51
|
Zheng J, Fang Y, Zhang M, Gao Q, Li J, Yuan H, Jin W, Lin Z, Lin W. Mechanisms of ferroptosis in hypoxic-ischemic brain damage in neonatal rats. Exp Neurol 2024; 372:114641. [PMID: 38065231 DOI: 10.1016/j.expneurol.2023.114641] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
This study was to explore the mechanism of ferroptosis and hypoxic-ischemic brain damage in neonatal rats. The neonatal rat hypoxic-ischemic brain damage (HIBD) model was established using the Rice-Vannucci method and treated with the ferroptosis inhibitor liproxstatin-1. Cognitive assessment was performed through absentee field experiments to confirm the successful establishment of the model. Brain tissue damage was evaluated by comparing regional cerebral blood flow and quantifying tissue staining. Neuronal cell morphological changes in the rats' cortical and hippocampal regions were observed using HE and Nissl staining. ELISA was performed to determine GPX4, GSH and ROS expression levels in the rats' brain tissues, and Western blotting to assess the expression levels of 4-HNE, GPX4, GSS, ACSL4, SLC7A11, SLC3A2, TFRC, FHC, FLC, HIF-1α, and Nrf2 proteins in rat brain tissues. Compared to the Sham group, the HIBD group exhibited a significant decrease in cerebral blood perfusion, reduced brain nerve cells, and disordered cell arrangement. The use of the ferroptosis inhibitor effectively improved brain tissue damage and preserved the shape and structure of nerve cells. The oxidative stress products ROS and 4-HNE in the brain tissue of the HIBD group increased significantly, while the expression of antioxidant indicators GPX4, GSH, SLC7A11, and GSS decreased significantly. Furthermore, the expression of iron metabolism-related proteins TFRC, FHC, and FLC increased significantly, whereas the expression of the ferroptosis-related transcription factors HIF-1α and Nrf2 decreased significantly. Treatment with liproxstatin-1 exhibited therapeutic effects on HIBD and downregulated tissue ferroptosis levels. This study shows the involvement of ferroptosis in hypoxic-ischemic brain damage in neonatal rats through the System Xc--GSH-GPX4 functional axis and iron metabolism pathway, with the HIF-1α and Nrf2 transcription factors identified as the regulators of ferroptosis involved in the HIBD process in neonatal rats.
Collapse
Affiliation(s)
- Jinyu Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Yu Fang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Min Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Qiqi Gao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Jianshun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Hao Yuan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Wenwen Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Zhenlang Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China.
| | - Wei Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
52
|
Fang H, Shi X, Wan J, Zhong X. Role of sestrins in metabolic and aging-related diseases. Biogerontology 2024; 25:9-22. [PMID: 37516672 DOI: 10.1007/s10522-023-10053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Sestrins are a type of highly conserved stress-inducing protein that has antioxidant and mTORC1 inhibitory functions. Metabolic dysfunction and aging are the main risk factors for development of human diseases, such as diabetes, neurodegenerative diseases, and cancer. Sestrins have important roles in regulating glucose and lipid metabolism, anti-tumor functions, and aging by inhibiting the reactive oxygen species and mechanistic target of rapamycin complex 1 pathways. In this review, the structure and biological functions of sestrins are summarized, and how sestrins are activated and contribute to regulation of the downstream signal pathways of metabolic and aging-related diseases are discussed in detail with the goal of providing new ideas and therapeutic targets for the treatment of related diseases.
Collapse
Affiliation(s)
- Huan Fang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, 646000, China
| | - Xiaomin Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, 646000, China.
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, 646000, China.
| |
Collapse
|
53
|
Rezzani R, Gianò M, Pinto D, Rinaldi F, van Noorden CJF, Favero G. Hepatic Alterations in a BTBR T + Itpr3tf/J Mouse Model of Autism and Improvement Using Melatonin via Mitigation Oxidative Stress, Inflammation and Ferroptosis. Int J Mol Sci 2024; 25:1086. [PMID: 38256159 PMCID: PMC10816818 DOI: 10.3390/ijms25021086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complicated neurodevelopmental disorder, and its etiology is not well understood. It is known that genetic and nongenetic factors determine alterations in several organs, such as the liver, in individuals with this disorder. The aims of the present study were to analyze morphological and biological alterations in the liver of an autistic mouse model, BTBR T + Itpr3tf/J (BTBR) mice, and to identify therapeutic strategies for alleviating hepatic impairments using melatonin administration. We studied hepatic cytoarchitecture, oxidative stress, inflammation and ferroptosis in BTBR mice and used C57BL6/J mice as healthy control subjects. The mice were divided into four groups and then treated and not treated with melatonin, respectively. BTBR mice showed (a) a retarded development of livers and (b) iron accumulation and elevated oxidative stress and inflammation. We demonstrated that the expression of ferroptosis markers, the transcription factor nuclear factor erythroid-related factor 2 (NFR2), was upregulated, and the Kelch-like ECH-associated protein 1 (KEAP1) was downregulated in BTBR mice. Then, we evaluated the effects of melatonin on the hepatic alterations of BTBR mice; melatonin has a positive effect on liver cytoarchitecture and metabolic functions.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (G.F.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale-SISDO), 25123 Brescia, Italy
| | - Marzia Gianò
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (G.F.)
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy; (D.P.); (F.R.)
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy; (D.P.); (F.R.)
| | - Cornelis J. F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (G.F.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
54
|
Wang J, Wu N, Peng M, Oyang L, Jiang X, Peng Q, Zhou Y, He Z, Liao Q. Ferritinophagy: research advance and clinical significance in cancers. Cell Death Discov 2023; 9:463. [PMID: 38110359 PMCID: PMC10728094 DOI: 10.1038/s41420-023-01753-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
Ferritinophagy, a process involving selective autophagy of ferritin facilitated by nuclear receptor coactivator 4 (NCOA4), entails the recognition of ferritin by NCOA4 and subsequent delivery to the autophagosome. Within the autophagosome, ferritin undergoes degradation, leading to the release of iron in the lysosome. It is worth noting that excessive iron levels can trigger cell death. Recent evidence has elucidated the significant roles played by ferritinophagy and ferroptosis in regulation the initiation and progression of cancer. Given the crucial role of ferritinophagy in tumor biology, it may serve as a potential target for future anti-tumor therapeutic interventions. In this study, we have provided the distinctive features of ferritinophagy and its distinctions from ferroptosis. Moreover, we have briefly examined the fundamental regulatory mechanisms of ferritinophagy, encompassing the involvement of the specific receptor NCOA4, the Nrf2/HO-1 signaling and other pathways. Subsequently, we have synthesized the current understanding of the impact of ferritinophagy on cancer progression and its potential therapeutic applications, with a particular emphasis on the utilization of chemotherapy, nanomaterials, and immunotherapy to target the ferritinophagy pathway for anti-tumor purposes.
Collapse
Affiliation(s)
- Jiewen Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China.
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China.
| | - Qianjin Liao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China.
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China.
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
55
|
Isop LM, Neculau AE, Necula RD, Kakucs C, Moga MA, Dima L. Metformin: The Winding Path from Understanding Its Molecular Mechanisms to Proving Therapeutic Benefits in Neurodegenerative Disorders. Pharmaceuticals (Basel) 2023; 16:1714. [PMID: 38139841 PMCID: PMC10748332 DOI: 10.3390/ph16121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin, a widely prescribed medication for type 2 diabetes, has garnered increasing attention for its potential neuroprotective properties due to the growing demand for treatments for Alzheimer's, Parkinson's, and motor neuron diseases. This review synthesizes experimental and clinical studies on metformin's mechanisms of action and potential therapeutic benefits for neurodegenerative disorders. A comprehensive search of electronic databases, including PubMed, MEDLINE, Embase, and Cochrane library, focused on key phrases such as "metformin", "neuroprotection", and "neurodegenerative diseases", with data up to September 2023. Recent research on metformin's glucoregulatory mechanisms reveals new molecular targets, including the activation of the LKB1-AMPK signaling pathway, which is crucial for chronic administration of metformin. The pleiotropic impact may involve other stress kinases that are acutely activated. The precise role of respiratory chain complexes (I and IV), of the mitochondrial targets, or of the lysosomes in metformin effects remains to be established by further research. Research on extrahepatic targets like the gut and microbiota, as well as its antioxidant and immunomodulatory properties, is crucial for understanding neurodegenerative disorders. Experimental data on animal models shows promising results, but clinical studies are inconclusive. Understanding the molecular targets and mechanisms of its effects could help design clinical trials to explore and, hopefully, prove its therapeutic effects in neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura Mihaela Isop
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Andrea Elena Neculau
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Radu Dan Necula
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Cristian Kakucs
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| |
Collapse
|
56
|
Dou M, Zhang Y, Shao Q, Zhu J, Li W, Wang X, Zhang C, Li Y. L-arginine reduces injury from heat stress to bovine intestinal epithelial cells by improving antioxidant and inflammatory response. Anim Biotechnol 2023; 34:1005-1013. [PMID: 34870558 DOI: 10.1080/10495398.2021.2009491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Heat stress (HS) has a negative impact on the health and performance of dairy cows, resulting in economic losses. Damage to the intestinal epithelium is the main cause of the adverse effects of heat stress on bovine health. This study investigated the repair capability of L-arginine (L-Arg) in reducing the adverse effects of HS on bovine intestinal epithelial cells (BIECs). BIECs were treated as follows: (1) control cells were cultured at 37 °C continuously and received no L-Arg; (2) cells in HS group were grown at 42 °C for 6 h followed by 12 h at 37 °C; and (3) the L-Arg group was cultured at 42 °C for 6 h, then treated with L-Arg at 37 °C for 12 h. HS disrupted redox homeostasis and reduced viability in BIECs, while treatment with L-Arg (6 mmol/L) for 12 h markedly reduced the negative effects of HS. L-Arg protected cells by preventing HS-induced changes in mitochondrial membrane-potential, inflammation, apoptosis-related gene expression and regulation of antioxidant enzymes. The above results indicated that L-Arg reduced the level of damage from HS in BIECs by lowering oxidant stress and inflammation, suggesting that L-Arg could be an effective dietary addition to protect cows from adverse intestinal effects caused by HS.
