51
|
Luo S, Yang M, Zhao H, Han Y, Liu Y, Xiong X, Chen W, Li C, Sun L. Mitochondrial DNA-dependent inflammation in kidney diseases. Int Immunopharmacol 2022; 107:108637. [DOI: 10.1016/j.intimp.2022.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/15/2022]
|
52
|
Sautchuk R, Kalicharan BH, Escalera-Rivera K, Jonason JH, Porter GA, Awad HA, Eliseev RA. Transcriptional regulation of cyclophilin D by BMP/Smad signaling and its role in osteogenic differentiation. eLife 2022; 11:e75023. [PMID: 35635445 PMCID: PMC9191891 DOI: 10.7554/elife.75023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
Cyclophilin D (CypD) promotes opening of the mitochondrial permeability transition pore (MPTP) which plays a key role in both cell physiology and pathology. It is, therefore, beneficial for cells to tightly regulate CypD and MPTP but little is known about such regulation. We have reported before that CypD is downregulated and MPTP deactivated during differentiation in various tissues. Herein, we identify BMP/Smad signaling, a major driver of differentiation, as a transcriptional regulator of the CypD gene, Ppif. Using osteogenic induction of mesenchymal lineage cells as a BMP/Smad activation-dependent differentiation model, we show that CypD is in fact transcriptionally repressed during this process. The importance of such CypD downregulation is evidenced by the negative effect of CypD 'rescue' via gain-of-function on osteogenesis both in vitro and in a mouse model. In sum, we characterized BMP/Smad signaling as a regulator of CypD expression and elucidated the role of CypD downregulation during cell differentiation.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | - Brianna H Kalicharan
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | | | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Pathology, University of RochesterRochesterUnited States
| | - George A Porter
- Department of Pediatrics, Division of Cardiology, University of RochesterRochesterUnited States
| | - Hani A Awad
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Pathology, University of RochesterRochesterUnited States
- Department of Pharmacology & Physiology, University of RochesterRochesterUnited States
| |
Collapse
|
53
|
Therapeutic Targets for Regulating Oxidative Damage Induced by Ischemia-Reperfusion Injury: A Study from a Pharmacological Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8624318. [PMID: 35450409 PMCID: PMC9017553 DOI: 10.1155/2022/8624318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
Ischemia-reperfusion (I-R) injury is damage caused by restoring blood flow into ischemic tissues or organs. This complex and characteristic lesion accelerates cell death induced by signaling pathways such as apoptosis, necrosis, and even ferroptosis. In addition to the direct association between I-R and the release of reactive oxygen species and reactive nitrogen species, it is involved in developing mitochondrial oxidative damage. Thus, its mechanism plays a critical role via reactive species scavenging, calcium overload modulation, electron transport chain blocking, mitochondrial permeability transition pore activation, or noncoding RNA transcription. Other receptors and molecules reduce tissue and organ damage caused by this pathology and other related diseases. These molecular targets have been gradually discovered and have essential roles in I-R resolution. Therefore, the current study is aimed at highlighting the importance of these discoveries. In this review, we inquire about the oxidative damage receptors that are relevant to reducing the damage induced by oxidative stress associated with I-R. Several complications on surgical techniques and pathology interventions do not mitigate the damage caused by I-R. Nevertheless, these therapies developed using alternative targets could work as coadjuvants in tissue transplants or I-R-related pathologies
Collapse
|
54
|
Akt-GSK3β-mPTP pathway regulates the mitochondrial dysfunction contributing to odontoblasts apoptosis induced by glucose oxidative stress. Cell Death Dis 2022; 8:168. [PMID: 35383148 PMCID: PMC8983683 DOI: 10.1038/s41420-022-00981-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Diabetes Mellitus can cause dental pulp cells apoptosis by oxidative stress, and affect the integrity and function of dental pulp tissue. Mitochondria are the main attack targets of oxidative stress and have a critical role in apoptosis. However, whether mitochondria are involved in dental pulp damage caused by diabetes mellitus remains unclear. This study aimed to investigate the role of mitochondria in the apoptosis of odontoblast-like cell line (mDPC6T) induced by glucose oxidative stress, and to explore its possible mechanism. We established an oxidative stress model in vitro using glucose oxidase/glucose to simulate the pathological state under diabetic conditions. We found that the opening of mitochondrial permeability transition pore (mPTP) contributed to the apoptosis of mDPC6T treated with glucose oxidase, as evidenced by enhanced mitochondrial reactive oxygen species (mtROS) and intracellular Ca2+ disorder, significantly reduced mitochondrial membrane potential (MMP) and ATP production. Antioxidant N-acetylcysteine (NAC) or Cyclosporine A (mPTP inhibitor) blocked the mPTP opening, which significantly attenuated mitochondrial dysfunction and apoptosis induced by glucose oxidative stress. In addition, we found that glucose oxidative stress stimulated mPTP opening may through inhibition of Akt-GSK3β pathway. This study provides a new insight into the mitochondrial mechanism underlying diabetes-associated odontoblast-like cell apoptosis, laying a foundation for the prevention and treatment of diabetes-associated pulp injury.
Collapse
|
55
|
Chen T, Niu L, Wang L, Zhou Q, Zhao X, Lai S, He X, He H, He M. Ferulic acid protects renal tubular epithelial cells against anoxia/reoxygenation injury mediated by AMPKα1. Free Radic Res 2022; 56:173-184. [PMID: 35382666 DOI: 10.1080/10715762.2022.2062339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Anoxia/reoxygenation (A/R) injury causes dysfunction of rat renal tubular epithelial cells (NRK-52E), which is associated with excess reactive oxygen species (ROS) generation and eventually leads to apoptosis. Ferulic acid (FA), a phenolic acid, which is abundant in fruits and vegetables. FA possesses the properties of scavenging free radicals and cytoprotection against oxygen stress. In the study, the protective effects of FA against NRK-52E cells damage induced by A/R were explored and confirmed the role of AMP-activated protein kinaseα1 (AMPKα1). We found that after NRK-52E cells suffered A/R damage, FA pretreatment increased the cell viability and decreased LDH activity in culture medium in a concentration-dependent manner, the activities of endogenous antioxidant enzymes such as glutathione peroxidase, superoxide dismutase and catalase improved, intracellular ROS generation and malondialdehyde contents mitigated. In addition, pretreatment of 75 μM FA ameliorated mitochondrial dysfunction by A/R-injury and ultimately decreased apoptosis (25.3 ± 0.61 vs 12.1 ± 0.60), which was evidenced by preventing the release of cytochrome c from mitochondria to the cytoplasm. 75 μM FA pretreatment also significantly upregulated AMPKα1 expression (3.16 ± 0.18 folds) and phosphorylation (2.56 ± 0.13 folds). However, compound C, a specific AMPK inhibitor, significantly attenuated FA pretreatment's effects, as mentionedabove. These results firstly clarified that FA pretreatment attenuated NRK-52E cell damage induced by A/R via upregulating AMPKα1 expression and phosphorylation.
Collapse
Affiliation(s)
- Tianpeng Chen
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Li Niu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Liang Wang
- Department of rehabilitation, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qing Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Xiaoyu Zhao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Songqing Lai
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xinlan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Ming He
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
56
|
Wu DL, Wang TS, Liu HJ, Zhang W, Tong XH, Peng DY, Kong LY. Study on the mechanism of Wuzi-Yanzong-Wan-medicated serum interfering with the mitochondrial permeability transition pore in the GC-2 cell induced by atractyloside. Chin J Nat Med 2022; 20:282-289. [PMID: 35487598 DOI: 10.1016/s1875-5364(22)60153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/30/2022]
Abstract
Wuzi-Yanzong-Wan (WZYZW) is a classic prescription for male infertility. Our previous investigation has demonstrated that it can inhibit sperm apoptosis via affecting mitochondria, but the underlying mechanisms are unclear. The purpose of the present study was to explore the actions of WZYZW on mitochondrial permeability transition pore (mPTP) in mouse spermatocyte cell line (GC-2 cells) opened by atractyloside (ATR). At first, WZYZW-medicated serum was prepared from rats following oral administration of WZYZW for 7 days. GC-2 cells were divided into control group, model group, positive group, as well as 5%, 10%, 15% WZYZW-medicated serum group. Cyclosporine A (CsA) was used as a positive control. 50 μmol·L-1 ATR was added after drugs incubation. Cell viability was assessed using CCK-8. Apoptosis was detected using flow cytometry and TUNEL method. The opening of mPTP and mitochondrial membrane potential (MMP) were detected by Calcein AM and JC-1 fluorescent probe respectively. The mRNA and protein levels of voltage-dependent anion channel 1 (VDAC1), cyclophilin D (CypD), adenine nucleotide translocator (ANT), cytochrome C (Cyt C), caspase 3, 9 were detected by RT-PCR (real time quantity PCR) and Western blotting respectively. The results demonstrated that mPTP of GC-2 cells was opened after 24 hours of ATR treatment, resulting in decreased MMP and increased apoptosis. Pre-protection with WZYZ-medicated serum and CsA inhibited the opening of mPTP of GC-2 cells induced by ATR associated with increased MMP and decreased apoptosis. Moreover, the results of RT-qPCR and WB suggested that WZYZW-medicated serum could significantly reduce the mRNA and protein levels of VDAC1 and CypD, Caspase-3, 9 and CytC, as well as a increased ratio of Bcl/Bax. However, ANT was not significantly affected. Therefore, these findings indicated that WZYZW inhibited mitochondrial mediated apoptosis by attenuating the opening of mPTP in GC-2 cells. WZYZW-medicated serum inhibited the expressions of VDAC1 and CypD and increased the expression of Bcl-2, which affected the opening of mPTP and exerted protective and anti-apoptotic effects on GC-2 cell induced by ATR.
