51
|
Maltby VE, Lea RA, Burnard S, Xavier A, Van Cao T, White N, Kennedy D, Groen K, Sanders KA, Seeto R, Bray S, Gresle M, Laverick L, Butzkueven H, Scott RJ, Lechner-Scott J. Epigenetic differences at the HTR2A locus in progressive multiple sclerosis patients. Sci Rep 2020; 10:22217. [PMID: 33335118 PMCID: PMC7747721 DOI: 10.1038/s41598-020-78809-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/22/2020] [Indexed: 11/30/2022] Open
Abstract
The pathology of progressive multiple sclerosis (MS) is poorly understood. We have previously assessed DNA methylation in the CD4+ T cells of relapsing–remitting (RR) MS patients compared to healthy controls and identified differentially methylated regions (DMRs) in HLA-DRB1 and RNF39. This study aimed to investigate the DNA methylation profiles of the CD4+ T cells of progressive MS patients. DNA methylation was measured in two separate case/control cohorts using the Illumina 450K/EPIC arrays and data was analysed with the Chip Analysis Methylation Pipeline (ChAMP). Single nucleotide polymorphisms (SNPs) were assessed using the Illumina Human OmniExpress24 arrays and analysed using PLINK. Expression was assessed using the Illumina HT12 array and analysed in R using a combination of Limma and Illuminaio. We identified three DMRs at HTR2A, SLC17A9 and HDAC4 that were consistent across both cohorts. The DMR at HTR2A is located within the bounds of a haplotype block; however, the DMR remained significant after accounting for SNPs in the region. No expression changes were detected in any DMRs. HTR2A is differentially methylated in progressive MS independent of genotype. This differential methylation is not evident in RRMS, making it a potential biomarker of progressive disease.
Collapse
Affiliation(s)
- Vicki E Maltby
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Rodney A Lea
- Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.,Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Sean Burnard
- Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Alexandre Xavier
- Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Thao Van Cao
- Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Nicole White
- Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Daniel Kennedy
- Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Kira Groen
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Katherine A Sanders
- Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.,Centre for Anatomical and Human Sciences, Hull York Medical School, Hull, UK
| | - Rebecca Seeto
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Samara Bray
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Melissa Gresle
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.,Royal Melbourne Hospital, Melbourne, VIC, Australia.,MS and Neuroimmunology Unit, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Louise Laverick
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.,Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Helmut Butzkueven
- Alfred Hospital, Melbourne, VIC, Australia.,MS and Neuroimmunology Unit, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia.,Division of Molecular Genetics, Pathology North, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia.,Centre for Cancer Research, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia. .,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia. .,Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
52
|
Maejima H, Kitahara M, Takamatsu Y, Mani H, Inoue T. Effects of exercise and pharmacological inhibition of histone deacetylases (HDACs) on epigenetic regulations and gene expressions crucial for neuronal plasticity in the motor cortex. Brain Res 2020; 1751:147191. [PMID: 33152341 DOI: 10.1016/j.brainres.2020.147191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023]
Abstract
The objective of this study was to examine the effect of epigenetic treatment using an histone deacetylases (HDAC) inhibitor in addition to aerobic exercise on the epigenetic markers and neurotrophic gene expressions in the motor cortex, to find a more enriched brain pre-conditioning for motor learning in neurorehabilitation. ICR mice were divided into four groups based on two factors: HDAC inhibition and exercise. Intraperitoneal administration of an HDAC inhibitor (1.2 g/kg sodium butyrate, NaB) and treadmill exercise (approximately at 10 m/min for 60 min) were conducted five days a week for four weeks. NaB administration inhibited total HDAC activity and enhanced acetylation level of histones specifically in histone H4, accompanying the increase of transcription levels of immediate-early genes (IEGs) (c-fos and Arc) and neurotrophins (BDNF and NT-4) crucial for neuroplasticity in the motor cortex. However, exercise enhanced HDAC activity and acetylation level of histone H4 and H3 without the modification of transcription levels. In addition, there were no synergic effects between HDAC inhibition and the exercise regime on the gene expressions. This study showed that HDAC inhibition could present more enriched condition for neuroplasticity to the motor cortex. However, exercise-induced neurotrophic gene expressions could depend on exercise regimen based on the intensity, the term etc. Therefore, this study has a novelty suggesting that pharmacological HDAC inhibition could be an alternative potent approach to present a neuronal platform with enriched neuroplasticity for motor learning and motor recovery, however, an appropriate exercise regimen is expected in this approach.
Collapse
Affiliation(s)
- Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan.
| | - Mika Kitahara
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroki Mani
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan; Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| |
Collapse
|
53
|
Myricitrin ameliorates cognitive deficits in MCAO cerebral stroke rats via histone acetylation-induced alterations of brain-derived neurotrophic factor. Mol Cell Biochem 2020; 476:609-617. [PMID: 33074446 DOI: 10.1007/s11010-020-03930-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
The present study screened the effect of Myricitrin on cognitive deficits post-cerebral ischemic stroke and the involved mechanism. The rats were submitted to middle cerebral artery occlusion (MCAO) and were treated with sodium butyrate or Myricitrin (15 and 30 mg/kg) for 28 days. The spatial memory was studied by Morris water maze (MWM). After 4 weeks, the rats were euthanized and hippocampus region was utilized for neurochemical and biochemical changes. The extent of histone acetylation was studied by ELISA. Protein levels were analyzed by Western blot analysis. The mRNA levels were analyzed by polymerase chain reaction (PCR). In silico bioinformatics docking studies were done for target confirmation of Myricitrin. The treatment of Myricitrin showed improved memory in MWM compared to rats treated with vehicle, and the effects of Myricitrin were similar to sodium butyrate-treated rats. At a dose of 30 mg/kg Myricitrin, the histone deacetylase content was decreased, the expression levels of BDNF were increased, the levels of acetylated H3 and H4 along with Syn-I in the hippocampus region were over-expressed compared to control vehicle-treated rats. However, at low dose, i.e., 15 mg/kg Myricitrin failed to show alterations in biochemical as well as neurochemical markers. Docking studies suggested the BDNF and Sun-I as potential target proteins of Myricitrin. The cognitive ameliorating effect of Myricitrin post-cerebral ischemia stroke can be attributed to increased expression of BDNF and Syn-I and modulation of histone acetylation.
Collapse
|
54
|
Lin L, Liu A, Li H, Feng J, Yan Z. Inhibition of Histone Methyltransferases EHMT1/2 Reverses Amyloid-β-Induced Loss of AMPAR Currents in Human Stem Cell-Derived Cortical Neurons. J Alzheimers Dis 2020; 70:1175-1185. [PMID: 31322566 DOI: 10.3233/jad-190190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that epigenetic dysregulation of gene expression is one of the key molecular mechanisms of neurodegeneration and Alzheimer's disease (AD). However, little is known about the role of epigenetic dysregulation on synaptic dysfunction in humans, because of the difficulties of obtaining live human neurons. Here we generated mature human cortical neurons differentiated from human embryonic stem cells, and exposed them to amyloid-β (Aβ). We found that the histone methyltransferase, EHMT1, which catalyzes histone lysine 9 dimethylation (H3K9me2, a mark for gene repression), was significantly elevated in Aβ-treated human stem cell-derived neurons. Aβ treatment led to a significant reduction of AMPAR-mediated whole-cell current and excitatory postsynaptic current. Application of BIX01294, a selective inhibitor of EHMT1/2, restored AMPAR currents and glutamatergic synaptic transmission in Aβ-treated human cortical neurons. These results suggest that inhibition of the aberrant histone methylation is a novel approach to reverse Aβ-induced synaptic deficits in human neurons.
Collapse
Affiliation(s)
- Lin Lin
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Aiyi Liu
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Hanqin Li
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.,Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Jian Feng
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.,Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.,Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| |
Collapse
|
55
|
Gao Y, Li X, Xu R, Guo Y, Yin H, Tan R, Qi Z, Liu G, Liang J, Ya B. Oleuropein Improved Post Cerebral Stroke Cognitive Function by Promoting Histone Acetylation and Phosphorylation of cAMP Response Element-Binding Protein in MCAO Rats. Dose Response 2020; 18:1559325820950102. [PMID: 32922228 PMCID: PMC7448114 DOI: 10.1177/1559325820950102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Post-stroke cognitive impairment (PSCI) is commonest clinical disorder in which peripheral cholinergic activity is important. Oleuropein (OLP) is polyphenol is present in olive oil. Here we evaluated the effect of OLP in cognitive dysfunction rats in post cerebral stroke model. Methods: The post cerebral stroke cognitive dysfunction PSD rat model was created by occlusion of transient middle cerebral artery. The rats were divided into 6 groups named, Sham + Vehicle, Sham + OLP (50 mg/kg), PSD rats + Vehicle, PSD rats + OLP (20, 50 or 100 mg/kg). The spatial learning was assessed by Morris water maze (MWM). The expression of choline acetyltransferase (ChAT), acetylcholine (ACH), extent of histone acetylation and phosphorylation of cAMP response element-binding protein (CREB) were evaluated by Western blot assay and immunofluorescence staining. Results: Treatment of OLP at various doses showed higher number of spontaneous and rewarded alterations and lesser percentage bias compared to vehicle treated PSD rats. OLP resulted in decreased levels of ChAT and ACH, whereas the degree of histone acetylation and phosphorylation of CREB improved in dose dependent pattern. Conclusion: treatment of OLP improved PSCI via increasing the phosphorylation of CREB and histone acetylation, thus attenuating cholinergic activity.