Collapse
Affiliation(s)
- Mengying Dou
- Henan International Joint Laboratory of Animal Welfare and health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yao Zhang
- Institute of Agroecology, Fujian Academy of Agriculture Science, Fuzhou, China
| | - Qi Shao
- Henan International Joint Laboratory of Animal Welfare and health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Jiali Zhu
- Henan International Joint Laboratory of Animal Welfare and health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Wang Li
- Henan International Joint Laboratory of Animal Welfare and health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yuanxiao Li
- Henan International Joint Laboratory of Animal Welfare and health Breeding, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
57
|
Jung KH, Kim SE, Go HG, Lee YJ, Park MS, Ko S, Han BS, Yoon YC, Cho YJ, Lee P, Lee SH, Kim K, Hong SS. Synergistic Renoprotective Effect of Melatonin and Zileuton by Inhibition of Ferroptosis via the AKT/mTOR/NRF2 Signaling in Kidney Injury and Fibrosis. Biomol Ther (Seoul) 2023; 31:599-610. [PMID: 37183002 PMCID: PMC10616517 DOI: 10.4062/biomolther.2023.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
According to recent evidence, ferroptosis is a major cell death mechanism in the pathogenesis of kidney injury and fibrosis. Despite the renoprotective effects of classical ferroptosis inhibitors, therapeutic approaches targeting kidney ferroptosis remain limited. In this study, we assessed the renoprotective effects of melatonin and zileuton as a novel therapeutic strategy against ferroptosis-mediated kidney injury and fibrosis. First, we identified RSL3-induced ferroptosis in renal tubular epithelial HK-2 and HKC-8 cells. Lipid peroxidation and cell death induced by RSL3 were synergistically mitigated by the combination of melatonin and zileuton. Combination treatment significantly downregulated the expression of ferroptosis-associated proteins, 4-HNE and HO-1, and upregulated the expression of GPX4. The expression levels of p-AKT and p-mTOR also increased, in addition to that of NRF2 in renal tubular epithelial cells. When melatonin (20 mg/kg) and zileuton (20 mg/kg) were administered to a unilateral ureteral obstruction (UUO) mouse model, the combination significantly reduced tubular injury and fibrosis by decreasing the expression of profibrotic markers, such as α-SMA and fibronectin. More importantly, the combination ameliorated the increase in 4-HNE levels and decreased GPX4 expression in UUO mice. Overall, the combination of melatonin and zileuton was found to effectively ameliorate ferroptosis-related kidney injury by upregulating the AKT/mTOR/ NRF2 signaling pathway, suggesting a promising therapeutic strategy for protection against ferroptosis-mediated kidney injury and fibrosis.
Collapse
Affiliation(s)
- Kyung Hee Jung
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Sang Eun Kim
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Han Gyeol Go
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Yun Ji Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Min Seok Park
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Soyeon Ko
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Beom Seok Han
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Young-Chan Yoon
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Ye Jin Cho
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Pureunchowon Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Kipyo Kim
- Divison of Nephrology and Hypertension, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| |
Collapse
|
58
|
Zhang X, Luo Z, Li J, Lin Y, Li Y, Li W. Sestrin2 in diabetes and diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1274686. [PMID: 37920252 PMCID: PMC10619741 DOI: 10.3389/fendo.2023.1274686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zirui Luo
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiahong Li
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yaxuan Lin
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yu Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
59
|
Miyoshi T, Keller BC, Ashino T, Numazawa S. Noncanonical mechanism of Nrf2 activation by diacylglycerol polyethylene glycol adducts in normal human epidermal keratinocytes. PLoS One 2023; 18:e0291905. [PMID: 37819868 PMCID: PMC10566712 DOI: 10.1371/journal.pone.0291905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Polyethylene glycol-23 glyceryl distearate (GDS-23), a diacylglycerol polyethylene glycol adduct, forms niosomes with a liposome-like structure and functions as an active ingredient in drug delivery systems. In addition, it upregulates antioxidant proteins such as heme oxygenase 1 and NAD(P)H-quinone dehydrogenase 1 in cells. However, the activation of nuclear factor E2-related factor-2 (Nrf2), which plays a role in inducing the expression of antioxidant proteins, and its protective effects induced by GDS-23 treatment against oxidative stress have not been elucidated. This study aimed at verifying the activation of Nrf2 by GDS-23 and clarifying its underlying mechanisms, and investigated whether GDS-23 protects against hydroquinone-induced cytotoxicity. Normal human epidermal keratinocytes were treated with GDS-23. Real-time reverse transcription-polymerase chain reaction, western blotting, and immunostaining were used to investigate the mechanism of Nrf2 activation, and neutral red assay was performed to evaluate cytotoxicity. GDS-23-treated cells showed an increase in antioxidant protein levels and stabilization of Nrf2 in the nucleus. During Nrf2 activation, p62, an autophagy-related adaptor protein, was phosphorylated at Ser349. Inhibition of the interaction between the phosphorylated p62 and Kelch-like ECH-associated protein 1 significantly suppressed the GDS-23-mediated induction of antioxidant protein expression. In addition, hydroquinone-induced cell toxicity was significantly attenuated by GDS-23. GDS-23 induced the intracellular antioxidant system by activating Nrf2 in a p62 phosphorylation-dependent manner without generating oxidative stress in the cells. GDS-23 may be applied as a multifunctional material for drug delivery system that enhances internal antioxidant systems.
Collapse
Affiliation(s)
- Tatsuro Miyoshi
- Beverly Glen Laboratories, Inc. Newport Beach, Newport Beach, CA, United States of America
| | - Brian C. Keller
- Beverly Glen Laboratories, Inc. Newport Beach, Newport Beach, CA, United States of America
| | - Takashi Ashino
- Department of Pharmacology, Division of Toxicology, Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa, Tokyo, Japan
| | - Satoshi Numazawa
- Department of Pharmacology, Division of Toxicology, Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa, Tokyo, Japan
| |
Collapse
|
60
|
Lin Z, Huang L, Cao Q, Luo H, Yao W, Zhang JC. Inhibition of abnormal C/EBPβ/α-Syn signaling pathway through activation of Nrf2 ameliorates Parkinson's disease-like pathology. Aging Cell 2023; 22:e13958. [PMID: 37614147 PMCID: PMC10577548 DOI: 10.1111/acel.13958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/25/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the formation of Lewy bodies (LBs) in the brain. These LBs are primarily composed of α-Synuclein (α-Syn), which has aggregated. A recent report proposes that CCAAT/enhancer-binding proteins β (C/EBPβ) may act as an age-dependent transcription factor for α-Syn, thereby initiating PD pathologies by regulating its transcription. Potential therapeutic approaches to address PD could involve targeting the regulation of α-Syn by C/EBPβ. This study has revealed that Nrf2, also known as nuclear factor (erythroid-derived 2)-like 2 (NFE2L2), suppresses the transcription of C/EBPβ in SH-SY5Y cells when treated with MPP+ . To activate Nrf2, sulforaphane, an Nrf2 activator, was administered. Additionally, C/EBPβ was silenced using C/EBPβ-DNA/RNA heteroduplex oligonucleotide (HDO). Both approaches successfully reduced abnormal α-Syn expression in primary neurons treated with MPP+ . Furthermore, sustained activation of Nrf2 via its activator or inhibition of C/EBPβ using C/EBPβ-HDO resulted in a reduction of aberrant α-Syn expression, thus leading to an improvement in the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) in mouse models induced by 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) and those treated with preformed fibrils (PFFs). The data presented in this study illustrate that the activation of Nrf2 may provide a potential therapeutic strategy for PD by inhibiting the abnormal C/EBPβ/α-Syn signaling pathway.
Collapse
Affiliation(s)
- Zefang Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Lixuan Huang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Qianqian Cao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Hanyue Luo
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
61
|
Zhou W, He H, Wei Q, Che L, Zhao X, Liu W, Yan Y, Hu L, Du Y, Yin Z, Shuai Y, Yang L, Feng R. Puerarin protects against acetaminophen-induced oxidative damage in liver through activation of the Keap1/Nrf2 signaling pathway. Food Sci Nutr 2023; 11:6604-6615. [PMID: 37823166 PMCID: PMC10563760 DOI: 10.1002/fsn3.3609] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/08/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Puerarin (Pue) is a kind of isoflavone compound extracted from Pueraria lobata, which has significant antioxidant activity. Excessive use of acetaminophen (APAP) can cause oxidative stress in the liver and eventually lead to acute liver injury. The purpose of this study was to investigate the protective effect and the mechanism of puerarin on APAP-induced liver oxidative damage. In in vitro experiments, puerarin significantly increased the cell activity of HepG2 cells, reduced the ROS accumulation, alleviated the oxidative damage and mitochondrial dysfunction. In in vivo studies, our results showed that puerarin enhanced antioxidant activity and alleviated histopathological damage. Further studies showed that puerarin decreased the expression of Keap1, promoted the nuclear migration of Nrf2, and up-regulated the expression of GCLC, GCLM, HO-1 and NQO1. This study demonstrated that puerarin can protect APAP-induced liver injury via alleviating oxidative stress and mitochondrial dysfunction by affecting the nuclear migration of Nrf2 via inhibiting Keap1.
Collapse
Affiliation(s)
- Wanhai Zhou
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
- Faculty of Agriculture, Forestry and Food EngineeringYiBin UniversityYibinChina
| | - Heng He
- Natural Medicine Research Center, College of Veterinary MedicineSichuan Agricultural UniversityChengduChina
| | - Qin Wei
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
| | - Litao Che
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
- Faculty of Agriculture, Forestry and Food EngineeringYiBin UniversityYibinChina
| | - Xin Zhao
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
- Faculty of Agriculture, Forestry and Food EngineeringYiBin UniversityYibinChina
| | - Wenwen Liu
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
- Faculty of Agriculture, Forestry and Food EngineeringYiBin UniversityYibinChina
| | - Yue Yan
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
- Faculty of Agriculture, Forestry and Food EngineeringYiBin UniversityYibinChina
| | - Lianqing Hu
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
- Faculty of Agriculture, Forestry and Food EngineeringYiBin UniversityYibinChina
| | - Yonghua Du
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
- Faculty of Agriculture, Forestry and Food EngineeringYiBin UniversityYibinChina
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary MedicineSichuan Agricultural UniversityChengduChina
| | - Yongkang Shuai
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
| | - Li Yang
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
| | - Ruizhang Feng
- Sichuan Oil Cinnamon Engineering Technology Research CenterYibin UniversityYibinChina
| |
Collapse
|
62
|
Feng S, Li Y, Huang H, Huang H, Duan Y, Yuan Z, Zhu W, Mei Z, Luo L, Yan P. Isoorientin reverses lung cancer drug resistance by promoting ferroptosis via the SIRT6/Nrf2/GPX4 signaling pathway. Eur J Pharmacol 2023; 954:175853. [PMID: 37329975 DOI: 10.1016/j.ejphar.2023.175853] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Cisplatin, or DDP, is a highly successful and well-known chemotherapy drug used to treat cancer. Acquired resistance to chemotherapy is a major clinical concern, yet the mechanisms of this resistance are still unknown. Ferroptosis is a type of cell death distinct from other forms, fueled by a buildup of iron-associated lipid reactive oxygen species (ROS). Gaining insight into the process of ferroptosis could lead to novel treatments for overcoming cancer resistance. In this study, the combination of isoorientin (IO) and DDP treatment resulted in a significant decrease in the viability of drug-resistant cells, a substantial increase in intracellular iron, malondialdehyde (MDA) and ROS concentrations, a notable decrease in glutathione concentration, and the occurrence of ferroptosis in cells, as revealed by in vitro and in vivo experiments. Additionally, there was a decrease in the expression of nuclear factor-erythroid factor 2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), and sirtuin 6 (SIRT6) proteins, and an increase in cellular ferroptosis. Isoorientin acts as a mediator to regulate cellular ferroptosis and reverse drug resistance in lung cancer cells by controlling the SIRT6/Nrf2/GPX4 signaling pathway. The findings of this study suggest that IO can promote ferroptosis and reverse drug resistance in lung cancer through the SIRT6/Nrf2/GPX4 signaling pathway, thus offering a theoretical basis for its potential clinical application.
