51
|
Krifa M, Bouhlel I, Skandrani I, Chekir-Ghedira L, Ghedira K. Antioxidant, mutagenic and antimutagenic activities of an aqueous extract of Limoniastrum guyonianum gall. Drug Chem Toxicol 2013; 37:76-82. [PMID: 23829167 DOI: 10.3109/01480545.2013.806535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An aqueous extract of Limoniastrum guyonianum gall (G extract) was tested on Salmonella typhimurium to assess its mutagenic and antimutagenic effects. This extract showed no mutagenicity when tested with S. typhimurium strain TA104 either with or without exogenous metabolic activation mixture (S9), whereas our findings revealed that the aqueous gall extract induced a mutagenic effect in S. typhimurium TA1538 when tested in the presence, as well as in the absence, of S9 activation mixture at the concentration of 500 µg/mL. Thus, the same concentration produced a mutagenic effect, when incubated with S. typhimurium TA100 in the presence of metabolic activation mixture. In contrast, our results showed a weak antimutagenic potential of the same extract against sodium azide in the presence of S. typhimurium TA100 and S. typhimurium TA1538 without metabolic activation (S9), whereas, in the presence of S. typhimurium TA104, we obtained a significant inhibition percentage (76.39%) toward 3.25 µg/plate of methylmethanesulfonate. Antimutagenicity against aflatoxin B1, 4-nitro-o-phenylene-diamine and 2-aminoanthracène was significant, with an inhibition percentage of, respectively, 70.63, 99.3 and 63.37% in the presence of, respectively, S. typhimurium TA100, S. typhimurium TA1538 and S. typhimurium TA104 strains at a concentration of 250 µg/plate after metabolic activation (S9). Antioxidant capacity of the tested extract was evaluated using the enzymatic (xanthine/xanthine oxidase assay) and the nonenzymatic (2,2-diphenyl-1-picrylhydrazyl) system. G extract exhibited high antioxidant activity.
Collapse
Affiliation(s)
- Mounira Krifa
- Unité de Pharmacognosie/Biologie Moléculaire, Faculté de Pharmacie de Monastir and
| | | | | | | | | |
Collapse
|
52
|
Niero ELDO, Machado-Santelli GM. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:31. [PMID: 23701745 PMCID: PMC3667113 DOI: 10.1186/1756-9966-32-31] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/17/2013] [Indexed: 01/05/2023]
Abstract
Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.
Collapse
Affiliation(s)
- Evandro Luís de Oliveira Niero
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av, Prof, Lineu Prestes, 1524, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | | |
Collapse
|
53
|
Raman M, Ambalam P, Kondepudi KK, Pithva S, Kothari C, Patel AT, Purama RK, Dave J, Vyas B. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes 2013; 4:181-92. [PMID: 23511582 PMCID: PMC3669163 DOI: 10.4161/gmic.23919] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Colorectal Cancer (CRC) is the second leading cause of cancer-related mortality and is the fourth most common malignant neoplasm in USA. Escaping apoptosis and cell mutation are the prime hallmarks of cancer. It is apparent that balancing the network between DNA damage and DNA repair is critical in preventing carcinogenesis. One-third of cancers might be prevented by nutritious healthy diet, maintaining healthy weight and physical activity. In this review, an attempt is made to abridge the role of carcinogen in colorectal cancer establishment and prognosis, where special attention has been paid to food-borne mutagens and functional role of beneficial human gut microbiome in evading cancer. Further the significance of tailor-made prebiotics, probiotics and synbiotics in cancer management by bio-antimutagenic and desmutagenic activity has been elaborated. Probiotic bacteria are live microorganisms that, when administered in adequate amounts, confer a healthy benefit on the host. Prebiotics are a selectively fermentable non-digestible oligosaccharide or ingredient that brings specific changes, both in the composition and/or activity of the gastrointestinal microflora, conferring health benefits. Synbiotics are a combination of probiotic bacteria and the growth promoting prebiotic ingredients that purport "synergism."
Collapse
Affiliation(s)
- Maya Raman
- Department of Biotechnology; Bhupat and Jyoti Mehta School of Biosciences and Bioengineering; Indian Institute of Technology; Chennai, India
| | - Padma Ambalam
- Department of Biotechnology; Christ College; Rajkot, India,Correspondence to: Padma Ambalam,
| | | | - Sheetal Pithva
- Department of Biosciences; Saurashtra University; Rajkot, India
| | - Charmy Kothari
- Department of Biotechnology; Christ College; Rajkot, India
| | - Arti T. Patel
- SMC College of Dairy Science; Anand Agricultural University; Anand, India
| | | | | | - B.R.M. Vyas
- Department of Biosciences; Saurashtra University; Rajkot, India
| |
Collapse
|
54
|
Sun-Waterhouse D, Edmonds L, Wadhwa S, Wibisono R. Producing ice cream using a substantial amount of juice from kiwifruit with green, gold or red flesh. Food Res Int 2013. [DOI: 10.1016/j.foodres.2011.05.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
55
|
Bera S, Rosa VD, Rachidi W, Diamond AM. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention? Mutagenesis 2013; 28:127-34. [PMID: 23204505 PMCID: PMC3570792 DOI: 10.1093/mutage/ges064] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The trace element selenium is an essential micronutrient that has received considerable attention for its potential use in the prevention of cancer. In spite of this interest, the mechanism(s) by which selenium might function as a chemopreventive remain to be determined. Considerable experimental evidence indicates that one possible mechanism by which selenium supplementation may exert its benefits is by enhancing the DNA damage repair response, and this includes data obtained using cultured cells, animal models as well as in human clinical studies. In these studies, selenium supplementation has been shown to be beneficial in reducing the frequency of DNA adducts and chromosome breaks, consequentially reducing the likelihood of detrimental mutations that ultimately contribute to carcinogenesis. The benefits of selenium can be envisioned as being due, at least in part, to it being a critical constituent of selenoproteins such as glutathione peroxidases and thioredoxin reductases, proteins that play important roles in antioxidant defence and maintaining the cellular reducing environment. Selenium, therefore, may be protective by preventing DNA damage from occurring as well as by increasing the activity of repair enzymes such as DNA glycosylases and DNA damage repair pathways that involve p53, BRCA1 and Gadd45. An improved understanding of the mechanism of selenium's impact on DNA repair processes may help to resolve the apparently contradicting data obtained from decades of animal work, human epidemiology and more recently, clinical supplementation studies.
Collapse
Affiliation(s)
- Soumen Bera
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA and
| | - Viviana De Rosa
- Université Joseph Fourier, Grenoble 1, CEA, INAC, SCIB, Laboratoire Lésions des Acides Nucléiques, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France,
- Present address: Istituto di Biostrutture e Bioimmagini, CNR, Via De Amicis 95 Naples, Italy
| | - Walid Rachidi
- Université Joseph Fourier, Grenoble 1, CEA, INAC, SCIB, Laboratoire Lésions des Acides Nucléiques, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France,
| | - Alan M. Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA and
| |
Collapse
|
56
|
Arriaga-Alba M, Ruiz-Pérez NJ, Sánchez-Navarrete J, de Angel BL, Flores-Lozada J, Blasco JL. Antimutagenic evaluation of vitamins B1, B6 and B12 in vitro and in vivo, with the Ames test. Food Chem Toxicol 2013. [DOI: 10.1016/j.fct.2012.11.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
57
|
Niwa AM, Oliveira RJ, Mantovani MS. Evaluation of the mutagenicity and antimutagenicity of soy phytoestrogens using micronucleus and comet assays of the peripheral blood of mice. GENETICS AND MOLECULAR RESEARCH 2013; 12:519-27. [PMID: 23512669 DOI: 10.4238/2013.february.27.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Studies show that soy imparts many favorable properties in the human body, including the prevention of chronic diseases such as osteoporosis, heart disease, cancer, and diabetes. Soy is rich in isoflavones, and it is a candidate for the chemoprevention of diseases owing to its low toxicity. In this study, a soy phytoestrogen (with high levels of the isoflavones genistin and daidzein) was tested in mice to investigate its mutagenicity and genotoxicity using micronucleus and comet assays of mouse peripheral blood. Phytoestrogen (0.083, 0.83 and 8.3 mg/kg body weight) was evaluated with and without the chemotherapeutic agent cyclophosphamide. For the micronucleus assay, blood was collected before treatment and after 24 and 48 h. For the comet assay, blood was collected only after 24 h. Phytoestrogen was not mutagenic and reduced cyclophosphamide-induced DNA damage. The results from the comet assay revealed a reduction of DNA damage; however, phytoestrogen did induce genotoxic damage during the 24-h treatment. This genotoxic damage could have been repaired and was therefore not identified in the micronucleus assay, which detects mutations. The results suggested that the reduction of DNA damage observed in associated treatments could also reduce the side effects of chemotherapy. Moreover, they suggested that phytoestrogen might be a candidate of interest for the chemoprevention of cancer because it protects against DNA damage.