Collapse
Affiliation(s)
- Yang Gao
- Department of Histology and Embryology, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Xiaojin Li
- Department of Histology and Embryology, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Rongjian Xu
- Basic Medical School of Jining Medical University, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Yan Guo
- Department of Histology and Embryology, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Haiyan Yin
- Department of Histology and Embryology, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Ruifeng Tan
- Basic Medical School of Jining Medical University, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Ze Qi
- Basic Medical School of Jining Medical University, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Guangzhe Liu
- Basic Medical School of Jining Medical University, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Jiahui Liang
- Basic Medical School of Jining Medical University, Basic Medical School of Jining Medical University, Jining, Shandong, China
| | - Bailiu Ya
- Department of Physiology, Basic Medical School of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
56
|
Egerton A, Grace AA, Stone J, Bossong MG, Sand M, McGuire P. Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development. Schizophr Res 2020; 223:59-70. [PMID: 33071070 DOI: 10.1016/j.schres.2020.09.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/12/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Research into the neurobiological processes that may lead to the onset of schizophrenia places growing emphasis on the glutamatergic system and brain development. Preclinical studies have shown that neurodevelopmental, genetic, and environmental factors contribute to glutamatergic dysfunction and schizophrenia-related phenotypes. Clinical research has suggested that altered brain glutamate levels may be present before the onset of psychosis and relate to outcome in those at clinical high risk. After psychosis onset, glutamate dysfunction may also relate to the degree of antipsychotic response and clinical outcome. These findings support ongoing efforts to develop pharmacological interventions that target the glutamate system and could suggest that glutamatergic compounds may be more effective in specific patient subgroups or illness stages. In this review, we consider the updated glutamate hypothesis of schizophrenia, from a neurodevelopmental perspective, by reviewing recent preclinical and clinical evidence, and discuss the potential implications for novel therapeutics.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthijs G Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michael Sand
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
57
|
Wang Y, Patani R. Novel therapeutic targets for amyotrophic lateral sclerosis: ribonucleoproteins and cellular autonomy. Expert Opin Ther Targets 2020; 24:971-984. [PMID: 32746659 DOI: 10.1080/14728222.2020.1805734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a devastating disease with a lifetime risk of approximately 1:400. It is incurable and invariably fatal. Average survival is between 3 and 5 years and patients become increasingly paralyzed, losing the ability to speak, eat, and breathe. Therapies in development either (i) target specific familial forms of ALS (comprising a minority of around 10% of cases) or ii) emanate from (over)reliance on animal models or non-human/non-neuronal cell models. There is a desperate and unmet clinical need for effective treatments. Deciphering the primacy and relative contributions of defective protein homeostasis and RNA metabolism in ALS across different model systems will facilitate the identification of putative therapeutic targets. AREAS COVERED This review examines the putative common primary molecular events that lead to ALS pathogenesis. We focus on deregulated RNA metabolism, protein mislocalization/pathological aggregation and the role of glia in ALS-related motor neuron degeneration. Finally, we describe promising targets for therapeutic evaluation. EXPERT OPINION Moving forward, an effective strategy could be achieved by a poly-therapeutic approach which targets both deregulated RNA metabolism and protein dyshomeostasis in the relevant cell types, at the appropriate phase of disease.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London , London, UK.,Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute , London, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London , London, UK.,Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute , London, UK
| |
Collapse
|
58
|
Keverne J, Binder EB. A Review of epigenetics in psychiatry: focus on environmental risk factors. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Epigenetic modifications play a key role in development and cell type specificity. These modifications seem to be particularly critical for brain development, where mutations in epigenetic enzymes have been associated with neurodevelopmental disorders as well as with the function of post-mitotic neurons. Epigenetic modifications can be influenced by genetic and environmental factors, both known major risk factors for psychiatric disorders. Epigenetic modifications may thus be an important mediator of the effects of genetic and environmental risk factors on cell function.
This review summarizes the different types of epigenetic regulation and then focuses on the mechanisms transducing environmental signals, especially adverse life events that are major risk factors for psychiatric disorders, into lasting epigenetic changes. This is followed by examples of how the environment can induce epigenetic changes that relate to the risk of psychiatric disorders.
Collapse
Affiliation(s)
| | - Elisabeth B. Binder
- Dept. of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Kraepelinstr. 2-10 , Munich , Germany
| |
Collapse
|
59
|
Rodrigues DA, Pinheiro PDSM, Sagrillo FS, Bolognesi ML, Fraga CAM. Histone deacetylases as targets for the treatment of neurodegenerative disorders: Challenges and future opportunities. Med Res Rev 2020; 40:2177-2211. [DOI: 10.1002/med.21701] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel A. Rodrigues
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Química, Instituto de Química Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Pedro de S. M. Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| | - Fernanda S. Sagrillo
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| | - Carlos A. M. Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Química, Instituto de Química Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| |
Collapse
|
60
|
Wu CC, Jin LW, Wang IF, Wei WY, Ho PC, Liu YC, Tsai KJ. HDAC1 dysregulation induces aberrant cell cycle and DNA damage in progress of TDP-43 proteinopathies. EMBO Mol Med 2020; 12:e10622. [PMID: 32449313 PMCID: PMC7278561 DOI: 10.15252/emmm.201910622] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) has been implicated in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-TDP) and amyotrophic lateral sclerosis. Histone deacetylase 1 (HDAC1) is involved in DNA repair and neuroprotection in numerous neurodegenerative diseases. However, the pathological mechanisms of FTLD-TDP underlying TDP-43 proteinopathies are unclear, and the role of HDAC1 is also poorly understood. Here, we found that aberrant cell cycle activity and DNA damage are important pathogenic factors in FTLD-TDP transgenic (Tg) mice, and we further identified these pathological features in the frontal cortices of patients with FTLD-TDP. TDP-43 proteinopathies contributed to pathogenesis by inducing cytosolic mislocalization of HDAC1 and reducing its activity. Pharmacological recovery of HDAC1 activity in FTLD-TDP Tg mice ameliorated their cognitive and motor impairments, normalized their aberrant cell cycle activity, and attenuated their DNA damage and neuronal loss. Thus, HDAC1 deregulation is involved in the pathogenesis of TDP-43 proteinopathies, and HDAC1 is a potential target for therapeutic interventions in FTLD-TDP.
Collapse
Affiliation(s)
- Cheng-Chun Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - I-Fang Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yen Wei
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chih Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
61
|
Martynyuk AE, Ju LS, Morey TE, Zhang JQ. Neuroendocrine, epigenetic, and intergenerational effects of general anesthetics. World J Psychiatry 2020; 10:81-94. [PMID: 32477904 PMCID: PMC7243620 DOI: 10.5498/wjp.v10.i5.81] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 02/05/2023] Open
Abstract
The progress of modern medicine would be impossible without the use of general anesthetics (GAs). Despite advancements in refining anesthesia approaches, the effects of GAs are not fully reversible upon GA withdrawal. Neurocognitive deficiencies attributed to GA exposure may persist in neonates or endure for weeks to years in the elderly. Human studies on the mechanisms of the long-term adverse effects of GAs are needed to improve the safety of general anesthesia but they are hampered not only by ethical limitations specific to human research, but also by a lack of specific biological markers that can be used in human studies to safely and objectively study such effects. The latter can primarily be attributed to an insufficient understanding of the full range of the biological effects induced by GAs and the molecular mechanisms mediating such effects even in rodents, which are far more extensively studied than any other species. Our most recent experimental findings in rodents suggest that GAs may adversely affect many more people than is currently anticipated. Specifically, we have shown that anesthesia with the commonly used GA sevoflurane induces in exposed animals not only neuroendocrine abnormalities (somatic effects), but also epigenetic reprogramming of germ cells (germ cell effects). The latter may pass the neurobehavioral effects of parental sevoflurane exposure to the offspring, who may be affected even at levels of anesthesia that are not harmful to the exposed parents. The large number of patients who require general anesthesia, the even larger number of their future unexposed offspring whose health may be affected, and a growing number of neurodevelopmental disorders of unknown etiology underscore the translational importance of investigating the intergenerational effects of GAs. In this mini review, we discuss emerging experimental findings on neuroendocrine, epigenetic, and intergenerational effects of GAs.
Collapse
Affiliation(s)
- Anatoly E Martynyuk
- Department of Anesthesiology and the McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Jia-Qiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| |
Collapse
|
62
|
Ihara M, Saito S. Drug Repositioning for Alzheimer’s Disease: Finding Hidden Clues in Old Drugs. J Alzheimers Dis 2020; 74:1013-1028. [DOI: 10.3233/jad-200049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Japan
| |
Collapse
|
63
|
Wong LW, Chong YS, Wong WLE, Sajikumar S. Inhibition of Histone Deacetylase Reinstates Hippocampus-Dependent Long-Term Synaptic Plasticity and Associative Memory in Sleep-Deprived Mice. Cereb Cortex 2020; 30:4169-4182. [PMID: 32188968 DOI: 10.1093/cercor/bhaa041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sleep plays an important role in the establishment of long-term memory; as such, lack of sleep severely impacts domains of our health including cognitive function. Epigenetic mechanisms regulate gene transcription and protein synthesis, playing a critical role in the modulation of long-term synaptic plasticity and memory. Recent evidences indicate that transcriptional dysregulation as a result of sleep deprivation (SD) may contribute to deficits in plasticity and memory function. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, a clinically approved drug for human use, has been shown to ameliorate cognitive deficits in several neurological disease models. To further explore the therapeutic effect of SAHA, we have examined its potential role in improving the SD-mediated impairments in long-term plasticity, associative plasticity, and associative memory. Here we show that SAHA preserves long-term plasticity, associative plasticity, and associative memory in SD hippocampus. Furthermore, we find that SAHA prevents SD-mediated epigenetic changes by upregulating histone acetylation, hence preserving the ERK-cAMP-responsive element-binding protein (CREB)/CREB-binding protein-brain-derived neurotrophic factor pathway in the hippocampus. These data demonstrate that modifying epigenetic mechanisms via SAHA can prevent or reverse impairments in long-term plasticity and memory that result from sleep loss. Thus, SAHA could be a potential therapeutic agent in improving SD-related memory deficits.
