Z, Fan J, Hu B, Liu F. epv, Encoding a hypothetical protein, is regulated by DSF-mediating quorum sensing as well as global regulator Clp and is required for optimal virulence in Xanthomonas oryzae pv. oryzicola. PHYTOPATHOLOGY 2012; 102:841-7. [PMID: 22881870 DOI: 10.1094/phyto-02-12-0020-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Xanthomonas oryzae pv. oryzicola causes bacterial leaf streak in rice, a destructive disease worldwide. In this study, six putative hypothetical secreted proteins, which were absent in X. oryzae pv. oryzae, were detected from X. oryzae pv. oryzicola strain BLS256. Disruption-based mutagenesis study revealed that one of them, Xoc_15235, named as extracellular polysaccharide and virulence-related gene (epv), was required for the optimal virulence in host rice but not for the induction of a hypersensitive reaction in nonhost tobacco. Sequence analysis revealed that epv was highly conserved in Xanthomonas spp. (except X. oryzae pv. oryzae). In-frame deletion of epv in X. oryzae pv. oryzicola dramatically impaired pathogen virulence and extracellular polysaccharide (EPS) production, one of the important known virulence-associated functions in Xanthomonas spp. Quantitative real-time reverse-transcription polymerase chain reaction showed that expression of both gumB (a gene encoding exopolysaccharide xanthan biosynthesis export protein) and a known virulence-related gene, pgk (encoding phosphoglycerate kinase), were obviously reduced in the epv-deletion mutant compared with the wild-type strain Rs105. In addition, we observed that epv was positively regulated by both diffusible signal factor and global regulator Clp in X. oryzae pv. oryzicola. Taken together, the novel roles and genetics of epv of X. oryzae pv. oryzicola in the EPS production and virulence were investigated for the first time.
Collapse
Affiliation(s)
- Guoliang Qian
- College of Plant Protection and Key Laboratory of Integrated Management of Corp Diseases and Pests, Ministry of Education, Nanjing Agricultural University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. mBio 2012; 3:mBio.00114-12. [PMID: 22807564 PMCID: PMC3413399 DOI: 10.1128/mbio.00114-12] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant xylem fluid is considered a nutrient-poor environment, but the bacterial wilt pathogen Ralstonia solanacearum is well adapted to it, growing to 108 to 109 CFU/g tomato stem. To better understand how R. solanacearum succeeds in this habitat, we analyzed the transcriptomes of two phylogenetically distinct R. solanacearum strains that both wilt tomato, strains UW551 (phylotype II) and GMI1000 (phylotype I). We profiled bacterial gene expression at ~6 × 108 CFU/ml in culture or in plant xylem during early tomato bacterial wilt pathogenesis. Despite phylogenetic differences, these two strains expressed their 3,477 common orthologous genes in generally similar patterns, with about 12% of their transcriptomes significantly altered in planta versus in rich medium. Several primary metabolic pathways were highly expressed during pathogenesis. These pathways included sucrose uptake and catabolism, and components of these pathways were encoded by genes in the scrABY cluster. A UW551 scrA mutant was significantly reduced in virulence on resistant and susceptible tomato as well as on potato and the epidemiologically important weed host Solanum dulcamara. Functional scrA contributed to pathogen competitive fitness during colonization of tomato xylem, which contained ~300 µM sucrose. scrA expression was induced by sucrose, but to a much greater degree by growth in planta. Unexpectedly, 45% of the genes directly regulated by HrpB, the transcriptional activator of the type 3 secretion system (T3SS), were upregulated in planta at high cell densities. This result modifies a regulatory model based on bacterial behavior in culture, where this key virulence factor is repressed at high cell densities. The active transcription of these genes in wilting plants suggests that T3SS has a biological role throughout the disease cycle. Ralstonia solanacearum is a widespread plant pathogen that causes bacterial wilt disease. It inflicts serious crop losses on tropical farmers, with major economic and human consequences. It is also a model for the many destructive microbes that colonize the water-conducting plant xylem tissue, which is low in nutrients and oxygen. We extracted bacteria from infected tomato plants and globally identified the biological functions that R. solanacearum expresses during plant pathogenesis. This revealed the unexpected presence of sucrose in tomato xylem fluid and the pathogen’s dependence on host sucrose for virulence on tomato, potato, and the common weed bittersweet nightshade. Further, R. solanacearum was highly responsive to the plant environment, expressing several metabolic and virulence functions quite differently in the plant than in pure culture. These results reinforce the utility of studying pathogens in interaction with hosts and suggest that selecting for reduced sucrose levels could generate wilt-resistant crops.
Collapse
|
69
|
Stauber JL, Loginicheva E, Schechter LM. Carbon source and cell density-dependent regulation of type III secretion system gene expression in Pseudomonas syringae pathovar tomato DC3000. Res Microbiol 2012; 163:531-9. [PMID: 22944041 DOI: 10.1016/j.resmic.2012.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 08/13/2012] [Indexed: 01/07/2023]
Abstract
Pseudomonas syringae utilizes a type III secretion system (T3SS) encoded by the hrp/hrc genes to translocate virulence proteins called effectors into plant cells. To ensure that the T3SS functions at appropriate times during infection, hrp/hrc and effector gene expression is modulated by environmental conditions and a complex network of transcription factors. The sigma factor HrpL activates hrp/hrc and effector genes, while σ(54) and enhancer binding proteins HrpR and HrpS regulate hrpL. To better understand how environmental conditions control the T3SS regulatory cascade in P. syringae pathovar tomato strain DC3000, we tested the effects of various growth media and carbon sources on expression of the hrpRS operon, hrpL, and the effector avrPto. Fructose optimally induced hrpRS expression, while most other carbon sources had only mild stimulatory effects. In contrast, hrpL and avrPto were highly induced by several sugars and organic acids, yet expression decreased as cultures reached higher cell densities. This cell density-dependent regulation was not due to alteration of the pH of the medium, although involvement of a quorum sensing signal was also not apparent. Our findings may explain conflicting results from previous studies and additionally indicate that culture conditions should be considered carefully when examining T3SS gene expression.
Collapse
Affiliation(s)
- Jennifer L Stauber
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA.
| | | | | |
Collapse
|
70
|
Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD. Top 10 plant pathogenic bacteria in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2012; 13:614-29. [PMID: 22672649 PMCID: PMC6638704 DOI: 10.1111/j.1364-3703.2012.00804.x] [Citation(s) in RCA: 1231] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Many plant bacteriologists, if not all, feel that their particular microbe should appear in any list of the most important bacterial plant pathogens. However, to our knowledge, no such list exists. The aim of this review was to survey all bacterial pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate the bacterial pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 458 votes from the international community, and allowed the construction of a Top 10 bacterial plant pathogen list. The list includes, in rank order: (1) Pseudomonas syringae pathovars; (2) Ralstonia solanacearum; (3) Agrobacterium tumefaciens; (4) Xanthomonas oryzae pv. oryzae; (5) Xanthomonas campestris pathovars; (6) Xanthomonas axonopodis pathovars; (7) Erwinia amylovora; (8) Xylella fastidiosa; (9) Dickeya (dadantii and solani); (10) Pectobacterium carotovorum (and Pectobacterium atrosepticum). Bacteria garnering honourable mentions for just missing out on the Top 10 include Clavibacter michiganensis (michiganensis and sepedonicus), Pseudomonas savastanoi and Candidatus Liberibacter asiaticus. This review article presents a short section on each bacterium in the Top 10 list and its importance, with the intention of initiating discussion and debate amongst the plant bacteriology community, as well as laying down a benchmark. It will be interesting to see, in future years, how perceptions change and which bacterial pathogens enter and leave the Top 10.