Collapse
Affiliation(s)
- A M Niwa
- Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR, Brasil.
| | | | | |
Collapse
|
58
|
Gosai V, Ambalam P, Raman M, Kothari CR, Kothari RK, Vyas BRM, Sheth NR. Protective effect of Lactobacillus rhamnosus 231 against N-Methyl-N'-nitro-N-nitrosoguanidine in animal model. Gut Microbes 2013; 2:319-25. [PMID: 22157237 DOI: 10.4161/gmic.18755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The protective effect of Lactobacillus rhamnosus 231 (Lr 231) against potent carcinogen N-Methyl-N'-Nitro-N-Nitrosoguanidine (MNNG) in the rat model is studied. Daily feeding with Lr 231 improved the body weight of male Wistar rats compared with control groups. Fecal azoreductase (p < 0.001) and nitroreductase (p < 0.01) enzyme activity decreased significantly in Lr 231 group in comparison with control groups that received only phosphate buffer or MNNG. Oral administration of MNNG led to a significant increase in Glutathione transferase (GST) while Glutathione reductase (GSH) showed decreased activity. Conversely, feeding Lr 231 showed significantly increased GSH and decreased GST activity in comparison to the MNNG group, emphasizing the protection provided by Lr 231 against MNNG. Histopathological analysis of liver, spleen and colon showed decreased signs of inflammation in the Lr 231 group. The present study highlights that inclusion of active Lr 231 in regular diets could be used to prevent MNNG induced colon carcinoma.
Collapse
Affiliation(s)
- Viral Gosai
- Department of Pharmacy, Saurashtra University, Rajkot, India
| | | | | | | | | | | | | |
Collapse
|
59
|
Yang CC, Fang JY, Hong TL, Wang TC, Zhou YE, Lin TC. Potential antioxidant properties and hepatoprotective effects of an aqueous extract formula derived from three Chinese medicinal herbs against CCl(4)-induced liver injury in rats. Int Immunopharmacol 2013; 15:106-13. [PMID: 23142091 DOI: 10.1016/j.intimp.2012.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 02/07/2023]
Abstract
The hepatoprotective effects of an aqueous extract formula (AEF) derived from Artemisia capillaris, Lonicera japonica and Silybum marianum (ratio 1:1:1) were evaluated by its antioxidant properties and its attenuation of carbon tetrachloride (CCl(4))-induced liver damage in rats. The antioxidant analyses revealed that the AEF showed higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and superoxide anion radical scavenging activities as well as ferric reducing antioxidant potential (FRAP) and Trolox equivalent antioxidant capacity (TEAC) compared with the individual herbs, suggesting a synergism in antioxidation between the three herbs. The animal experiments showed that the CCl(4) treatment increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, but decreased triglyceride (TG) and glutathione (GSH) levels as well as glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) activities. However, AEF administration can successfully lower serum ALT and AST activities, restore the GSH level, ameliorate or restore GPx and CAT activities as well as improve SOD action depending on AEF dosage. Histological examination of liver showed that CCl(4) increased the extent of bile duct proliferation, necrosis, fibrosis and fatty vacuolation throughout the liver, but AEF can improve bile duct proliferation, vacuolation and fibrosis, and restore necrosis. The present study demonstrated the hepatoprotective potential of AEF as an alternative to the traditional silymarin.
Collapse
Affiliation(s)
- Chi-Ching Yang
- Department of Food Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | | | | |
Collapse
|
60
|
Evaluation of mutagenic and antimutagenic activities of oligorutin and oligoesculin. Food Chem 2012; 135:1700-7. [DOI: 10.1016/j.foodchem.2012.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 05/31/2012] [Accepted: 06/19/2012] [Indexed: 02/05/2023]
|
61
|
Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W. Xanthohumol induces phase II enzymes via Nrf2 in human hepatocytes in vitro. Toxicol In Vitro 2012; 27:149-56. [PMID: 23085367 DOI: 10.1016/j.tiv.2012.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/01/2012] [Accepted: 10/11/2012] [Indexed: 01/31/2023]
Abstract
The aim of this study was to investigate whether xanthohumol may exert chemoprotective activity through the modulation of the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway in immortalized normal THLE-2 hepatocytes and a hepatocellular carcinoma HepG2 cell line. Cells were incubated in the presence of xanthohumol and the activation of Nrf2 and expression of genes controlled by this transcription factor were evaluated. Additionally, p53 level was assessed. Xanthohumol increased the expression and led to the activation of Nrf2 in both cell lines. However, in contrast to normal cells the expression of genes controlled by this transcription factor was not affected in HepG2 cells, except for GSTA and GSTP. Xanthohumol, beside the induction of GSTs and HO-1, significantly elevated NQO1 expression in concert with p53 level in normal hepatocytes. The activation of Nrf2 pathway and subsequently phase II enzymes in concert with p53 induction in normal hepatocytes may account for the molecular mechanism of the chemopreventive activity of xanthohumol. On the other hand its cytotoxicity towards HCC cells shown in this study indicates that it may also be considered as potentially chemotherapeutic.
Collapse
Affiliation(s)
- Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznań University of Medical Sciences, Poznań, Poland
| | | | | |
Collapse
|
62
|
Frassinetti S, Della Croce CM, Caltavuturo L, Longo V. Antimutagenic and antioxidant activity of Lisosan G in Saccharomyces cerevisiae. Food Chem 2012; 135:2029-34. [PMID: 22953954 DOI: 10.1016/j.foodchem.2012.06.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/30/2012] [Accepted: 06/25/2012] [Indexed: 12/11/2022]
Abstract
In the present study the antimutagenic and antioxidant effects of a powder of grain (Lisosan G) in yeast Saccharomyces cerevisiae were studied. Results showed that Lisosan G treatment decreased significantly the intracellular ROS concentration and mutagenesis induced by hydrogen peroxide in S. cerevisiae D7 strain. The effect of Lisosan G was then evaluated by using superoxide dismutase (SOD) proficient and deficient strains of S. cerevisiae. Lisosan G showed protective activity in sod1Δ and sod2Δ mutant strains, indicating an in vivo antioxidant effect. A high radical scavenging activity of Lisosan G was also demonstrated in vitro using the oxygen radical absorbance capacity (ORAC) assay. The obtained results showed a protective effect of Lisosan G in yeast cells, indicating that its antioxidant capacity contributes to its antimutagenic action.