Collapse
Affiliation(s)
- Lik-Wei Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Yee Song Chong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Win Lee Edwin Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| |
Collapse
|
64
|
Bridi M, Schoch H, Florian C, Poplawski SG, Banerjee A, Hawk JD, Porcari GS, Lejards C, Hahn CG, Giese KP, Havekes R, Spruston N, Abel T. Transcriptional corepressor SIN3A regulates hippocampal synaptic plasticity via Homer1/mGluR5 signaling. JCI Insight 2020; 5:92385. [PMID: 32069266 DOI: 10.1172/jci.insight.92385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Long-term memory depends on the control of activity-dependent neuronal gene expression, which is regulated by epigenetic modifications. The epigenetic modification of histones is orchestrated by the opposing activities of 2 classes of regulatory complexes: permissive coactivators and silencing corepressors. Much work has focused on coactivator complexes, but little is known about the corepressor complexes that suppress the expression of plasticity-related genes. Here, we define a critical role for the corepressor SIN3A in memory and synaptic plasticity, showing that postnatal neuronal deletion of Sin3a enhances hippocampal long-term potentiation and long-term contextual fear memory. SIN3A regulates the expression of genes encoding proteins in the postsynaptic density. Loss of SIN3A increases expression of the synaptic scaffold Homer1, alters the metabotropic glutamate receptor 1α (mGluR1α) and mGluR5 dependence of long-term potentiation, and increases activation of ERK in the hippocampus after learning. Our studies define a critical role for corepressors in modulating neural plasticity and memory consolidation and reveal that Homer1/mGluR signaling pathways may be central molecular mechanisms for memory enhancement.
Collapse
Affiliation(s)
| | | | | | | | - Anamika Banerjee
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Nelson Spruston
- Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, Virginia, USA
| | | |
Collapse
|
65
|
Carbone C, Brancato A, Adinolfi A, Lo Russo SLM, Alleva E, Cannizzaro C, Adriani W. Motor Transitions' Peculiarity of Heterozygous DAT Rats When Offspring of an Unconventional KOxWT Mating. Neuroscience 2020; 433:108-120. [PMID: 32171819 DOI: 10.1016/j.neuroscience.2020.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/23/2022]
Abstract
Causal factors of psychiatric diseases are unclear, due to gene × environment interactions. Evaluation of consequences, after a dopamine-transporter (DAT) gene knock-out (DAT-KO), has enhanced our understanding into the pathological dynamics of several brain disorders, such as Attention-Deficit/Hyperactivity and Bipolar-Affective disorders. Recently, our attention has shifted to DAT hypo-functional (heterozygous, HET) rodents: HET dams display less maternal care and HET females display marked hypo-locomotion if cared by HET dams (Mariano et al., 2019). We assessed phenotypes of male DAT-heterozygous rats as a function of their parents: we compared "maternal" origin (MAT-HET, obtained by breeding KO-male rats with WT-female dams) to "mixed" origin (MIX-HET, obtained by classical breeding, both heterozygous parents) of the allele. MAT-HET subjects had significantly longer rhythms of daily locomotor activity than MIX-HET and WT-control subjects. Furthermore, acute methylphenidate (MPH: 0, 1, 2 mg/kg) revealed elevated threshold for locomotor stimulation in MAT-HETs, with no response to the lower dose. Finally, by Porsolt-Test, MAT-HETs showed enhanced escape-seeking (diving) with more transitions towards behavioral despair (floating). When comparing both MAT- and MIX-HET to WT-control rats, decreased levels of DAT and HDAC4 were evident in the ventral-striatum; moreover, with respect to MIX-HET subjects, MAT-HET ones displayed increased DAT density in dorsal-striatum. MAT-HET rats displayed region-specific changes in DAT expression, compared to "classical" MIX-HET subjects: greater DAT availability may elevate threshold for dopamine action. Further behavioral and epigenetic characterizations of MAT-HETs, together with deeper characterization of maternal roles, could help to explore parent-of-origin mechanisms for such a peculiar phenotype.
Collapse
Affiliation(s)
- Cristiana Carbone
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Brancato
- Dept Sciences of Health Promotion & Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Annalisa Adinolfi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Enrico Alleva
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Cannizzaro
- Dept Sciences of Health Promotion & Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Walter Adriani
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
66
|
Snyder MA, Gao WJ. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr Res 2020; 217:60-70. [PMID: 30979669 PMCID: PMC7258307 DOI: 10.1016/j.schres.2019.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder with cognitive deficits manifesting during early stages of the disease. Evidence suggests that genetic factors in combination with environmental insults lead to complex changes to glutamatergic, GABAergic, and dopaminergic systems. In particular, the N-methyl-d-aspartate receptor (NMDAR), a major glutamate receptor subtype, is implicated in both the disease progression and symptoms of SZ. NMDARs are critical for synaptic plasticity and cortical maturation, as well as learning and memory processes. In fact, any deviation from normal NMDAR expression and function can have devastating consequences. Surprisingly, there is little evidence from human patients that direct mutations of NMDAR genes contribute to SZ. One intriguing hypothesis is that epigenetic changes, which could result from early insults, alter protein expression and contribute to the NMDAR hypofunction found in SZ. Epigenetics is referred to as modifications that alter gene transcription without changing the DNA sequence itself. In this review, we first discuss how epigenetic changes to NMDAR genes could contribute to NMDAR hypofunction. We then explore how NMDAR hypofunction may contribute to epigenetic changes in other proteins or genes that lead to synaptic dysfunction and symptoms in SZ. We argue that NMDAR hypofunction occurs in early stage of the disease, and it may consequentially initiate GABA and dopamine deficits. Therefore, targeting NMDAR dysfunction during the early stages would be a promising avenue for prevention and therapeutic intervention of cognitive and social deficits that remain untreatable. Finally, we discuss potential questions regarding the epigenetic of SZ and future directions for research.
Collapse
Affiliation(s)
- Melissa A. Snyder
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8M5,Correspondence: Wen-Jun Gao, M.D., Ph.D., Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, Phone: (215) 991-8907, Fax: (215) 843-9802, ; Melissa A. Snyder, Ph.D.,
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America.
| |
Collapse
|
67
|
Schlachetzki JCM, Toda T, Mertens J. When function follows form: Nuclear compartment structure and the epigenetic landscape of the aging neuron. Exp Gerontol 2020; 133:110876. [PMID: 32068088 DOI: 10.1016/j.exger.2020.110876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
The human brain is affected by cellular aging. Neurons are primarily generated during embryogenesis and early life with a limited capacity for renewal and replacement, making them some of the oldest cells in the human body. Our present understanding of neurodegenerative diseases points towards advanced neuronal age as a prerequisite for the development of these disorders. While significant progress has been made in understanding the relationship between aging and neurological disease, it will be essential to delve further into the molecular mechanisms of neuronal aging in order to develop therapeutic interventions targeting age-related brain dysfunction. In this mini review, we highlight recent findings on the relationship between the aging of nuclear structures and changes in the epigenetic landscape during neuronal aging and disease.
Collapse
Affiliation(s)
- Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tomohisa Toda
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| | - Jerome Mertens
- Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, Austria; Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
68
|
Qi X, Wen Y, Li P, Liang C, Cheng B, Ma M, Cheng S, Zhang L, Liu L, Kafle OP, Zhang F. An integrative analysis of genome-wide association study and regulatory SNP annotation datasets identified candidate genes for bipolar disorder. Int J Bipolar Disord 2020; 8:6. [PMID: 32009227 PMCID: PMC6995798 DOI: 10.1186/s40345-019-0170-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
Background Bipolar disorder (BD) is a complex mood disorder. The genetic mechanism of BD remains largely unknown. Methods We conducted an integrative analysis of genome-wide association study (GWAS) and regulatory SNP (rSNP) annotation datasets, including transcription factor binding regions (TFBRs), chromatin interactive regions (CIRs), mature microRNA regions (miRNAs), long non-coding RNA regions (lncRNAs), topologically associated domains (TADs) and circular RNAs (circRNAs). Firstly, GWAS dataset 1 of BD (including 20,352 cases and 31,358 controls) and GWAS dataset 2 of BD (including 7481 BD patients and 9250 controls) were integrated with rSNP annotation database to obtain BD associated SNP regulatory elements and SNP regulatory element-target gene (E–G) pairs, respectively. Secondly, a comparative analysis of the two datasets results was conducted to identify the common rSNPs and also their target genes. Then, gene sets enrichment analysis (FUMA GWAS) and HumanNet-XC analysis were conducted to explore the functional relevance of identified target genes with BD. Results After the integrative analysis, we identified 52 TFBRs target genes, 44 TADs target genes, 55 CIRs target genes and 21 lncRNAs target genes for BD, such as ITIH4 (Pdataset1 = 6.68 × 10−8, Pdataset2 = 6.64 × 10−7), ITIH3 (Pdataset1 = 1.09 × 10−8, Pdataset2 = 2.00 × 10−7), SYNE1 (Pdataset1 = 1.80 × 10−6, Pdataset2 = 4.33 × 10−9) and OPRM1 (Pdataset1 = 1.80 × 10−6, Pdataset2 = 4.33 × 10−9). Conclusion We conducted a large-scale integrative analysis of GWAS and 6 common rSNP information datasets to explore the potential roles of rSNPs in the genetic mechanism of BD. We identified multiple candidate genes for BD, supporting the importance of rSNP in the development of BD.