Collapse
Affiliation(s)
- Senling Feng
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuting Li
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hanhui Huang
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hongliang Huang
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yingying Duan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhongwen Yuan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenting Zhu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Mei
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang China.
| | - Pengke Yan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
63
|
Hadian K, Stockwell BR. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat Rev Drug Discov 2023; 22:723-742. [PMID: 37550363 DOI: 10.1038/s41573-023-00749-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/09/2023]
Abstract
Cell death is critical for the development and homeostasis of almost all multicellular organisms. Moreover, its dysregulation leads to diverse disease states. Historically, apoptosis was thought to be the major regulated cell death pathway, whereas necrosis was considered to be an unregulated form of cell death. However, research in recent decades has uncovered several forms of regulated necrosis that are implicated in degenerative diseases, inflammatory conditions and cancer. The growing insight into these regulated, non-apoptotic cell death pathways has opened new avenues for therapeutic targeting. Here, we describe the regulatory pathways of necroptosis, pyroptosis, parthanatos, ferroptosis, cuproptosis, lysozincrosis and disulfidptosis. We discuss small-molecule inhibitors of the pathways and prospects for future drug discovery. Together, the complex mechanisms governing these pathways offer strategies to develop therapeutics that control non-apoptotic cell death.
Collapse
Affiliation(s)
- Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
64
|
Wankhede NL, Kale MB, Bawankule AK, Aglawe MM, Taksande BG, Trivedi RV, Umekar MJ, Jamadagni A, Walse P, Koppula S, Kopalli SR. Overview on the Polyphenol Avenanthramide in Oats ( Avena sativa Linn.) as Regulators of PI3K Signaling in the Management of Neurodegenerative Diseases. Nutrients 2023; 15:3751. [PMID: 37686782 PMCID: PMC10489942 DOI: 10.3390/nu15173751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Avenanthramides (Avns) and their derivatives, a group of polyphenolic compounds found abundantly in oats (Avena sativa Linn.), have emerged as promising candidates for neuroprotection due to their immense antioxidant, anti-inflammatory, and anti-apoptotic properties. Neurodegenerative diseases (NDDs), characterized by the progressive degeneration of neurons, present a significant global health burden with limited therapeutic options. The phosphoinositide 3-kinase (PI3K) signaling pathway plays a crucial role in cell survival, growth, and metabolism, making it an attractive target for therapeutic intervention. The dysregulation of PI3K signaling has been implicated in the pathogenesis of various NDDs including Alzheimer's and Parkinson's disease. Avns have been shown to modulate PI3K/AKT signaling, leading to increased neuronal survival, reduced oxidative stress, and improved cognitive function. This review explores the potential of Avn polyphenols as modulators of the PI3K signaling pathway, focusing on their beneficial effects against NDDs. Further, we outline the need for clinical exploration to elucidate the specific mechanisms of Avn action on the PI3K/AKT pathway and its potential interactions with other signaling cascades involved in neurodegeneration. Based on the available literature, using relevant keywords from Google Scholar, PubMed, Scopus, Science Direct, and Web of Science, our review emphasizes the potential of using Avns as a therapeutic strategy for NDDs and warrants further investigation and clinical exploration.
Collapse
Affiliation(s)
- Nitu L. Wankhede
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur 441002, Maharashtra, India
| | - Mayur B. Kale
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur 441002, Maharashtra, India
| | - Ashwini K. Bawankule
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur 441002, Maharashtra, India
| | - Manish M. Aglawe
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur 441002, Maharashtra, India
| | - Brijesh G. Taksande
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur 441002, Maharashtra, India
| | - Rashmi V. Trivedi
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur 441002, Maharashtra, India
| | - Milind J. Umekar
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur 441002, Maharashtra, India
| | - Ankush Jamadagni
- Fortem Bioscience Private Limited, Bangalore 560064, Karnataka, India
| | - Prathamesh Walse
- Fortem Bioscience Private Limited, Bangalore 560064, Karnataka, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-si 27478, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
65
|
Alattar A, Alshaman R, Althobaiti YS, Soliman GM, Ali HS, Khubrni WS, Koh PO, Rehman NU, Shah FA. Quercetin Alleviated Inflammasome-Mediated Pyroptosis and Modulated the mTOR/P70S6/P6/eIF4E/4EBP1 Pathway in Ischemic Stroke. Pharmaceuticals (Basel) 2023; 16:1182. [PMID: 37631097 PMCID: PMC10459024 DOI: 10.3390/ph16081182] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Stroke ranks as the world's second most prevalent cause of mortality, and it represents a major public health concern with profound economic and social implications. In the present study, we elucidated the neuroprotective role of quercetin on NLRP3-associated pyroptosis, Nrf2-coupled anti-inflammatory, and mTOR-dependent downstream pathways. Male Sprague Dawley rats were subjected to 72 h of transient middle cerebral artery ischemia, followed by the administration of 10 mg/kg of quercetin. Our findings demonstrated that MCAO induced elevated ROS which were coupled to inflammasome-mediated pyroptosis and altered mTOR-related signaling proteins. We performed ELISA, immunohistochemistry, and Western blotting to unveil the underlying role of the Nrf2/HO-1 and PDK/AKT/mTOR pathways in the ischemic cortex and striatum. Our results showed that quercetin post-treatment activated the Nrf2/HO-1 cascade, reversed pyroptosis, and modulated the autophagy-related pathway PDK/AKT/mTOR/P70S6/P6/eIF4E/4EBP1. Further, quercetin enhances the sequestering effect of 14-3-3 and reversed the decrease in interaction between p-Bad and 14-3-3 and p-FKHR and 14-3-3. Our findings showed that quercetin exerts its protective benefits and rescues neuronal damage by several mechanisms, and it might be a viable neuroprotective drug for ischemic stroke therapy.
Collapse
Affiliation(s)
- Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 21944, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, Taif University, Taif 21944, Saudi Arabia
| | - Ghareb M. Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia;
| | - Howaida S. Ali
- Department of Pharmacology, Faculty of Medicine, Assuit University, Assuit 71515, Egypt;
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Waleed Salman Khubrni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Phil Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sttam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Fawad Ali Shah
- Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| |
Collapse
|
66
|
Hammad M, Raftari M, Cesário R, Salma R, Godoy P, Emami SN, Haghdoost S. Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants (Basel) 2023; 12:1371. [PMID: 37507911 PMCID: PMC10376708 DOI: 10.3390/antiox12071371] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The coordinating role of nuclear factor erythroid-2-related factor 2 (Nrf2) in cellular function is undeniable. Evidence indicates that this transcription factor exerts massive regulatory functions in multiple signaling pathways concerning redox homeostasis and xenobiotics, macromolecules, and iron metabolism. Being the master regulator of antioxidant system, Nrf2 controls cellular fate, influencing cell proliferation, differentiation, apoptosis, resistance to therapy, and senescence processes, as well as infection disease success. Because Nrf2 is the key coordinator of cell defence mechanisms, dysregulation of its signaling has been associated with carcinogenic phenomena and infectious and age-related diseases. Deregulation of this cytoprotective system may also interfere with immune response. Oxidative burst, one of the main microbicidal mechanisms, could be impaired during the initial phagocytosis of pathogens, which could lead to the successful establishment of infection and promote susceptibility to infectious diseases. There is still a knowledge gap to fill regarding the molecular mechanisms by which Nrf2 orchestrates such complex networks involving multiple pathways. This review describes the role of Nrf2 in non-pathogenic and pathogenic cells.
Collapse
Affiliation(s)
- Mira Hammad
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Mohammad Raftari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rute Cesário
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rima Salma
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Paulo Godoy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Natural Resources Institute, University of Greenwich, London ME4 4TB, UK
| | - Siamak Haghdoost
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| |
Collapse
|
67
|
Cai C, Ma H, Peng J, Shen X, Zhen X, Yu C, Zhang P, Ji F, Wang J. USP25 regulates KEAP1-NRF2 anti-oxidation axis and its inactivation protects acetaminophen-induced liver injury in male mice. Nat Commun 2023; 14:3648. [PMID: 37339955 PMCID: PMC10282087 DOI: 10.1038/s41467-023-39412-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor responsible for mounting an anti-oxidation gene expression program to counter oxidative stress. Under unstressed conditions, Kelch-like ECH-associated protein 1 (KEAP1), an adaptor protein for CUL3 E3 ubiquitin ligase, mediates NRF2 ubiquitination and degradation. We show here that the deubiquitinase USP25 directly binds to KEAP1 and prevents KEAP1's own ubiquitination and degradation. In the absence of Usp25 or if the DUB is inhibited, KEAP1 is downregulated and NRF2 is stabilized, allowing the cells to respond to oxidative stress more readily. In acetaminophen (APAP) overdose-induced oxidative liver damage in male mice, the inactivation of Usp25, either genetically or pharmacologically, greatly attenuates liver injury and reduces the mortality rates resulted from lethal doses of APAP.