Collapse
Affiliation(s)
- Stefania Frassinetti
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy.
| | | | | | | |
Collapse
|
63
|
Jaganathan SK, Supriyanto E. Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules 2012; 17:6290-304. [PMID: 22634840 PMCID: PMC6268974 DOI: 10.3390/molecules17066290] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/28/2012] [Accepted: 05/09/2012] [Indexed: 11/28/2022] Open
Abstract
Phenolic phytochemicals are a broad class of nutraceuticals found in plants which have been extensively researched by scientists for their health-promoting potential. One such a compound which has been comprehensively used is eugenol (4-allyl-2-methoxyphenol), which is the active component of Syzigium aromaticum (cloves). Aromatic plants like nutmeg, basil, cinnamon and bay leaves also contain eugenol. Eugenol has a wide range of applications like perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. Increasing volumes of literature showed eugenol possesses antioxidant, antimutagenic, antigenotoxic, anti-inflammatory and anticancer properties. Molecular mechanism of eugenol-induced apoptosis in melanoma, skin tumors, osteosarcoma, leukemia, gastric and mast cells has been well documented. This review article will highlight the antiproliferative activity and molecular mechanism of the eugenol induced apoptosis against the cancer cells and animal models.
Collapse
Affiliation(s)
- Saravana Kumar Jaganathan
- Department of Biomedical Engineering, PSNA college of Engineering and Technology, Kothandaraman Nagar, Dindigul 624622, Tamil Nadu, India
| | - Eko Supriyanto
- Department of Clinical science and Engineering, University Technology Malaysia, Johor bahru 81310, Malaysia;
| |
Collapse
|
64
|
Turkez H, Geyikoğlu F, Dirican E, Tatar A. In vitro studies on chemoprotective effect of borax against aflatoxin B1-induced genetic damage in human lymphocytes. Cytotechnology 2012; 64:607-12. [PMID: 22526492 DOI: 10.1007/s10616-012-9454-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 04/02/2012] [Indexed: 01/21/2023] Open
Abstract
A common dietary contaminant, aflatoxin B1 (AFB1), has been shown to be a potent mutagen and carcinogen in humans and many animal species. Since the eradication of AFB1 contamination in agricultural products has been rare, the use of natural or synthetic free radical scavengers could be a potential chemopreventive strategy. Boron compounds like borax (BX) and boric acid are the major components of industry and their antioxidant role has recently been reported. In the present report, we evaluated the capability of BX to inhibit the rate of micronucleus (MN) and sister chromatid exchange (SCE) formations induced by AFB1. There were significant increases (P < 0.05) in both SCE and MN frequencies of cultures treated with AFB1 (3.12 ppm) as compared to controls. However, co-application of BX (1, 2 and 5 ppm) and AFB1 resulted in decreases of SCE and MN rates as compared to the group treated with AFB1 alone. Borax gave 30-50 % protection against AFB1 induced SCEs and MNs. In conclusion, the support of borax was especially useful in aflatoxin-toxicated blood tissue. Thus, the risk on target tissues of AFB1 could be reduced and ensured early recovery from its toxicity.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Sciences, Erzurum Technical University, Erzurum, Turkey
| | | | | | | |
Collapse
|
65
|
Analysis of in vitro chemoprevention of genotoxic damage by phytochemicals, as single agents or as combinations. Mutat Res 2012; 744:117-24. [PMID: 22405976 DOI: 10.1016/j.mrgentox.2012.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/15/2011] [Accepted: 01/06/2012] [Indexed: 12/26/2022]
Abstract
Cancer chemoprevention with low-dose combinations of bioactive phytochemicals instead of single agents has been suggested to induce less toxicity and improve efficacy. In this study, we selected four plant food-based phytochemicals, viz. chlorogenic acid (CLA), pelargonidin (PEL), resveratrol (RES) and epigallocatechin gallate (EGCG) to evaluate the in vitro chemoprevention of genotoxic damage in HL-60 cells. These agents were tested either individually or as a combination at two concentrations (with a 10-fold difference) against the genotoxins mitomycin C (MMC), diepoxybutane (DEB) and patulin (PAT). Our preliminary ferric reducing antioxidant power (FRAP) assay demonstrated additive effects when PEL, CLA, RES and EGCG were combined. Results of the cytokinesis-block micronucleus test showed significant protection against genotoxic damage induced by PAT, DEB and MMC when CLA, PEL, RES and EGCG were tested individually. This protective effect of the phytochemicals was not concentration-related. Both low- and high-concentration combinations of CLA, PEL, RES and EGCG showed significant reducing effects on the frequencies of micronuclei induced by PAT, DEB and MMC. However, the micronucleus test did not provide indications of additive or synergistic effects with this combination of phytochemicals. In conclusion, the chemo-preventive effects of PEL, CLA, RES and EGCG against genotoxic damage induced by MMC, DEB and PAT are indicative of a 'saturation effect' when higher concentrations and combinations of these phytochemicals are used.
Collapse
|
66
|
Baliga MS, Kurian PJ. Ixora coccinea Linn.: Traditional uses, phytochemistry and pharmacology. Chin J Integr Med 2012; 18:72-9. [DOI: 10.1007/s11655-011-0881-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Indexed: 01/28/2023]
|
67
|
Ramos AA, Pedro D, Collins AR, Pereira-Wilson C. Protection by Salvia extracts against oxidative and alkylation damage to DNA in human HCT15 and CO115 cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:765-75. [PMID: 22788364 DOI: 10.1080/15287394.2012.689804] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
DNA damage induced by oxidative and alkylating agents contributes to carcinogenesis, leading to possible mutations if replication proceeds without proper repair. However, some alkylating agents are used in cancer therapy due to their ability to induce DNA damage and subsequently apoptosis of tumor cells. In this study, the genotoxic effects of oxidative hydrogen peroxide (H₂O₂) and alkylating agents N-methyl-N-nitrosourea (MNU) and 1,3-bis-(2-chloroethyl)-1-nitosourea (BCNU) agents were examined in two colon cell lines (HCT15 and CO115). DNA damage was assessed by the comet assay with and without lesion-specific repair enzymes. Genotoxic agents were used for induction of DNA damage in both cell lines. Protective effects of extracts of three Salvia species, Salvia officinalis (SO), Salvia fruticosa (SF), and Salvia lavandulifolia (SL), against DNA damage induced by oxidative and alkylating agents were also determined. SO and SF protected against oxidative DNA damage in HCT15 cells. SO and SL decreased DNA damage induced by MNU in CO115 cells. In addition to chemopreventive effects of sage plant extracts, it was also important to know whether these plant extracts may interfere with alkylating agents such as BCNU used in cancer therapy, decreasing their efficacy. Our results showed that sage extracts tested and rosmarinic acid (RA), the main constituent, protected CO115 cells from DNA damage induced by BCNU. In HCT15 cells, only SF induced a reduction in BCNU-induced DNA damage. Sage water extracts and RA did not markedly change DNA repair protein expression in either cell line. Data showed that sage tea protected colon cells against oxidative and alkylating DNA damage and may also interfere with efficacy of alkylating agents used in cancer therapy.
Collapse
Affiliation(s)
- Alice A Ramos
- CBMA-Centre of Molecular and Environmental Biology/Department of Biology, School of Sciences, University of Minho, Braga, Portugal
| | | | | | | |
Collapse
|
68
|
Boubaker J, Mansour HB, Ghedira K, Chekir-Ghedira L. Antimutagenic and free radical scavenger effects of leaf extracts from Accacia salicina. Ann Clin Microbiol Antimicrob 2011; 10:37. [PMID: 22132863 PMCID: PMC3267653 DOI: 10.1186/1476-0711-10-37] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/01/2011] [Indexed: 11/15/2022] Open
Abstract
Background Three extracts were prepared from the leaves of Accacia salicina; ethyl acetate (EA), chloroform (Chl) and petroleum ether (PE) extracts and was designed to examine antimutagenic, antioxidant potenty and oxidative DNA damage protecting activity. Methods Antioxidant activity of A. salicina extracts was determined by the ability of each extract to protect against plasmid DNA strand scission induced by hydroxyl radicals. An assay for the ability of these extracts to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 and TA 104 strains was conducted. In addition, nonenzymatic methods were employed to evaluate anti-oxidative effects of tested extracts. Results These extracts from leaf parts of A. salicina showed no mutagenicity either with or without the metabolic enzyme preparation (S9). The highest protections against methylmethanesulfonate induced mutagenicity were observed with all extracts and especially chloroform extract. This extract exhibited the highest inhibitiory level of the Ames response induced by the indirect mutagen 2- aminoanthracene. All extracts exhibited the highest ability to protect plasmid DNA against hydroxyl radicals induced DNA damages. The ethyl acetate (EA) and chloroform (Chl) extracts showed with high TEAC values radical of 0.95 and 0.81 mM respectively, against the ABTS.+. Conclusion The present study revealed the antimutagenic and antioxidant potenty of plant extract from Accacia salicina leaves.