Collapse
Affiliation(s)
- John Mansfield
- Division of Biology, Imperial College, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Solé M, Popa C, Mith O, Sohn KH, Jones JDG, Deslandes L, Valls M. The awr gene family encodes a novel class of Ralstonia solanacearum type III effectors displaying virulence and avirulence activities. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:941-53. [PMID: 22414437 DOI: 10.1094/mpmi-12-11-0321] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present here the characterization of a new gene family, awr, found in all sequenced Ralstonia solanacearum strains and in other bacterial pathogens. We demonstrate that the five paralogues in strain GMI1000 encode type III-secreted effectors and that deletion of all awr genes severely impairs its capacity to multiply in natural host plants. Complementation studies show that the AWR (alanine-tryptophan-arginine tryad) effectors display some functional redundancy, although AWR2 is the major contributor to virulence. In contrast, the strain devoid of all awr genes (Δawr1-5) exhibits enhanced pathogenicity on Arabidopsis plants. A gain-of-function approach expressing AWR in Pseudomonas syringae pv. tomato DC3000 proves that this is likely due to effector recognition, because AWR5 and AWR4 restrict growth of this bacterium in Arabidopsis. Transient overexpression of AWR in nonhost tobacco species caused macroscopic cell death to varying extents, which, in the case of AWR5, shows characteristics of a typical hypersensitive response. Our work demonstrates that AWR, which show no similarity to any protein with known function, can specify either virulence or avirulence in the interaction of R. solanacearum with its plant hosts.
Collapse
Affiliation(s)
- Montserrat Solé
- Department of Genètica, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
72
|
Kong HS, Roberts DP, Patterson CD, Kuehne SA, Heeb S, Lakshman DK, Lydon J. Effect of overexpressing rsmA from Pseudomonas aeruginosa on virulence of select phytotoxin-producing strains of P. syringae. PHYTOPATHOLOGY 2012; 102:575-587. [PMID: 22568815 DOI: 10.1094/phyto-09-11-0267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The GacS/GacA two-component system functions mechanistically in conjunction with global post-transcriptional regulators of the RsmA family to allow pseudomonads and other bacteria to adapt to changing environmental stimuli. Analysis of this Gac/Rsm signal transduction pathway in phytotoxin-producing pathovars of Pseudmonas syringae is incomplete, particularly with regard to rsmA. Our approach in studying it was to overexpress rsmA in P. syringae strains through introduction of pSK61, a plasmid constitutively expressing this gene. Disease and colonization of plant leaf tissue were consistently diminished in all P. syringae strains tested (pv. phaseolicola NPS3121, pv. syringae B728a, and BR2R) when harboring pSK61 relative to these isolates harboring the empty vector pME6031. Phaseolotoxin, syringomycin, and tabtoxin were not produced in any of these strains when transformed with pSK61. Production of protease and pyoverdin as well as swarming were also diminished in all of these strains when harboring pSK61. In contrast, alginate production, biofilm formation, and the hypersensitive response were diminished in some but not all of these isolates under the same growth conditions. These results indicate that rsmA is consistently important in the overarching phenotypes disease and endophtyic colonization but that its role varies with pathovar in certain underpinning phenotypes in the phytotoxin-producing strains of P. syringae.
Collapse
Affiliation(s)
- Hye Suk Kong
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Molina LG, da Fonseca GC, de Morais GL, de Oliveira LFV, de Carvalho JB, Kulcheski FR, Margis R. Metatranscriptomic analysis of small RNAs present in soybean deep sequencing libraries. Genet Mol Biol 2012; 35:292-303. [PMID: 22802714 PMCID: PMC3392881 DOI: 10.1590/s1415-47572012000200010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A large number of small RNAs unrelated to the soybean genome were identified after deep sequencing of soybean small RNA libraries. A metatranscriptomic analysis was carried out to identify the origin of these sequences. Comparative analyses of small interference RNAs (siRNAs) present in samples collected in open areas corresponding to soybean field plantations and samples from soybean cultivated in greenhouses under a controlled environment were made. Different pathogenic, symbiotic and free-living organisms were identified from samples of both growth systems. They included viruses, bacteria and different groups of fungi. This approach can be useful not only to identify potentially unknown pathogens and pests, but also to understand the relations that soybean plants establish with microorganisms that may affect, directly or indirectly, plant health and crop production.
Collapse
Affiliation(s)
- Lorrayne Gomes Molina
- Centro de Biotecnologia e PPGBCM, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Cordenonsi da Fonseca
- Centro de Biotecnologia e PPGBCM, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Loss de Morais
- Centro de Biotecnologia e PPGBCM, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiz Felipe Valter de Oliveira
- Centro de Biotecnologia e PPGBCM, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Joseane Biso de Carvalho
- Centro de Biotecnologia e PPGBCM, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Franceli Rodrigues Kulcheski
- Centro de Biotecnologia e PPGBCM, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rogerio Margis
- Centro de Biotecnologia e PPGBCM, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
74
|
Zhao Y, Qian G, Fan J, Yin F, Zhou Y, Liu C, Shen Q, Hu B, Liu F. Identification and characterization of a novel gene, hshB, in Xanthomonas oryzae pv. oryzicola co-regulated by quorum sensing and clp. PHYTOPATHOLOGY 2012; 102:252-259. [PMID: 22106829 DOI: 10.1094/phyto-06-11-0169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Virulence factors of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak in rice, are regulated by a diffusible signal factor (DSF)-dependent quorum-sensing (QS) system. In this study, a novel pathogenicity-related gene, Xoryp_010100018570 (named hshB), of X. oryzae pv. oryzicola was characterized. hshB encodes a hydrolase with a putative signal peptide, which is a homolog of imidazolonepropionase. Bioinformatic analysis showed that hshB is relatively conserved in the genus Xanthomonas but the homologous gene of hshB was not found in X. oryzae pv. oryzae. Reverse-transcription polymerase chain reaction (PCR) analysis showed that hshB and its upstream gene, Xoryp_010100018565 (named hshA), are co-transcribed in X. oryzae pv. oryzicola. Subsequent experimental results indicated that mutation of hshB remarkably impaired the virulence, extracellular protease activity, extracellular polysaccharide production, growth in minimal medium, and resistance to oxidative stress and bismerthiazol of X. oryzae pv. oryzicola. Mutation of clp, encoding a global regulator, resulted in similar phenotypes. Real-time PCR assays showed that hshB transcription is positively regulated by clp and DSF, and induced by poor nutrition. Our study not only found a novel gene hshB regulated by DSF-dependent QS system and clp but also showed that hshB was required for virulence of X. oryzae pv. oryzicola.