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Om Prakash Kafle
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an, 710061, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
69
|
Filipi T, Hermanova Z, Tureckova J, Vanatko O, Anderova M. Glial Cells-The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment. J Clin Med 2020; 9:E261. [PMID: 31963681 PMCID: PMC7020059 DOI: 10.3390/jcm9010261] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease, which is characterized by the degeneration of motor neurons in the motor cortex and the spinal cord and subsequently by muscle atrophy. To date, numerous gene mutations have been linked to both sporadic and familial ALS, but the effort of many experimental groups to develop a suitable therapy has not, as of yet, proven successful. The original focus was on the degenerating motor neurons, when researchers tried to understand the pathological mechanisms that cause their slow death. However, it was soon discovered that ALS is a complicated and diverse pathology, where not only neurons, but also other cell types, play a crucial role via the so-called non-cell autonomous effect, which strongly deteriorates neuronal conditions. Subsequently, variable glia-based in vitro and in vivo models of ALS were established and used for brand-new experimental and clinical approaches. Such a shift towards glia soon bore its fruit in the form of several clinical studies, which more or less successfully tried to ward the unfavourable prognosis of ALS progression off. In this review, we aimed to summarize current knowledge regarding the involvement of each glial cell type in the progression of ALS, currently available treatments, and to provide an overview of diverse clinical trials covering pharmacological approaches, gene, and cell therapies.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| |
Collapse
|
70
|
Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci 2020; 243:117278. [PMID: 31926248 DOI: 10.1016/j.lfs.2020.117278] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Reversal of aging symptoms and related disorders are the challenging task where epigenetic is a crucial player that includes DNA methylation, histone modification; chromatin remodeling and regulation that are linked to the progression of various neurodegenerative disorders (NDDs). Overexpression of various histone deacetylase (HDACs) can activate Glycogen synthase kinase 3 which promotes the hyperphosphorylation of tau and inhibits its degradation. While HDAC is important for maintaining the neuronal morphology and brain homeostasis, at the same time, these enzymes are promoting neurodegeneration, if it is deregulated. Different experimental models have also confirmed the neuroprotective effects caused by HDAC enzymes through the regulation of neuronal apoptosis, inflammatory response, DNA damage, cell cycle regulation, and metabolic dysfunction. Apart from transcriptional regulation, protein-protein interaction, histone post-translational modifications, deacetylation mechanism of non-histone protein and direct association with disease proteins have been linked to neuronal imbalance. Histone deacetylases inhibitors (HDACi) can be able to alter gene expression and shown its efficacy on experimental models, and in clinical trials for NDD's and found to be a very promising therapeutic agent with certain limitation, for instance, non-specific target effect, isoform-selectivity, specificity, and limited number of predicted biomarkers. Herein, we discussed (i) the catalytic mechanism of the deacetylation process of various HDAC's in in vivo and in vitro experimental models, (ii) how HDACs are participating in neuroprotection as well as in neurodegeneration, (iii) a comprehensive role of HDACi in maintaining neuronal homeostasis and (iv) therapeutic role of biomolecules to modulate HDACs.
Collapse
|
71
|
Zhuang K, Huang C, Leng L, Zheng H, Gao Y, Chen G, Ji Z, Sun H, Hu Y, Wu D, Shi M, Li H, Zhao Y, Zhang Y, Xue M, Bu G, Huang TY, Xu H, Zhang J. Neuron-Specific Menin Deletion Leads to Synaptic Dysfunction and Cognitive Impairment by Modulating p35 Expression. Cell Rep 2019; 24:701-712. [PMID: 30021166 DOI: 10.1016/j.celrep.2018.06.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/03/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022] Open
Abstract
Menin (MEN1) is a critical modulator of tissue development and maintenance. As such, MEN1 mutations are associated with multiple endocrine neoplasia type 1 (MEN1) syndrome. Although menin is abundantly expressed in the nervous system, little is known with regard to its function in the adult brain. Here, we demonstrate that neuron-specific deletion of Men1 (CcKO) affects dendritic branching and spine formation, resulting in defects in synaptic function, learning, and memory. Furthermore, we find that menin binds to the p35 promoter region to facilitate p35 transcription. As a primary Cdk5 activator, p35 is expressed mainly in neurons and is critical for brain development and synaptic plasticity. Restoration of p35 expression in the hippocampus and cortex of Men1 CcKO mice rescues synaptic and cognitive deficits associated with Men1 deletion. These results reveal a critical role for menin in synaptic and cognitive function by modulating the p35-Cdk5 pathway.
Collapse
Affiliation(s)
- Kai Zhuang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Changquan Huang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Lige Leng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuehong Gao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Guimiao Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhilin Ji
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Hu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Di Wu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Meng Shi
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Huifang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China; Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yunwu Zhang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Maoqiang Xue
- Department of Basic Medical Science, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China; Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
72
|
Kaur N, Fang YC, Lee HY, Singh A, Nepali K, Lin MH, Yeh TK, Lai MJ, Chan L, Tu YK, Banerjee S, Hu CJ, Liou JP. Protective effects of 10,11-dihydro-5H-dibenzo[b,f]azepine hydroxamates on vascular cognitive impairment. Eur J Med Chem 2019; 187:111915. [PMID: 31838329 DOI: 10.1016/j.ejmech.2019.111915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
A series of 10,11-dihydro-5H-dibenzo [b,f]azepine hydroxamates (4-15) were synthesized, behaving as histone deacetylase inhibitors, and examined for their influence on vascular cognitive impairment (VCI), which correlated with dementia. The results revealed that (E)-3-(4-(((3-(3-chloro-10,11-dihydro-5H-dibenzo [b,f]azepin-5-yl)propyl)amino)methyl)phenyl)-N-hydroxy-acrylamide (13) increases cerebral blood flow (CBF), attenuates cognitive impairment, and improves hippocampal atrophy in in vivo study. It is also able to increase the level of histone acetylation (H3K14 or H4K5) in the cortex and hippocampus of chronic cerebral hypoperfusion (CCH) mice; as a result, it could be a potential HDAC inhibitor for the treatment of vascular cognitive impairment.
Collapse
Affiliation(s)
- Navdeep Kaur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yao-Ching Fang
- Taipei Neuroscience Institute, Taipei Medical University, Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Arshdeep Singh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institute, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Jung Lai
- TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yong-Kwang Tu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taiwan
| | - Suddhasatwa Banerjee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan; TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan.
| |
Collapse
|
73
|
Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, García-Barroso C, Ugarte A, Estella-Hermoso de Mendoza A, Sáez E, Espelosin M, Ursua S, Tan H, Wu W, Xu M, Pineda-Lucena A, Garcia-Osta A, Oyarzabal J. Multitarget Approach for the Treatment of Alzheimer's Disease: Inhibition of Phosphodiesterase 9 (PDE9) and Histone Deacetylases (HDACs) Covering Diverse Selectivity Profiles. ACS Chem Neurosci 2019; 10:4076-4101. [PMID: 31441641 DOI: 10.1021/acschemneuro.9b00303] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Here, we present a series of dual-target phosphodiesterase 9 (PDE9) and histone deacetylase (HDAC) inhibitors devised as pharmacological tool compounds for assessing the implications of these two targets in Alzheimer's disease (AD). These novel inhibitors were designed taking into account the key pharmacophoric features of known selective PDE9 inhibitors as well as privileged chemical structures, bearing zinc binding groups (hydroxamic acids and ortho-amino anilides) that hit HDAC targets. These substituents were selected according to rational criteria and previous knowledge from our group to explore diverse HDAC selectivity profiles (pan-HDAC, HDAC6 selective, and class I selective) that were confirmed in biochemical screens. Their functional response in inducing acetylation of histone and tubulin and phosphorylation of cAMP response element binding (CREB) was measured as a requisite for further progression into complete in vitro absorption, distribution, metabolism and excretion (ADME) and in vivo brain penetration profiling. Compound 31b, a selective HDAC6 inhibitor with acceptable brain permeability, was chosen for assessing in vivo efficacy of these first-in-class inhibitors, as well as studying their mode of action (MoA).