Collapse
Affiliation(s)
- Changzhou Cai
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Huailu Ma
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jin Peng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Xiang Shen
- Chaser Therapeutics, Inc., Hangzhou, Zhejiang, 310018, China
| | - Xinghua Zhen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Pumin Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Jiewei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
68
|
Cai J, Peng J, Feng J, Li R, Ren P, Zang X, Wu Z, Lu Y, Luo L, Hu Z, Wang J, Dai X, Zhao P, Wang J, Yan M, Liu J, Deng R, Wang D. Antioxidant hepatic lipid metabolism can be promoted by orally administered inorganic nanoparticles. Nat Commun 2023; 14:3643. [PMID: 37339977 DOI: 10.1038/s41467-023-39423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Accumulation of inorganic nanoparticles in living organisms can cause an increase in cellular reactive oxygen species (ROS) in a dose-dependent manner. Low doses of nanoparticles have shown possibilities to induce moderate ROS increases and lead to adaptive responses of biological systems, but beneficial effects of such responses on metabolic health remain elusive. Here, we report that repeated oral administrations of various inorganic nanoparticles, including TiO2, Au, and NaYF4 nanoparticles at low doses, can promote lipid degradation and alleviate steatosis in the liver of male mice. We show that low-level uptake of nanoparticles evokes an unusual antioxidant response in hepatocytes by promoting Ces2h expression and consequently enhancing ester hydrolysis. This process can be implemented to treat specific hepatic metabolic disorders, such as fatty liver in both genetic and high-fat-diet obese mice without causing observed adverse effects. Our results demonstrate that low-dose nanoparticle administration may serve as a promising treatment for metabolic regulation.
Collapse
Affiliation(s)
- Jie Cai
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310029, PR China.
| | - Jie Peng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Juan Feng
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Ruocheng Li
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Peng Ren
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Xinwei Zang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zezong Wu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Yi Lu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Lin Luo
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zhenzhen Hu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Jiaying Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Mi Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianxin Liu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Diming Wang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
| |
Collapse
|
69
|
Qin D, Li D, Wang C, Guo S. Ferroptosis and central nervous system demyelinating diseases. J Neurochem 2023; 165:759-771. [PMID: 37095635 DOI: 10.1111/jnc.15831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
Ferroptosis is a newly discovered programmed cell death caused by intracellular iron excess and glutathione (GSH) system imbalance, resulting in fatal lipid peroxidation. It is different from necrosis, apoptosis, autophagy, and other forms of cell death. Accumulating evidences suggest that brain iron overload is involved in the pathogenesis of demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis (MS), neuromyelitis optica (NMO), and acute disseminated encephalomyelitis (ADEM). The study of ferroptosis may provide a new understanding of demyelinating diseases and provide a novel therapeutic target for clinical treatment. Herein, we reviewed recent discoveries on mechanisms of ferroptosis, the effects of metabolic pathways on ferroptosis, and its involvement in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Danqing Qin
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Li
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunjuan Wang
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Shougang Guo
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
70
|
Dai C, Tan C, Zhao L, Liang Y, Liu G, Liu H, Zhong Y, Liu Z, Mo L, Liu X, Chen L. Glucose Metabolism Impairment in Parkinson's Disease. Brain Res Bull 2023; 199:110672. [PMID: 37210012 DOI: 10.1016/j.brainresbull.2023.110672] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Impairments in systematic and regional glucose metabolism exist in patients with Parkinson's disease (PD) at every stage of the disease course, and such impairments are associated with the incidence, progression, and special phenotypes of PD, which affect each physiological process of glucose metabolism including glucose uptake, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and pentose phosphate shunt pathway. These impairments may be attributed to various mechanisms, such as insulin resistance, oxidative stress, abnormal glycated modification, blood-brain-barrier dysfunction, and hyperglycemia-induced damages. These mechanisms could subsequently cause excessive methylglyoxal and reactive oxygen species production, neuroinflammation, abnormal aggregation of protein, mitochondrial dysfunction, and decreased dopamine, and finally result in energy supply insufficiency, neurotransmitter dysregulation, aggregation and phosphorylation of α-synuclein, and dopaminergic neuron loss. This review discusses the glucose metabolism impairment in PD and its pathophysiological mechanisms, and briefly summarized the currently-available therapies targeting glucose metabolism impairment in PD, including glucagon-likepeptide-1 (GLP-1) receptor agonists and dual GLP-1/gastric inhibitory peptide receptor agonists, metformin, and thiazoledinediones.
Collapse
Affiliation(s)
- Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhihui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
71
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
72
|
Liu X, Guan P, Mu J, Meng Z, Lian H. Metal-rich cascade nanosystem for dual-pathway ferroptosis resistance regulation and photothermal effect for efficient tumor combination therapy. Biomater Sci 2023; 11:3906-3920. [PMID: 37092601 DOI: 10.1039/d3bm00189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Despite the therapeutic response of ferroptosis in various tumors, ferroptosis resistance has been found in numerous studies, significantly hindering the progress of ferroptosis anti-tumor therapy. Herein, we propose a metal-rich cascade nanosystem (Simvastatin-HMPB-Mn@GOx) combined with the dual-pathway regulation of ferroptosis resistance and photothermal therapy for efficient tumor combination therapy. The manganese-bonded hollow mesoporous Prussian blue (HMPB-Mn) serves as the photothermal agent and metal donor, and dissociates multivalent metal ions Mn2+, Fe3+ and Fe2+ to consume glutathione and amplify the Fenton reaction. Glucose oxidase (GOx) absorbed serves as the converter to provide hydrogen peroxide (H2O2) for the cascade Fenton reaction, causing a high burst of hydroxyl radicals (˙OH) and lipid peroxidation. Simvastatin innovatively acts as a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) inhibitor to decrease the expression of coenzyme Q10 (CoQ10) and glutathione peroxidase 4 (GPX4), eventually defeating ferroptosis resistance. The nanosystem acted in both classical and non-classical ferroptosis pathways and showed significant ferroptosis- and hyperthermia-induced anti-tumor efficacy both in vitro and in vivo. Thus, this study offers a promising way for ferroptosis and phototherapy to achieve complete tumor regression.
Collapse
Affiliation(s)
- Xinran Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ping Guan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaxiang Mu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhaoxu Meng
- Department of Biomedical Engineering, School of Medical Instrumentation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - He Lian
- Department of Biomedical Engineering, School of Medical Instrumentation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
73
|
Sargazi Z, Yazdani Y, Tahavvori A, Youshanlouei HR, Alivirdiloo V, Beilankouhi EAV, Valilo M. NFR2/ABC transporter axis in drug resistance of breast cancer cells. Mol Biol Rep 2023; 50:5407-5414. [PMID: 37081307 DOI: 10.1007/s11033-023-08384-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/07/2023] [Indexed: 04/22/2023]
Abstract
Breast cancer is one of the most serious malignancies among women, accounting for about 12% of all cancers. The inherent complexity and heterogeneity of breast cancer results in failure to respond to treatment in the advanced stages of the disease. Breast cancer is caused by several genetic and environmental factors. One of the significant factors involved in the development of breast cancer is oxidative stress, which is generally regulated by nuclear factor erythroid 2-related factor 2 (NRF2). The level of NRF2 expression is low in healthy cells, which maintains the balance of the antioxidant system; however, its expression is higher in cancer cells, which have correlation characteristics such as angiogenesis, stem cell formation, drug resistance, and metastasis. Drug resistance increases with the upregulation of NRF2 expression, which contributes to cell protection. NRF2 controls this mechanism by increasing the expression of ATP-binding cassettes (ABCs). Considering the growing number of studies in this field, we aimed to investigate the relationship between NRF2 and ABCs, as well as their role in the development of drug resistance in breast cancer.
Collapse
Affiliation(s)
- Zinat Sargazi
- Department of Anatomical Sciences, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Tahavvori
- Department of internal medicine, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Rahmani Youshanlouei
- Department of internal medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Alivirdiloo
- Medical Doctor Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | | | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
74
|
Lee J, Hyun DH. The Interplay between Intracellular Iron Homeostasis and Neuroinflammation in Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:antiox12040918. [PMID: 37107292 PMCID: PMC10135822 DOI: 10.3390/antiox12040918] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Iron is essential for life. Many enzymes require iron for appropriate function. However, dysregulation of intracellular iron homeostasis produces excessive reactive oxygen species (ROS) via the Fenton reaction and causes devastating effects on cells, leading to ferroptosis, an iron-dependent cell death. In order to protect against harmful effects, the intracellular system regulates cellular iron levels through iron regulatory mechanisms, including hepcidin-ferroportin, divalent metal transporter 1 (DMT1)-transferrin, and ferritin-nuclear receptor coactivator 4 (NCOA4). During iron deficiency, DMT1-transferrin and ferritin-NCOA4 systems increase intracellular iron levels via endosomes and ferritinophagy, respectively. In contrast, repleting extracellular iron promotes cellular iron absorption through the hepcidin-ferroportin axis. These processes are regulated by the iron-regulatory protein (IRP)/iron-responsive element (IRE) system and nuclear factor erythroid 2-related factor 2 (Nrf2). Meanwhile, excessive ROS also promotes neuroinflammation by activating the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). NF-κB forms inflammasomes, inhibits silent information regulator 2-related enzyme 1 (SIRT1), and induces pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β). Furthermore, 4-hydroxy-2,3-trans-nonenal (4-HNE), the end-product of ferroptosis, promotes the inflammatory response by producing amyloid-beta (Aβ) fibrils and neurofibrillary tangles in Alzheimer's disease, and alpha-synuclein aggregation in Parkinson's disease. This interplay shows that intracellular iron homeostasis is vital to maintain inflammatory homeostasis. Here, we review the role of iron homeostasis in inflammation based on recent findings.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
75
|
Lipopolysaccharide-induced endotoxaemia during adolescence promotes stress vulnerability in adult mice via deregulation of nuclear factor erythroid 2-related factor 2 in the medial prefrontal cortex. Psychopharmacology (Berl) 2023; 240:713-724. [PMID: 36847832 DOI: 10.1007/s00213-022-06285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/19/2022] [Indexed: 03/01/2023]
Abstract
RATIONALE Sepsis is a severe inflammatory response to infection that leads to long-lasting cognitive impairment and depression after resolution. The lipopolysaccharide (LPS)-induced endotoxaemia model is a well-established model of gram-negative bacterial infection and recapitulates the clinical characteristics of sepsis. However, whether LPS-induced endotoxaemia during adolescence can modulate depressive and anxiety-like behaviours in adulthood remains unclear. OBJECTIVES To determine whether LPS-induced endotoxaemia in adolescence can modulate the stress vulnerability to depressive and anxiety-like behaviours in adulthood and explore the underlying molecular mechanisms. METHODS Quantitative real-time PCR was used to measure inflammatory cytokine expression in the brain. A stress vulnerability model was established by exposure to subthreshold social defeat stress (SSDS), and depressive- and anxiety-like behaviours were evaluated by the social interaction test (SIT), sucrose preference test (SPT), tail suspension test (TST), force swimming test (FST), elevated plus-maze (EPM) test, and open field test (OFT). Western blotting was used to measure Nrf2 and BDNF expression levels in the brain. RESULTS Our results showed that inflammation occurred in the brain 24 h after the induction of LPS-induced endotoxaemia at P21 but resolved in adulthood. Furthermore, LPS-induced endotoxaemia during adolescence promoted the inflammatory response and the stress vulnerability after SSDS during adulthood. Notably, the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and BDNF in the mPFC were decreased after SSDS exposure in mice treated with LPS during adolescence. Activation of the Nrf2-BDNF signalling pathway by sulforaphane (SFN), an Nrf2 activator, ameliorated the effect of LPS-induced endotoxaemia during adolescence on stress vulnerability after SSDS during adulthood. CONCLUSIONS Our study identified adolescence as a critical period during which LPS-induced endotoxaemia can promote stress vulnerability during adulthood and showed that this effect is mediated by impairment of Nrf2-BDNF signalling in the mPFC.