Collapse
Affiliation(s)
- Yancun Zhao
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abd-Alla MH, Bashandy SR. Production of Quorum Sensing Inhibitors in Growing Onion Bulbs Infected with Pseudomonas aeruginosa E (HQ324110). ISRN MICROBIOLOGY 2012; 2012:161890. [PMID: 23724316 PMCID: PMC3658503 DOI: 10.5402/2012/161890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/03/2011] [Indexed: 01/09/2023]
Abstract
Eighteen organic compounds were present in growing onion bulbs cultivar Giza 6 infected with P. aeruginosa, but only fourteen of them are present in dry infected onion bulbs; however, four compounds were missing in dry onion. The missing compounds in dry infected onion bulbs are pantolactone, 4,5-dihydro-4,5-dimethylfuran-2(3H)-one, myristic acid, and linoleic acid. All of them were detected in growing onion (living cell) during Pseudomonas aeruginosa infection, and it is hypothesized that it may be produced by plants and act as defence system. Pantolactone and myristic acid were selected to explore their effects on growth and virulence factors of Pseudomonas aeruginosa. Exogenous application of pantolactone and myristic acid significantly inhibited pyocyanin production, protease, and lipase and polygalacturonase activity but did not have any significant effects on bacterial growth. The inhibition of virulence factors without reduction in bacterial growth may be providing strong support that these chemical molecules are general quorum sensing inhibitors than an antibacterial effect. Disruption of quorum sensing of pathogen indicates that this new approach has potential in fighting bacterial infections in human and plants.
Collapse
Affiliation(s)
- Mohamed H Abd-Alla
- Botany Department, Faculty of Science, Assiut University, Assuit 71516, Egypt
| | | |
Collapse
|
76
|
Only one of the five Ralstonia solanacearum long-chain 3-ketoacyl-acyl carrier protein synthase homologues functions in fatty acid synthesis. Appl Environ Microbiol 2011; 78:1563-73. [PMID: 22194290 DOI: 10.1128/aem.07335-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ralstonia solanacearum, a major phytopathogenic bacterium, causes a bacterial wilt disease in diverse plants. Although fatty acid analyses of total membranes of R. solanacearum showed that they contain primarily palmitic (C(16:0)), palmitoleic (C(16:1)) and cis-vaccenic (C(18:1)) acids, little is known regarding R. solanacearum fatty acid synthesis. The R. solanacearum GMI1000 genome is unusual in that it contains four genes (fabF1, fabF2, fabF3, and fabF4) annotated as encoding 3-ketoacyl-acyl carrier protein synthase II homologues and one gene (fabB) annotated as encoding 3-ketoacyl-acyl carrier protein synthase I. We have analyzed this puzzling apparent redundancy and found that only one of these genes, fabF1, encoded a long-chain 3-ketoacyl-acyl carrier protein synthase, whereas the other homologues did not play roles in R. solanacearum fatty acid synthesis. Mutant strains lacking fabF1 are nonviable, and thus, FabF1 is essential for R. solanacearum fatty acid biosynthesis. Moreover, R. solanacearum FabF1 has the activities of both 3-ketoacyl-acyl carrier protein synthase II and 3-ketoacyl-acyl carrier protein synthase I.
Collapse
|
77
|
Fernandes N, Case RJ, Longford SR, Seyedsayamdost MR, Steinberg PD, Kjelleberg S, Thomas T. Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra. PLoS One 2011; 6:e27387. [PMID: 22162749 PMCID: PMC3230580 DOI: 10.1371/journal.pone.0027387] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/15/2011] [Indexed: 01/17/2023] Open
Abstract
Nautella sp. R11, a member of the marine Roseobacter clade, causes a bleaching disease in the temperate-marine red macroalga, Delisea pulchra. To begin to elucidate the molecular mechanisms underpinning the ability of Nautella sp. R11 to colonize, invade and induce bleaching of D. pulchra, we sequenced and analyzed its genome. The genome encodes several factors such as adhesion mechanisms, systems for the transport of algal metabolites, enzymes that confer resistance to oxidative stress, cytolysins, and global regulatory mechanisms that may allow for the switch of Nautella sp. R11 to a pathogenic lifestyle. Many virulence effectors common in phytopathogenic bacteria are also found in the R11 genome, such as the plant hormone indole acetic acid, cellulose fibrils, succinoglycan and nodulation protein L. Comparative genomics with non-pathogenic Roseobacter strains and a newly identified pathogen, Phaeobacter sp. LSS9, revealed a patchy distribution of putative virulence factors in all genomes, but also led to the identification of a quorum sensing (QS) dependent transcriptional regulator that was unique to pathogenic Roseobacter strains. This observation supports the model that a combination of virulence factors and QS-dependent regulatory mechanisms enables indigenous members of the host alga's epiphytic microbial community to switch to a pathogenic lifestyle, especially under environmental conditions when innate host defence mechanisms are compromised.
Collapse
Affiliation(s)
- Neil Fernandes
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Rebecca J. Case
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sharon R. Longford
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Mohammad R. Seyedsayamdost
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter D. Steinberg
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Torsten Thomas
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
78
|
Tegli S, Gori A, Cerboneschi M, Cipriani MG, Sisto A. Type Three Secretion System in Pseudomonas savastanoi Pathovars: Does Timing Matter? Genes (Basel) 2011; 2:957-79. [PMID: 24710300 PMCID: PMC3927595 DOI: 10.3390/genes2040957] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas savastanoi pv. savastanoi is the causal agent of Olive knot disease, relying on the Type Three Secretion System (TTSS) for its pathogenicity. In this regard, nothing was known about the two other pathovars belonging to this species, pv. nerii and pv. fraxini, characterized by a different host range. Here we report on the organization of the entire TTSS cluster on the three pathovars, and a phylogenetic analysis including the TTSS of those bacteria belonging to the P. syringae complex sequenced so far, highlighting the evolution of each operon (hrpC, hrpJ, hrpRS, hrpU and hrpZ). Moreover, by Real-Time PCR we analyzed the in vitro expression of four main TTSS genes, revealing different activation patterns in the three pathovars, hypothetically related to their diverse virulence behaviors.