Collapse
Affiliation(s)
| | | | - Mar Cuadrado-Tejedor
- Pathology, Anatomy and Physiology Department, School of Medicine, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | | | | | | | | | | | | | - Maria Espelosin
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | - Susana Ursua
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | - Haizhong Tan
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | - Wei Wu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | - Musheng Xu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | | | - Ana Garcia-Osta
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | | |
Collapse
|
74
|
McIntyre RL, Daniels EG, Molenaars M, Houtkooper RH, Janssens GE. From molecular promise to preclinical results: HDAC inhibitors in the race for healthy aging drugs. EMBO Mol Med 2019; 11:e9854. [PMID: 31368626 PMCID: PMC6728603 DOI: 10.15252/emmm.201809854] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 06/13/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Reversing or slowing the aging process brings great promise to treat or prevent age‐related disease, and targeting the hallmarks of aging is a strategy to achieve this. Epigenetics affects several if not all of the hallmarks of aging and has therefore emerged as a central target for intervention. One component of epigenetic regulation involves histone deacetylases (HDAC), which include the “classical” histone deacetylases (of class I, II, and IV) and sirtuin deacetylases (of class III). While targeting sirtuins for healthy aging has been extensively reviewed elsewhere, this review focuses on pharmacologically inhibiting the classical HDACs to promote health and longevity. We describe the theories of how classical HDAC inhibitors may operate to increase lifespan, supported by studies in model organisms. Furthermore, we explore potential mechanisms of how HDAC inhibitors may have such a strong grasp on health and longevity, summarizing their links to other hallmarks of aging. Finally, we show the wide range of age‐related preclinical disease models, ranging from neurodegeneration to heart disease, diabetes to sarcopenia, which show improvement upon HDAC inhibition.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eileen G Daniels
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
75
|
Citraro R, Leo A, De Caro C, Nesci V, Gallo Cantafio ME, Amodio N, Mattace Raso G, Lama A, Russo R, Calignano A, Tallarico M, Russo E, De Sarro G. Effects of Histone Deacetylase Inhibitors on the Development of Epilepsy and Psychiatric Comorbidity in WAG/Rij Rats. Mol Neurobiol 2019; 57:408-421. [PMID: 31368023 DOI: 10.1007/s12035-019-01712-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023]
Abstract
Epigenetic mechanisms, such as alterations in histone acetylation based on histone deacetylases (HDACs) activity, have been linked not only to normal brain function but also to several brain disorders including epilepsy and the epileptogenic process. In WAG/Rij rats, a genetic model of absence epilepsy, epileptogenesis and mild-depression comorbidity, we investigated the effects of two HDAC inhibitors (HDACi), namely sodium butyrate (NaB), valproic acid (VPA) and their co-administration, on the development of absence seizures and related psychiatric/neurologic comorbidities following two different experimental paradigms. Treatment effects have been evaluated by EEG recordings (EEG) and behavioural tests at different time points. Prolonged and daily VPA and NaB treatment, started before absence seizure onset (P30), significantly reduced the development of absence epilepsy showing antiepileptogenic effects. These effects were enhanced by NaB/VPA co-administration. Furthermore, early-chronic HDACi treatment improved depressive-like behaviour and cognitive performance 1 month after treatment withdrawal. WAG/Rij rats of 7 months of age showed reduced acetylated levels of histone H3 and H4, analysed by Western Blotting of homogenized brain, in comparison to WAG/Rij before seizure onset (P30). The brain histone acetylation increased significantly during treatment with NaB or VPA alone and more markedly during co-administration. We also observed decreased expression of both HDAC1 and 3 following HDACi treatment compared to control group. Our results suggest that histone modifications may have a crucial role in the development of epilepsy and early treatment with HDACi might be a possible strategy for preventing epileptogenesis also affecting behavioural comorbidities.
Collapse
Affiliation(s)
- Rita Citraro
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Antonio Leo
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Carmen De Caro
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Valentina Nesci
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Maria E Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Martina Tallarico
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy.,Pharmacology Section, CNR, Institute of Neurological Sciences, Roccelletta di Borgia, Catanzaro, Italy
| | - Emilio Russo
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy.
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| |
Collapse
|
76
|
Li X, Inoue T, Hayashi M, Maejima H. Exercise enhances the expression of brain-derived neurotrophic factor in the hippocampus accompanied by epigenetic alterations in senescence-accelerated mice prone 8. Neurosci Lett 2019; 706:176-181. [DOI: 10.1016/j.neulet.2019.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 05/16/2019] [Indexed: 02/05/2023]
|
77
|
Maejima H, Inoue T, Takamatsu Y. Therapeutic exercise accompanied by neuronal modulation to enhance neurotrophic factors in the brain with central nervous system disorders. Phys Ther Res 2019; 22:38-43. [PMID: 31289711 DOI: 10.1298/ptr.r0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Exercise is a primary therapeutic regimen in physical therapy to rehabilitate the motor function of patients with central nervous system (CNS) disorders such as cerebrovascular accident (CVA). Furthermore, exercise positively contributes to cognitive function related to neuroplasticity and neuroprotection in the hippocampus. Neurotrophins play a crucial role in neuroplasticity, neurogenesis, and neuroprotection in the CNS. Exercise enhances the expression of neurotrophins in the brain. Thus, novel regimens for kinesiotherapy in CNS disorders to further enhance exercise-induced expression are expected. In this review, we described three novel regimens for kinesiotherapy in CNS disorders based on the interaction between exercise and pharmacological treatment with the idea of "inhibition of inhibition" in the CNS.
Collapse
Affiliation(s)
- Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University
| | | | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University
| |
Collapse
|
78
|
Lawlor L, Yang XB. Harnessing the HDAC-histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering. Int J Oral Sci 2019; 11:20. [PMID: 31201303 PMCID: PMC6572769 DOI: 10.1038/s41368-019-0053-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
There are large knowledge gaps regarding how to control stem cells growth and differentiation. The limitations of currently available technologies, such as growth factors and/or gene therapies has led to the search of alternatives. We explore here how a cell's epigenome influences determination of cell type, and potential applications in tissue engineering. A prevalent epigenetic modification is the acetylation of DNA core histone proteins. Acetylation levels heavily influence gene transcription. Histone deacetylase (HDAC) enzymes can remove these acetyl groups, leading to the formation of a condensed and more transcriptionally silenced chromatin. Histone deacetylase inhibitors (HDACis) can inhibit these enzymes, resulting in the increased acetylation of histones, thereby affecting gene expression. There is strong evidence to suggest that HDACis can be utilised in stem cell therapies and tissue engineering, potentially providing novel tools to control stem cell fate. This review introduces the structure/function of HDAC enzymes and their links to different tissue types (specifically bone, cardiac, neural tissues), including the history, current status and future perspectives of using HDACis for stem cell research and tissue engineering, with particular attention paid to how different HDAC isoforms may be integral to this field.
Collapse
Affiliation(s)
- Liam Lawlor
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Xuebin B Yang
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK.
| |
Collapse
|
79
|
Siddiqui SA, Singh S, Ugale R, Ranjan V, Kanojia R, Saha S, Tripathy S, Kumar S, Mehrotra S, Modi DR, Prakash A. Regulation of HDAC1 and HDAC2 during consolidation and extinction of fear memory. Brain Res Bull 2019; 150:86-101. [PMID: 31108155 DOI: 10.1016/j.brainresbull.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/02/2019] [Accepted: 05/15/2019] [Indexed: 01/03/2023]
Abstract
Histone deacetylases (HDACs) regulate gene expression epigenetically through synchronized removal of acetyl groups from histones required towards memory consolidation. Moreover, dysregulated epigenetic machinery during fear or extinction learning may result in altered expression of some of these genes and result in Post Traumatic Stress Disorder (PTSD). In the present study, region-specific expression of Histone deacetylase 1 (HDAC1) and Histone deacetylase 2 (HDAC2) was correlated to the acetylation of histones H3 and H4 and the resultant conditioned response, in rats undergone fear and extinction learning. The neuronal activation, histone acetylation at H3/H4 and expression of HDAC1/HDAC2 in centrolateral amygdala (CeL) and centromedial amygdala (CeM) of central Amygdala (CeA) and prelimbic (PL) and infralimbic (IL) of Prefrontal cortex (PFC) were found to be associated in a differential manner following fear and extinction learning. Moreover in CeM, the main output of the fear circuitry, the level of HDAC1 was down-regulated following conditioning and up-regulated following extinction as opposed to which HDAC2 was down-regulated in CeM following conditioning but not following extinction. Furthermore, in CeL the HDAC1 was upregulated and HDAC2 was downregulated following conditioning and extinction. This has important implications in speculating of the role of HDACs in fear memory consolidation and its extinction.