Collapse
|
76
|
Xie Z, Zhou Q, Qiu C, Zhu D, Li K, Huang H. Inaugurating a novel adjuvant therapy in urological cancers: Ferroptosis. CANCER PATHOGENESIS AND THERAPY 2023; 1:127-140. [PMID: 38328400 PMCID: PMC10846326 DOI: 10.1016/j.cpt.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 02/09/2024]
Abstract
Ferroptosis, a distinctive form of programmed cell death, is involved in numerous diseases with specific characteristics, including certain cell morphology, functions, biochemistry, and genetics, that differ from other forms of programmed cell death, such as apoptosis. Many studies have explored ferroptosis and its associated mechanisms, drugs, and clinical applications in diseases such as kidney injury, stroke, ischemia-reperfusion injury, and prostate cancer. In this review, we summarize the regulatory mechanisms of some ferroptosis inducers, such as enzalutamide and erastin. These are current research focuses and have already been studied extensively. In summary, this review focuses on the use of ferroptosis induction as a therapeutic strategy for treating tumors of the urinary system.
Collapse
Affiliation(s)
- Zhaoxiang Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Cheng Qiu
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dingjun Zhu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China
| |
Collapse
|
77
|
Suzuki T, Takahashi J, Yamamoto M. Molecular Basis of the KEAP1-NRF2 Signaling Pathway. Mol Cells 2023; 46:133-141. [PMID: 36994473 PMCID: PMC10070164 DOI: 10.14348/molcells.2023.0028] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/31/2023] Open
Abstract
Transcription factor NRF2 (NF-E2-related factor 2) is a master regulator of cellular responses against environmental stresses. NRF2 induces expression of detoxification and antioxidant enzymes and suppresses inductions of pro-inflammatory cytokine genes. KEAP1 (Kelch-like ECH-associated protein 1) is an adaptor subunit of CULLIN 3 (CUL3)-based E3 ubiquitin ligase. KEAP1 regulates the activity of NRF2 and acts as a sensor for oxidative and electrophilic stresses. NRF2 has been found to be activated in many types of cancers with poor prognosis. Therapeutic strategies to control NRF2-overeactivated cancers have been considered not only by targeting cancer cells with NRF2 inhibitors or NRF2 synthetic lethal chemicals, but also by targeting host defense with NRF2 inducers. Understanding precise molecular mechanisms how the KEAP1-NRF2 system senses and regulates the cellular response is critical to overcome intractable NRF2-activated cancers.
Collapse
Affiliation(s)
- Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Jun Takahashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8573, Japan
| |
Collapse
|
78
|
Sestrin2 as a Protective Shield against Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24054880. [PMID: 36902310 PMCID: PMC10003517 DOI: 10.3390/ijms24054880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 03/06/2023] Open
Abstract
A timely and adequate response to stress is inherently present in each cell and is important for maintaining the proper functioning of the cell in changing intracellular and extracellular environments. Disruptions in the functioning or coordination of defense mechanisms against cellular stress can reduce the tolerance of cells to stress and lead to the development of various pathologies. Aging also reduces the effectiveness of these defense mechanisms and results in the accumulation of cellular lesions leading to senescence or death of the cells. Endothelial cells and cardiomyocytes are particularly exposed to changing environments. Pathologies related to metabolism and dynamics of caloric intake, hemodynamics, and oxygenation, such as diabetes, hypertension, and atherosclerosis, can overwhelm endothelial cells and cardiomyocytes with cellular stress to produce cardiovascular disease. The ability to cope with stress depends on the expression of endogenous stress-inducible molecules. Sestrin2 (SESN2) is an evolutionary conserved stress-inducible cytoprotective protein whose expression is increased in response to and defend against different types of cellular stress. SESN2 fights back the stress by increasing the supply of antioxidants, temporarily holding the stressful anabolic reactions, and increasing autophagy while maintaining the growth factor and insulin signaling. If the stress and the damage are beyond repair, SESN2 can serve as a safety valve to signal apoptosis. The expression of SESN2 decreases with age and its levels are associated with cardiovascular disease and many age-related pathologies. Maintaining sufficient levels or activity of SESN2 can in principle prevent the cardiovascular system from aging and disease.
Collapse
|
79
|
Zhang C, Li C, Shao Q, Meng S, Wang X, Kong T, Li Y. Antioxidant monoammonium glycyrrhizinate alleviates damage from oxidative stress in perinatal cows. J Anim Physiol Anim Nutr (Berl) 2023; 107:475-484. [PMID: 35989475 DOI: 10.1111/jpn.13764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/17/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
This study was conducted to evaluate the antioxidant capability of dietary supplementation with monoammonium glycyrrhizinate (MAG) in perinatal cows. Glycyrrhizic acid has been shown to have strong antioxidant activity and we hypothesised that the aglycone of glycyrrhizin and MAG, could reduce damage from oxidative stress in perinatal cows by enhancing antioxidant capacity. Blood and milk samples were collected from three groups of healthy perinatal cows that were similar in body weight, parity, milk yield in the last milk cycle, etc., receiving dietary MAG supplementation ([Day 0 = parturition]: 0 g/day, [n = 13)] 3 g/day [n = 13] or 6 g/day [n = 11]) from -28 to 56 day (0 day = parturition). Compared with 0 g/day controls (CON), milk fat was significantly decreased in cows fed with MAG, and 3 g/day had the greatest effect. A diet containing 3 g/day MAG decreased the serum alanine aminotransferase (ALT) level compared with CON at -7 day post-partum. ALT was also lower at 5 day post-partum in cows fed with 3 g/day MAG compared to 6 g/day. The administration of 3 g/day and 6 g/day MAG decreased serum aspartate transaminase (AST) at 3 day post-partum. Supplementation of MAG in cows increased total antioxidant capacity (T-AOC) in serum, and cows given 3 g MAG per day had higher T-AOC than controls on post-partum 7 day. At the end of the experiment, we isolated and cultured primary hepatocytes to determine the effect of MAG on oxidative stress caused by incubation with the sodium oleate (SO). SO increased lipid synthesis, but pre-treatment with MAG prevented the fatty buildup. SO treatment increased AST and ALT levels and malondialdehyde concentration, but decreased T-AOC and superoxide dismutase (SOD). Incubation with MAG increased antioxidant capacity and inhibited oxidant damage in bovine hepatocytes. SO stimulated expression of the antioxidant genes, NAD(P)H quinone dehydrogenase 1 (NQO1) and SOD1, in the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, and catalase 1 (CAT1); this increase was accentuated by MAG pre-treatment. The results suggest that MAG can alleviate the damage caused by oxidative stress in perinatal cows by enhancing antioxidant activity.
Collapse
Affiliation(s)
- Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Chenxu Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Qi Shao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Sudan Meng
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Tao Kong
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Heifei, China
| |
Collapse
|
80
|
Bello M. Structural basis of Nrf2 activation by flavonolignans from silymarin. J Mol Graph Model 2023; 119:108393. [PMID: 36525840 DOI: 10.1016/j.jmgm.2022.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/08/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Several properties of silymarin (SM) extract have been attributed to their three major flavonolignans (silybin, silychristin, and silydianin) and their 2,3-dehydro derivatives (2,3-dehydrosilybin, 2,3-dehydrosilychristin, and 2,3-dehydrosilydianin). Experimental findings have suggested that the antioxidative and protective activities of these compounds could be due to their ability to activate nuclear factor erythroid 2-related factor 2 (Nrf2). The mechanism by which SM compounds exert their effect has been suggested to be by disrupting the complex between Nrf2 and Kelch-like ECH-associated protein 1 (Keap1). However, information about the structural and energetic basis of the inhibitory mechanism of SM compounds on the Nrf2-Keap1 pathway is lacking. We evaluated the binding properties of SM compounds because experimental findings have pointed to them as potential activators of Nrf2. Our study combined docking and molecular dynamics (MD) simulations with the Poisson-Boltzmann and generalized Born and surface area (MMPBSA and MMGBSA) methods and quantum mechanics-molecular mechanics (QMMM) calculations to investigate Keap1-ligand interactions. Our results predicted that silybinA and 2,3-dehydrosilybin bind to Keap1, forming interactions with the same pockets as those observed for the cocrystallized Keap1-Cpd16 complex but with more favorable binding free energies. These findings indicate that both natural compounds are potential activators of Nrf2.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón, s/n, Col. Casco de Santo Tomas, Ciudad de México, 11340, Mexico.
| |
Collapse
|
81
|
Targeting NRF2 to promote epithelial repair. Biochem Soc Trans 2023; 51:101-111. [PMID: 36762597 PMCID: PMC9987932 DOI: 10.1042/bst20220228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
The transcription factor NRF2 is well known as a master regulator of the cellular stress response. As such, activation of NRF2 has gained widespread attention for its potential to prevent tissue injury, but also as a possible therapeutic approach to promote repair processes. While NRF2 activation affects most or even all cell types, its effect on epithelial cells during repair processes has been particularly well studied. In response to tissue injury, these cells proliferate, migrate and/or spread to effectively repair the damage. In this review, we discuss how NRF2 governs repair of epithelial tissues, and we highlight the increasing number of NRF2 targets with diverse roles in regulating epithelial repair.
Collapse
|
82
|
Implications of Senescent Cell Burden and NRF2 Pathway in Uremic Calcification: A Translational Study. Cells 2023; 12:cells12040643. [PMID: 36831311 PMCID: PMC9954542 DOI: 10.3390/cells12040643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Increased senescent cell burden and dysregulation of the nuclear factor erythroid 2-related factor 2 (NRF2) pathway have been associated with numerous age-related pathologies; however, their role in promoting vascular calcification (VC) in chronic kidney disease (CKD) has yet to be determined. We investigated whether senescence and NRF2 pathways may serve as drivers of uremia-induced VC using three complementary approaches: a novel model of induced VC in 5/6-nephrectomized rats supplemented with high phosphate and vitamin D; epigastric arteries from CKD patients with established medial calcification; and vascular smooth muscle cells (VSMCs) incubated with uremic serum. Expression of p16Ink4a and p21Cip1, as well as γ-H2A-positive cells, confirmed increased senescent cell burden at the site of calcium deposits in aortic sections in rats, and was similarly observed in calcified epigastric arteries from CKD patients through increased p16Ink4a expression. However, uremic serum-induced VSMC calcification was not accompanied by senescence. Expression of NRF2 and downstream genes, Nqo1 and Sod1, was associated with calcification in uremic rats, while no difference was observed between calcified and non-calcified EAs. Conversely, in vitro uremic serum-driven VC was associated with depleted NRF2 expression. Together, our data strengthen the importance of senescence and NRF2 pathways as potential therapeutic options to combat VC in CKD.