Collapse
Affiliation(s)
- Stefania Tegli
- Laboratorio di Patologia Vegetale Molecolare, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy; E-Mails: (A.G.); (M.C.)
| | - Andrea Gori
- Laboratorio di Patologia Vegetale Molecolare, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy; E-Mails: (A.G.); (M.C.)
| | - Matteo Cerboneschi
- Laboratorio di Patologia Vegetale Molecolare, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy; E-Mails: (A.G.); (M.C.)
| | - Maria Grazia Cipriani
- Plant Protection Institute, Section of Bari, National Research Council (CNR), Via Amendola 122/D, 70126 Bari, Italy; E-Mail:
| | - Angelo Sisto
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; E-Mail:
| |
Collapse
|
79
|
Identification of HrpX regulon genes in Xanthomonas oryzae pv. oryzicola using a GFP visualization technique. Arch Microbiol 2011; 194:281-91. [DOI: 10.1007/s00203-011-0758-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 09/03/2011] [Accepted: 09/24/2011] [Indexed: 01/21/2023]
|
80
|
Mhedbi-Hajri N, Malfatti P, Pédron J, Gaubert S, Reverchon S, Van Gijsegem F. PecS is an important player in the regulatory network governing the coordinated expression of virulence genes during the interaction between Dickeya dadantii 3937 and plants. Environ Microbiol 2011; 13:2901-14. [DOI: 10.1111/j.1462-2920.2011.02566.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
81
|
An SQ, Lu GT, Su HZ, Li RF, He YQ, Jiang BL, Tang DJ, Tang JL. Systematic mutagenesis of all predicted gntR genes in Xanthomonas campestris pv. campestris reveals a GntR family transcriptional regulator controlling hypersensitive response and virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1027-1039. [PMID: 21615202 DOI: 10.1094/mpmi-08-10-0180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The GntR family is one of the most abundant and widely distributed groups of helix-turn-helix transcriptional regulators in bacteria. Six open reading frames in the genome of the plant pathogen Xanthomonas campestris pv. campestris were predicted to encode GntR regulators. All six of the predicted GntR-encoding genes were individually mutagenized and mutants from five of them were successfully obtained. Plant disease response assays revealed that one, whose product belongs to the YtrA subfamily and has been named HpaR1, is involved in the hypersensitive response (HR) and virulence. Electrophoretic mobility shift assays and in vitro transcription assays revealed that HpaR1 could repress its own transcription level through binding to its promoter sequence, indicating an autoregulatory feedback inhibition mechanism for HpaR1 expression. Promoter-gusA reporter and reverse-transcription polymerase chain reaction analyses revealed that HpaR1 positively and negatively affects the expression of HR and pathogenicity (hrp) genes in host plant and standard media, respectively. Constitutive expression of the key hrp regulator, hrpG, in the hpaR1 mutant could bypass the requirement of HpaR1 for the induction of wild-type HR, suggesting that HpaR1 regulates the expression of hrp genes that encode the type III secretion system via hrpG.
Collapse
|
82
|
Knief C, Delmotte N, Vorholt JA. Bacterial adaptation to life in association with plants - A proteomic perspective from culture to in situ conditions. Proteomics 2011; 11:3086-105. [PMID: 21548095 DOI: 10.1002/pmic.201000818] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/01/2011] [Accepted: 02/17/2011] [Indexed: 12/13/2022]
Abstract
Diverse bacterial taxa that live in association with plants affect plant health and development. This is most evident for those bacteria that undergo a symbiotic association with plants or infect the plants as pathogens. Proteome analyses have contributed significantly toward a deeper understanding of the molecular mechanisms underlying the development of these associations. They were applied to obtain a general overview of the protein composition of these bacteria, but more so to study effects of plant signaling molecules on the cytosolic proteome composition or metabolic adaptations upon plant colonization. Proteomic analyses are particularly useful for the identification of secreted proteins, which are indispensable to manipulate a host plant. Recent advances in the field of proteome analyses have initiated a new research area, the analysis of more complex microbial communities. Such studies are just at their beginning but hold great potential for the future to elucidate not only the interactions between bacteria and their host plants, but also of bacteria-bacteria interactions between different bacterial taxa when living in association with plants. These include not only the symbiotic and pathogenic bacteria, but also the commensal bacteria that are consistently found in association with plants and whose functions remain currently largely uncovered.
Collapse
Affiliation(s)
- Claudia Knief
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
83
|
Zhu PL, Zhao S, Tang JL, Feng JX. The rsmA-like gene rsmA(Xoo) of Xanthomonas oryzae pv. oryzae regulates bacterial virulence and production of diffusible signal factor. MOLECULAR PLANT PATHOLOGY 2011; 12:227-37. [PMID: 21355995 PMCID: PMC6640276 DOI: 10.1111/j.1364-3703.2010.00661.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plant-pathogenic prokaryote Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, one of the most destructive diseases of rice. A nonpolar mutant of the rsmA-like gene rsmA(Xoo) of the Xoo Chinese strain 13751 was constructed by homologous integration with a suicide plasmid. Virulence tests on a host plant, namely the hybrid rice cultivar Teyou 63, showed that the mutant had lost its virulence almost completely, whereas tests on a nonhost, namely castor-oil plant (Ricinus communis), showed that the mutant had also lost the ability to induce a hypersensitive response in the nonhost. In addition, the rsmA(Xoo) mutant produced significantly smaller amounts of the diffusible signal factor, extracellular endoglucanase, amylase and extracellular polysaccharide, but showed significantly higher glycogen accumulation, bacterial aggregation and cell adhesion. The expression of most hrp genes, genes encoding AvrBs3/PthA family members, rpfB, xrvA, glgA, eglXoB and XOO0175 (encoding an α-amylase) was down-regulated in the rsmA(Xoo) mutant. All phenotypes and expression levels of the tested genes in the rsmA(Xoo) mutant were restored to their levels in the wild-type by the presence of rsmA(Xoo) in trans. These results indicate that rsmA(Xoo) is essential for the virulence of Xoo.
Collapse
Affiliation(s)
- Pei-Liang Zhu
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | | | | | | |
Collapse
|
84
|
Abstract
Microbial synthesis of the phytohormone auxin has been known for a long time. This property is best documented for bacteria that interact with plants because bacterial auxin can cause interference with the many plant developmental processes regulated by auxin. Auxin biosynthesis in bacteria can occur via multiple pathways as has been observed in plants. There is also increasing evidence that indole-3-acetic acid (IAA), the major naturally occurring auxin, is a signaling molecule in microorganisms because IAA affects gene expression in some microorganisms. Therefore, IAA can act as a reciprocal signaling molecule in microbe-plant interactions. Interest in microbial synthesis of auxin is also increasing in yet another recently discovered property of auxin in Arabidopsis. Down-regulation of auxin signaling is part of the plant defense system against phytopathogenic bacteria. Exogenous application of auxin, e.g., produced by the pathogen, enhances susceptibility to the bacterial pathogen.