Collapse
Affiliation(s)
- Jihed Boubaker
- Department of Cellular and Molecular Biology, Faculty of Dental Medicine, Rue Avicenne,Monastir, 5000, Tunisia
| | | | | | | |
Collapse
|
69
|
Viegas O, Zegura B, Pezdric M, Novak M, Ferreira IMPLVO, Pinho O, Filipič M. Protective effects of xanthohumol against the genotoxicity of heterocyclic aromatic amines MeIQx and PhIP in bacteria and in human hepatoma (HepG2) cells. Food Chem Toxicol 2011; 50:949-55. [PMID: 22138251 DOI: 10.1016/j.fct.2011.11.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/11/2011] [Accepted: 11/18/2011] [Indexed: 01/25/2023]
Abstract
Previous studies showed that xanthohumol (XN), a hop derived prenylflavonoid, very efficiently protects against genotoxicity and potential carcinogenicity of the food borne carcinogenic heterocyclic aromatic amine (HAA) 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). In this study, we showed that XN was not mutagenic in Salmonella typhimurium TA98 and did not induce genomic instability in human hepatoma HepG2 cells. In the bacteria XN suppressed the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8 dimethylimidazo[4,5-f]quinoxaline (MeIQx) induced mutations in a dose dependent manner and in HepG2 cells it completely prevented PhIP and MeIQx induced DNA strand breaks at nanomolar concentrations. With the QRT-PCR gene expression analysis of the main enzymes involved in the biotransformation of HAAs in HepG2 cells we found that XN upregulates the expression of phase I (CYP1A1 and CYP1A2) and phase II (UGT1A1) enzymes. Further gene expression analysis in cells exposed to MeIQx and PhIP in combination with XN revealed that XN mediated up-regulation of UGT1A1 expression may be important mechanism of XN mediated protection against HAAs induced genotoxicity. Our findings confirm the evidence that XN displays strong chemopreventive effects against genotoxicity of HAAs, and provides additional mechanistic information to assess its potential chemopreventive efficiency in humans.
Collapse
Affiliation(s)
- Olga Viegas
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
70
|
Ambalam P, Dave J, Nair BM, Vyas B. In vitro Mutagen binding and antimutagenic activity of human Lactobacillus rhamnosus 231. Anaerobe 2011; 17:217-22. [DOI: 10.1016/j.anaerobe.2011.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/20/2011] [Accepted: 07/01/2011] [Indexed: 02/03/2023]
|
71
|
Zachara BA, Gromadzinska J, Palus J, Zbrog Z, Swiech R, Twardowska E, Wasowicz W. The effect of selenium supplementation in the prevention of DNA damage in white blood cells of hemodialyzed patients: a pilot study. Biol Trace Elem Res 2011; 142:274-83. [PMID: 20661660 PMCID: PMC3152706 DOI: 10.1007/s12011-010-8776-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/11/2010] [Indexed: 01/07/2023]
Abstract
Patients with chronic kidney disease (CKD) have an increased incidence of cancer. It is well known that long periods of hemodialysis (HD) treatment are linked to DNA damage due to oxidative stress. In this study, we examined the effect of selenium (Se) supplementation to CKD patients on HD on the prevention of oxidative DNA damage in white blood cells. Blood samples were drawn from 42 CKD patients on HD (at the beginning of the study and after 1 and 3 months) and from 30 healthy controls. Twenty-two patients were supplemented with 200 μg Se (as Se-rich yeast) per day and 20 with placebo (baker's yeast) for 3 months. Se concentration in plasma and DNA damage in white blood cells expressed as the tail moment, including single-strand breaks (SSB) and oxidative bases lesion in DNA, using formamidopyrimidine glycosylase (FPG), were measured. Se concentration in patients was significantly lower than in healthy subjects (P < 0.0001) and increased significantly after 3 months of Se supplementation (P < 0.0001). Tail moment (SSB) in patients before the study was three times higher than in healthy subjects (P < 0.01). After 3 months of Se supplementation, it decreased significantly (P < 0.01) and was about 16% lower than in healthy subjects. The oxidative bases lesion in DNA (tail moment, FPG) of HD patients at the beginning of the study was significantly higher (P < 0.01) compared with controls, and 3 months after Se supplementation it was 2.6 times lower than in controls (P < 0.01). No changes in tail moment was observed in the placebo group. In conclusion, our study shows that in CKD patients on HD, DNA damage in white blood cells is higher than in healthy controls, and Se supplementation prevents the damage of DNA.
Collapse
Affiliation(s)
- Bronislaw A Zachara
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | | | | | | | | | | | | |
Collapse
|
72
|
Zegura B, Dobnik D, Niderl MH, Filipič M. Antioxidant and antigenotoxic effects of rosemary (Rosmarinus officinalis L.) extracts in Salmonella typhimurium TA98 and HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 32:296-305. [PMID: 21843811 DOI: 10.1016/j.etap.2011.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 05/31/2023]
Abstract
In the present study the chemopreventive effects of water soluble AquaROX(®) 15 and oil soluble VivOX(®) 40 rosemary extracts against 4-nitroquinoline-N-oxide (NQNO) and 2-amino-3-methyl-3H-imidazo[4,5-F]quinoline (IQ) induced mutagenicity in the reverse mutation assays with Salmonella typhimurium TA98 and against t-butyl hydroperoxide (t-BOOH), benzo(a)pyrene (BaP) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induced DNA damage in HepG2 cells were studied, applying the comet assay. The results showed comparable protective effect of AquaROX and VivOX against oxidative DNA damage, whereas protection against indirect active genotoxic carcinogens was more efficient by VivOX.
Collapse
Affiliation(s)
- Bojana Zegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
73
|
Propolis prevents hepatorenal injury induced by chronic exposure to carbon tetrachloride. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:235358. [PMID: 21837248 PMCID: PMC3151521 DOI: 10.1155/2012/235358] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/24/2011] [Accepted: 05/05/2011] [Indexed: 01/12/2023]
Abstract
Carbon tetrachloride (CCl4) is a well-known hepatotoxicant, and its exposure induces hepatorenal injury via oxidative stress and biochemical alterations. This study had been conducted to confirm the protective role of propolis extract on CCl4-induced hepatorenal oxidative stress and resultant injury. Propolis extracts collected from Gwalior district and 24 female Sprague Dawley rats were used for experiment. Animals were exposed to CCl4 (0.15 mL/kg, i.p.) for 12 weeks (5 days/week) followed by treatment with propolis extract (200 mg/kg, p.o.) for consecutive 2 weeks. CCl4 exposure significantly depleted blood sugar and hemoglobin level and raised the level of transaminases, alkaline phosphatase, lactate dehydrogenase, protein, urea, albumin, bilirubin, creatinine, triglycerides, and cholesterol in serum. Lipid peroxidation was enhanced, whereas GSH was decreased significantly in liver and kidney in CCl4-intoxicated group. Ethanolic extract of propolis successfully prevented these alterations in experimental animals. Activities of catalase, adenosine triphosphatase, glucose-6-phosphatase, acid, and alkaline phosphatase were also maintained towards normal with propolis therapy. Light microscopical studies showed considerable protection in liver and kidney with propolis treatment, thus, substantiated biochemical observations. This study confirmed hepatoprotective potential of propolis extract against chronic injury induced by CCl4 by regulating antioxidative defense activities.