Collapse
|
83
|
FXR1 facilitates axitinib resistance in clear cell renal cell carcinoma via regulating KEAP1/Nrf2 signaling pathway. Anticancer Drugs 2023; 34:248-256. [PMID: 36730618 DOI: 10.1097/cad.0000000000001416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Axitinib is emerging as a first-line combination treatment drug for metastatic renal cell carcinoma, but the acquired resistance significantly bothers the treatment efficacy. This article is to investigate the impact of fragile X mental retardation autosomal homolog 1 (FXR1) and its mechanistic involvement with Kelch-like epoxy chloropropan-associated protein 1 (KEAP1)/NF-E2-related factor 2 (Nrf2) pathway on cell resistance to axitinib in clear cell renal cell carcinoma (ccRCC). Establishment of axitinib resistance cells (786-O, Caki-1, 786-O/axitinib, or Caki-1/axitinib) was made, and the cells were then transfected with sh-FXR1, or co-transfected with sh-FXR1 and sh-KEAP1. The quantitative real-time PCR (qRT-PCR) and western blotting assays were employed to measure the expression of FXR1, KEAP1, Nrf2, LC3 II/I, Beclin 1, p62, MDR-1, and MRP-1. In addition, the binding between FXR1 and KEAP1 was verified by RNA-immunoprecipitation and RNA pull-down assays, and FXR1-dependent KEAP1 mRNA degradation was determined. Herein, FXR1 was demonstrated to be overexpressed in ccRCC cells, and showed higher expression in 786-O/axitinib and Caki-1/axitinib cells. Mechanistically, FXR1 enriched KEAP1 mRNA, and pulled downed by biotinylated KEAP1 probes. Results of RNA stability assay reveled that KEAP mRNA stability was suppressed by FXR1. Furthermore, knockdown of FXR1 promoted cell apoptosis and showed a restrained feature on cell resistance to axitinib. Of note, KEAP1 knockdown suppressed cell autophagy, oxidative stress, resistance to axitinib, and promoted apoptosis, despite FXR1 was downregulated in ccRCC cells. In conclusion, FXR1 played an encouraging role in ccRCC cell resistance to axitinib by modulating KEAP/Nrf2 pathway.
Collapse
|
84
|
Wang XJ, Zhang D, Yang YT, Li XY, Li HN, Zhang XP, Long JY, Lu YQ, Liu L, Yang G, Liu J, Hong J, Wu HG, Ma XP. Suppression of microRNA-222-3p ameliorates ulcerative colitis and colitis-associated colorectal cancer to protect against oxidative stress via targeting BRG1 to activate Nrf2/HO-1 signaling pathway. Front Immunol 2023; 14:1089809. [PMID: 36776858 PMCID: PMC9911687 DOI: 10.3389/fimmu.2023.1089809] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress is an important pathogenic factor in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC), further impairing the entire colon. Intestinal epithelial cells (IECs) are crucial components of innate immunity and play an important role in maintaining intestinal barrier function. Recent studies have indicated that microRNA-222-3p (miR-222-3p) is increased in colon of UC and colorectal cancer (CRC) patients, and miR-222-3p is a crucial regulator of oxidative stress. However, whether miR-222-3p influences IEC oxidative stress in UC and CAC remains unknown. This study investigated the effect of miR-222-3p on the regulation of IEC oxidative stress in UC and CAC. An in vitro inflammation model was established in NCM460 colonic cells, mouse UC and CAC models were established in vivo, and IECs were isolated. The biological role and mechanism of miR-222-3p-mediated oxidative stress in UC and CAC were determined. We demonstrated that miR-222-3p expression was notably increased in dextran sulfate sodium (DSS)-induced NCM460 cells and IECs from UC and CAC mice. In vitro, these results showed that the downregulation of miR-222-3p reduced oxidative stress, caspase-3 activity, IL-1β and TNF-α in DSS-induced NCM460 cells. We further identified BRG1 as the target gene of miR-222-3p, and downregulating miR-222-3p alleviated DSS-induced oxidative injury via promoting BRG1-mediated activation Nrf2/HO-1 signaling in NCM460 cells. The in vivo results demonstrated that inhibiting miR-222-3p in IECs significantly relieved oxidative stress and inflammation in the damaged colons of UC and CAC mice, as evidenced by decreases in ROS, MDA, IL-1β and TNF-α levels and increases in GSH-Px levels. Our study further demonstrated that inhibiting miR-222-3p in IECs attenuated oxidative damage by targeting BRG1 to activate the Nrf2/HO-1 signaling. In summary, inhibiting miR-222-3p in IECs attenuates oxidative stress by targeting BRG1 to activate the Nrf2/HO-1 signaling, thereby reducing colonic inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Xue-jun Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dan Zhang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-ting Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-ying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-na Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-peng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun-yi Long
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-qiong Lu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Yang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Liu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Hong
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan-gan Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-peng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
85
|
Shi Y, Zhang J, Luo K, Pan S, Shi H, Xiong L, Du S. The Roles of Iron and Ferroptosis in Human Chronic Diseases. Biochemistry 2023. [DOI: 10.5772/intechopen.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ferroptosis, an iron-dependent novel type of cell death, has been characterized as an excessive accumulation of lipid peroxides and reactive oxygen species. A growing number of studies demonstrate that ferroptosis not only plays an important role in the pathogenesis and progression of chronic diseases, but also functions differently in different diseases. As a double-edged sword, activation of ferroptosis could potently inhibit tumor growth and increase sensitivity to chemotherapy and immunotherapy in various cancer settings. Therefore, the development of more efficacious ferroptosis agonists or inhibitors remains the mainstay of ferroptosis-targeting strategy for cancer therapeutics or cardiovascular and cerebrovascular diseases and neurodegenerative diseases therapeutics.
Collapse
|
86
|
Gatica S, Aravena C, Prado Y, Aravena D, Echeverría C, Santibanez JF, Riedel CA, Stehberg J, Simon F. Appraisal of the Neuroprotective Effect of Dexmedetomidine: A Meta-Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:163-181. [PMID: 37093427 DOI: 10.1007/978-3-031-26163-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Dexmedetomidine is an adrenergic receptor agonist that has been regarded as neuroprotective in several studies without an objective measure to it. Thus, the aim of this meta-analysis was to analyze and quantify the current evidence for the neuroprotective effects of dexmedetomidine in animals. The search was performed by querying the National Library of Medicine. Studies were included based on their language, significancy of their results, and complete availability of data on animal characteristics and interventions. Risk of bias was assessed using SYRCLE's risk of bias tool and certainty was assessed using the ARRIVE Guidelines 2.0. Synthesis was performed by calculating pooled standardized mean difference and presented in forest plots and tables. The number of eligible records included per outcome is the following: 22 for IL-1β, 13 for IL-6, 19 for apoptosis, 7 for oxidative stress, 7 for Escape Latency, and 4 for Platform Crossings. At the cellular level, dexmedetomidine was found protective against production of IL-1β (standardized mean difference (SMD) = - 4.3 [- 4.8; - 3.7]) and IL-6 (SMD = - 5.6 [- 6.7; - 4.6]), apoptosis (measured through TUNEL, SMD = - 6.0 [- 6.8; - 4.6]), and oxidative stress (measured as MDA production, SMD = - 2.0 [- 2.4; - 1.4]) exclusively in the central nervous system. At the organism level, dexmedetomidine improved behavioral outcomes measuring escape latency (SMD = - 2.4 [- 3.3; - 1.6]) and number of platform crossings (SMD = 9.1 [- 6.8; - 11.5]). No eligible study had high risk of bias and certainty was satisfactory for reproducibility in all cases. This meta-analysis highlights the complexity of adrenergic stimulation and sheds light into the mechanisms potentiated by dexmedetomidine, which could be exploited for improving current neuroprotective formulations.
Collapse
Affiliation(s)
- Sebastian Gatica
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| | - Cristobal Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cesar Echeverría
- Laboratory of Molecular Biology, Nanomedicine and Genomics, Faculty of Medicine, University of Atacama, Copiapo, Chile
| | - Juan F Santibanez
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, Santiago, Chile
| | - Claudia A Riedel
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Jimmy Stehberg
- Laboratory of Neurobiology, Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
87
|
Wang C, Wang J, Pan X, Yu S, Chen M, Gao Y, Song Z, Hu H, Zhao X, Chen D, Han F, Qiao M. Reversing ferroptosis resistance by MOFs through regulation intracellular redox homeostasis. Asian J Pharm Sci 2023; 18:100770. [PMID: 36660553 PMCID: PMC9841358 DOI: 10.1016/j.ajps.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
As a non-apoptotic cell death form, ferroptosis offers an alternative approach to overcome cancer chemotherapy resistance. However, accumulating evidence indicates cancer cells can develop ferroptosis resistance by evolving antioxidative defense mechanisms. To address this issue, we prepared a Buthionine-(S,R)-sulfoximine (BSO) loaded metal organic framework (MOF) of BSO-MOF-HA (BMH) with the combination effect of boosting oxidative damage and inhibiting antioxidative defense. MOF nanoparticle was constructed by the photosensitizer of [4,4,4,4-(porphine-5,10,15,20-tetrayl) tetrakis (benzoic acid)] (TCPP) and the metal ion of Zr6, which was further decorated with hyaluronic acid (HA) in order to impart active targeting to CD44 receptors overexpressed cancer cells. BMH exhibited a negative charge and spherical shape with average particle size about 162.5 nm. BMH was found to restore the susceptibility of 4T1 cells to ferroptosis under irradiation. This was attributed to the combination of photodynamic therapy (PDT) and γ-glutamylcysteine synthetase inhibitor of BSO, shifting the redox balance to oxidative stress. Enhanced ferroptosis also induced the release of damage associated molecular patterns (DAMPs) to maturate dendritic cells and activated T lymphocytes, leading to superior anti-tumor performance in vivo. Taken together, our findings demonstrated that boosting oxidative damage with photosensitizer serves as an effective strategy to reverse ferroptosis resistance.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiao Wang
- Yantai Luyin Pharmaceutical Co. Ltd., Yantai 264002, China
| | - Xue Pan
- Qingdao Marine Biomedical Research Institute, Qingdao 266071, China
| | - Shuang Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meiqi Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zilin Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China,Corresponding authors.