Collapse
Affiliation(s)
- Stijn Spaepen
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
85
|
Zhang Y, Kiba A, Hikichi Y, Ohnishi K. prhKLM genes of Ralstonia solanacearum encode novel activators of hrp regulon and are required for pathogenesis in tomato. FEMS Microbiol Lett 2011; 317:75-82. [PMID: 21241356 DOI: 10.1111/j.1574-6968.2011.02213.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The genes in the hrp regulon encode the proteins composing type III secretion system in Ralstonia solanacearum. The hrp regulon is positively controlled by HrpB, and hrpB expression is activated by both HrpG and PrhG. We have identified three genes, prhK, prhL, and prhM, which positively control the hrp regulon in strain OE1-1. These genes are likely to form an operon, and this operon is well conserved in the genera Ralstonia and Burkholderia. This indicates that the operon is not specific to the plant pathogens. Mutations in each of these three genes abolished hrpB and prhG expression. prhK, prhL, and prhM mutant strains lost pathogenicity toward tomato completely, and they were less virulent toward tobacco. PrhK and PrhL share sequence similarity with allophanate hydrolase and PrhM with LamB. This suggests that the three gene products are not transcriptional regulators in the strict sense, but regulate hrp regulon indirectly. This novel class of virulence-related genes will mark the beginning of new findings regarding the overall infection mode of R. solanacearum.
Collapse
Affiliation(s)
- Yong Zhang
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi, Japan
| | | | | | | |
Collapse
|
86
|
Qi M, Wang D, Bradley CA, Zhao Y. Genome sequence analyses of Pseudomonas savastanoi pv. glycinea and subtractive hybridization-based comparative genomics with nine pseudomonads. PLoS One 2011; 6:e16451. [PMID: 21304594 PMCID: PMC3029378 DOI: 10.1371/journal.pone.0016451] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/16/2010] [Indexed: 11/19/2022] Open
Abstract
Bacterial blight, caused by Pseudomonas savastanoi pv. glycinea (Psg), is a common disease of soybean. In an effort to compare a current field isolate with one isolated in the early 1960s, the genomes of two Psg strains, race 4 and B076, were sequenced using 454 pyrosequencing. The genomes of both Psg strains share more than 4,900 highly conserved genes, indicating very low genetic diversity between Psg genomes. Though conserved, genome rearrangements and recombination events occur commonly within the two Psg genomes. When compared to each other, 437 and 163 specific genes were identified in B076 and race 4, respectively. Most specific genes are plasmid-borne, indicating that acquisition and maintenance of plasmids may represent a major mechanism to change the genetic composition of the genome and even acquire new virulence factors. Type three secretion gene clusters of Psg strains are near identical with that of P. savastanoi pv. phaseolicola (Pph) strain 1448A and they shared 20 common effector genes. Furthermore, the coronatine biosynthetic cluster is present on a large plasmid in strain B076, but not in race 4. In silico subtractive hybridization-based comparative genomic analyses with nine sequenced phytopathogenic pseudomonads identified dozens of specific islands (SIs), and revealed that the genomes of Psg strains are more similar to those belonging to the same genomospecies such as Pph 1448A than to other phytopathogenic pseudomonads. The number of highly conserved genes (core genome) among them decreased dramatically when more genomes were included in the subtraction, suggesting the diversification of pseudomonads, and further indicating the genome heterogeneity among pseudomonads. However, the number of specific genes did not change significantly, suggesting these genes are indeed specific in Psg genomes. These results reinforce the idea of a species complex of P. syringae and support the reclassification of P. syringae into different species.
Collapse
Affiliation(s)
- Mingsheng Qi
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Dongping Wang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Carl A. Bradley
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
87
|
Zhao Y, Qian G, Yin F, Fan J, Zhai Z, Liu C, Hu B, Liu F. Proteomic analysis of the regulatory function of DSF-dependent quorum sensing in Xanthomonas oryzae pv. oryzicola. Microb Pathog 2010; 50:48-55. [PMID: 20946946 DOI: 10.1016/j.micpath.2010.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/27/2010] [Accepted: 09/10/2010] [Indexed: 11/28/2022]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc), which caused bacterial leaf streak in rice, is a bacterial pathogen limited to the apoplast of the mesophyll tissue. The rpfF that encodes diffusible signal factor (DSF) synthase, played a key role in the virulence of many plant pathogenic bacteria. In this study, the rpf gene cluster was cloned, and the rpfF was deleted in Xoc. It was observed that the rpfF mutant lost the ability to produce DSF molecular, and exhibited a significant reduction of virulence in rice compared to the wild-type strain. Furthermore, the mutation of rpfF impaired EPS production, and led to Xoc cell aggregation. To analyze the differences of proteome expression between Xoc wild type and rpfF mutant, a comparative proteome analysis was performed by two-dimensional gel electrophoresis (2-DE). The results clearly revealed that 48 protein spots were differentially expressed above the threshold ratio of 1.5. Among them, 18 proteins were identified by MS, which were involved in nitrogen transfer, protein folding, elimination of superoxide radicals and flagellar formation. Our results indicated that DSF might play an important role in virulence and growth of Xoc by mediating expression of proteins.
Collapse
Affiliation(s)
- Yancun Zhao
- Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Chinese Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Mole B, Habibi S, Dangl JL, Grant SR. Gluconate metabolism is required for virulence of the soft-rot pathogen Pectobacterium carotovorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1335-44. [PMID: 20636105 DOI: 10.1094/mpmi-03-10-0067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pectobacterium carotovorum is a ubiquitous soft rot pathogen that uses global virulence regulators to coordinate pathogenesis in response to undefined environmental conditions. We characterize an operon in P. carotovorum required for gluconate metabolism and virulence. The operon contains four genes that are highly conserved among proteobacteria (initially annotated ygbJKLM), one of which was misassigned as a type III secreted effector, (ygbK, originally known as hopAN1). A mutant with a deletion-insertion within this operon is unable to metabolize gluconate, a precursor for the pentose phosphate pathway. The mutant exhibits attenuated growth on the leaves of its host of isolation, potato, and those of Arabidopsis thaliana. Notably, the mutant hypermacerates potato tubers and is deficient in motility. Global virulence regulators that are responsive to cell wall pectin breakdown products and other undefined environmental signals, KdgR and FlhD, respectively, are misregulated in the mutant. The alteration of virulence mediated via changes in transcription of known global virulence regulators in our ygbJ-M operon mutant suggests a role for host-derived catabolic intermediates in P. carotovorum pathogenesis. Thus, we rename this operon in P. carotovorum vguABCD for virulence and gluconate metabolism.