Collapse
|
74
|
Mademtzoglou D, Akmoutsou P, Kounatidis I, Franzios G, Drosopoulou E, Vokou D, Mavragani-Tsipidou P. Applying the Drosophila wing spot test to assess the genotoxic impact of 10 essential oil constituents used as flavouring agents or cosmetic ingredients. FLAVOUR FRAG J 2011. [DOI: 10.1002/ffj.2081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Despoina Mademtzoglou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science; Aristotle University of Thessaloniki (AUTH); GR-54124; Thessaloniki; Greece
| | - Paraskevi Akmoutsou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science; Aristotle University of Thessaloniki (AUTH); GR-54124; Thessaloniki; Greece
| | - Ilias Kounatidis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science; Aristotle University of Thessaloniki (AUTH); GR-54124; Thessaloniki; Greece
| | - Gerasimos Franzios
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science; Aristotle University of Thessaloniki (AUTH); GR-54124; Thessaloniki; Greece
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science; Aristotle University of Thessaloniki (AUTH); GR-54124; Thessaloniki; Greece
| | - Despoina Vokou
- Department of Ecology, School of Biology, Faculty of Science; Aristotle University of Thessaloniki (AUTH); GR-54124; Thessaloniki; Greece
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science; Aristotle University of Thessaloniki (AUTH); GR-54124; Thessaloniki; Greece
| |
Collapse
|
75
|
|
76
|
Turkez H. The role of ascorbic acid on titanium dioxide-induced genetic damage assessed by the comet assay and cytogenetic tests. ACTA ACUST UNITED AC 2011; 63:453-7. [DOI: 10.1016/j.etp.2010.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/09/2010] [Accepted: 03/11/2010] [Indexed: 11/29/2022]
|
77
|
Moy YS, Lai YJ, Chou CC. Effects of Ripening Process on the Mutagenicity and Antimutagenicity of Sufu, a Chinese Traditional Fermented Product of Soybean. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-011-0601-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
78
|
Chatti IB, Boubaker J, Skandrani I, Bhouri W, Ghedira K, Chekir Ghedira L. Antioxidant and antigenotoxic activities in Acacia salicina extracts and its protective role against DNA strand scission induced by hydroxyl radical. Food Chem Toxicol 2011; 49:1753-8. [PMID: 21570443 DOI: 10.1016/j.fct.2011.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/19/2011] [Indexed: 11/25/2022]
Abstract
The antioxidant potency of Acacia salicina extracts was investigated. Total antioxidant capacity was determined using an ABTS(+) assay. Superoxide radical scavenging was measured using riboflavin-light-nitro blue tetrazolium (NBT) assay. In addition, the content of phenols, total flavonoids and sterols were measured in the tested extracts. The petroleum ether exhibited a potent scavenging activity toward ABTS radical cations. Whereas, chloroform extract showed the highest activity against superoxides radicals and was also able to protect pKS plasmid DNA against hydroxyl radicals induced DNA damages. The antimutagenicity of these extracts was assayed using the Ames assay against Salmonella typhimurium TA98 and S. typhimurium TA 1535 tester strains at different concentrations. These extracts decreased significantly the mutagenecity induced by sodium azide (SA) and 4-nitro-o-phenylenediamine (NOP). The antioxidant and antimutagenecity activities exhibited by A. salicina depended on the chemical composition of the tested extracts.
Collapse
Affiliation(s)
- Ines Bouhlel Chatti
- Unité de Pharmacognosie/Biologie moléculaire 99/UR/07-03, Faculté de Pharmacie/Médecine Dentaire de Monastir, Tunisia.
| | | | | | | | | | | |
Collapse
|
79
|
Sikalidis AK, Varamini B. Roles of hormones and signaling molecules in describing the relationship between obesity and colon cancer. Pathol Oncol Res 2011; 17:785-90. [PMID: 21221874 DOI: 10.1007/s12253-010-9352-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/17/2010] [Indexed: 01/08/2023]
Abstract
Colon cancer represents a highly prevalent disease in the Western world. While dietary and lifestyle recommendations remain important factors in disease prevention and treatment, epidemiological data have made it clear that obesity and excess body weight remain significant risk factors for the disease. A number of potential direct and indirect relationships exist between obesity and increased risk of colon cancer. Several mechanisms which appear promising and warrant further investigation are discussed here, specifically the modifying role of insulin and insulin-like growth factors, leptin, adipose-tissue induced changes in estrogens and androgens, and inflammatory molecules. A brief review of these hormones and signaling molecules and their action in colon cancer development is described. A thorough integration and understanding of the mechanisms of action these systems exert on colonic epithelia will be important in designing studies and experiments aimed at elucidating disease etiology for prevention and treatment.
Collapse
Affiliation(s)
- Angelos K Sikalidis
- Division of Nutritional Sciences, Cornell University, 214 Savage Hall, Ithaca, NY 14853, USA.
| | | |
Collapse
|
80
|
|
81
|
Bidinotto LT, Costa CARA, Salvadori DMF, Costa M, Rodrigues MAM, Barbisan LF. Protective effects of lemongrass (Cymbopogon citratus STAPF) essential oil on DNA damage and carcinogenesis in female Balb/C mice. J Appl Toxicol 2010; 31:536-44. [DOI: 10.1002/jat.1593] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/09/2010] [Accepted: 08/06/2010] [Indexed: 11/11/2022]
|
82
|
Changing perceptions of hunger on a high nutrient density diet. Nutr J 2010; 9:51. [PMID: 21054899 PMCID: PMC2988700 DOI: 10.1186/1475-2891-9-51] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 11/07/2010] [Indexed: 12/24/2022] Open
Abstract
Background People overeat because their hunger directs them to consume more calories than they require. The purpose of this study was to analyze the changes in experience and perception of hunger before and after participants shifted from their previous usual diet to a high nutrient density diet. Methods This was a descriptive study conducted with 768 participants primarily living in the United States who had changed their dietary habits from a low micronutrient to a high micronutrient diet. Participants completed a survey rating various dimensions of hunger (physical symptoms, emotional symptoms, and location) when on their previous usual diet versus the high micronutrient density diet. Statistical analysis was conducted using non-parametric tests. Results Highly significant differences were found between the two diets in relation to all physical and emotional symptoms as well as the location of hunger. Hunger was not an unpleasant experience while on the high nutrient density diet, was well tolerated and occurred with less frequency even when meals were skipped. Nearly 80% of respondents reported that their experience of hunger had changed since starting the high nutrient density diet, with 51% reporting a dramatic or complete change in their experience of hunger. Conclusions A high micronutrient density diet mitigates the unpleasant aspects of the experience of hunger even though it is lower in calories. Hunger is one of the major impediments to successful weight loss. Our findings suggest that it is not simply the caloric content, but more importantly, the micronutrient density of a diet that influences the experience of hunger. It appears that a high nutrient density diet, after an initial phase of adjustment during which a person experiences "toxic hunger" due to withdrawal from pro-inflammatory foods, can result in a sustainable eating pattern that leads to weight loss and improved health. A high nutrient density diet provides benefits for long-term health as well as weight loss. Because our findings have important implications in the global effort to control rates of obesity and related chronic diseases, further studies are needed to confirm these preliminary results.