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China,Corresponding authors.
| |
Collapse
|
88
|
Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants (Basel) 2022; 11:antiox11122345. [PMID: 36552553 PMCID: PMC9774434 DOI: 10.3390/antiox11122345] [Citation(s) in RCA: 316] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Organisms are continually exposed to exogenous and endogenous sources of reactive oxygen species (ROS) and other oxidants that have both beneficial and deleterious effects on the cell. ROS have important roles in a wide range of physiological processes; however, high ROS levels are associated with oxidative stress and disease progression. Oxidative stress has been implicated in nearly all major human diseases, from neurogenerative diseases and neuropsychiatric disorders to cardiovascular disease, diabetes, and cancer. Antioxidant defence systems have evolved as a means of protection against oxidative stress, with the transcription factor Nrf2 as the key regulator. Nrf2 is responsible for regulating an extensive panel of antioxidant enzymes involved in the detoxification and elimination of oxidative stress and has been extensively studied in the disease contexts. This review aims to provide the reader with a general overview of oxidative stress and Nrf2, including basic mechanisms of Nrf2 activation and regulation, and implications in various major human diseases.
Collapse
|
89
|
Kraokaew P, Manohong P, Prasertsuksri P, Jattujan P, Niamnont N, Tamtin M, Sobhon P, Meemon K. Ethyl Acetate Extract of Marine Algae, Halymenia durvillei, Provides Photoprotection against UV-Exposure in L929 and HaCaT Cells. Mar Drugs 2022; 20:707. [PMID: 36421985 PMCID: PMC9696495 DOI: 10.3390/md20110707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2023] Open
Abstract
Halymenia durvillei is a red alga distributed along the coasts of Southeast Asian countries including Thailand. Previous studies have shown that an ethyl acetate fraction of H. durvillei (HDEA), containing major compounds including n-hexadecanoic acid, 2-butyl-5-hexyloctahydro-1H-indene, 3-(hydroxyacetyl) indole and indole-3-carboxylic acid, possesses high antioxidant and anti-lung cancer activities. The present study demonstrated that HDEA could protect mouse skin fibroblasts (L929) and human immortalized keratinocytes (HaCaT) against photoaging due to ultraviolet A and B (UVA and UVB) by reducing intracellular reactive oxygen species (ROS) and expressions of matrix metalloproteinases (MMP1 and MMP3), as well as increasing Nrf2 nuclear translocation, upregulations of mRNA transcripts of antioxidant enzymes, including superoxide dismutase (SOD), heme oxygenase (HMOX) and glutathione S-transferase pi1 (GSTP1), and procollagen synthesis. The results indicate that HDEA has the potential to protect skin cells from UV irradiation through the activation of the Nrf2 pathway, which leads to decreasing intracellular ROS and MMP production, along with the restoration of skin collagen.
Collapse
Affiliation(s)
- Pichnaree Kraokaew
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Preeyanuch Manohong
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand
| | | | - Prapaporn Jattujan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nakhon Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand
| | - Montakan Tamtin
- Kung Krabean Bay Royal Development Center, Department of Fisheries, Khlong Khut Sub-District, Tha Mai, Chantaburi 22000, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
90
|
Oltipraz, the activator of nuclear factor erythroid 2-related factor 2 (Nrf2), protects against the formation of BAPN-induced aneurysms and dissection of the thoracic aorta in mice by inhibiting activation of the ROS-mediated NLRP3 inflammasome. Eur J Pharmacol 2022; 936:175361. [DOI: 10.1016/j.ejphar.2022.175361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
91
|
Li Z, Pan Y, Du S, Li Y, Chen C, Song H, Wu Y, Luan X, Xu Q, Guan X, Song Y, Han X. Tumor-microenvironment activated duplex genome-editing nanoprodrug for sensitized near-infrared titania phototherapy. Acta Pharm Sin B 2022; 12:4224-4234. [PMID: 36386466 PMCID: PMC9643290 DOI: 10.1016/j.apsb.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Near-infrared (NIR)-light-triggered nanomedicine, including photodynamic therapy (PDT) and photothermal therapy (PTT), is growing an attractive approach for cancer therapy due to its high spatiotemporal controllability and minimal invasion, but the tumor eradication is limited by the intrinsic anti-stress response of tumor cells. Herein, we fabricate a tumor-microenvironment responsive CRISPR nanoplatform based on oxygen-deficient titania (TiO2-x ) for mild NIR-phototherapy. In tumor microenvironment, the overexpressed hyaluronidase (HAase) and glutathione (GSH) can readily destroy hyaluronic acid (HA) and disulfide bond and releases the Cas9/sgRNA from TiO2-x to target the stress alleviating regulators, i.e., nuclear factor E2-related factor 2 (NRF2) and heat shock protein 90α (HSP90α), thereby reducing the stress tolerance of tumor cells. Under subsequent NIR light illumination, the TiO2-x demonstrates a higher anticancer effect both in vitro and in vivo. This strategy not only provides a promising modality to kills cancer cells in a minimal side-effects manner by interrupting anti-stress pathways but also proposes a general approach to achieve controllable gene editing in tumor region without unwanted genetic mutation in normal environments.
Collapse
Affiliation(s)
- Zekun Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Shiyu Du
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yayao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongxiu Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueyao Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Qin Xu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xin Han
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
92
|
Nrf2 regulates the arginase 1 + microglia phenotype through the initiation of TREM2 transcription, ameliorating depression-like behavior in mice. Transl Psychiatry 2022; 12:459. [PMID: 36316319 PMCID: PMC9622811 DOI: 10.1038/s41398-022-02227-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022] Open
Abstract
The expression of the triggering receptor on myeloid cell-2 (TREM2) knockdown in microglia from the lateral habenula (LHb) reportedly induces depression-like behaviors in mice. However, the key molecular mechanism that mediates major depressive disorder (MDD) pathogenesis remains elusive. We herein show that Nrf2 regulates TREM2 transcription and effects TREM2 mRNA and protein expression. The activation of Nrf2 by sulforaphane (Nrf2 activator) increases the microglial arginase 1+ phenotype by initiating TREM2 transcription in the medial prefrontal cortex (mPFC) and ameliorates depression-like behavior in CSDS mice. The knockout of Nrf2 decreases TREM2 and the microglial arginase 1+ phenotype in the mPFC of Nrf2 KO mice with depression-like behavior. Downregulating TREM2 expression decreases the microglial arginase 1+ phenotype in the mPFC, resulting in depression-like behavior in SFN-treated CSDS mice. Finally, the knockout of Nrf2 and downregulation of TREM2 expression decreases the microglial arginase 1+ phenotype in the mPFC of Nrf2 KO mice and SFN-treated CSDS mice were associated with the brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) signaling pathway. These data indicate that alterations in the interaction between Nrf2 and TREM2 may play a role in the pathophysiology of depression-like behavior in mice.
Collapse
|
93
|
Liu Y, Uruno A, Saito R, Matsukawa N, Hishinuma E, Saigusa D, Liu H, Yamamoto M. Nrf2 deficiency deteriorates diabetic kidney disease in Akita model mice. Redox Biol 2022; 58:102525. [PMID: 36335764 PMCID: PMC9641024 DOI: 10.1016/j.redox.2022.102525] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress is an essential component in the progression of diabetic kidney disease (DKD), and the transcription factor NF-E2-related factor-2 (Nrf2) plays critical roles in protecting the body against oxidative stress. To clarify the roles of Nrf2 in protecting against DKD, in this study we prepared compound mutant mice with diabetes and loss of antioxidative defense. Specifically, we prepared compound Ins2Akita/+ (Akita) and Nrf2 knockout (Akita::Nrf2-/-) or Akita and Nrf2 induction (Akita::Keap1FA/FA) mutant mice. Eighteen-week-old Akita::Nrf2-/- mice showed more severe diabetic symptoms than Akita mice. In the Akita::Nrf2-/- mouse kidneys, the glomeruli showed distended capillary loops, suggesting enhanced mesangiolysis. Distal tubules showed dilation and an increase in 8-hydroxydeoxyguanosine-positive staining. In the Akita::Nrf2-/- mouse kidneys, the expression of glutathione (GSH) synthesis-related genes was decreased, and the actual GSH level was decreased in matrix-assisted laser desorption/ionization mass spectrometry imaging analysis. Akita::Nrf2-/- mice exhibited severe inflammation and enhancement of infiltrated macrophages in the kidney. To further examine the progression of DKD, we compared forty-week-old Akita mouse kidney compounds with Nrf2-knockout or Nrf2 mildly induced (Akita::Keap1FA/FA) mice. Nrf2-knockout Akita (Akita::Nrf2-/-) mice displayed severe medullary cast formation, but the formation was ameliorated in Akita::Keap1FA/FA mice. Moreover, in Akita::Keap1FA/FA mice, tubule injury and inflammation-related gene expression were significantly suppressed, which was evident in Akita::Nrf2-/- mouse kidneys. These results demonstrate that Nrf2 contributes to the protection of the kidneys against DKD by suppressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yexin Liu
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan,Department of Nephrology, Blood Purification Center of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Akira Uruno
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan,Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Corresponding author. Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 9808575, Japan.
| | - Ritsumi Saito
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan,Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Naomi Matsukawa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Eiji Hishinuma
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Advanced Research Center for Innovations in Next-Generation Medicine Tohoku University, Sendai, Japan
| | - Daisuke Saigusa
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan,Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Hong Liu
- Department of Nephrology, Blood Purification Center of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan,Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Corresponding author. Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 9808575, Japan.
| |
Collapse
|
94
|
Jiang XS, Cai MY, Li XJ, Zhong Q, Li ML, Xia YF, Shen Q, Du XG, Gan H. Activation of the Nrf2/ARE signaling pathway protects against palmitic acid-induced renal tubular epithelial cell injury by ameliorating mitochondrial reactive oxygen species-mediated mitochondrial dysfunction. Front Med (Lausanne) 2022; 9:939149. [PMID: 36177332 PMCID: PMC9513042 DOI: 10.3389/fmed.2022.939149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) is often accompanied by dyslipidemia, and abnormal lipid metabolism in proximal tubule cells is considered closely related to the dysfunction of proximal tubule cells and eventually leads to accelerated kidney damage. Nuclear factor E2-related factor 2 (Nrf2), known as a redox-sensitive transcription factor, is responsible for regulating cellular redox homeostasis. However, the exact role of Nrf2 in dyslipidemia-induced dysfunction of proximal tubule cells is still not fully elucidated. In the present study, we showed that palmitic acid (PA) induced mitochondrial damage, excessive mitochondrial reactive oxygen species (ROS) (mtROS) generation, and cell injury in HK-2 cells. We further found that mtROS generation was involved in PA-induced mitochondrial dysfunction, cytoskeletal damage, and cell apoptosis in HK-2 cells. In addition, we demonstrated that the Nrf2/ARE signaling pathway was activated in PA-induced HK-2 cells and that silencing Nrf2 dramatically aggravated PA-induced mtROS production, mitochondrial damage, cytoskeletal damage and cell apoptosis in HK-2 cells. However, the mitochondrial antioxidant MitoTEMPOL effectively eliminated these negative effects of Nrf2 silencing in HK-2 cells under PA stimulation. Moreover, activation of the Nrf2/ARE signaling pathway with tBHQ attenuated renal injury, significantly reduced mtROS generation, and improved mitochondrial function in rats with HFD-induced obesity. Taken together, these results suggest that the Nrf2/ARE-mediated antioxidant response plays a protective role in hyperlipidemia-induced renal injury by ameliorating mtROS-mediated mitochondrial dysfunction and that enhancing Nrf2 antioxidant signaling provides a potential therapeutic strategy for kidney injury in CKD with hyperlipidemia.