Collapse
Affiliation(s)
- Beth Mole
- Department of Biology, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
89
|
Ikeda S, Okubo T, Anda M, Nakashita H, Yasuda M, Sato S, Kaneko T, Tabata S, Eda S, Momiyama A, Terasawa K, Mitsui H, Minamisawa K. Community- and genome-based views of plant-associated bacteria: plant-bacterial interactions in soybean and rice. PLANT & CELL PHYSIOLOGY 2010; 51:1398-410. [PMID: 20685969 DOI: 10.1093/pcp/pcq119] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Diverse microorganisms are living as endophytes in plant tissues and as epiphytes on plant surfaces in nature. Questions about driving forces shaping the microbial community associated with plants remain unanswered. Because legumes developed systems to attain endosymbioses with rhizobia as well as mycorrhizae during their evolution, the above questions can be addressed using legume mutants relevant to genes for symbiosis. Analytical methods for the microbial community have recently been advanced by enrichment procedures of plant-associated microbes and culture-independent analyses targeting the small subunit of rRNA in microbial ecology. In this review, we first deal with interdisciplinary works on the global diversity of bacteria associated with field-grown soybeans with different nodulation genotypes and nitrogen application. A subpopulation of Proteobacteria in aerial parts of soybean shoots was likely to be regulated through both the autoregulation system for plant-rhizobium symbiosis and the nitrogen signaling pathway, suggesting that legumes accommodate a taxonomically characteristic microbial community through unknown plant-microbe communications. In addition to the community views, we then show multiphasic analysis of a beneficial rice endophyte for comparative bacterial genomics and plant responses. The significance and perspectives of community- and genome-based approaches are discussed to achieve a better understanding of plant-microbe interactions.
Collapse
Affiliation(s)
- Seishi Ikeda
- Memuro Research Station, National Agricultural Research Center for Hokkaido Region, Shinsei, Memuro-cho, Kasaigun, Hokkaido 082-0081, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Jiang RP, Tang DJ, Chen XL, He YQ, Feng JX, Jiang BL, Lu GT, Lin M, Tang JL. Identification of four novel small non-coding RNAs from Xanthomonas campestris pathovar campestris. BMC Genomics 2010; 11:316. [PMID: 20482898 PMCID: PMC2996969 DOI: 10.1186/1471-2164-11-316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 05/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In bacteria, small non-coding RNAs (sRNAs) have been recognized as important regulators of various cellular processes. Approximately 200 bacterial sRNAs in total have been reported. However, very few sRNAs have been identified from phytopathogenic bacteria. RESULTS Xanthomons campestris pathovar campestris (Xcc) is the causal agent of black rot disease of cruciferous crops. In this study, a cDNA library was constructed from the low-molecular weight RNA isolated from the Xcc strain 8004 grown to exponential phase in the minimal medium XVM2. Seven sRNA candidates were obtained by sequencing screen of 2,500 clones from the library and four of them were confirmed to be sRNAs by Northern hybridization, which were named sRNA-Xcc1, sRNA-Xcc2, sRNA-Xcc3, and sRNA-Xcc4. The transcription start and stop sites of these sRNAs were further determined. BLAST analysis revealed that the four sRNAs are novel. Bioinformatics prediction showed that a large number of genes with various known or unknown functions in Xcc 8004 are potential targets of sRNA-Xcc1, sRNA-Xcc3 and sRNA-Xcc4. In contrast, only a few genes were predicted to be potential targets of sRNA-Xcc2. CONCLUSION We have identified four novel sRNAs from Xcc by a large-scale screen. Bioinformatics analysis suggests that they may perform various functions. This work provides the first step toward understanding the role of sRNAs in the molecular mechanisms of Xanthomonas campestris pathogenesis.
Collapse
Affiliation(s)
- Rui-Ping Jiang
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol 2010; 192:3584-96. [PMID: 20472799 DOI: 10.1128/jb.00114-10] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae pv. syringae B728a is a resident on leaves of common bean, where it utilizes several well-studied virulence factors, including secreted effectors and toxins, to develop a pathogenic interaction with its host. The B728a genome was recently sequenced, revealing the presence of 1,297 genes with unknown function. This study demonstrates that a 29.9-kb cluster of genes in the B728a genome shares homology to the novel type VI secretion system (T6SS) locus recently described for other gram-negative bacteria. Western blot analyses showed that B728a secretes Hcp, a T6SS protein, in culture and that this secretion is dependent on clpV, a gene that likely encodes an AAA(+) ATPase. In addition, we have identified two B728a sensor kinases that have homology to the P. aeruginosa proteins RetS and LadS. We demonstrate that B728a RetS and LadS reciprocally regulate the T6SS and collectively modulate several virulence-related activities. Quantitative PCR analyses indicated that RetS and LadS regulate genes associated with the type III secretion system and that LadS controls the expression of genes involved in the production of the exopolysaccharides alginate and levan. These analyses also revealed that LadS and the hybrid sensor kinase GacS positively regulate the expression of a putative novel exopolysaccharide called Psl. Plate assays demonstrated that RetS negatively controls mucoidy, while LadS negatively regulates swarming motility. A mutation in retS affected B728a population levels on the surfaces of bean leaves. A model for the LadS and RetS control of B728a virulence activities is proposed.
Collapse
|
92
|
Qi M, Sun FJ, Caetano-Anollés G, Zhao Y. Comparative genomic and phylogenetic analyses reveal the evolution of the core two-component signal transduction systems in enterobacteria. J Mol Evol 2010; 70:167-80. [PMID: 20049425 DOI: 10.1007/s00239-009-9318-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Accepted: 12/15/2009] [Indexed: 11/30/2022]
Abstract
The two-component signal transduction system (TCST) consists of a histidine kinase (HK) and a response regulator (RR). TCSTs play important roles in sensing and reacting to environmental changes, and in bacterial pathogenesis. Previously, we have identified and characterized TCSTs in Erwinia amylovora, a severe plant enterobacterial pathogen, at genome-wide level. Here we conducted a comparative genomic analysis of TCSTs in 53 genomes of 16 enterobacterial species. These species include important plant, animal, human, and insect pathogenic, saprophytic or symbiotic microorganisms. Comparative genomic analysis revealed that enterobacteria contain eight pairs of core TCSTs. Phylogenetic trees reconstructed from a concatenation of the core set of TCSTs from enterobacteria and for individual TCST proteins from species in Proteobacteria showed that most TCST protein trees in the Enterobacteriaceae or in species of the γ-Proteobacteria agreed well with that of the corresponding 16S rRNA gene. It also showed that co-evolutionary relationships existed between cognate partners of the HKs and RRs. Several core TCSTs were quite ancient and universal based on phylogenomic analysis of protein structures. These results indicate that the core TCSTs are relatively conserved, and suggest that these enterobacteria may have maintained their ancient core TCSTs and might acquire specific new TCSTs for their survival in different environments or hosts, or may have evolved new functionalities of the core TCSTs for adaptation to different ecological niches.
Collapse
Affiliation(s)
- Mingsheng Qi
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
93
|
Tampakaki AP, Skandalis N, Gazi AD, Bastaki MN, Sarris PF, Charova SN, Kokkinidis M, Panopoulos NJ. Playing the "Harp": evolution of our understanding of hrp/hrc genes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:347-370. [PMID: 20455697 DOI: 10.1146/annurev-phyto-073009-114407] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
With the advent of recombinant DNA techniques, the field of molecular plant pathology witnessed dramatic shifts in the 1970s and 1980s. The new and conventional methodologies of bacterial molecular genetics put bacteria center stage. The discovery in the mid-1980s of the hrp/hrc gene cluster and the subsequent demonstration that it encodes a type III secretion system (T3SS) common to Gram negative bacterial phytopathogens, animal pathogens, and plant symbionts was a landmark in molecular plant pathology. Today, T3SS has earned a central role in our understanding of many fundamental aspects of bacterium-plant interactions and has contributed the important concept of interkingdom transfer of effector proteins determining race-cultivar specificity in plant-bacterium pathosystems. Recent developments in genomics, proteomics, and structural biology enable detailed and comprehensive insights into the functional architecture, evolutionary origin, and distribution of T3SS among bacterial pathogens and support current research efforts to discover novel antivirulence drugs.