Collapse
|
83
|
Ramos AA, Pereira-Wilson C, Collins AR. Protective effects of ursolic acid and luteolin against oxidative DNA damage include enhancement of DNA repair in Caco-2 cells. Mutat Res 2010; 692:6-11. [PMID: 20659486 DOI: 10.1016/j.mrfmmm.2010.07.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 01/08/2023]
Abstract
Consumption of fruits and vegetables is associated with a reduced risk of developing a wide range of cancers including colon cancer. In this study, we evaluated the effects of two compounds present in fruits and vegetables, ursolic acid, a triterpenoid, and luteolin, a flavonoid, on DNA protection and DNA repair in Caco-2 cells using the comet assay. Ursolic acid and luteolin showed a protective effect against H(2)O(2)-induced DNA damage. Repair rate (rejoining of strand breaks) after treatment with H(2)O(2) was increased by pre-treatment of Caco-2 cells for 24h with ursolic acid or luteolin. To evaluate effects on induction of base oxidation, we exposed cells to the photosensitizer Ro 19-8022 plus visible light to induce 8-oxoguanine. Luteolin protected against this damage in Caco-2 cells after a short period of incubation. We also measured the incision activity of a cell extract from Caco-2 cells treated for 24h with test compounds, on a DNA substrate containing specific damage (8-oxoGua), to evaluate effects on base excision repair activity. Preincubation for 24h with ursolic acid enhanced incision activity in Caco-2 cells. In conclusion, we demonstrated for the first time that ursolic acid and luteolin not only protect DNA from oxidative damage but also increase repair activity in Caco-2 cells. These effects of ursolic acid and luteolin may contribute to their anti-carcinogenic effects.
Collapse
Affiliation(s)
- Alice A Ramos
- Department of Nutrition, University of Oslo, Norway.
| | | | | |
Collapse
|
84
|
Sghaier M, Boubaker J, Neffati A, Limem I, Skandrani I, Bhouri W, Bouhlel I, Kilani S, Chekir-Ghedira L, Ghedira K. Antimutagenic and Antioxidant Potentials of Teucrium ramosissimum Essential Oil. Chem Biodivers 2010; 7:1754-63. [DOI: 10.1002/cbdv.200900237] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
85
|
Boubaker J, Skandrani I, Bouhlel I, Ben Sghaier M, Neffati A, Ghedira K, Chekir-Ghedira L. Mutagenic, antimutagenic and antioxidant potency of leaf extracts from Nitraria retusa. Food Chem Toxicol 2010; 48:2283-90. [PMID: 20510330 DOI: 10.1016/j.fct.2010.05.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/15/2010] [Accepted: 05/19/2010] [Indexed: 12/11/2022]
Abstract
Four extracts were prepared from the leaves of Nitraria retusa; methanol, ethyl acetate, chloroform and hexane extracts. An assay for the ability of these extracts to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 and TA 104 strains was conducted. These extracts from leaf parts of N. retusa showed no mutagenicity either with or without the metabolic enzyme preparation (microsome fraction). The highest protection against methylmethanesulfonate induced mutagenicity was observed with chloroform and methanol extracts with inhibition percentages of 44.93% (at 50 microg/plate in the presence of TA102 strain) and 38% (at 10 microg/plate in the presence of TA104 strain), respectively. Whereas Hexane and chloroform extracts reduced the mutagenicity induced by 2-aminoanthracene by 83.4% (using the S. typhimurium TA104 assay system) and 65.3% (using the S. typhimurium TA 102 assay system), respectively. Antioxidant activity of N. retusa extracts was determined by the ability of each extract to protect plasmid DNA against strand scission induced by hydroxyl radicals. Chloroform extract exhibited the highest ability to protect plasmid DNA against hydroxyl radical induced DNA damages and exhibited the highest antioxidant capacity, with 0.95mM trolox equivalent when tested by the ferric reducing/antioxidant method.
Collapse
Affiliation(s)
- Jihed Boubaker
- Laboratory of Cellular and Molecular Biology, Faculty of Dental Medicine, Rue Avicenne, Monastir 5000, Tunisia
| | | | | | | | | | | | | |
Collapse
|
86
|
Wang YJ, Sheen LY, Chou CC. Storage effects on the content of anthocyanin, mutagenicity and antimutagenicity of black soybean koji. Lebensm Wiss Technol 2010. [DOI: 10.1016/j.lwt.2009.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
87
|
García A, Morales P, Arranz N, Delgado ME, Rafter J, Haza AI. Antiapoptotic effects of dietary antioxidants towards N-nitrosopiperidine and N-nitrosodibutylamine-induced apoptosis in HL-60 and HepG2 cells. J Appl Toxicol 2010; 29:403-13. [PMID: 19301245 DOI: 10.1002/jat.1426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this work was to determine the effect of vitamin C, diallyl disulfide (DADS) and dipropyl disulfide (DPDS) towards N-nitrosopiperidine (NPIP) and N-nitrosodibutylamine (NDBA)-induced apoptosis in human leukemia (HL-60) and hepatoma (HepG2) cell lines using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. None of the vitamin C (5-50 microm), DADS and DPDS (1-5 microm) concentrations selected induced a significant percentage of apoptosis. In simultaneous treatments, vitamin C, DADS and DPDS reduced the apoptosis induced by NPIP and NDBA in HL-60 and HepG2 cells (around 70% of reduction). We also investigated its scavenging activities towards reactive oxygen species (ROS) produced by NPIP and NDBA using 2',7'-dichlorodihydrofluorescein diacetate in both cell lines. ROS production induced by both N-nitrosamine was reduced to control levels by vitamin C (5-50 microm) in a dose-dependent manner. However, DADS (5 microm) increased ROS levels induced by NPIP and NDBA in HL-60 (40 and 20% increase, respectively) and HepG2 cells (18% increase), whereas DPDS was more efficient scavenger of ROS at the lowest concentration (1 microm) in both HL-60 (52 and 25% reduction, respectively) and HepG2 cells (24% reduction). The data demonstrated that the scavenging ability of vitamin C and DPDS could contribute to inhibition of the NPIP- and NDBA-induced apoptosis. However, more than one mechanism, such as inhibition of phase I and/or induction of phase II enzymes, could be implicated in the protective effect of dietary antioxidants towards NPIP- and NDBA-induced apoptosis in HL-60 and HepG2 cells.
Collapse
Affiliation(s)
- Almudena García
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
88
|
NAZZARO F, CALIENDO G, ARNESI G, VERONESI A, SARZI P, FRATIANNI F. COMPARATIVE CONTENT OF SOME BIOACTIVE COMPOUNDS IN TWO VARIETIES OF CAPSICUM ANNUUM L. SWEET PEPPER AND EVALUATION OF THEIR ANTIMICROBIAL AND MUTAGENIC ACTIVITIES. J Food Biochem 2009. [DOI: 10.1111/j.1745-4514.2009.00259.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
89
|
Chatti IB, Limem I, Boubaker J, Skandrani I, Kilani S, Bhouri W, Ben Sghaier M, Nefatti A, Ben Mansour H, Ghedira K, Chekir-Ghedira L. Phytochemical, antibacterial, antiproliferative, and antioxidant potentials and DNA damage-protecting activity of Acacia salicina extracts. J Med Food 2009; 12:675-83. [PMID: 19627220 DOI: 10.1089/jmf.2008.0120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The extract enriched in total oligomer flavonoids (TOF), and the aqueous, methanol, and ethyl acetate extracts of Acacia salicina were investigated for their polyphenolic compound content, antioxidative activity in the nitro blue tetrazolium/riboflavin assay system, antibacterial activity against Gram-positive and Gram-negative bacterial reference strains, antigenotoxic activity tested with the Ames assay, and cytotoxic activity against the K562 human chronic myelogenous leukemia cell line and L1210 leukemia murine cells. TOF extract was effective at inhibiting nitro blue tetrazolium reduction by superoxide radical in a nonenzymatic O(2)(*-)-generating system. Significant activity against bacterial reference strains Staphylococcus aureus, Enterococcus faecalis, Salmonella enteritidis, and Salmonella typhimurium was shown with all the tested extracts. These extracts significantly decreased the genotoxicity induced by sodium azide and 4-nitro-o-phenylenediamine. A pronounced cytotoxic effect on both leukemia cell lines was detected in TOF, methanolic and ethyl acetate extracts. The antioxidant, antimicrobial, antigenotoxic, and cytotoxic activities exhibited by A. salicina depended on the chemical composition of the tested extracts.