Collapse
Affiliation(s)
- De-Ling Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medical Formula, Hefei 230012, China; School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Tong-Sheng Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medical Formula, Hefei 230012, China
| | - Hong-Juan Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medical Formula, Hefei 230012, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medical Formula, Hefei 230012, China
| | - Xiao-Hui Tong
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medical Formula, Hefei 230012, China
| | - Dai-Yin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medical Formula, Hefei 230012, China.
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
57
|
Serrat R, Oliveira-Pinto A, Marsicano G, Pouvreau S. Imaging mitochondrial calcium dynamics in the central nervous system. J Neurosci Methods 2022; 373:109560. [PMID: 35320763 DOI: 10.1016/j.jneumeth.2022.109560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial calcium handling is a particularly active research area in the neuroscience field, as it plays key roles in the regulation of several functions of the central nervous system, such as synaptic transmission and plasticity, astrocyte calcium signaling, neuronal activity… In the last few decades, a panel of techniques have been developed to measure mitochondrial calcium dynamics, relying mostly on photonic microscopy, and including synthetic sensors, hybrid sensors and genetically encoded calcium sensors. The goal of this review is to endow the reader with a deep knowledge of the historical and latest tools to monitor mitochondrial calcium events in the brain, as well as a comprehensive overview of the current state of the art in brain mitochondrial calcium signaling. We will discuss the main calcium probes used in the field, their mitochondrial targeting strategies, their key properties and major drawbacks. In addition, we will detail the main roles of mitochondrial calcium handling in neuronal tissues through an extended report of the recent studies using mitochondrial targeted calcium sensors in neuronal and astroglial cells, in vitro and in vivo.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Alexandre Oliveira-Pinto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France.
| |
Collapse
|
58
|
Boyenle ID, Oyedele AK, Ogunlana AT, Adeyemo AF, Oyelere FS, Akinola OB, Adelusi TI, Ehigie LO, Ehigie AF. Targeting the mitochondrial permeability transition pore for drug discovery: Challenges and opportunities. Mitochondrion 2022; 63:57-71. [PMID: 35077882 DOI: 10.1016/j.mito.2022.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
Several drug targets have been amenable to drug discovery pursuit not until the characterization of the mitochondrial permeability transition pore (MPTP), a pore with an undefined molecular identity that forms on the inner mitochondrial membrane upon mitochondrial permeability transition (MPT) under the influence of calcium overload and oxidative stress. The opening of the pore which is presumed to cause cell death in certain human diseases also has implications under physiological parlance. Different models for this pore have been postulated following its first identification in the last six decades. The mitochondrial community has witnessed many protein candidates such as; voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), Mitochondrial phosphate carrier (PiC), Spastic Paralegin (SPG7), disordered proteins, and F1Fo ATPase. However, genetic studies have cast out most of these candidates with only F1Fo ATPase currently under intense argument. Cyclophilin D (CyPD) remains the widely accepted positive regulator of the MPTP known to date, but no drug candidate has emerged as its inhibitor, raising concern issues for therapeutics. Thus, in this review, we discuss various models of MPTP reported with the hope of stimulating further research in this field. We went beyond the classical description of the MPTP to ascribe a 'two-edged sword property' to the pore for therapeutic function in human disease because its inhibition and activation have pharmacological relevance. We suggested putative proteins upstream to CyPD that can regulate its activity and prevent cell deaths in neurodegenerative disease and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ibrahim Damilare Boyenle
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abdulquddus Kehinde Oyedele
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abdeen Tunde Ogunlana
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Aishat Folashade Adeyemo
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Olateju Balikis Akinola
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Leonard Ona Ehigie
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Adeola Folasade Ehigie
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| |
Collapse
|
59
|
Sun Q, Li Y, Shi L, Hussain R, Mehmood K, Tang Z, Zhang H. Heavy metals induced mitochondrial dysfunction in animals: Molecular mechanism of toxicity. Toxicology 2022; 469:153136. [DOI: 10.1016/j.tox.2022.153136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022]
|
60
|
Şahin S, Dege N. (E)-N-(3-chlorophenyl)-1-(5-nitro-2-(piperidin-1-yl)phenyl)methanimine: X-Ray, DFT, ADMET, Boiled-Egg Model, Druggability, Bioavailabilty, and Human Cyclophilin D (CypD) Inhibitory Activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
61
|
Bai Y, Yang Y, Cui B, Lin D, Wang Z, Ma J. Temporal Effect of Melatonin Posttreatment on Anoxia/Reoxygenation Injury in H9c2 Cells. Cell Biol Int 2022; 46:637-648. [PMID: 34989460 DOI: 10.1002/cbin.11759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/06/2021] [Accepted: 01/01/2022] [Indexed: 11/07/2022]
Abstract
Melatonin has been proven to reduce myocardial ischemia-reperfusion (MI/R) injury. However, in most studies, melatonin was administered prior to MI/R, thus, the results lack clinical significance in patients with acute myocardial infarction. We hypothesize that melatonin posttreatment at different times has different curative effects. Administered of Melatonin (150 μM) at different times after the onset of reoxygenation (t=-15, 0, 5, 10, 15, 30 min). Cellular apoptosis, oxidative stress and mitochondrial function were assessed. Mitophagy-related protein levels, the mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) activity were also measured. A/R injury upregulated mitophagy, which was associated with increased cellular apoptosis, oxidative stress and mitochondrial dysfunction. Melatonin posttreatment (t= -15, 0, 5, 10, 15, 30 min) significantly inhibited excessive mitophagy after A/R injury, reduced cellular apoptosis and oxidative stress, restored mitochondrial function and MMP, and restrained mPTP opening. The therapeutic time window in which melatonin posttreatment protected H9c2 cells against A/R injury was large (from -15 to 30 min after the onset of reperfusion), but the earlier the melatonin administration was, the better its protective effect was. This mechanism is likely due to a reduction in mPTP activity and MMP collapse, which lead to the inhibition of mitophagy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Boqun Cui
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Zhaoqi Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| |
Collapse
|
62
|
Zhao L, Deng X, Li Y, Hu J, Xie L, Shi F, Tang M, Bode AM, Zhang X, Liao W, Cao Y. Conformational change of adenine nucleotide translocase-1 mediates cisplatin resistance induced by EBV-LMP1. EMBO Mol Med 2021; 13:e14072. [PMID: 34755470 PMCID: PMC8649884 DOI: 10.15252/emmm.202114072] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 12/02/2022] Open
Abstract
Adenine nucleotide translocase-1 (ANT1) is an ADP/ATP transporter protein located in the inner mitochondrial membrane. ANT1 is involved not only in the processes of ADP/ATP exchange but also in the composition of the mitochondrial membrane permeability transition pore (mPTP); and the function of ANT1 is closely related to its own conformational changes. Notably, various viral proteins can interact directly with ANT1 to influence mitochondrial membrane potential by regulating the opening of mPTP, thereby affecting tumor cell fate. The Epstein-Barr virus (EBV) encodes the key tumorigenic protein, latent membrane protein 1 (LMP1), which plays a pivotal role in promoting therapeutic resistance in related tumors. In our study, we identified a novel mechanism for EBV-LMP1-induced alteration of ANT1 conformation in cisplatin resistance in nasopharyngeal carcinoma. Here, we found that EBV-LMP1 localizes to the inner mitochondrial membrane and inhibits the opening of mPTP by binding to ANT1, thereby favoring tumor cell survival and drug resistance. The ANT1 conformational inhibitor carboxyatractyloside (CATR) in combination with cisplatin improved the chemosensitivity of EBV-LMP1-positive cells. This finding confirms that ANT1 is a novel therapeutic target for overcoming cisplatin resistance in the future.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Xiangying Deng
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Min Tang
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
| | - Ann M Bode
- The Hormel InstituteUniversity of MinnesotaAustinMNUSA
| | - Xin Zhang
- Department of Otolaryngology Head and Neck SurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Weihua Liao
- Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer InvasionChinese Ministry of Education, Department of RadiologyXiangya HospitalCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of CarcinogenesisChinese Ministry of HealthChangshaChina
- Molecular Imaging Research Center of CentralSouth UniversityChangshaChina
- Research Center for Technologies of Nucleic Acid‐Based Diagnostics and Therapeutics Hunan ProvinceChangshaChina
- National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and CancerChangshaChina
| |
Collapse
|
63
|
Wu D, Gu Y, Zhu D. Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review). Mol Med Rep 2021; 24:875. [PMID: 34726247 DOI: 10.3892/mmr.2021.12515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/05/2021] [Indexed: 11/05/2022] Open
Abstract
Ischemic heart disease is one of the major causes of cardiovascular‑related mortality worldwide. Myocardial ischemia can be attenuated by reperfusion that restores the blood supply. However, injuries occur during blood flow restoration that induce cardiac dysfunction, which is known as myocardial ischemia‑reperfusion injury (MIRI). Hydrogen sulfide (H2S), the third discovered endogenous gasotransmitter in mammals (after NO and CO), participates in various pathophysiological processes. Previous in vitro and in vivo research have revealed the protective role of H2S in the cardiovascular system that render it useful in the protection of the myocardium against MIRI. The cardioprotective effects of H2S in attenuating MIRI are summarized in the present review.