Collapse
Affiliation(s)
| | - Sanjay Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Rajesh Ugale
- Department of Pharmaceutical Sciences, RTM Nagpur University, Nagpur, India
| | - Vandana Ranjan
- Department of Biochemistry, RML University, Faizabad, India
| | - Rohit Kanojia
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sudipta Saha
- Department of Pharmaceutical Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sukanya Tripathy
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shiv Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Sudhir Mehrotra
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Dinesh Raj Modi
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India; Department of Biotech, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
80
|
Nguyen KV. Potential epigenomic co-management in rare diseases and epigenetic therapy. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:752-780. [PMID: 31079569 DOI: 10.1080/15257770.2019.1594893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to highlight the impact of the alternative splicing process on human disease. Epigenetic regulation determines not only what parts of the genome are expressed but also how they are spliced. The recent progress in the field of epigenetics has important implications for the study of rare diseases. The role of epigenetics in rare diseases is a key issue in molecular physiology and medicine because not only rare diseases can benefit from epigenetic research, but can also provide useful principles for other common and complex disorders such as cancer, cardiovascular, type 2 diabetes, obesity, and neurological diseases. Predominantly, epigenetic modifications include DNA methylation, histone modification, and RNA-associated silencing. These modifications in the genome regulate numerous cellular activities. Disruption of epigenetic regulation process can contribute to the etiology of numerous diseases during both prenatal and postnatal life. Here, I discuss current knowledge about this matter including some current epigenetic therapies and future directions in the field by emphasizing on the RNA-based therapy via antisense oligonucleotides to correct splicing defects.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- a Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego , San Diego , CA , USA.,b Department of Pediatrics, UC San Diego School of Medicine , La Jolla , CA , USA
| |
Collapse
|
81
|
Jangra A, Choi SA, Koh EJ, Moon YJ, Wang KC, Phi JH, Lee JY, Kim SK. Panobinostat, a histone deacetylase inhibitor, rescues the angiogenic potential of endothelial colony-forming cells in moyamoya disease. Childs Nerv Syst 2019; 35:823-831. [PMID: 30815722 DOI: 10.1007/s00381-019-04099-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/18/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE Moyamoya disease (MMD) is one of the most common causes of pediatric stroke. We found defective angiogenic function and downregulation of retinaldehyde dehydrogenase 2 (RALDH2) in MMD endothelial colony-forming cells (ECFCs). Downregulation of RALDH2 mRNA was caused by decreased binding of acetyl-histone H3 (Ac-H3) to the RALDH2 promoter. In this study, we evaluated the feasibility of using a histone deacetylase (HDAC) inhibitor, panobinostat, to upregulate RALDH2 expression and restore the angiogenic potential of MMD ECFCs. METHODS ECFCs from healthy normal controls and patients with MMD were isolated and characterized. After panobinostat treatment, western blot, tube formation, and chromatin immunoprecipitation (ChIP) assays were conducted in vitro. A matrigel plug assay was performed in vivo. RESULTS Panobinostat increased the levels of Ac-H3 and Ac-H4 in both normal and MMD ECFCs but was much more effective in MMD ECFCs. Increased expression of RALDH2 by panobinostat was observed only in MMD ECFCs. Panobinostat increased the tube formation of both normal and MMD ECFCs in vitro and in vivo, but the effect was greater with MMD ECFCs. CONCLUSIONS We demonstrated that panobinostat increases the angiogenic ability of MMD ECFCs by regulating RALDH2 acetylation. Our results suggest that panobinostat might be a potent therapeutic option for MMD patients.
Collapse
Affiliation(s)
- Anshika Jangra
- Division of Pediatric Neurosurgery, Seoul Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Seoul Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Eun Jung Koh
- Division of Pediatric Neurosurgery, Seoul Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Youn Joo Moon
- Division of Pediatric Neurosurgery, Seoul Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Seoul Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Seoul Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Seoul Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea. .,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
82
|
Zheng Y, Liu A, Wang ZJ, Cao Q, Wang W, Lin L, Ma K, Zhang F, Wei J, Matas E, Cheng J, Chen GJ, Wang X, Yan Z. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain 2019; 142:787-807. [PMID: 30668640 PMCID: PMC6391616 DOI: 10.1093/brain/awy354] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/01/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
Epigenetic dysregulation, which leads to the alteration of gene expression in the brain, is suggested as one of the key pathophysiological bases of ageing and neurodegeneration. Here we found that, in the late-stage familial Alzheimer's disease (FAD) mouse model, repressive histone H3 dimethylation at lysine 9 (H3K9me2) and euchromatic histone methyltransferases EHMT1 and EHMT2 were significantly elevated in the prefrontal cortex, a key cognitive region affected in Alzheimer's disease. Elevated levels of H3K9me2 were also detected in the prefrontal cortex region of post-mortem tissues from human patients with Alzheimer's disease. Concomitantly, H3K9me2 at glutamate receptors was increased in prefrontal cortex of aged FAD mice, which was linked to the diminished transcription, expression and function of AMPA and NMDA receptors. Treatment of FAD mice with specific EHMT1/2 inhibitors reversed histone hyper-methylation and led to the recovery of glutamate receptor expression and excitatory synaptic function in prefrontal cortex and hippocampus. Chromatin immunoprecipitation-sequencing (ChIP-seq) data indicated that FAD mice exhibited genome-wide increase of H3K9me2 enrichment at genes involved in neuronal signalling (including glutamate receptors), which was reversed by EHMT1/2 inhibition. Moreover, the impaired recognition memory, working memory, and spatial memory in aged FAD mice were rescued by the treatment with EHMT1/2 inhibitors. These results suggest that disrupted epigenetic regulation of glutamate receptor transcription underlies the synaptic and cognitive deficits in Alzheimer's disease, and targeting histone methylation enzymes may represent a novel therapeutic strategy for this prevalent neurodegenerative disorder.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, P.R.China
| | - Aiyi Liu
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, P.R.China
| | - Zi-Jun Wang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- VA Western New York Healthcare System, Buffalo, NY, USA
| | - Qing Cao
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Wei Wang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lin Lin
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kaijie Ma
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- VA Western New York Healthcare System, Buffalo, NY, USA
| | - Freddy Zhang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jing Wei
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- VA Western New York Healthcare System, Buffalo, NY, USA
| | - Emmanuel Matas
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jia Cheng
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, P.R.China
| | - Xiaomin Wang
- Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, P.R.China
| | - Zhen Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- VA Western New York Healthcare System, Buffalo, NY, USA
| |
Collapse
|
83
|
Histone deacetylase 3 inhibitors in learning and memory processes with special emphasis on benzamides. Eur J Med Chem 2019; 166:369-380. [DOI: 10.1016/j.ejmech.2019.01.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
|
84
|
Binder EB. [Environment and epigenetics]. DER NERVENARZT 2019; 90:107-113. [PMID: 30643952 DOI: 10.1007/s00115-018-0657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Environmental factors are among the strongest risk factors for psychiatric disorders. Differences in exposure to such environments have been associated with lasting biological changes. In recent years epigenetic mechanisms have been brought to the forefront as central in mediating a lasting embedding of environmental risk factors. This article first summarizes the different levels of epigenetic regulation and then focuses on mechanisms transducing environmental signals into lasting epigenetic changes. This is followed by examples of how environmentally induced epigenetic changes relate to risk and resilience to psychiatric disorders and their treatment.
Collapse
Affiliation(s)
- Elisabeth B Binder
- Abteilung für translationale Forschung für Psychiatrie, Max-Planck-Institut für Psychiatrie, Kraepelinstr. 2-10, 80804, München, Deutschland. .,Dept. of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA.
| |
Collapse
|
85
|
Du Z, Hua J, Song D. A Peptidomic Analysis of the Potential Comorbidity Biomarkers for Type 2 Diabetes Mellitus and Alzheimer’s Disease. Health (London) 2019. [DOI: 10.4236/health.2019.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
86
|
Affiliation(s)
- Andre Fischer
- Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
- Department for Systems Medicine and Brain Diseases, German Center for Neurodegenerative Diseases (DZNE) site Göttingen, Göttingen, Germany.
| |
Collapse
|
87
|
Amin SA, Adhikari N, Jha T, Ghosh B. Designing potential HDAC3 inhibitors to improve memory and learning. J Biomol Struct Dyn 2018; 37:2133-2142. [PMID: 30044204 DOI: 10.1080/07391102.2018.1477625] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sk. Abdul Amin
- Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Natural Science Laboratory, Jadavpur University, Kolkata, West Bengal, India
| | - Nilanjan Adhikari
- Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Natural Science Laboratory, Jadavpur University, Kolkata, West Bengal, India
| | - Tarun Jha
- Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Natural Science Laboratory, Jadavpur University, Kolkata, West Bengal, India
| | - Balaram Ghosh
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, India
| |
Collapse
|
88
|
Gilbert TM, Zürcher NR, Wu CJ, Bhanot A, Hightower BG, Kim M, Albrecht DS, Wey HY, Schroeder FA, Rodriguez-Thompson A, Morin TM, Hart KL, Pellegrini AM, Riley MM, Wang C, Stufflebeam SM, Haggarty SJ, Holt DJ, Loggia ML, Perlis RH, Brown HE, Roffman JL, Hooker JM. PET neuroimaging reveals histone deacetylase dysregulation in schizophrenia. J Clin Invest 2018; 129:364-372. [PMID: 30530989 DOI: 10.1172/jci123743] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with schizophrenia (SCZ) experience chronic cognitive deficits. Histone deacetylases (HDACs) are enzymes that regulate cognitive circuitry; however, the role of HDACs in cognitive disorders, including SCZ, remains unknown in humans. We previously determined that HDAC2 mRNA levels were lower in dorsolateral prefrontal cortex (DLPFC) tissue from donors with SCZ compared with controls. Here we investigated the relationship between in vivo HDAC expression and cognitive impairment in patients with SCZ and matched healthy controls using [11C]Martinostat positron emission tomography (PET). METHODS In a case-control study, relative [11C]Martinostat uptake was compared between 14 patients with SCZ or schizoaffective disorder (SCZ/SAD) and 17 controls using hypothesis-driven region-of-interest analysis and unbiased whole brain voxel-wise approaches. Clinical measures, including the MATRICS consensus cognitive battery, were administered. RESULTS Relative HDAC expression was lower in the DLPFC of patients with SCZ/SAD compared with controls, and HDAC expression positively correlated with cognitive performance scores across groups. Patients with SCZ/SAD also showed lower relative HDAC expression in the dorsomedial prefrontal cortex and orbitofrontal gyrus, and higher relative HDAC expression in the cerebral white matter, pons, and cerebellum compared with controls. CONCLUSIONS These findings provide in vivo evidence of HDAC dysregulation in patients with SCZ and suggest that altered HDAC expression may impact cognitive function in humans. FUNDING National Institute of Mental Health (NIMH), Brain and Behavior Foundation, Massachusetts General Hospital (MGH), Athinoula A. Martinos Center for Biomedical Imaging, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH Shared Instrumentation Grant Program.