Collapse
Affiliation(s)
- Ines Bouhlel Chatti
- Unité de Pharmacognosie/Biologie Moléculaire/UR, Faculté de Pharmacie de Monastir, Tunisie
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Neergheen VS, Bahorun T, Taylor EW, Jen LS, Aruoma OI. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology 2009; 278:229-41. [PMID: 19850100 DOI: 10.1016/j.tox.2009.10.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 10/06/2009] [Accepted: 10/09/2009] [Indexed: 02/08/2023]
Abstract
Natural phytochemicals derived from dietary sources or medicinal plants have gained significant recognition in the potential management of several human clinical conditions. Much research has also been geared towards the evaluation of plant extracts as effective prophylactic agents since they can act on specific and/or multiple molecular and cellular targets. Plants have been an abundant source of highly effective phytochemicals which offer great potential in the fight against cancer by inhibiting the process of carcinogenesis through the upregulation of cytoprotective genes that encode for carcinogen detoxifying enzymes and antioxidant enzymes. The mechanistic insight into chemoprevention further includes induction of cell cycle arrest and apoptosis or inhibition of signal transduction pathways mainly the mitogen-activated protein kinases (MAPK), protein kinases C (PKC), phosphoinositide 3-kinase (PI3K), glycogen synthase kinase (GSK) which lead to abnormal cyclooxygenase-2 (COX-2), activator protein-1 (AP-1), nuclear factor-kappaB (NF-κB) and c-myc expression. Effectiveness of chemopreventive agents reflects their ability to counteract certain upstream signals that leads to genotoxic damage, redox imbalances and other forms of cellular stress. Targeting malfunctioning molecules along the disrupted signal transduction pathway in cancer represent a rational strategy in chemoprevention. NF-κB and AP-1 provide mechanistic links between inflammation and cancer, and moreover regulate tumor angiogenesis and invasiveness, indicating that signaling pathways that mediate their activation provide attractive targets for new chemotherapeutic approaches. Thus cell signaling cascades and their interacting factors have become important targets of chemoprevention and phenolic phytochemicals and plant extracts seem to be promising in this endeavor.
Collapse
Affiliation(s)
- Vidushi S Neergheen
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius.
| | | | | | | | | |
Collapse
|
91
|
Delgado ME, Haza AI, García A, Morales P. Myricetin, quercetin, (+)-catechin and (-)-epicatechin protect against N-nitrosamines-induced DNA damage in human hepatoma cells. Toxicol In Vitro 2009; 23:1292-7. [PMID: 19628030 DOI: 10.1016/j.tiv.2009.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 07/03/2009] [Accepted: 07/16/2009] [Indexed: 01/27/2023]
Abstract
The aim of this study was to investigate the protective effect of myricetin, quercetin, (+)-catechin and (-)-epicatechin, against N-nitrosodibutylamine (NDBA) and N-nitrosopiperidine (NPIP)-induced DNA damage in human hepatoma cells (HepG2). DNA damage (strand breaks and oxidized purines/pyrimidines) was evaluated by the alkaline single-cell gel electrophoresis or Comet assay. (+)-Catechin at the lowest concentration (10 microM) showed the maximum reduction of DNA strand breaks (23%), the formation of endonuclease III (Endo III, 19-21%) and formamidopyrimidine-DNA glycosylase (Fpg, 28-40%) sensitive sites induced by NDBA or NPIP. (-)-Epicatechin also decreased DNA strand breaks (10 microM, 20%) and the oxidized pyrimidines/purines (33-39%) induced by NDBA or NPIP, respectively. DNA strand breaks induced by NDBA or NPIP were weakly reduced by myricetin at the lowest concentration (0.1 microM, 10-19%, respectively). Myricetin also reduced the oxidized purines (0.1 microM, 17%) and pyrimidines (0.1 microM, 15%) induced by NDBA, but not the oxidized pyrimidines induced by NPIP. Quercetin did not protect against NDBA-induced DNA damage, but it reduced the formation of Endo III and Fpg sensitive sites induced by NPIP (0.1 microM, 17-20%, respectively). In conclusion, our results indicate that (+)-catechin and (-)-epicatechin at the concentrations tested protect human derived cells against oxidative DNA damage effects of NDBA and NPIP. However, myricetin at the concentrations tested only protects human cells against oxidative DNA damage induced by NDBA and quercetin against oxidative DNA damage induced by NPIP.
Collapse
Affiliation(s)
- M E Delgado
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
92
|
Jaganathan SK, Mandal M. Antiproliferative effects of honey and of its polyphenols: a review. J Biomed Biotechnol 2009; 2009:830616. [PMID: 19636435 PMCID: PMC2712839 DOI: 10.1155/2009/830616] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/16/2009] [Accepted: 05/13/2009] [Indexed: 12/26/2022] Open
Abstract
Honey has been used since long time both in medical and domestic needs, but only recently the antioxidant property of it came to limelight. The fact that antioxidants have several preventative effects against different diseases, such as cancer, coronary diseases, inflammatory disorders, neurological degeneration, and aging, led to search for food rich in antioxidants. Chemoprevention uses various dietary agents rich in phytochemicals which serve as antioxidants. With increasing demand for antioxidant supply in the food, honey had gained vitality since it is rich in phenolic compounds and other antioxidants like ascorbic acid, amino acids, and proteins. Some simple and polyphenols found in honey, namely, caffeic acid (CA), caffeic acid phenyl esters (CAPE), Chrysin (CR), Galangin (GA), Quercetin (QU), Kaempferol (KP), Acacetin (AC), Pinocembrin (PC), Pinobanksin (PB), and Apigenin (AP), have evolved as promising pharmacological agents in treatment of cancer. In this review, we reviewed the antiproliferative and molecular mechanisms of honey and above-mentioned polyphenols in various cancer cell lines.