Collapse
|
94
|
PrhG, a transcriptional regulator responding to growth conditions, is involved in the control of the type III secretion system regulon in Ralstonia solanacearum. J Bacteriol 2009; 192:1011-9. [PMID: 20008073 DOI: 10.1128/jb.01189-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability of Ralstonia solanacearum to cause disease in plants depends on its type III secretion system (T3SS). The expression of the T3SS and its effector substrates is coordinately controlled by a regulatory cascade, at the bottom of which is HrpB. Transcription of the hrpB gene is activated by a plant-responsive regulator named HrpG, which is a master regulator of a wide array of pathogenicity functions in R. solanacearum. We have identified in the genome of strain GMI1000 a close paralog of hrpG (83% overall similarity at the protein level) that we have named prhG. Despite this high similarity, the expression pattern of prhG is remarkably different from that of hrpG: prhG expression is activated after growth of bacteria in minimal medium but not in the presence of host cells, while hrpG expression is specifically induced in response to plant cell signals. We provide genetic evidence that prhG is a transcriptional regulator that, like hrpG, controls the expression of hrpB and the hrpB-regulated genes under minimal medium conditions. However, the regulatory functions of prhG and hrpG are distinct: prhG has no influence on hrpB expression when the bacteria are in the presence of plant cells, and transcriptomic profiling analysis of a prhG mutant revealed that the PrhG and HrpG regulons have only one pathogenicity target in common, hrpB. Functional complementation experiments indicated that PrhG and HrpG are individually sufficient to activate hrpB expression in minimal medium. Rather surprisingly, a prhG disruption mutant had little impact on pathogenicity, which may indicate that prhG has a minor role in the activation of T3SS genes when R. solanacearum grows parasitically inside the plant. The cross talk between pathogenicity regulatory proteins and environmental signals described here denotes that an intricate network is at the basis of the bacterial disease program.
Collapse
|
95
|
Chalupowicz L, Barash I, Panijel M, Sessa G, Manulis-Sasson S. Regulatory interactions between quorum-sensing, auxin, cytokinin, and the Hrp regulon in relation to gall formation and epiphytic fitness of Pantoea agglomerans pv. gypsophilae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:849-56. [PMID: 19522567 DOI: 10.1094/mpmi-22-7-0849] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gall formation by Pantoea agglomerans pv. gypsophilae is controlled by hrp/hrc genes, phytohormones, and the quorum-sensing (QS) regulatory system. The interactions between these three components were investigated. Disruption of the QS genes pagI and pagR and deletion of both substantially reduced the transcription levels of the hrp regulatory genes hrpXY, hrpS, and hrpL, as determined by quantitative reverse-transcriptase polymerase chain reaction. Expression of hrpL in planta was inhibited by addition of 20 microM or higher concentrations of the QS signal C(4)-HSL. The pagR and hrpL mutants caused an equivalent reduction of 1.3 orders in bacterial multiplication on bean leaves, suggesting possible mediation of the QS effect on epiphytic fitness of P. agglomerans pv. gypsophilae by the hrp regulatory system. indole-3-acetic acid (IAA) and cytokinin significantly affected the expression of the QS and hrp regulatory genes. Transcription of pagI, pagR, hrpL, and hrpS in planta was substantially reduced in iaaH mutant (disrupted in IAA biosynthesis via the indole-3-acetamide pathway) and etz mutant (disrupted in cytokinin biosynthesis). In contrast, the ipdC mutant (disrupted in IAA biosynthesis via the indole-3-pyruvate pathway) substantially increased expression of pagI, pagR, hrpL, and hrpS. Results presented suggest the involvement of IAA and cytokinins in regulation of the QS system and hrp regulatory genes.
Collapse
Affiliation(s)
- Laura Chalupowicz
- Department of Plant Pathology and Weed Research, ARO, the Volcani Center, Bet Dagan, Israel
| | | | | | | | | |
Collapse
|
96
|
Zhao Y, Wang D, Nakka S, Sundin GW, Korban SS. Systems level analysis of two-component signal transduction systems in Erwinia amylovora: role in virulence, regulation of amylovoran biosynthesis and swarming motility. BMC Genomics 2009; 10:245. [PMID: 19470164 PMCID: PMC2698875 DOI: 10.1186/1471-2164-10-245] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 05/26/2009] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Two-component signal transduction systems (TCSTs), consisting of a histidine kinase (HK) and a response regulator (RR), represent a major paradigm for signal transduction in prokaryotes. TCSTs play critical roles in sensing and responding to environmental conditions, and in bacterial pathogenesis. Most TCSTs in Erwinia amylovora have either not been identified or have not yet been studied. RESULTS We used a systems approach to identify TCST and related signal transduction genes in the genome of E. amylovora. Comparative genomic analysis of TCSTs indicated that E. amylovora TCSTs were closely related to those of Erwinia tasmaniensis, a saprophytic enterobacterium isolated from apple flowers, and to other enterobacteria. Forty-six TCST genes in E. amylovora including 17 sensor kinases, three hybrid kinases, 20 DNA- or ligand-binding RRs, four RRs with enzymatic output domain (EAL-GGDEF proteins), and two kinases were characterized in this study. A systematic TCST gene-knockout experiment was conducted, generating a total of 59 single-, double-, and triple-mutants. Virulence assays revealed that five of these mutants were non-pathogenic on immature pear fruits. Results from phenotypic characterization and gene expression experiments indicated that several groups of TCST systems in E. amylovora control amylovoran biosynthesis, one of two major virulence factors in E. amylovora. Both negative and positive regulators of amylovoran biosynthesis were identified, indicating a complex network may control this important feature of pathogenesis. Positive (non-motile, EnvZ/OmpR), negative (hypermotile, GrrS/GrrA), and intermediate regulators for swarming motility in E. amylovora were also identified. CONCLUSION Our results demonstrated that TCSTs in E. amylovora played major roles in virulence on immature pear fruit and in regulating amylovoran biosynthesis and swarming motility. This suggested presence of regulatory networks governing expression of critical virulence genes in E. amylovora.