Collapse
Affiliation(s)
- Dan Wu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yijing Gu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Deqiu Zhu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
64
|
Ciocci Pardo A, González Arbeláez LF, Fantinelli JC, Álvarez BV, Mosca SM, Swenson ER. Myocardial and mitochondrial effects of the anhydrase carbonic inhibitor ethoxzolamide in ischemia-reperfusion. Physiol Rep 2021; 9:e15093. [PMID: 34806317 PMCID: PMC8606860 DOI: 10.14814/phy2.15093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022] Open
Abstract
We have previously demonstrated that inhibition of extracellularly oriented carbonic anhydrase (CA) isoforms protects the myocardium against ischemia-reperfusion injury. In this study, our aim was to assess the possible further contribution of CA intracellular isoforms examining the actions of the highly diffusible cell membrane permeant inhibitor of CA, ethoxzolamide (ETZ). Isolated rat hearts, after 20 min of stabilization, were assigned to the following groups: (1) Nonischemic control: 90 min of perfusion; (2) Ischemic control: 30 min of global ischemia and 60 min of reperfusion (R); and (3) ETZ: ETZ at a concentration of 100 μM was administered for 10 min before the onset of ischemia and then during the first 10 min of reperfusion. In additional groups, ETZ was administered in the presence of SB202190 (SB, a p38MAPK inhibitor) or chelerythrine (Chel, a protein kinase C [PKC] inhibitor). Infarct size, myocardial function, and the expression of phosphorylated forms of p38MAPK, PKCε, HSP27, and Drp1, and calcineurin Aβ content were assessed. In isolated mitochondria, the Ca2+ response, Ca2+ retention capacity, and membrane potential were measured. ETZ decreased infarct size by 60%, improved postischemic recovery of myocardial contractile and diastolic relaxation increased P-p38MAPK, P-PKCε, P-HSP27, and P-Drp1 expression, decreased calcineurin content, and normalized calcium and membrane potential parameters measured in isolated mitochondria. These effects were significantly attenuated when ETZ was administered in the presence of SB or Chel. These data show that ETZ protects the myocardium and mitochondria against ischemia-reperfusion injury through p38MAPK- and PKCε-dependent pathways and reinforces the role of CA as a possible target in the management of acute cardiac ischemic diseases.
Collapse
Affiliation(s)
- Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | - Luisa F. González Arbeláez
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | - Juliana C. Fantinelli
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | - Bernardo V. Álvarez
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
- Present address:
Department of BiochemistryMembrane Protein Disease Research GroupUniversity of AlbertaEdmontonAlbertaT6G 2H7Canada
| | - Susana M. Mosca
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E Cingolani¨CCT‐CONICETFacultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | - Erik R. Swenson
- Department of Medicine, Pulmonary and Critical Care MedicineVA Puget Sound Health Care SystemUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
65
|
Jurcau A. Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int J Mol Sci 2021; 22:11847. [PMID: 34769277 PMCID: PMC8584731 DOI: 10.3390/ijms222111847] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
As the population ages, the incidence of neurodegenerative diseases is increasing. Due to intensive research, important steps in the elucidation of pathogenetic cascades have been made and significantly implicated mitochondrial dysfunction and oxidative stress. However, the available treatment in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis is mainly symptomatic, providing minor benefits and, at most, slowing down the progression of the disease. Although in preclinical setting, drugs targeting mitochondrial dysfunction and oxidative stress yielded encouraging results, clinical trials failed or had inconclusive results. It is likely that by the time of clinical diagnosis, the pathogenetic cascades are full-blown and significant numbers of neurons have already degenerated, making it impossible for mitochondria-targeted or antioxidant molecules to stop or reverse the process. Until further research will provide more efficient molecules, a healthy lifestyle, with plenty of dietary antioxidants and avoidance of exogenous oxidants may postpone the onset of neurodegeneration, while familial cases may benefit from genetic testing and aggressive therapy started in the preclinical stage.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
66
|
Estrogen alleviates hepatocyte necroptosis depending on GPER in hepatic ischemia reperfusion injury. J Physiol Biochem 2021; 78:125-137. [PMID: 34651286 DOI: 10.1007/s13105-021-00846-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/09/2021] [Indexed: 01/28/2023]
Abstract
Hepatic ischemia reperfusion injury (IRI) occurs in liver transplantation, complex liver resection, and hemorrhagic shock, which causes donor organ shortage and hepatic damage. The burst of reactive oxygen species (ROS) during reperfusion leads to cell apoptosis and necroptosis. It has been reported that estrogen could attenuate hepatic IRI. G protein estrogen receptor (GPER) mediates estrogen effects via nonclassic receptor systems. Here, we investigate whether estrogen protecting liver from hepatic IRI depends on GPER and the influence of GPER activation on hepatocyte necroptosis. We proved that estrogen had a protective effect on both hepatocyte hypoxia re-oxygen (H/R) challenge and mouse hepatic ischemia reperfusion model. However, the application of GPER specific antagonist G15 before estrogen inhibited this beneficial effect. The results of mitochondria functional measurement revealed that estrogen improved hepatocyte mitochondria function by activating GPER, which might benefit from the increased expression of connexin 43 (Cx43) in mitochondria. To investigate the relationship between GPER activation and necroptosis, we used caspase-3/7 inhibitor benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-chloromethylketone (Z-DEVD-FMK) to eliminate the interference of apoptosis. Estrogen showed a protective effect on hepatic IRI after using Z-DEVD-FMK, which could be suppressed by G15. GPER activation decreased the level of receptor interacting protein kinase (RIPK) 3, phosphorylated (p-) RIPK1, and p-mixed lineage kinase domain-like (MLKL). The co-immunoprecipitation result indicated that GPER could bind with RIPK3. GPER is indispensable in estrogen protecting liver from IRI. GPER activation attenuates hepatocyte necroptosis by decreasing the level of RIPK3, p-RIPK1, and p-MLKL.
Collapse
|
67
|
Fedotcheva TA, Fedotcheva NI, Shimanovsky NL. Progestins as Anticancer Drugs and Chemosensitizers, New Targets and Applications. Pharmaceutics 2021; 13:pharmaceutics13101616. [PMID: 34683909 PMCID: PMC8540053 DOI: 10.3390/pharmaceutics13101616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/13/2023] Open
Abstract
Progesterone and its synthetic analogues, progestins, participate in the regulation of cell differentiation, proliferation and cell cycle progression. Progestins are usually applied for contraception, maintenance of pregnancy, and hormone replacement therapy. Recently, their effectiveness in the treatment of hormone-sensitive tumors was revealed. According to current data, the anticancer activity of progestins is mainly mediated by their cytotoxic and chemosensitizing influence on different cancer cells. In connection with the detection of previously unknown targets of the progestin action, which include the membrane-associated progesterone receptor (PR), non-specific transporters related to the multidrug resistance (MDR) and mitochondrial permeability transition pore (MPTP), and checkpoints of different signaling pathways, new aspects of their application have emerged. It is likely that the favorable influence of progestins is predominantly associated with the modulation of expression and activity of MDR-related proteins, the inhibition of survival signaling pathways, especially TGF-β and Wnt/β-catenin pathways, which activate the proliferation and promote MDR in cancer cells, and the facilitation of mitochondrial-dependent apoptosis. Biological effects of progestins are mediated by the inhibition of these signaling pathways, as well as the direct interaction with the nucleotide-binding domain of ABC-transporters and mitochondrial adenylate translocase as an MPTP component. In these ways, progestins can restore the proliferative balance, the ability for apoptosis, and chemosensitivity to drugs, which is especially important for hormone-dependent tumors associated with estrogen stress, epithelial-to-mesenchymal transition, and drug resistance.
Collapse
Affiliation(s)
- Tatiana A. Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, 117997 Moscow, Russia;
- Correspondence: ; Tel.: +7-916-935-31-96
| | - Nadezhda I. Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya str., 3, Pushchino, 142290 Moscow, Russia;
| | - Nikolai L. Shimanovsky
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, 117997 Moscow, Russia;
| |
Collapse
|
68
|
Shan D, Dong R, Hu Y. Current understanding of autophagy in intrahepatic cholestasis of pregnancy. Placenta 2021; 115:53-59. [PMID: 34560328 DOI: 10.1016/j.placenta.2021.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disease during pregnancy. Manifested with pruritus and elevation in bile acids, the etiology of ICP is still poorly understood. Although ICP is considered relatively benign for the mother, increased rates of adverse fetal outcomes including sudden fetal demise are possible devastating outcomes associated with ICP. Limited understanding of the underlying mechanisms restricted treatment options and managements of ICP. In recent decades, evolving evidence indicated the significance of autophagy in pregnancy and pregnancy complications. Autophagy is an ancient self-defense mechanism which is essential for cell survival, differentiation and development. Autophagy has pivotal roles in embryogenesis, implantation, and maintenance of pregnancy, and is involved in the orchestration of diverse physiological and pathological cellular responses in patients with pregnancy complications. Recent advances in these research fields provide tantalizing targets on autophagy to improve the care of pregnant women. This review summarizes recent advances in understanding autophagy in ICP and its possible roles in the causation and prevention of ICP.