Collapse
Affiliation(s)
- Saravana Kumar Jaganathan
- School of Medical Science and Technology, Indian Institute of Technology, West-Bengal, Kharagpur 721 302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, West-Bengal, Kharagpur 721 302, India
| |
Collapse
|
93
|
Abstract
PURPOSE OF REVIEW To provide an updated summary of dietary mutagens and their potential role in the etiology of cancer and atherosclerosis. RECENT FINDINGS Compelling evidence supports an accumulation of somatic mutations during carcinogenesis, leading to the activation of oncogenes or inactivation of tumor suppressor genes or both. There is also suggestive evidence that mutation provides an early event in atherosclerosis. Genome-wide association studies (GWAS) identify genes associated with familial cancers and atherosclerosis, but genes involved in sporadic events are less well characterized. Many dietary components are mutagenic, including natural dietary components, mutagens generated during cooking and processing of food or through contamination. Molecular epidemiology associates specific mutagens with specific types of cancer. Although chromosome mutations may provide a risk biomarker for atherosclerosis, they are not necessarily causal. SUMMARY Association studies, supported by molecular epidemiology, provide evidence that certain dietary mutagens, including aflatoxin B1, aristolochic acid and benzo[a]pyrene, are causal in some human cancers. Similar studies have correlated the level of oxidative DNA damage, DNA adducts and clastogenesis in arterial smooth muscle cells with atherogenic risk factors described through traditional epidemiology. However, establishing whether or not dietary mutagens lead to mutations that are causal in atherosclerosis remains a challenge for the newer genomic technologies.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- Faculty of Medical and Health Sciences, Discipline of Nutrition, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
94
|
Abstract
An increasing literature associates high intake of meat, especially red meat and processed meat with an increased risk of cancers, especially colorectal cancer. There is evidence that this risk may not be a function of meat per se, but may reflect high-fat intake, and/or carcinogens generated through various cooking and processing methods. The cancer risk may be modulated by certain genotypes. Cancers associated with high meat consumption may be reduced by the addition of anticarcinogens in the diet, especially at the same time as meat preparation or meat consumption, or modification of food preparation methods. Meat contains potential anticarcinogens, including omega-3 polyunsaturated fatty acids, and conjugated linoleic acid (CLA). Red meat, in particular, is an important source of micronutrients with anticancer properties, including selenium, vitamin B6 and B12, and vitamin D. Adjusting the balance between meat and other dietary components may be critical to protecting against potential cancer risks.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
95
|
Dellai A, Mansour HB, Limem I, Bouhlel I, Sghaier MB, Boubaker J, Ghedira K, Chekir-Ghedira L. Screening of antimutagenicity via antioxidant activity in different extracts from the flowers ofPhlomis crinita Cav. ssp mauritanica munbyfrom the center of Tunisia. Drug Chem Toxicol 2009; 32:283-92. [DOI: 10.1080/01480540902882200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
96
|
Bouhlel I, Bhouri W, Limem I, Boubaker J, Nefatti A, Skandrani I, Ben Sghaier M, Kilani S, Ghedira K, Chekir Ghedira L. Cell protection induced by Acacia salicina extracts: inhibition of genotoxic damage and determination of its antioxidant capacity. Drug Chem Toxicol 2009; 32:139-49. [PMID: 19514950 DOI: 10.1080/01480540802593899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Antioxidant activity of Acacia salicina extracts was determined by the ability of each extract to inhibit lipid peroxidation, to protect against DNA strand scission induced by hydroxyl radicals, and to scavenge the free radical, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(*+)). The IC(50) values of the inhibitory activity toward lipid peroxidation of total oligomer flavonoids (TOF), methanol, ethyl acetate, and aqueous extracts were respectively 28, 52, 472, and 480 microg/mL. All extracts have the ability to scavenge the ABTS(*+) radical by a hydrogen-donating mechanism and to protect pKS plasmid DNA against hydroxyl radicals- induced DNA damage. An assay for the ability of A. salicina extracts to prevent mutations induced by various mutagens in Salmonella typhimurium TA102 and TA104 cells was conducted. TOF, methanol, ethyl acetate, and aqueous extracts from leaf parts of A. salicina showed no mutagenicity either with or without the metabolic enzymes preparation (S9). Protection against methylmethanesulfonate-induced mutagenicity was observed for TOF, methanol, and ethyl acetate extracts. Likewise, all extracts exhibited a high inhibition level of the Ames response induced by the indirect mutagen, 2-aminoanthracene. The antigenotoxic activity could be ascribed, at least in part, to their antioxidant properties, but we cannot exclude additionally mechanisms. Thus, A. salicina may serve as an ideal candidate for a cost- effective, readily exploitable natural phytochemical compound.
Collapse
Affiliation(s)
- Ines Bouhlel
- Unité de Pharmacognosie/Biologie Moléculaire (99/UR/07-03), Faculté de Pharmacie de Monastir, Monastir, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Gene expression, cell cycle arrest and MAPK signalling regulation in Caco-2 cells exposed to ellagic acid and its metabolites, urolithins. Mol Nutr Food Res 2009; 53:686-98. [DOI: 10.1002/mnfr.200800150] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
98
|
Duh PD, Wu SC, Chang LW, Chu HL, Yen WJ, Wang BS. Effects of three biological thiols on antimutagenic and antioxidant enzyme activities. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
99
|
Attia SM, Helal GK, Alhaider AA. Assessment of genomic instability in normal and diabetic rats treated with metformin. Chem Biol Interact 2009; 180:296-304. [PMID: 19497428 DOI: 10.1016/j.cbi.2009.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/28/2009] [Accepted: 03/04/2009] [Indexed: 11/29/2022]
Abstract
To examine if a single or multiple oral administration of metformin, a member of the biguanide class of anti-diabetic agents, has any genotoxic and cytotoxic potential in normal and diabetic rats, a mammalian model, cytogenetic assays through several endpoints such as induction of micronuclei, chromosome aberrations, mitotic activity of bone marrow cells, sperm-head anomaly and assays of some oxidative stress markers have been conducted by the use of standard techniques. Diabetes was induced by streptozotocin injection. Metformin was administrated to both diabetic and non-diabetic rats in single doses of 100, 500 or 2500 mg/kg along with vehicle control groups for diabetic and non-diabetic rats. The animals were killed by cervical dislocation at 24h after treatment, and then bone marrow cells were sampled. Also, a multiple dose study has done in which diabetic and non-diabetic animals were treated with 100 or 500 mg/kg of metformin daily for 4 or 8 weeks after which the animals were killed by cervical dislocation, and then bone marrow and sperm cells were collected. Concurrent control groups were also included in each experiment. The obtained results revealed that metformin was neither genotoxic nor cytotoxic for the rats in all groups at all tested doses. Moreover, metformin significantly reduced the diabetes-induced genomic instability and cell proliferation changes in somatic and germinal cells in a dose-dependent manner (2500, 500, >100mg/kg). In addition, diabetes induced marked biochemical alterations characteristic of oxidative stress including, enhanced lipid peroxidation and reduction in the reduced glutathione level. Treatment with metformin ameliorated these biochemical markers. In conclusion, metformin is a non-genotoxic or cytotoxic compound and may protect from genomic instability induced by hyperglycemia. Apart from its well-known anti-diabetic effect, the antigenotoxic effect of metformin could be possibly ascribed to its radical scavenger effect that modulated the genomic instability responses and cell proliferation changes induced by hyperglycemia.
Collapse
Affiliation(s)
- S M Attia
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
100
|
Furtado MA, de Almeida LCF, Furtado RA, Cunha WR, Tavares DC. Antimutagenicity of rosmarinic acid in Swiss mice evaluated by the micronucleus assay. Mutat Res 2008; 657:150-4. [PMID: 18926924 DOI: 10.1016/j.mrgentox.2008.09.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/05/2008] [Accepted: 09/16/2008] [Indexed: 11/27/2022]
Abstract
Rosmarinic acid (RA) is a natural phenolic compound which presents different biological activities such as antitumor, antibacterial, anti-inflammatory, hepatoprotective and cardioprotective properties. In view of its important biological activities, the study of the effects of RA on genetic material becomes relevant. Thus, the objective of the present study was to evaluate the mutagenic and/or antimutagenic potential of RA on peripheral blood cells of Swiss mice using the micronucleus assay. Three doses of RA (50, 100 and 200 mg/kg body weight, b.w.) were used for the evaluation of its mutagenic potential. In the antimutagenicity assays, the different concentrations of RA were combined with the chemotherapeutic agent doxorubicin (DXR, 15 mg/kg b.w.). Peripheral blood samples were collected 24, 48 and 72 h after treatment for the evaluation of micronucleated polychromatic erythrocytes (MNPCEs). The results of the mutagenicity assays showed no increase in the frequency of micronuclei in animals treated with different concentrations of RA when compared to the negative controls. Treatment with different concentrations of RA combined with DXR revealed a significant reduction in the frequency of micronuclei compared to animals treated with DXR only. Although the mechanisms underlying the protective effect of RA are not completely understood, the putative antioxidant activity of RA might explain its effect on DXR mutagenicity.
Collapse
Affiliation(s)
- Michelle Andrade Furtado
- Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 201-Parque Universitário, 14404-600, Franca, São Paulo, Brazil
| | | | | | | | | |
Collapse
|