Collapse
Affiliation(s)
- Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
97
|
Chen CN, Chen CJ, Liao CT, Lee CY. A probable aculeacin A acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity. BMC Microbiol 2009; 9:89. [PMID: 19426552 PMCID: PMC2686713 DOI: 10.1186/1471-2180-9-89] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 05/09/2009] [Indexed: 11/24/2022] Open
Abstract
Background The infection and virulence functions of diverse plant and animal pathogens that possess quorum sensing systems are regulated by N-acylhomoserine lactones (AHLs) acting as signal molecules. AHL-acylase is a quorum quenching enzyme and degrades AHLs by removing the fatty acid side chain from the homoserine lactone ring of AHLs. This blocks AHL accumulation and pathogenic phenotypes in quorum sensing bacteria. Results An aac gene of undemonstrated function from Ralstonia solanacearum GMI1000 was cloned, expressed in Escherichia coli; it inactivated four AHLs that were tested. The sequence of the 795 amino acid polypeptide was considerably similar to the AHL-acylase from Ralstonia sp. XJ12B with 83% identity match and shared 39% identity with an aculeacin A acylase precursor from the gram-positive actinomycete Actinoplanes utahensis. Aculeacin A is a neutral lipopeptide antibiotic and an antifungal drug. An electrospray ionisation mass spectrometry (ESI-MS) analysis verified that Aac hydrolysed the amide bond of AHL, releasing homoserine lactone and the corresponding fatty acids. However, ESI-MS analysis demonstrated that the Aac could not catalyze the hydrolysis of the palmitoyl moiety of the aculeacin A. Moreover, the results of MIC test of aculeacin A suggest that Aac could not deacylate aculeacin A. The specificity of Aac for AHLs showed a greater preference for long acyl chains than for short acyl chains. Heterologous expression of the aac gene in Chromobacterium violaceum CV026 effectively inhibited violacein and chitinase activity, both of which were regulated by the quorum-sensing mechanism. These results indicated that Aac could control AHL-dependent pathogenicity. Conclusion This is the first study to find an AHL-acylase in a phytopathogen. Our data provide direct evidence that the functioning of the aac gene (NP520668) of R. solanacearum GMI1000 is via AHL-acylase and not via aculeacin A acylase. Since Aac is a therapeutic potential quorum-quenching agent, its further biotechnological applications in agriculture, clinical and bio-industrial fields should be evaluated in the near future.
Collapse
Affiliation(s)
- Chin-Nung Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, ROC.
| | | | | | | |
Collapse
|
98
|
Santos CL, Tavares F, Thioulouse J, Normand P. A phylogenomic analysis of bacterial helix-turn-helix transcription factors. FEMS Microbiol Rev 2008; 33:411-29. [PMID: 19076237 DOI: 10.1111/j.1574-6976.2008.00154.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Perception by each individual organism of its environment's parameters is a key factor for survival. In a constantly changing environment, the ability to assess nutrient sources and potentially stressful situations constitutes the main basis for ecological adaptability. Transcription regulators are key decision-making proteins that mediate the communication between environmental conditions and DNA transcription through a multifaceted network. The parallel study of these regulators across microbial organisms adapted to contrasting biotopes constitutes an unexplored approach to understand the evolution of genome plasticity and cell function. We present here a reassessment of bacterial helix-turn-helix regulator diversity in different organisms from a multidisciplinary perspective, on the interface that links metabolism, ecology and phylogeny, further sustained by a statistically based approach. The present revision brought to light evidence of patterns among families of regulators, suggesting that multiple selective forces modulate the number and kind of regulators present in a given genome. Besides being an important step towards understanding the adaptive traits that influence the microbial responses to the varying environment on the very first and most prevalent line of reaction, the transcription of DNA, this approach is a promising tool to extract biological trends from genomic databases.
Collapse
Affiliation(s)
- Catarina L Santos
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | | | | | |
Collapse
|
99
|
Lin YM, Chou IC, Wang JF, Ho FI, Chu YJ, Huang PC, Lu DK, Shen HL, Elbaz M, Huang SM, Cheng CP. Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1261-1270. [PMID: 18700830 DOI: 10.1094/mpmi-21-9-1261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ralstonia solanacearum causes a deadly wilting disease on a wide range of crops. To elucidate pathogenesis of this bacterium in different host plants, we set out to identify R. solanacearum genes involved in pathogenesis by screening random transposon insertion mutants of a highly virulent strain, Pss190, on tomato and Arabidopsis thaliana. Mutants exhibiting various decreased virulence levels on these two hosts were identified. Sequence analysis showed that most, but not all, of the identified pathogenesis genes are conserved among distinct R. solanacearum strains. A few of the disrupted loci were not reported previously as being involved in R. solanacearum pathogenesis. Notably, a group of mutants exhibited differential pathogenesis on tomato and Arabidopsis. These results were confirmed by characterizing allelic mutants in one other R. solanacearum strain of the same phylotype. The significantly decreased mutants' colonization in Arabidopsis was found to be correlated with differential pathogenesis on these two plants. Differential requirement of virulence genes suggests adaptation of this bacterium in different host environments. Together, this study reveals commonalities and differences of R. solanacearum pathogenesis on single solanaceous and nonsolanaceous hosts, and provides important new insights into interactions between R. solanacearum and different host plants.
Collapse
Affiliation(s)
- Yu-Mei Lin
- Graduate Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, Taiwan. Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Chalupowicz L, Manulis-Sasson S, Itkin M, Sacher A, Sessa G, Barash I. Quorum-sensing system affects gall development incited by Pantoea agglomerans pv. gypsophilae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1094-1105. [PMID: 18616406 DOI: 10.1094/mpmi-21-8-1094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The quorum-sensing (QS) regulatory system of the gall-forming Pantoea agglomerans pv. gypsophilae was identified. Mass spectral analysis, together with signal-specific biosensors, demonstrated that P. agglomerans pv. gypsophilae produced N-butanoyl-l-homoserine lactone (C4-HSL) as a major and N-hexanoyl-l-homoserine lactone (C6-HSL) as a minor QS signal. Homologs of luxI and luxR regulatory genes, pagI and pagR, were characterized in strain P. agglomerans pv. gypsophilae Pag824-1 and shown to be convergently transcribed and separated by 14 bp. The deduced PagI (23.8 kDa) and PagR (26.9 kDa) show high similarity with SmaI (41% identity) and SmaR (43% identity), respectively, of Serratia sp. American Type Culture Collection 39006. PagR possesses characteristic autoinducer binding and a helix-turn-helix DNA-binding domain. Gall formation by P. agglomerans pv. gypsophilae depends on a plasmid-borne hrp/hrc gene cluster, type III effectors, and phytohormones. Disruption of pagI, pagR, or both genes simultaneously in Pag824-1 reduced gall size in gypsophila cuttings by 50 to 55% when plants were inoculated with 10(6) CFU/ml. Higher reductions in gall size (70 to 90%) were achieved by overexpression of pagI or addition of exogenous C4-HSL. Expression of the hrp/hrc regulatory gene hrpL and the type III effector pthG in the pagI mutant, as measured with quantitative reverse-transcriptase polymerase chain reaction, was reduced by 5.8 and 6.6, respectively, compared with the wild type, suggesting an effect of the QS system on the Hrp regulon.
Collapse
Affiliation(s)
- Laura Chalupowicz
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | |
Collapse
|