Collapse
Affiliation(s)
- Dan Shan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ruihong Dong
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Yayi Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China.
| |
Collapse
|
69
|
Şahin S, Dege N. Synthesis, characterization, X-ray, HOMO-LUMO, MEP, FT-IR, NLO, Hirshfeld surface, ADMET, boiled-egg model properties and molecular docking studies with human cyclophilin D (CypD) of a Schiff base compound: (E)-1-(5-nitro-2-(piperidin-1-yl)phenyl)-N-(3-nitrophenyl)methanimine. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
70
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. Mechanism of Endoplasmic Reticulum Stress in Cerebral Ischemia. Front Cell Neurosci 2021; 15:704334. [PMID: 34408630 PMCID: PMC8365026 DOI: 10.3389/fncel.2021.704334] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) is the main organelle for protein synthesis, trafficking and maintaining intracellular Ca2+ homeostasis. The stress response of ER results from the disruption of ER homeostasis in neurological disorders. Among these disorders, cerebral ischemia is a prevalent reason of death and disability in the world. ER stress stemed from ischemic injury initiates unfolded protein response (UPR) regarded as a protection mechanism. Important, disruption of Ca2+ homeostasis resulted from cytosolic Ca2+ overload and depletion of Ca2+ in the lumen of the ER could be a trigger of ER stress and the misfolded protein synthesis. Brain cells including neurons, glial cells and endothelial cells are involved in the complex pathophysiology of ischemic stroke. This is generally important for protein underfolding, but even more for cytosolic Ca2+ overload. Mild ER stress promotes cells to break away from danger signals and enter the adaptive procedure with the activation of pro-survival mechanism to rescue ischemic injury, while chronic ER stress generally serves as a detrimental role on nerve cells via triggering diverse pro-apoptotic mechanism. What’s more, the determination of some proteins in UPR during cerebral ischemia to cell fate may have two diametrically opposed results which involves in a specialized set of inflammatory and apoptotic signaling pathways. A reasonable understanding and exploration of the underlying molecular mechanism related to ER stress and cerebral ischemia is a prerequisite for a major breakthrough in stroke treatment in the future. This review focuses on recent findings of the ER stress as well as the progress research of mechanism in ischemic stroke prognosis provide a new treatment idea for recovery of cerebral ischemia.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
71
|
Calpain-Mediated Mitochondrial Damage: An Emerging Mechanism Contributing to Cardiac Disease. Cells 2021; 10:cells10082024. [PMID: 34440793 PMCID: PMC8392834 DOI: 10.3390/cells10082024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Calpains belong to the family of calcium-dependent cysteine proteases expressed ubiquitously in mammals and many other organisms. Activation of calpain is observed in diseased hearts and is implicated in cardiac cell death, hypertrophy, fibrosis, and inflammation. However, the underlying mechanisms remain incompletely understood. Recent studies have revealed that calpains target and impair mitochondria in cardiac disease. The objective of this review is to discuss the role of calpains in mediating mitochondrial damage and the underlying mechanisms, and to evaluate whether targeted inhibition of mitochondrial calpain is a potential strategy in treating cardiac disease. We expect to describe the wealth of new evidence surrounding calpain-mediated mitochondrial damage to facilitate future mechanistic studies and therapy development for cardiac disease.
Collapse
|
72
|
Mitochondrial Dysfunction and Alterations in Mitochondrial Permeability Transition Pore (mPTP) Contribute to Apoptosis Resistance in Idiopathic Pulmonary Fibrosis Fibroblasts. Int J Mol Sci 2021; 22:ijms22157870. [PMID: 34360637 PMCID: PMC8346102 DOI: 10.3390/ijms22157870] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/04/2021] [Accepted: 07/17/2021] [Indexed: 01/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by increased activation of fibroblasts/myofibroblasts. Previous reports have shown that IPF fibroblasts are resistant to apoptosis, but the mechanisms remain unclear. Since inhibition of the mitochondrial permeability transition pore (mPTP) has been implicated in the resistance to apoptosis, in this study, we analyzed the role of mitochondrial function and the mPTP on the apoptosis resistance of IPF fibroblasts under basal conditions and after mitomycin C-induced apoptosis. We measured the release of cytochrome c, mPTP opening, mitochondrial calcium release, oxygen consumption, mitochondrial membrane potential, ADP/ATP ratio, ATP concentration, and mitochondrial morphology. We found that IPF fibroblasts were resistant to mitomycin C-induced apoptosis and that calcium, a well-established activator of mPTP, is decreased as well as the release of pro-apoptotic proteins such as cytochrome c. Likewise, IPF fibroblasts showed decreased mitochondrial function, while mPTP was less sensitive to ionomycin-induced opening. Although IPF fibroblasts did not present changes in the mitochondrial membrane potential, we found a fragmented mitochondrial network with scarce, thinned, and disordered mitochondria with reduced ATP levels. Our findings demonstrate that IPF fibroblasts are resistant to mitomycin C-induced apoptosis and that altered mPTP opening contributes to this resistance. In addition, IPF fibroblasts show mitochondrial dysfunction evidenced by a decrease in respiratory parameters.
Collapse
|
73
|
Belosludtsev KN, Starinets VS, Belosludtsev MN, Mikheeva IB, Dubinin MV, Belosludtseva NV. Chronic treatment with dapagliflozin protects against mitochondrial dysfunction in the liver of C57BL/6NCrl mice with high-fat diet/streptozotocin-induced diabetes mellitus. Mitochondrion 2021; 59:246-254. [PMID: 34144205 DOI: 10.1016/j.mito.2021.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 01/17/2023]
Abstract
Dapagliflozin (DAPA), a selective inhibitor of sodium/glucose cotransporter SGLT2, is currently used as a hypoglycemic agent in the treatment of diabetes mellitus. In this work, we have assessed the effect of DAPA treatment (1 mg/kg/day) on the ultrastructure and functions of the liver mitochondria of C57BL/6NCrl mice with type 2 diabetes mellitus (T2DM) induced by a high-fat diet combined with low-dose streptozotocin injections. An electron microscopy study showed that DAPA prevented the mitochondrial swelling and normalized the average mitochondrial size in hepatocytes of diabetic animals. The treatment with DAPA reversed the decline in the mtDNA copy number in the liver of diabetic mice. DAPA-treated T2DM mice showed increased expression of the Ppargc1a, Mfn2 and Drp1 in the liver tissue. The treatment of diabetic animals with DAPA normalized the mitochondrial respiratory control ratio, significantly decreased the level of lipid peroxidation products in liver mitochondria, and decreased their resistance to the opening of the mitochondrial permeability transition pore. At the same time, DAPA had no effects on the studied parameters of control animals. The paper discusses the possible mechanisms of the effect of dapagliflozin on mitochondrial dysfunction in the liver of diabetic animals.
Collapse
MESH Headings
- Animals
- Benzhydryl Compounds/administration & dosage
- Benzhydryl Compounds/pharmacology
- DNA, Mitochondrial/drug effects
- DNA, Mitochondrial/genetics
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Dynamins/genetics
- GTP Phosphohydrolases/genetics
- Gene Dosage/drug effects
- Glucosides/administration & dosage
- Glucosides/pharmacology
- Lipid Peroxidation/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/genetics
- Obesity/chemically induced
- Obesity/complications
- Obesity/metabolism
- Oxidative Phosphorylation/drug effects
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Random Allocation
- Sodium-Glucose Transporter 2 Inhibitors
- Streptozocin
Collapse
Affiliation(s)
- Konstantin N Belosludtsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia.
| | - Vlada S Starinets
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | | | - Irina B Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| | - Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
74
|
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc 2021; 96:2489-2521. [PMID: 34155777 DOI: 10.1111/brv.12764] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Ravenna, 48033, Italy.,Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Natalia Naumova
- Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua Medical School, Via Giustiniani 2, Padova, 35128, Italy
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Sara Valente
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| |
Collapse
|
75
|
Basse AL, Agerholm M, Farup J, Dalbram E, Nielsen J, Ørtenblad N, Altıntaş A, Ehrlich AM, Krag T, Bruzzone S, Dall M, de Guia RM, Jensen JB, Møller AB, Karlsen A, Kjær M, Barrès R, Vissing J, Larsen S, Jessen N, Treebak JT. Nampt controls skeletal muscle development by maintaining Ca 2+ homeostasis and mitochondrial integrity. Mol Metab 2021; 53:101271. [PMID: 34119711 PMCID: PMC8259345 DOI: 10.1016/j.molmet.2021.101271] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Objective NAD+ is a co-factor and substrate for enzymes maintaining energy homeostasis. Nicotinamide phosphoribosyltransferase (NAMPT) controls NAD+ synthesis, and in skeletal muscle, NAD+ is essential for muscle integrity. However, the underlying molecular mechanisms by which NAD+ synthesis affects muscle health remain poorly understood. Thus, the objective of the current study was to delineate the role of NAMPT-mediated NAD+ biosynthesis in skeletal muscle development and function. Methods To determine the role of Nampt in muscle development and function, we generated skeletal muscle-specific Nampt KO (SMNKO) mice. We performed a comprehensive phenotypic characterization of the SMNKO mice, including metabolic measurements, histological examinations, and RNA sequencing analyses of skeletal muscle from SMNKO mice and WT littermates. Results SMNKO mice were smaller, with phenotypic changes in skeletal muscle, including reduced fiber area and increased number of centralized nuclei. The majority of SMNKO mice died prematurely. Transcriptomic analysis identified that the gene encoding the mitochondrial permeability transition pore (mPTP) regulator Cyclophilin D (Ppif) was upregulated in skeletal muscle of SMNKO mice from 2 weeks of age, with associated increased sensitivity of mitochondria to the Ca2+-stimulated mPTP opening. Treatment of SMNKO mice with the Cyclophilin D inhibitor, Cyclosporine A, increased membrane integrity, decreased the number of centralized nuclei, and increased survival. Conclusions Our study demonstrates that NAMPT is crucial for maintaining cellular Ca2+ homeostasis and skeletal muscle development, which is vital for juvenile survival. NAD+ salvage capacity is important for skeletal muscle development and survival. Skeletal muscle-specific Nampt knockout mice exhibit a dystrophy-like phenotype. Nampt deletion alters Ca2+ homeostasis and impairs mitochondrial function. Low NAD+ levels signals mitochondrial permeability transition pore opening. Cyclosporin A treatment improves sarcolemma integrity and increases survival rate.