Collapse
Affiliation(s)
- Tonya M Gilbert
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Christine J Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Anisha Bhanot
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Baileigh G Hightower
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Minhae Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Daniel S Albrecht
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Frederick A Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Anais Rodriguez-Thompson
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Thomas M Morin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | | | | | - Misha M Riley
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Stephen J Haggarty
- Center for Genomic Medicine.,Department of Neurology, and.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daphne J Holt
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Roy H Perlis
- Center for Genomic Medicine.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Hannah E Brown
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua L Roffman
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
89
|
Nakagawa T, Yoneda M, Higashi M, Ohkuma Y, Ito T. Enhancer function regulated by combinations of transcription factors and cofactors. Genes Cells 2018; 23:808-821. [PMID: 30092612 DOI: 10.1111/gtc.12634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Regulation of the expression of diverse genes is essential for making possible the complexity of higher organisms, and the temporal and spatial regulation of gene expression allows for the alteration of cell types and growth patterns. A critical component of this regulation is the DNA sequence-specific binding of transcription factors (TFs). However, most TFs do not independently participate in gene transcriptional regulation, because they lack an effector function. Instead, TFs are thought to work by recruiting cofactors, including Mediator complex (Mediator), chromatin-remodeling complexes (CRCs), and histone-modifying complexes (HMCs). Mediator associates with the majority of transcribed genes and acts as an integrator of multiple signals. On the other hand, CRCs and HMCs are selectively recruited by TFs. Although all the pairings between TFs and CRCs or HMCs are not fully known, there are a growing number of established TF-CRC and TF-HMC combinations. In this review, we focused on the most important of these pairings and discuss how they control gene expression.
Collapse
Affiliation(s)
- Takeya Nakagawa
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Mitsuhiro Yoneda
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Miki Higashi
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Yoshiaki Ohkuma
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| |
Collapse
|
90
|
Ziemka-Nalecz M, Jaworska J, Sypecka J, Zalewska T. Histone Deacetylase Inhibitors: A Therapeutic Key in Neurological Disorders? J Neuropathol Exp Neurol 2018; 77:855-870. [DOI: 10.1093/jnen/nly073] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Jaworska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
91
|
Chen LC, Tseng HJ, Liu CY, Huang YY, Yen CC, Weng JR, Lu YL, Hou WC, Lin TE, Pan IH, Huang KK, Huang WJ, Hsu KC. Design of Diarylheptanoid Derivatives as Dual Inhibitors Against Class IIa Histone Deacetylase and β-amyloid Aggregation. Front Pharmacol 2018; 9:708. [PMID: 30018556 PMCID: PMC6037852 DOI: 10.3389/fphar.2018.00708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 01/11/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with multiple etiologies. Beta-amyloid (Aβ) self-aggregation and overexpression of class IIa histone deacetylases (HDACs) are strongly implicated with AD pathogenesis. In this study, a series of novel diarylheptanoid derivatives were designed, synthesized and evaluated for use as dual Aβ self-aggregation and class IIa HDAC inhibitors. Among these compounds, 4j, 5c, and 5e displayed effective inhibitions for Aβ self-aggregation, HDAC5 activity and HDAC7 activity with IC50 values of <10 μM. The compounds contain three common features: (1) a catechol or pyrogallol moiety, (2) a carbonyl linker and (3) an aromatic ring that can function as an HDAC cap and create hydrophobic interactions with Aβ1-42. Furthermore, compounds 4j, 5c, and 5e showed no significant cytotoxicity to human neuroblastoma SH-SY5Y cells and also exhibited neuroprotective effect against H2O2-induced toxicity. Overall, these promising in vitro data highlighted compounds 4j, 5c, and 5e as lead compounds that are worthy for further investigation.
Collapse
Affiliation(s)
- Liang-Chieh Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ju Tseng
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chang-Yi Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yun-Yi Huang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chung Yen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ru Weng
- Department of Marine Technology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yeh-Lin Lu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tony E Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - I-Horng Pan
- Herbal Medicinal Product Division, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Kuo-Kuei Huang
- Herbal Medicinal Product Division, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
92
|
Histone deacetylase inhibitor MS-275 restores social and synaptic function in a Shank3-deficient mouse model of autism. Neuropsychopharmacology 2018; 43:1779-1788. [PMID: 29760409 PMCID: PMC6006368 DOI: 10.1038/s41386-018-0073-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Autism is a neurodevelopmental disorder characterized by social deficits and repetitive behaviors. Genetic screening has identified synaptic, transcriptional, and chromatin genes disrupted in autistic patients. Haploinsufficiency of Shank3, which encodes a scaffold protein at glutamatergic synapses, is causally linked to autism. Using a Shank3-deficient mouse model that exhibits prominent autism-like phenotypes, we have found that histone acetylation in the prefrontal cortex (PFC) is abnormally low, which can be reversed by MS-275 (also known as Entinostat, SNDX-275), a class I histone deacetylase (HDAC) inhibitor that is selectively potent in PFC. A brief (3-day) treatment with MS-275 (i.p.) led to the sustained (11 days) rescue of autistic social preference deficits in Shank3-deficient mice, without altering locomotion, motor coordination, anxiety, or the increased grooming. MS-275 treatment also rescued the diminished NMDAR surface expression and NMDAR function induced by Shank3 deficiency. Moreover, F-actin at synapses was restored and the transcription of actin regulators was elevated by MS-275 treatment of Shank3-deficient mice, which may contribute to the recovery of actin-based NMDAR synaptic delivery. Taken together, these results suggest that MS-275 treatment could normalize the aberrant epigenetic regulation of genes, leading to the amelioration of synaptic and social deficits associated with autism.
Collapse
|
93
|
Abnormal modification of histone acetylation involved in depression-like behaviors of rats induced by chronically unpredicted stress. Neuroreport 2018; 28:1054-1060. [PMID: 28877103 DOI: 10.1097/wnr.0000000000000879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Depression is a complex multifactorial mental disorder. Its etiology involves many factors such as social environments, genetics, and psychology. Recent studies have shown that epigenetic modification may be associated with depression. Histone acetylation is one of the main mechanisms of epigenetic modification and plays an important role in genetic expression. In this study, we investigated the role of histone acetylation in the depression-like behaviors of rats undergoing chronically unpredicted stress (CUS) by detecting the mRNA and protein expression of histone deacetylase 5, cAMP-response element-binding protein, and the level of histone acetylated modification of H3K14, H3K23, and H4K16 in the prefrontal cortex and hippocampus of the rats. The results showed that significantly increasing depression-like behaviors were observed with a decreasing histone acetylated modification level, especially on acytelated-H3K14, acytelated-H3K23, and acytelated-H4K16, upregulating histone deacetylase 5 expression and downregulating cAMP-response element-binding protein expression in CUS rats, compared with control rats. The results indicate that the decrease in the histone acetylation modification level may be partly involved in the mechanism of depression-like behaviors of rats induced by CUS.
Collapse
|
94
|
Omar SH, Scott CJ, Hamlin AS, Obied HK. Biophenols: Enzymes (β-secretase, Cholinesterases, histone deacetylase and tyrosinase) inhibitors from olive (Olea europaea L.). Fitoterapia 2018; 128:118-129. [PMID: 29772299 DOI: 10.1016/j.fitote.2018.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/07/2018] [Accepted: 05/13/2018] [Indexed: 12/17/2022]
Abstract
The focus of this study was on inhibition of enzymes involved in the pathogenesis Alzheimer's disease (AD) including prime amyloid beta (Aβ) producing enzyme (β-secretase: BACE-1) and disease progression enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), histone deacetylase (HDAC), and tyrosinase along with the catecholamine L-DOPA, by using olive biophenols. Here we report the strongest inhibition of BACE-1 from rutin (IC50: 3.8 nM) followed by verbascoside (IC50: 6.3 nM) and olive fruit extract (IC50: 18 ng), respectively. Olive biophenol, quercetin exhibited strongest enzyme inhibitory activity against tyrosinase (IC50: 10.73 μM), BChE (IC50: 19.08 μM), AChE (IC50: 55.44 μM), and HDAC (IC50: 105.1 μM) enzymes. Furthermore, olive biophenol verbascoside (IC50: 188.6 μM), and hydroxytyrosol extreme extract (IC50: 66.22 μg) were showed the highest levels of inhibition against the HDAC enzyme. Neuroprotective capacity against levodopa-induced toxicity in neuroblastoma (SH-SY5Y) cells of olive biophenols were assessed, where rutin indicated the highest neuroprotection (74%), followed by caffeic acid (73%), and extract hydroxytyrosol extreme (97%), respectively. To the best of our knowledge, this is the first in vitro report on the enzymes inhibitory activity of olive biophenols. Taken together, our in vitro results data suggest that olive biophenols could be a promising natural inhibitor, which may reduce the enzyme-induced toxicity associated with the oxidative stress involved in the progression of AD. CHEMICAL COMPOUNDS USED IN THE STUDY Acetylthiocholine iodide (PubChem CID: 74629); S-Butyrylthiocholine chloride (PubChem CID: 3015121); Caffeic acid (PubChem CID: 689043); Dimethyl sulfoxide (DMSO) (PubChem: 679); L-3,4-Dihydroxyphenylalanine (L-DOPA) (PubChem CID: 6047); 5,5'-Dithiobis (2-nitrobenzoic acid) (DTNB) (PubChem CID: 6254); Epigallocatechin gallate (EGCG) (PubChem CID: 65064); Ethylenediamine tetraacetic acid (EDTA) (PubChem CID: 6049); Galantamine hydrobromide (PubChem CID: 121587); l-Glutamine (PubChem CID: 5961); Hydroxytyrosol (PubChem CID: 82755); Kojic acid (PubChem CID: 3840); Luteolin (PubChem CID: 5280445); Oleuropein (PubChem CID: 5281544); Penicillin-streptomycin (PubChem CID: 131715954); Quercetin (PubChem CID: 5280343); Rutin (PubChem CID: 5280805); Tris-HCl buffer (PubChem: 93573); Trypan blue (PubChem: 9562061).