Collapse
Affiliation(s)
- Xu-shun Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng-yao Cai
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xun-jia Li
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Zhong
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Man-li Li
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun-feng Xia
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Shen
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-gang Du
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Xiao-gang Du,
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Hua Gan,
| |
Collapse
|
95
|
Fernández-Ginés R, Encinar JA, Hayes JD, Oliva B, Rodríguez-Franco MI, Rojo AI, Cuadrado A. An inhibitor of interaction between the transcription factor NRF2 and the E3 ubiquitin ligase adapter β-TrCP delivers anti-inflammatory responses in mouse liver. Redox Biol 2022; 55:102396. [PMID: 35839629 PMCID: PMC9283934 DOI: 10.1016/j.redox.2022.102396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
It is widely accepted that activating the transcription factor NRF2 will blast the physiological anti-inflammatory mechanisms, which will help combat pathologic inflammation. Much effort is being put in inhibiting the main NRF2 repressor, KEAP1, with either electrophilic small molecules or disrupters of the KEAP1/NRF2 interaction. However, targeting β-TrCP, the non-canonical repressor of NRF2, has not been considered yet. After in silico screening of ∼1 million compounds, we now describe a novel small molecule, PHAR, that selectively inhibits the interaction between β-TrCP and the phosphodegron in transcription factor NRF2. PHAR upregulates NRF2-target genes such as Hmox1, Nqo1, Gclc, Gclm and Aox1, in a KEAP1-independent, but β-TrCP dependent manner, breaks the β-TrCP/NRF2 interaction in the cell nucleus, and inhibits the β-TrCP-mediated in vitro ubiquitination of NRF2. PHAR attenuates hydrogen peroxide induced oxidative stress and, in lipopolysaccharide-treated macrophages, it downregulates the expression of inflammatory genes Il1b, Il6, Cox2, Nos2. In mice, PHAR selectively targets the liver and greatly attenuates LPS-induced liver inflammation as indicated by a reduction in the gene expression of the inflammatory cytokines Il1b, TNf, and Il6, and in F4/80-stained liver resident macrophages. Thus, PHAR offers a still unexplored alternative to current NRF2 activators by acting as a β-TrCP/NRF2 interaction inhibitor that may have a therapeutic value against undesirable inflammation.
Collapse
Affiliation(s)
- Raquel Fernández-Ginés
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), 03202, Elche, Alicante, Spain
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, James Arrott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Baldo Oliva
- Structural Bioinformatics Group (GRIB-IMIM), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Ana I Rojo
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.
| |
Collapse
|
96
|
Morishita H, Komatsu M. Role of autophagy in liver diseases. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
97
|
Liu W, Jiang J, Lin Y, You Q, Wang L. Insight into Thermodynamic and Kinetic Profiles in Small-Molecule Optimization. J Med Chem 2022; 65:10809-10847. [PMID: 35969687 DOI: 10.1021/acs.jmedchem.2c00682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-activity relationships (SARs) and structure-property relationships (SPRs) have been considered the most important factors during the drug optimization process. For medicinal chemists, improvements in the potencies and druglike properties of small molecules are regarded as their major goals. Among them, the binding affinity and selectivity of small molecules on their targets are the most important indicators. In recent years, there has been growing interest in using thermodynamic and kinetic profiles to analyze ligand-receptor interactions, which could provide not only binding affinities but also detailed binding parameters for small-molecule optimization. In this perspective, we are trying to provide an insight into thermodynamic and kinetic profiles in small-molecule optimization. Through a highlight of strategies on the small-molecule optimization with specific cases, we aim to put forward the importance of structure-thermodynamic relationships (STRs) and structure-kinetic relationships (SKRs), which could provide more guidance to find safe and effective small-molecule drugs.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jingsheng Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yating Lin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
98
|
Mao Y, Han CY, Hao L, Lee Y, Son JB, Choi H, Lee MR, Yang JD, Hong SK, Suh KS, Yu HC, Kim ND, Bae EJ, Park BH. p21-activated kinase 4 inhibition protects against liver ischemia/reperfusion injury: Role of nuclear factor erythroid 2-related factor 2 phosphorylation. Hepatology 2022; 76:345-356. [PMID: 35108418 DOI: 10.1002/hep.32384] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS p21-activated kinase 4 (PAK4), an oncogenic protein, has emerged as a promising target for anticancer drug development. Its role in oxidative stress conditions, however, remains elusive. We investigated the effects of PAK4 signaling on hepatic ischemia/reperfusion (I/R) injury. APPROACH AND RESULTS Hepatocyte- and myeloid-specific Pak4 knockout (KO) mice and their littermate controls were subjected to a partial hepatic I/R (HIR) injury. We manipulated the catalytic activity of PAK4, either through genetic engineering (gene knockout, overexpression of wild-type [WT] or dominant-negative kinase) or pharmacological inhibitor, coupled with a readout of nuclear factor erythroid 2-related factor 2 (Nrf2) activity, to test the potential function of PAK4 on HIR injury. PAK4 expression was markedly up-regulated in liver during HIR injury in mice and humans. Deletion of PAK4 in hepatocytes, but not in myeloid cells, ameliorated liver damages, as demonstrated in the decrease in hepatocellular necrosis and inflammatory responses. Conversely, the forced expression of WT PAK4 aggravated the pathological changes. PAK4 directly phosphorylated Nrf2 at T369, and it led to its nuclear export and proteasomal degradation, all of which impaired antioxidant responses in hepatocytes. Nrf2 silencing in liver abolished the protective effects of PAK4 deficiency. A PAK4 inhibitor protected mice from HIR injury. CONCLUSIONS PAK4 phosphorylates Nrf2 and suppresses its transcriptional activity. Genetic or pharmacological suppression of PAK4 alleviates HIR injury. Thus, PAK4 inhibition may represent a promising intervention against I/R-induced liver injury.
Collapse
Affiliation(s)
- Yuancheng Mao
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Chang Yeob Han
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Lihua Hao
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | | | | | | | - Mi Rin Lee
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jae Do Yang
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Suk Kyun Hong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Chul Yu
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | | | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
99
|
Dai XY, Zhu SY, Chen J, Li MZ, Zhao Y, Talukder M, Li JL. Lycopene alleviates di(2-ethylhexyl) phthalate-induced splenic injury by activating P62-Keap1-NRF2 signaling. Food Chem Toxicol 2022; 168:113324. [PMID: 35917956 DOI: 10.1016/j.fct.2022.113324] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 01/15/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is an omnipresent environmental pollutant. It has been determined that DEHP is involved in multiple health disorders. Lycopene (Lyc) is a natural carotenoid pigment, with anti-inflammatory and antioxidant properties. However, it is not clear whether Lyc can protect the spleen from DEHP-induced oxidative damage. A total of 140 mice were randomly divided into seven groups (n = 20) and continuously gavaged with corn oil, distilled water, DEHP (500 or 1000 mg/kg BW/day) and/or Lyc (5 mg/kg BW/day) for 28 days. Histopathological and ultrastructural results showed a DEHP-induced inflammatory response and mitochondrial injuries. Moreover, DEHP exposure induced redox imbalance, which resulted in the up-regulation of ROS activity and MDA content, and the down-regulation of T-AOC, T-SOD and CAT in the DEHP groups. Simultaneously, our results also demonstrated that DEHP-induced kelch-like ECH-associated protein 1 (Keap1) expression was downregulated, and the expression levels of P62, nuclear factor erythroid 2-related factor (NRF2) and their downstream target genes were up-regulated. However, the supplementary Lyc reverted these changes to normal levels. Together, Lyc prevented DEHP-induced splenic injuries by regulating the P62-Keap1-NRF2 signaling pathway. Hence, the protective effects of Lyc might be a therapeutic strategy to ameliorate DEHP-induced splenic damage.
Collapse
Affiliation(s)
- Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
100
|
Chen Y, Cao H, He W, Zhang X, Xu R. tert-Butylhydroquinone-induced formation of high-molecular-weight p62: A novel mechanism in the activation of Nrf2-Keap1. Cell Biol Int 2022; 46:1345-1354. [PMID: 35830696 DOI: 10.1002/cbin.11849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/06/2022]
Abstract
The respiratory system is always exposed to air and is most vulnerable to attack by environmental free radicals. The nuclear factor E2-related factor 2-Kelch-like ECH-associated protein 1-antioxidant response element (Nrf2-Keap1-ARE) pathway and p62 are both involved in the oxidative stress response. However, the interplay between these two systems remains largely unknown. This study shows that treatment of L2 cells with tert-Butylhydroquinone (tBHQ) generates a high-molecular-weight (HMW) form of p62, leading to activation of the Nrf2-Keap1-ARE pathway. The levels of HMW-p62 increased as the tBHQ concentration increased, with concomitant decreases seen in the classical form of p62. Moreover, small interfering RNA targeting p62 increases Keap1 protein levels and inactivates the Nrf2-Keap1-ARE pathway. These results demonstrate that the Nrf2-Keap1 pathway is partially regulated by p62. tBHQ-induced HMW-p62 production may be a novel mechanism in the activation of the Nrf2-Keap1-ARE pathway.
Collapse
Affiliation(s)
- Yunfang Chen
- Department of Oncology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China.,Department of Oncology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzen, China
| | - Hua Cao
- Department of Oncology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China.,Department of Oncology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzen, China
| | - Wan He
- Department of Oncology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China.,Department of Oncology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzen, China
| | - Xi Zhang
- Department of Oncology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China.,Department of Oncology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzen, China
| | - Ruilian Xu
- Department of Oncology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China.,Department of Oncology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzen, China
| |
Collapse
|