Collapse
Affiliation(s)
- Astrid L Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean Farup
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen, Denmark
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roldan M de Guia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas B Jensen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Andreas B Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Karlsen
- Institute of Sports Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjær
- Institute of Sports Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen, Denmark
| | - Steen Larsen
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
76
|
Martins-Marques T, Rodriguez-Sinovas A, Girao H. Cellular crosstalk in cardioprotection: Where and when do reactive oxygen species play a role? Free Radic Biol Med 2021; 169:397-409. [PMID: 33892116 DOI: 10.1016/j.freeradbiomed.2021.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
A well-balanced intercellular communication between the different cells within the heart is vital for the maintenance of cardiac homeostasis and function. Despite remarkable advances on disease management and treatment, acute myocardial infarction remains the major cause of morbidity and mortality worldwide. Gold standard reperfusion strategies, namely primary percutaneous coronary intervention, are crucial to preserve heart function. However, reestablishment of blood flow and oxygen levels to the infarcted area are also associated with an accumulation of reactive oxygen species (ROS), leading to oxidative damage and cardiomyocyte death, a phenomenon termed myocardial reperfusion injury. In addition, ROS signaling has been demonstrated to regulate multiple biological pathways, including cell differentiation and intercellular communication. Given the importance of cell-cell crosstalk in the coordinated response after cell injury, in this review, we will discuss the impact of ROS in the different forms of inter- and intracellular communication, as well as the role of gap junctions, tunneling nanotubes and extracellular vesicles in the propagation of oxidative damage in cardiac diseases, particularly in the context of ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Antonio Rodriguez-Sinovas
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall D'Hebron Institut de Recerca (VHIR), Vall D'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Passeig Vall D'Hebron, 119-129, 08035, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
77
|
Pedersen SF, Flinck M, Pardo LA. The Interplay between Dysregulated Ion Transport and Mitochondrial Architecture as a Dangerous Liaison in Cancer. Int J Mol Sci 2021; 22:ijms22105209. [PMID: 34069047 PMCID: PMC8156689 DOI: 10.3390/ijms22105209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Transport of ions and nutrients is a core mitochondrial function, without which there would be no mitochondrial metabolism and ATP production. Both ion homeostasis and mitochondrial phenotype undergo pervasive changes during cancer development, and both play key roles in driving the malignancy. However, the link between these events has been largely ignored. This review comprehensively summarizes and critically discusses the role of the reciprocal relationship between ion transport and mitochondria in crucial cellular functions, including metabolism, signaling, and cell fate decisions. We focus on Ca2+, H+, and K+, which play essential and highly interconnected roles in mitochondrial function and are profoundly dysregulated in cancer. We describe the transport and roles of these ions in normal mitochondria, summarize the changes occurring during cancer development, and discuss how they might impact tumorigenesis.
Collapse
Affiliation(s)
- Stine F. Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark;
- Correspondence: (S.F.P.); (L.A.P.)
| | - Mette Flinck
- Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Luis A. Pardo
- Oncophysiology Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Correspondence: (S.F.P.); (L.A.P.)
| |
Collapse
|
78
|
The Regulation of Non-Specific Membrane Permeability Transition in Yeast Mitochondria under Oxidative Stress. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the mechanism of non-specific membrane permeability (yPTP) in the Endomyces magnusii yeast mitochondria under oxidative stress due to blocking the key antioxidant enzymes has been investigated. We used monitoring the membrane potential at the cellular (potential-dependent staining) and mitochondrial levels and mitochondria ultra-structural images with transmission electron microscopy (TEM) to demonstrate the mitochondrial permeability transition induction due to the pore opening. Analysis of the yPTP opening upon respiring different substrates showed that NAD(P)H completely blocked the development of the yPTP. The yPTP opening was inhibited by 5–20 mM Pi, 5 mM Mg2+, adenine nucleotides (AN), 5 mM GSH, the inhibitor of the Pi transporter (PiC), 100 μM mersalyl, the blockers of the adenine nucleotide transporter (ANT) carboxyatractyloside (CATR), and bongkrekic acid (BA). We concluded that the non-specific membrane permeability pore opens in the E. magnusii mitochondria under oxidative stress, and the ANT and PiC are involved in its formation. The crucial role of the Ca2+ ions in the process has not been confirmed. We showed that the Ca2+ ions affected the yPTP both with and without the Ca2+ ionophore ETH129 application insignificantly. This phenomenon in the E. magnusii yeast unites both mitochondrial unselective channel (ScMUC) features in the Saccharomyces cerevisiae mitochondria and the classical membrane pore in the mammalian ones (mPTP).
Collapse
|
79
|
Zhao H, Pan X. Mitochondrial Ca 2+ and cell cycle regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:171-207. [PMID: 34253295 DOI: 10.1016/bs.ircmb.2021.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been demonstrated for more than 40 years that intracellular calcium (Ca2+) controls a variety of cellular functions, including mitochondrial metabolism and cell proliferation. Cytosolic Ca2+ fluctuation during key stages of the cell cycle can lead to mitochondrial Ca2+ uptake and subsequent activation of mitochondrial oxidative phosphorylation and a range of signaling. However, the relationship between mitochondrial Ca2+ and cell cycle progression has long been neglected because the molecule responsible for Ca2+ uptake has been unknown. Recently, the identification of the mitochondrial Ca2+ uniporter (MCU) has led to key advances. With improved Ca2+ imaging and detection, effects of MCU-mediated mitochondrial Ca2+ have been observed at different stages of the cell cycle. Elevated Ca2+ signaling boosts ATP and ROS production, remodels cytosolic Ca2+ pathways and reprograms cell fate-determining networks. These findings suggest that manipulating mitochondrial Ca2+ signaling may serve as a potential strategy in the control of many crucial biological events, such as tumor development and cell division in hematopoietic stem cells (HSCs). In this review, we summarize the current understanding of the role of mitochondrial Ca2+ signaling during different stages of the cell cycle and highlight the potential physiological and pathological significance of mitochondrial Ca2+ signaling.
Collapse
Affiliation(s)
- Haixin Zhao
- State Key Laboratory of Experimental Haematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Pan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.
| |
Collapse
|
80
|
Mareedu S, Million ED, Duan D, Babu GJ. Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. Front Physiol 2021; 12:647010. [PMID: 33897454 PMCID: PMC8063049 DOI: 10.3389/fphys.2021.647010] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by the loss of dystrophin. DMD is associated with muscle degeneration, necrosis, inflammation, fatty replacement, and fibrosis, resulting in muscle weakness, respiratory and cardiac failure, and premature death. There is no curative treatment. Investigations on disease-causing mechanisms offer an opportunity to identify new therapeutic targets to treat DMD. An abnormal elevation of the intracellular calcium (Cai2+) concentration in the dystrophin-deficient muscle is a major secondary event, which contributes to disease progression in DMD. Emerging studies have suggested that targeting Ca2+-handling proteins and/or mechanisms could be a promising therapeutic strategy for DMD. Here, we provide an updated overview of the mechanistic roles the sarcolemma, sarcoplasmic/endoplasmic reticulum, and mitochondria play in the abnormal and sustained elevation of Cai2+ levels and their involvement in DMD pathogenesis. We also discuss current approaches aimed at restoring Ca2+ homeostasis as potential therapies for DMD.
Collapse
Affiliation(s)
- Satvik Mareedu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Emily D Million
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, United States
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, United States.,Department of Biomedical, Biological & Chemical Engineering, The University of Missouri, Columbia, MO, United States
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
81
|
Panda S, Behera S, Alam MF, Syed GH. Endoplasmic reticulum & mitochondrial calcium homeostasis: The interplay with viruses. Mitochondrion 2021; 58:227-242. [PMID: 33775873 DOI: 10.1016/j.mito.2021.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Calcium ions (Ca2+) act as secondary messengers in a plethora of cellular processes and play crucial role in cellular organelle function and homeostasis. The average resting concentration of Ca2+ is nearly 100 nM and in certain cells it can reach up to 1 µM. The high range of Ca2+ concentration across the plasma membrane and intracellular Ca2+ stores demands a well-coordinated maintenance of free Ca2+ via influx, efflux, buffering and storage. Endoplasmic Reticulum (ER) and Mitochondria depend on Ca2+ for their function and also serve as major players in intracellular Ca2+ homeostasis. The ER-mitochondria interplay helps in orchestrating cellular calcium homeostasis to avoid any detrimental effect resulting from Ca2+ overload or depletion. Since Ca2+ plays a central role in many biological processes it is an essential component of the virus-host interactions. The large gradient across membranes enable the viruses to easily modulate this buffered environment to meet their needs. Viruses exploit Ca2+ signaling to establish productive infection and evade the host immune defense. In this review we will detail the interplay between the viruses and cellular & ER-mitochondrial calcium signaling and the significance of these events on viral life cycle and disease pathogenesis.