Collapse
Affiliation(s)
- Syed Haris Omar
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Christopher J Scott
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Adam S Hamlin
- School of Science & Technology, University of New England, Armidale, NSW 2351, Australia
| | - Hassan K Obied
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
95
|
Huwiler A, Zangemeister-Wittke U. The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: Recent findings and new perspectives. Pharmacol Ther 2018; 185:34-49. [DOI: 10.1016/j.pharmthera.2017.11.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
96
|
Xu MY, Wong AHC. GABAergic inhibitory neurons as therapeutic targets for cognitive impairment in schizophrenia. Acta Pharmacol Sin 2018; 39:733-753. [PMID: 29565038 DOI: 10.1038/aps.2017.172] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/25/2017] [Indexed: 12/24/2022]
Abstract
Schizophrenia is considered primarily as a cognitive disorder. However, functional outcomes in schizophrenia are limited by the lack of effective pharmacological and psychosocial interventions for cognitive impairment. GABA (gamma-aminobutyric acid) interneurons are the main inhibitory neurons in the central nervous system (CNS), and they play a critical role in a variety of pathophysiological processes including modulation of cortical and hippocampal neural circuitry and activity, cognitive function-related neural oscillations (eg, gamma oscillations) and information integration and processing. Dysfunctional GABA interneuron activity can disrupt the excitatory/inhibitory (E/I) balance in the cortex, which could represent a core pathophysiological mechanism underlying cognitive dysfunction in schizophrenia. Recent research suggests that selective modulation of the GABAergic system is a promising intervention for the treatment of schizophrenia-associated cognitive defects. In this review, we summarized evidence from postmortem and animal studies for abnormal GABAergic neurotransmission in schizophrenia, and how altered GABA interneurons could disrupt neuronal oscillations. Next, we systemically reviewed a variety of up-to-date subtype-selective agonists, antagonists, positive and negative allosteric modulators (including dual allosteric modulators) for α5/α3/α2 GABAA and GABAB receptors, and summarized their pro-cognitive effects in animal behavioral tests and clinical trials. Finally, we also discuss various representative histone deacetylases (HDAC) inhibitors that target GABA system through epigenetic modulations, GABA prodrug and presynaptic GABA transporter inhibitors. This review provides important information on current potential GABA-associated therapies and future insights for development of more effective treatments.
Collapse
|
97
|
Restoring Tip60 HAT/HDAC2 Balance in the Neurodegenerative Brain Relieves Epigenetic Transcriptional Repression and Reinstates Cognition. J Neurosci 2018; 38:4569-4583. [PMID: 29654189 DOI: 10.1523/jneurosci.2840-17.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/26/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Cognitive decline is a debilitating hallmark during preclinical stages of Alzheimer's disease (AD), yet the causes remain unclear. Because histone acetylation homeostasis is critical for mediating epigenetic gene control throughout neuronal development, we postulated that its misregulation contributes to cognitive impairment preceding AD pathology. Here, we show that disruption of Tip60 histone acetlytransferase (HAT)/histone deacetylase 2 (HDAC2) homeostasis occurs early in the brain of an AD-associated amyloid precursor protein (APP) Drosophila model and triggers epigenetic repression of neuroplasticity genes well before Aβ plaques form in male and female larvae. Repressed genes display enhanced HDAC2 binding and reduced Tip60 and histone acetylation enrichment. Increasing Tip60 in the AD-associated APP brain restores Tip60 HAT/HDAC2 balance by decreasing HDAC2 levels, reverses neuroepigenetic alterations to activate synaptic plasticity genes, and reinstates brain morphology and cognition. Such Drosophila neuroplasticity gene epigenetic signatures are conserved in male and female mouse hippocampus and their expression and Tip60 function is compromised in hippocampus from AD patients. We suggest that Tip60 HAT/HDAC2-mediated epigenetic gene disruption is a critical initial step in AD that is reversed by restoring Tip60 in the brain.SIGNIFICANCE STATEMENT Mild cognitive impairment is a debilitating hallmark during preclinical stages of Alzheimer's disease (AD), yet its causes remain unclear. Although recent findings support elevated histone deacetylase 2 (HDAC2) as a cause for epigenetic repression of synaptic genes that contribute to cognitive deficits, whether alterations in histone acetlytransferase (HAT) levels that counterbalance HDAC2 repressor action occur and the identity of these HATs remain unknown. We demonstrate that disruption of Tip60 HAT/HDAC2 homeostasis occurs early in the AD Drosophila brain and triggers epigenetic repression of neuroplasticity genes before Aβ plaques form. Increasing Tip60 in the AD brain restores Tip60 HAT/HDAC2 balance, reverses neuroepigenetic alterations to activate synaptic genes, and reinstates brain morphology and cognition. Our data suggest that disruption of the Tip60 HAT/HDAC2 balance is a critical initial step in AD.
Collapse
|
98
|
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| |
Collapse
|
99
|
Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, García-Barroso C, Ugarte A, Estella-Hermoso de Mendoza A, Sáez E, Espelosin M, Ursua S, Haizhong T, Wei W, Musheng X, Garcia-Osta A, Oyarzabal J. Design, synthesis, biological evaluation and in vivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem 2018; 150:506-524. [PMID: 29549837 DOI: 10.1016/j.ejmech.2018.03.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023]
Abstract
We have identified chemical probes that act as dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors (>1 log unit difference versus class I HDACs) to decipher the contribution of HDAC isoforms to the positive impact of dual-acting PDE5 and HDAC inhibitors on mouse models of Alzheimer's disease (AD) and fine-tune this systems therapeutics approach. Structure- and knowledge-based approaches led to the design of first-in-class molecules with the desired target compound profile: dual PDE5 and HDAC6-selective inhibitors. Compound 44b, which fulfilled the biochemical, functional and ADME-Tox profiling requirements and exhibited adequate pharmacokinetic properties, was selected as pharmacological tool compound and tested in a mouse model of AD (Tg2576) in vivo.
Collapse
Affiliation(s)
- Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Juan A Sánchez-Arias
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Mar Cuadrado-Tejedor
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain; Anatomy Department, School of Medicine, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain
| | - Irene de Miguel
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Marta Pérez-González
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Carolina García-Barroso
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Ana Ugarte
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Ander Estella-Hermoso de Mendoza
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Elena Sáez
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Maria Espelosin
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Susana Ursua
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Tan Haizhong
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, 4th Avenue, Tianjin, 300456, PR China
| | - Wu Wei
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, 4th Avenue, Tianjin, 300456, PR China
| | - Xu Musheng
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, 4th Avenue, Tianjin, 300456, PR China
| | - Ana Garcia-Osta
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain.
| |
Collapse
|
100
|
Qin L, Ma K, Wang ZJ, Hu Z, Matas E, Wei J, Yan Z. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci 2018. [PMID: 29531362 PMCID: PMC5876144 DOI: 10.1038/s41593-018-0110-8] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Haploinsufficiency of the SHANK3 gene is causally linked to autism spectrum disorder (ASD), and ASD-associated genes are also enriched for chromatin remodelers. Here we found that brief treatment with romidepsin, a highly potent class I histone deacetylase (HDAC) inhibitor, alleviated social deficits in Shank3-deficient mice, which persisted for ~3 weeks. HDAC2 transcription was upregulated in these mice, and knockdown of HDAC2 in prefrontal cortex also rescued their social deficits. Nuclear localization of β-catenin, a Shank3-binding protein that regulates cell adhesion and transcription, was increased in Shank3-deficient mice, which induced HDAC2 upregulation and social deficits. At the downstream molecular level, romidepsin treatment elevated the expression and histone acetylation of Grin2a and actin-regulatory genes and restored NMDA-receptor function and actin filaments in Shank3-deficient mice. Taken together, these findings highlight an epigenetic mechanism underlying social deficits linked to Shank3 deficiency, which may suggest potential therapeutic strategies for ASD patients bearing SHANK3 mutations.
Collapse
Affiliation(s)
- Luye Qin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kaijie Ma
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zi-Jun Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zihua Hu
- Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Emmanuel Matas
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jing Wei
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|