Collapse
Affiliation(s)
- Swagatika Panda
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Suchismita Behera
- Institute of Life Sciences, Bhubaneswar, Clinical Proteomics Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Mohd Faraz Alam
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Gulam Hussain Syed
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India.
| |
Collapse
|
82
|
Nesci S, Trombetti F, Pagliarani A, Ventrella V, Algieri C, Tioli G, Lenaz G. Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology. Life (Basel) 2021; 11:242. [PMID: 33804034 PMCID: PMC7999509 DOI: 10.3390/life11030242] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Under aerobic conditions, mitochondrial oxidative phosphorylation (OXPHOS) converts the energy released by nutrient oxidation into ATP, the currency of living organisms. The whole biochemical machinery is hosted by the inner mitochondrial membrane (mtIM) where the protonmotive force built by respiratory complexes, dynamically assembled as super-complexes, allows the F1FO-ATP synthase to make ATP from ADP + Pi. Recently mitochondria emerged not only as cell powerhouses, but also as signaling hubs by way of reactive oxygen species (ROS) production. However, when ROS removal systems and/or OXPHOS constituents are defective, the physiological ROS generation can cause ROS imbalance and oxidative stress, which in turn damages cell components. Moreover, the morphology of mitochondria rules cell fate and the formation of the mitochondrial permeability transition pore in the mtIM, which, most likely with the F1FO-ATP synthase contribution, permeabilizes mitochondria and leads to cell death. As the multiple mitochondrial functions are mutually interconnected, changes in protein composition by mutations or in supercomplex assembly and/or in membrane structures often generate a dysfunctional cascade and lead to life-incompatible diseases or severe syndromes. The known structural/functional changes in mitochondrial proteins and structures, which impact mitochondrial bioenergetics because of an impaired or defective energy transduction system, here reviewed, constitute the main biochemical damage in a variety of genetic and age-related diseases.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Gaia Tioli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
83
|
Yang H, Zhang Z. Sepsis-induced myocardial dysfunction: the role of mitochondrial dysfunction. Inflamm Res 2021; 70:379-387. [PMID: 33683374 DOI: 10.1007/s00011-021-01447-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Sepsis-induced myocardial dysfunction (SIMD) is a condition manifested by an intrinsic myocardial systolic and diastolic dysfunction during sepsis, which is associated with worse clinical outcomes and a higher mortality. MATERIALS AND METHODS Several pathophysiological mechanisms including mitochondrial dysfunction, abnormal body immune reaction, metabolic reprogramming, excessive production of reactive oxygen species (ROS), and disorder of calcium regulation have been involved in SIMD. Mitophagy has potential role in protecting myocardial cells in sepsis, especially in survivors. CONCLUSION In the current review, we focus on the role of mitochondrial dysfunction and other mitochondria-related mechanisms including immunologic imbalance, energetic reprogramming, mitophagy, and pyroptosis in the mechanisms of SIMD.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Wu Hou District, Chengdu, 610041, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road No. 88, Hangzhou, 310000, Zhejiang province, China.
| |
Collapse
|
84
|
Boyman L, Greiser M, Lederer WJ. Calcium influx through the mitochondrial calcium uniporter holocomplex, MCU cx. J Mol Cell Cardiol 2021; 151:145-154. [PMID: 33147447 PMCID: PMC7880866 DOI: 10.1016/j.yjmcc.2020.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Ca2+ flux into the mitochondrial matrix through the MCU holocomplex (MCUcx) has recently been measured quantitatively and with milliseconds resolution for the first time under physiological conditions in both heart and skeletal muscle. Additionally, the dynamic levels of Ca2+ in the mitochondrial matrix ([Ca2+]m) of cardiomyocytes were measured as it was controlled by the balance between influx of Ca2+ into the mitochondrial matrix through MCUcx and efflux through the mitochondrial Na+ / Ca2+ exchanger (NCLX). Under these conditions [Ca2+]m was shown to regulate ATP production by the mitochondria at only a few critical sites. Additional functions attributed to [Ca2+]m continue to be reported in the literature. Here we review the new findings attributed to MCUcx function and provide a framework for understanding and investigating mitochondrial Ca2+ influx features, many of which remain controversial. The properties and functions of the MCUcx subunits that constitute the holocomplex are challenging to tease apart. Such distinct subunits include EMRE, MCUR1, MICUx (i.e. MICU1, MICU2, MICU3), and the pore-forming subunits (MCUpore). Currently, the specific set of functions of each subunit remains non-quantitative and controversial. The more contentious issues are discussed in the context of the newly measured native MCUcx Ca2+ flux from heart and skeletal muscle. These MCUcx Ca2+ flux measurements have been shown to be a highly-regulated, tissue-specific with femto-Siemens Ca2+ conductances and with distinct extramitochondrial Ca2+ ([Ca2+]i) dependencies. These data from cardiac and skeletal muscle mitochondria have been examined quantitatively for their threshold [Ca2+]i levels and for hypothesized gatekeeping function and are discussed in the context of model cell (e.g. HeLa, MEF, HEK293, COS7 cells) measurements. Our new findings on MCUcx dependent matrix [Ca2+]m signaling provide a quantitative basis for on-going and new investigations of the roles of MCUcx in cardiac function ranging from metabolic fuel selection, capillary blood-flow control and the pathological activation of the mitochondrial permeability transition pore (mPTP). Additionally, this review presents the use of advanced new methods that can be readily adapted by any investigator to enable them to carry out quantitative Ca2+ measurements in mitochondria while controlling the inner mitochondrial membrane potential, ΔΨm.
Collapse
Affiliation(s)
- Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; The Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Maura Greiser
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; The Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; The Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
85
|
Gui Q, Jiang Z, Zhang L. Insights into the modulatory role of cyclosporine A and its research advances in acute inflammation. Int Immunopharmacol 2021; 93:107420. [PMID: 33540245 DOI: 10.1016/j.intimp.2021.107420] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Cyclosporine A(CsA), a classic immunosuppressant, is mainly applied for solid organ transplantation and some autoimmune diseases by suppressing T lymphocytes. Early studies showed that the application of CsA is primarily focused on chronic but not acute inflammation, nevertheless, increasing evidence supporting a role for CsA in acute inflammation, although most of proofs come from experimental models. It has long been known to us that the nuclear factor of activated T cells (NFAT) is the target of CsA to regulate T lymphocytes. However, NFAT also contributes to the regulation of innate immune cells, thus, CsA can not only target lymphocytes but also innate immune cells such as monocytes/macrophages, dendritic cells and neutrophils, which provides a basis for CsA to act on acute inflammation. Moreover, some other pathophysiological events in acute inflammation such as decreased vascular activity, mitochondrial dysfunction and endogenous cell apoptosis can also be alleviated by CsA. There being a moderate successes in the application of CsA for experimental acute inflammation such as sepsis, trauma/hemorrhagic shock and ischemic/reperfusion injury, yet data of the clinical treatment is not clear. In this review, we will critically analyze the existing hypotheses, summarize the application of CsA and its possible mechanisms in various acute inflammation over the past few decades, hope to provide some clues for the clinical treatment of acute inflammation.
Collapse
Affiliation(s)
- Qiuyi Gui
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
86
|
Vorobjeva NV, Sud'ina GF, Chernyak BV. Mitochondria Are Potential Targets for the Development of New Drugs Against Neutrophilic Inflammation in Severe Pneumonia Including COVID-19. Front Pharmacol 2021; 12:609508. [PMID: 33584318 PMCID: PMC7878366 DOI: 10.3389/fphar.2021.609508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Nina V Vorobjeva
- Biology Faculty, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Galina F Sud'ina
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Boris V Chernyak
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
87
|
Kent AC, El Baradie KBY, Hamrick MW. Targeting the Mitochondrial Permeability Transition Pore to Prevent Age-Associated Cell Damage and Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6626484. [PMID: 33574977 PMCID: PMC7861926 DOI: 10.1155/2021/6626484] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
The aging process is associated with significant alterations in mitochondrial function. These changes in mitochondrial function are thought to involve increased production of reactive oxygen species (ROS), which over time contribute to cell death, senescence, tissue degeneration, and impaired tissue repair. The mitochondrial permeability transition pore (mPTP) is likely to play a critical role in these processes, as increased ROS activates mPTP opening, which further increases ROS production. Injury and inflammation are also thought to increase mPTP opening, and chronic, low-grade inflammation is a hallmark of aging. Nicotinamide adenine dinucleotide (NAD+) can suppress the frequency and duration of mPTP opening; however, NAD+ levels are known to decline with age, further stimulating mPTP opening and increasing ROS release. Research on neurodegenerative diseases, particularly on Parkinson's disease (PD) and Alzheimer's disease (AD), has uncovered significant findings regarding mPTP openings and aging. Parkinson's disease is associated with a reduction in mitochondrial complex I activity and increased oxidative damage of DNA, both of which are linked to mPTP opening and subsequent ROS release. Similarly, AD is associated with increased mPTP openings, as evidenced by amyloid-beta (Aβ) interaction with the pore regulator cyclophilin D (CypD). Targeted therapies that can reduce the frequency and duration of mPTP opening may therefore have the potential to prevent age-related declines in cell and tissue function in various systems including the central nervous system.
Collapse
Affiliation(s)
- Andrew C. Kent
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- University of Georgia, Athens, GA, USA
| | | | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
88
|
Hua Z, Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Li W, Lu C, Liu Y. Contamination of Aflatoxins Induces Severe Hepatotoxicity Through Multiple Mechanisms. Front Pharmacol 2021; 11:605823. [PMID: 33505311 PMCID: PMC7830880 DOI: 10.3389/fphar.2020.605823] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Aflatoxins (AFs) are commonly contaminating mycotoxins in foods and medicinal materials. Since they were first discovered to cause “turkey X” disease in the United Kingdom in the early 1960s, the extreme toxicity of AFs in the human liver received serious attention. The liver is the major target organ where AFs are metabolized and converted into extremely toxic forms to engender hepatotoxicity. AFs influence mitochondrial respiratory function and destroy normal mitochondrial structure. AFs initiate damage to mitochondria and subsequent oxidative stress. AFs block cellular survival pathways, such as autophagy that eliminates impaired cellular structures and the antioxidant system that copes with oxidative stress, which may underlie their high toxicities. AFs induce cell death via intrinsic and extrinsic apoptosis pathways and influence the cell cycle and growth via microribonucleic acids (miRNAs). Furthermore, AFs induce the hepatic local inflammatory microenvironment to exacerbate hepatotoxicity via upregulation of NF-κB signaling pathway and inflammasome assembly in the presence of Kupffer cells (liver innate immunocytes). This review addresses the mechanisms of AFs-induced hepatotoxicity from various aspects and provides background knowledge to better understand AFs-related hepatoxic diseases.
Collapse
Affiliation(s)
- Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Weifeng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
89
|
Han Q, Zhang W, Guo J, Zhu Q, Chen H, Xia Y, Zhu G. Mitochondrion: a sensitive target for Pb exposure. J Toxicol Sci 2021; 46:345-358. [PMID: 34334556 DOI: 10.2131/jts.46.345] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds through food and respiratory routes causes toxic damage to the digestive, respiratory, cardiovascular and nervous systems, etc. Children and pregnant women are particularly vulnerable to Pb. Pb exposure significantly destroys children's learning ability, intelligence and perception ability. Mitochondria are involved in various life processes of eukaryotes and are one of the most sensitive organelles to various injuries. There is no doubt that Pb-induced mitochondrial damage can widely affect various physiological processes and cause great harm. In this review, we summarized the toxic effects of Pb on mitochondria which led to various pathological processes. Pb induces mitochondrial dysfunction leading to the increased level of oxidative stress. In addition, Pb leads to cell apoptosis via mitochondrial permeability transition pore (MPTP) opening. Also, Pb can stimulate the development of mitochondria-mediated inflammatory responses. Furthermore, Pb triggers the germination of autophagy via the mitochondrial pathway and induces mitochondrial dysfunction, disturbing intracellular calcium homeostasis. In a word, we discussed the effects of Pb exposure on mitochondria, hoping to provide some references for further research and better therapeutic options for Pb exposure.
Collapse
Affiliation(s)
- Qing Han
- The First Clinical Medical College of Nanchang University, China
| | - Wei Zhang
- Department of Anatomy, Medical College of Nanchang University, China
| | - JingChong Guo
- The First Clinical Medical College of Nanchang University, China
| | - Qian Zhu
- Department of Anatomy, Medical College of Nanchang University, China
| | - Hui Chen
- Department of Anatomy, Medical College of Nanchang University, China
| | - YongLi Xia
- Department of Anatomy, Medical College of Nanchang University, China
| | - Gaochun Zhu
- Department of Anatomy, Medical College of Nanchang University, China
| |
Collapse
|
90
|
Li Y, Wu J, Yang M, Wei L, Wu H, Wang Q, Shi H. Physiological evidence of mitochondrial permeability transition pore opening caused by lipid deposition leading to hepatic steatosis in db/db mice. Free Radic Biol Med 2021; 162:523-532. [PMID: 33220425 DOI: 10.1016/j.freeradbiomed.2020.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial permeability transition pore (mPTP) is an important regulator in cell apoptosis and necrosis. However, its role in hepatic steatosis, especially its electrophysiological properties transformation remains elusive. Herein, using diabetes mice, we investigated the role of mPTP in hepatic steatosis triggered by diabetes and the mechanisms involved. We found that hepatic steatosis altered mitochondrial morphology, generating mega mitochondria, mitochondria swelling, calcein fluorescence quenching and mitochondrial membrane potential depolarization. At the same time, we confirmed an augmented mPTP opening with patch clamping in liver mitoplasts in db/db mice and a similar transformation with arachidonic acid (AA) simulating liquid deposition. We also found mPTP opening was significantly attenuated in wt mice after removing mitochondrial matrix, while that in db/db mice remained active. In addition, we observed that AA could directly activate mPTP in inside-out mode, independent of matrix calcium. In conclusion, we for the first time provided a physiological evidence of mPTP opening in lipid deposition, which could be directly induced by AA without Ca2+ and can be inhibited by cyclosporine A. As a result, it led to mitochondria morphology and function transformation. This might provide insights into potential therapeutic target for future treatment of mitochondrial liver disease.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Molecular Medicine, Peking University, Beijing, China.
| | - Jing Wu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Min Yang
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lisi Wei
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Hongkun Wu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qinyi Wang
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Hui Shi
- Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
91
|
Chatuphonprasert W, Sukkasem N, Tukum-Mee W, Wattanathorn J, Jarukamjorn K. Impact of Pineapple on Mitochondrial Permeability Transition and Drug Metabolizing Genes in Caco-2 Cells. Pak J Biol Sci 2021; 24:1217-1225. [PMID: 34989199 DOI: 10.3923/pjbs.2021.1217.1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
<b>Background and Objective:</b> Pineapple (<i>Ananas comosus</i> L.) has antioxidant and other pharmacological properties. This study examined how pineapple modified mitochondrial permeability transition and expression of drug-metabolizing enzymes, i.e., CYP1A2, CYP2C9, CYP3A4, UGT1A6, NAT2 and the drug transporter OATP1B1 in human colorectal adenocarcinoma (Caco-2) cells. <b>Materials and Methods:</b> Caco-2 cells (2.5×10<sup>5</sup> cells well<sup>1</sup> in 24-well plates) were incubated with pineapple (125 to 1,000 μg mL<sup>1</sup>) for 48 hrs in a phenol red-free medium. Mitochondrial permeability transition, resazurin cell viability and AST and ALT levels were investigated. The mRNA expression of target genes was determined by RT/qPCR. <b>Results:</b> Pineapple significantly reduced depolarized mitochondria, slightly decreased cell viability and did not change AST and ALT levels. Pineapple did not modify the mRNA expressions of CYP1A2, CYP2C9 and CYP3A4 but markedly induced UGT1A6 expression. The highest tested concentration of pineapple (1,000 μg mL<sup>1</sup>) significantly suppressed NAT2 and OATP1B1 expression. <b>Conclusion:</b> Although pineapple slightly decreased cell viability to ~80% of control, the morphology and functions of the cells were unaffected. Pineapple showed a beneficial effect to reduce depolarized mitochondria, which consequently decreased reactive oxygen species production. Pineapple did not modify the expression of CYPs, whilst it altered the expression of phase 2 metabolizing genes UGT1A6 and NAT2 and the transporter OATP1B1. Therefore, the consumption of large amounts of pineapple is of concern for the risk of drug interaction via alteration of UGT1A6, NAT2 and OATP1B1 expression.
Collapse
|
92
|
Hallmarks of Health. Cell 2020; 184:33-63. [PMID: 33340459 DOI: 10.1016/j.cell.2020.11.034] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/09/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
Health is usually defined as the absence of pathology. Here, we endeavor to define health as a compendium of organizational and dynamic features that maintain physiology. The biological causes or hallmarks of health include features of spatial compartmentalization (integrity of barriers and containment of local perturbations), maintenance of homeostasis over time (recycling and turnover, integration of circuitries, and rhythmic oscillations), and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, and repair and regeneration). Disruption of any of these interlocked features is broadly pathogenic, causing an acute or progressive derailment of the system coupled to the loss of numerous stigmata of health.
Collapse
|
93
|
Chernyak BV, Popova EN, Zinovkina LA, Lyamzaev KG, Zinovkin RA. Mitochondria as Targets for Endothelial Protection in COVID-19. Front Physiol 2020; 11:606170. [PMID: 33329059 PMCID: PMC7710659 DOI: 10.3389/fphys.2020.606170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- Boris V Chernyak
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Popova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ludmila A Zinovkina
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin G Lyamzaev
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Roman A Zinovkin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
94
|
Zhao L, Tang M, Bode AM, Liao W, Cao Y. ANTs and cancer: Emerging pathogenesis, mechanisms, and perspectives. Biochim Biophys Acta Rev Cancer 2020; 1875:188485. [PMID: 33309965 DOI: 10.1016/j.bbcan.2020.188485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Adenine nucleotide translocases (ANTs) are a class of transporters located in the inner mitochondrial membrane that not only couple processes of cellular productivity and energy expenditure, but are also involved in the composition of the mitochondrial membrane permeability transition pore (mPTP). The function of ANTs has been found to be most closely related to their own conformational changes. Notably, as multifunctional proteins, ANTs play a key role in oncogenesis, which provides building blocks for tumor anabolism, control oxidative phosphorylation and glycolysis homeostasis, and govern cell death. Thus, ANTs constitute promising targets for the development of novel anticancer agents. Here, we review the recent findings regarding ANTs and their important mechanisms in cancer, with a focus on the therapeutic potential of targeting ANTs for cancer therapy.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, China; Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha 410078, China; National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China.
| |
Collapse
|
95
|
Pawlotsky JM. COVID-19 Pandemic: Time to Revive the Cyclophilin Inhibitor Alisporivir. Clin Infect Dis 2020; 71:2191-2194. [PMID: 32409832 PMCID: PMC7239253 DOI: 10.1093/cid/ciaa587] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
December 2019 saw the emergence of a new epidemic of pneumonia of varying severity, called COVID-19, caused by a newly identified coronavirus, SARS-CoV-2. No therapeutic option is available to treat this infection that has already killed more than 235,000 people worldwide. This Viewpoint summarizes the strong scientific arguments supporting the use of alisporivir, a non-immunosuppressive analogue of cyclosporine A with potent cyclophilin inhibition properties that has reached Phase 3 clinical development, for the treatment of COVID-19. They include the strong cyclophilin dependency of the lifecycle of many coronaviruses, including SARS-CoV and MERS-CoV, and preclinical data showing strong antiviral and cytoprotective properties of alisporivir in various models of coronavirus infection, including SARS-CoV-2. Alisporivir should be tested without delay on both virological and clinical endpoints in patients with or at-risk of severe forms of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jean-Michel Pawlotsky
- Department of Virology, Hôpital Henri Mondor, AP-HP, Université Paris-Est, Créteil, France.,Inserm U955, Créteil, France
| |
Collapse
|
96
|
Dubinin MV, Talanov EY, Tenkov KS, Starinets VS, Belosludtseva NV, Belosludtsev KN. The Effect of Deflazacort Treatment on the Functioning of Skeletal Muscle Mitochondria in Duchenne Muscular Dystrophy. Int J Mol Sci 2020; 21:8763. [PMID: 33228255 PMCID: PMC7699511 DOI: 10.3390/ijms21228763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a lack of dystrophin, a protein essential for myocyte integrity. Mitochondrial dysfunction is reportedly responsible for DMD. This study examines the effect of glucocorticoid deflazacort on the functioning of the skeletal-muscle mitochondria of dystrophin-deficient mdx mice and WT animals. Deflazacort administration was found to improve mitochondrial respiration of mdx mice due to an increase in the level of ETC complexes (complexes III and IV and ATP synthase), which may contribute to the normalization of ATP levels in the skeletal muscle of mdx animals. Deflazacort treatment improved the rate of Ca2+ uniport in the skeletal muscle mitochondria of mdx mice, presumably by affecting the subunit composition of the calcium uniporter of organelles. At the same time, deflazacort was found to reduce the resistance of skeletal mitochondria to MPT pore opening, which may be associated with a change in the level of ANT2 and CypD. In this case, deflazacort also affected the mitochondria of WT mice. The paper discusses the mechanisms underlying the effect of deflazacort on the functioning of mitochondria and contributing to the improvement of the muscular function of mdx mice.
Collapse
MESH Headings
- Adenine Nucleotide Translocator 2/genetics
- Adenine Nucleotide Translocator 2/metabolism
- Adenosine Triphosphate/biosynthesis
- Animals
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Peptidyl-Prolyl Isomerase F/genetics
- Peptidyl-Prolyl Isomerase F/metabolism
- Electron Transport Complex III/genetics
- Electron Transport Complex III/metabolism
- Electron Transport Complex IV/genetics
- Electron Transport Complex IV/metabolism
- Gene Expression Regulation/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondrial Proton-Translocating ATPases/genetics
- Mitochondrial Proton-Translocating ATPases/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Pregnenediones/pharmacology
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
| | - Eugeny Yu. Talanov
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Kirill S. Tenkov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
| | - Vlada S. Starinets
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
- Biophotonics Center, Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov st. 38, 119991 Moscow, Russia
| |
Collapse
|
97
|
Han C, Xu X, Zhang C, Yan D, Liao S, Zhang C, Kong L. Cytochrome c light-up graphene oxide nanosensor for the targeted self-monitoring of mitochondria-mediated tumor cell death. Biosens Bioelectron 2020; 173:112791. [PMID: 33190048 DOI: 10.1016/j.bios.2020.112791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
Targeting mitochondria-mediated apoptosis has emerged as a promising strategy for tumor therapy. However, technologies used to treat tumors that enable the direct visualization of mitochondria-mediated apoptosis in living cells have not been developed to date. Cytochrome c (Cyt c) translocation from mitochondria is a central mediating event in cell apoptosis. In this study, we developed a multifunctional nanosensor that can monitor the real-time translocation of Cyt c from mitochondria in living cells to evaluate the antitumor effect of dihydroartemisinin (DHA). A fluorophore-tagged DNA aptamer is loaded on a graphene oxide (GO)-based nanovehicle, and the cytosolic release of Cyt c causes the dissociation of the aptamer from the GO nanovehicle and triggers the emission of a red fluorescence signal. Furthermore, DHA linked with a coumarin derivative is loaded on GO as a mitochondria-targeting ligand to improve its antitumor activity. This DHA prodrug also emits a green fluorescence signal when delivered to mitochondria. This nanosensor provides a convenient mechanism to monitor mitochondrial targeting by drugs and mitochondria-induced therapeutic efficacy, which may be possible to diagnose the drug efficacy to optimize the treatment for patients with cancer.
Collapse
Affiliation(s)
- Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery and Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Dan Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Shanting Liao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
98
|
Bas-Orth C, Schneider J, Lewen A, McQueen J, Hasenpusch-Theil K, Theil T, Hardingham GE, Bading H, Kann O. The mitochondrial calcium uniporter is crucial for the generation of fast cortical network rhythms. J Cereb Blood Flow Metab 2020; 40:2225-2239. [PMID: 31722597 PMCID: PMC7585921 DOI: 10.1177/0271678x19887777] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The role of the mitochondrial calcium uniporter (MCU) gene (Mcu) in cellular energy homeostasis and generation of electrical brain rhythms is widely unknown. We investigated this issue in mice and rats using Mcu-knockout and -knockdown strategies in vivo and in situ and determined the effects of these genetic manipulations on hippocampal gamma oscillations (30-70 Hz) and sharp wave-ripples. These physiological network states require precise neurotransmission between pyramidal cells and inhibitory interneurons, support spike-timing and synaptic plasticity and are associated with perception, attention and memory. Absence of the MCU resulted in (i) gamma oscillations with decreased power (by >40%) and lower synchrony, including less precise neural action potential generation ('spiking'), (ii) sharp waves with decreased incidence (by about 22%) and decreased fast ripple frequency (by about 3%) and (iii) lack of activity-dependent pyruvate dehydrogenase dephosphorylation. However, compensatory adaptation in gene expression related to mitochondrial function and glucose metabolism was not detected. These data suggest that the neuronal MCU is crucial for the generation of network rhythms, most likely by influences on oxidative phosphorylation and perhaps by controlling cytoplasmic Ca2+ homeostasis. This work contributes to an increased understanding of mitochondrial Ca2+ uptake in cortical information processing underlying cognition and behaviour.
Collapse
Affiliation(s)
- Carlos Bas-Orth
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany.,Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany.,Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Justus Schneider
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.,Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Lewen
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.,Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Jamie McQueen
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Thomas Theil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Hilmar Bading
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany.,Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Oliver Kann
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.,Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
99
|
Fedele AO, Carraro V, Xie J, Averous J, Proud CG. Cyclosporin A but not FK506 activates the integrated stress response in human cells. J Biol Chem 2020; 295:15134-15143. [PMID: 32843478 DOI: 10.1074/jbc.ra120.014531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/28/2020] [Indexed: 11/06/2022] Open
Abstract
Cyclosporin A (CsA) and tacrolimus (FK506) are valuable immunosuppressants for a range of clinical settings, including (but not limited to) organ transplantation and the treatment of autoimmune diseases. They function by inhibiting the activity of the Ca2+/calmodulin-dependent phosphatase calcineurin toward nuclear factor of activated T-cells (NF-AT) in T-lymphocytes. However, use of CsA is associated with more serious side effects and worse clinical outcomes than FK506. Here we show that CsA, but not FK506, causes activation of the integrated stress response (ISR), an event which is normally an acute reaction to various types of intracellular insults, such as nutrient deficiency or endoplasmic reticulum stress. These effects of CsA involve at least two of the stress-activated protein kinases (GCN2 and PERK) that act on the translational machinery to slow down protein synthesis via phosphorylation of the eukaryotic initiation factor (eIF) 2α and thereby induce the ISR. These actions of CsA likely contribute to the adverse effects associated with its clinical application.
Collapse
Affiliation(s)
- Anthony O Fedele
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health & Medical Research Institute, North Terrace Campus, Adelaide, Australia
| | - Valérie Carraro
- INRAE Unité de Nutrition Humaine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jianling Xie
- Lifelong Health Theme, South Australian Health & Medical Research Institute, North Terrace Campus, Adelaide, Australia
| | - Julien Averous
- INRAE Unité de Nutrition Humaine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Christopher G Proud
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health & Medical Research Institute, North Terrace Campus, Adelaide, Australia; Lifelong Health Theme, South Australian Health & Medical Research Institute, North Terrace Campus, Adelaide, Australia; School of Biological Sciences, University of Adelaide, North Terrace Campus, Adelaide, Australia.
| |
Collapse
|
100
|
A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165992. [PMID: 33091565 DOI: 10.1016/j.bbadis.2020.165992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) opening is involved in the pathophysiology of multiple cardiac diseases, such as ischemia/reperfusion injury and heart failure. A growing number of evidence provided by proteomic screening techniques has demonstrated the role of post-translational modifications (PTMs) in several key components of the pore in response to changes in the extra/intracellular environment and bioenergetic demand. This could lead to a fine, complex regulatory mechanism that, under pathological conditions, can shift the state of mitochondrial functions and, thus, the cell's fate. Understanding the complex relationship between these PTMs is still under investigation and can provide new, promising therapeutic targets and treatment approaches. This review, using a systematic review of the literature, presents the current knowledge on PTMs of the mPTP and their role in health and cardiac disease.
Collapse
|