51
|
Schneider C, Bierwisch A, Koller M, Worek F, Kubik S. Detoxification of VX and Other V-Type Nerve Agents in Water at 37 °C and pH 7.4 by Substituted Sulfonatocalix[4]arenes. Angew Chem Int Ed Engl 2016; 55:12668-72. [PMID: 27627873 PMCID: PMC5113771 DOI: 10.1002/anie.201606881] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Indexed: 02/02/2023]
Abstract
Sulfonatocalix[4]arenes with an appended hydroxamic acid residue can detoxify VX and related V‐type neurotoxic organophosphonates with half‐lives down to 3 min in aqueous buffer at 37 °C and pH 7.4. The detoxification activity is attributed to the millimolar affinity of the calixarene moiety for the positively charged organophosphonates in combination with the correct arrangement of the hydroxamic acid group. The reaction involves phosphonylation of the hydroxamic acid followed by a Lossen rearrangement, thus rendering the mode of action stoichiometric rather than catalytic. Nevertheless, these calixarenes are currently the most efficient low‐molecular‐weight compounds for detoxifying persistent V‐type nerve agents under mild conditions. They thus represent lead structures for novel antidotes that allow treatment of poisonings by these highly toxic chemicals.
Collapse
Affiliation(s)
- Christian Schneider
- Fachbereich Chemie-Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, 67663, Kaiserslautern, Germany
| | - Anne Bierwisch
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstrasse 11, 80937, München, Germany
| | - Marianne Koller
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstrasse 11, 80937, München, Germany
| | - Franz Worek
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstrasse 11, 80937, München, Germany
| | - Stefan Kubik
- Fachbereich Chemie-Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, 67663, Kaiserslautern, Germany.
| |
Collapse
|
52
|
Wille T, Neumaier K, Koller M, Ehinger C, Aggarwal N, Ashani Y, Goldsmith M, Sussman JL, Tawfik DS, Thiermann H, Worek F. Single treatment of VX poisoned guinea pigs with the phosphotriesterase mutant C23AL: Intraosseous versus intravenous injection. Toxicol Lett 2016; 258:198-206. [DOI: 10.1016/j.toxlet.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/27/2016] [Accepted: 07/06/2016] [Indexed: 02/09/2023]
|
53
|
Asymmetric biocatalysis of the nerve agent VX by human serum paraoxonase 1: molecular docking and reaction mechanism calculations. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1704-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Toxicology of organophosphorus compounds in view of an increasing terrorist threat. Arch Toxicol 2016; 90:2131-2145. [DOI: 10.1007/s00204-016-1772-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/16/2016] [Indexed: 12/19/2022]
|
55
|
Ashani Y, Leader H, Aggarwal N, Silman I, Worek F, Sussman JL, Goldsmith M. In vitro evaluation of the catalytic activity of paraoxonases and phosphotriesterases predicts the enzyme circulatory levels required for in vivo protection against organophosphate intoxications. Chem Biol Interact 2016; 259:252-256. [PMID: 27163850 DOI: 10.1016/j.cbi.2016.04.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 11/26/2022]
Abstract
Catalytic scavengers of organophosphates (OPs) are considered very promising antidote candidates for preventing the adverse effects of OP intoxication as stand alone treatments. This study aimed at correlating the in-vivo catalytic efficiency ((kcat/KM)[Enzyme]pl), established prior to the OP challenge, with the severity of symptoms and survival rates of intoxicated animals. The major objective was to apply a theoretical approach to estimate a lower limit for (kcat/KM)[Enzyme]pl that will be adequate for establishing the desired kcat/KM value and plasma concentration of efficacious catalytic bioscavengers. Published data sets by our group and others, from in vivo protection experiments executed in the absence of any supportive medicine, were analyzed. The kcat/KM values of eight OP hydrolyzing enzymes and their plasma concentrations in four species exposed to OPs via s.c., i.m. and oral gavage, were analyzed. Our results show that regardless of the OP type and the animal species employed, sign-free animals were observed following bioscavenger treatment provided the theoretically estimated time period required to detoxify 96% of the OP (t96%) in vivo was ≤10 s. This, for example, can be achieved by an enzyme with kcat/KM = 5 × 107 M-1 min-1 and a plasma concentration of 0.4 μM ((kcat/KM)[Enzyme]pl = 20 min-1). Experiments in which animals were intoxicated by i.v. OP injections did not always conform to this rule, and in some cases resulted in high mortality rates. We suggest that in vivo evaluation of catalytic scavengers should avoid the unrealistic bolus i.v. route of OP exposure.
Collapse
Affiliation(s)
- Yacov Ashani
- Dept. of Structural Biology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Haim Leader
- Dept. of Materials and Interfaces, The Weizmann Institute of Science, Rehovot, Israel.
| | - Nidhi Aggarwal
- Dept. of Structural Biology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Israel Silman
- Dept. of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Franz Worek
- The Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.
| | - Joel L Sussman
- Dept. of Materials and Interfaces, The Weizmann Institute of Science, Rehovot, Israel.
| | - Moshe Goldsmith
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
56
|
Refolded Recombinant Human Paraoxonase 1 Variant Exhibits Prophylactic Activity Against Organophosphate Poisoning. Appl Biochem Biotechnol 2016; 180:165-76. [DOI: 10.1007/s12010-016-2091-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/17/2016] [Indexed: 10/21/2022]
|
57
|
Tuin AW, Mol MAE, van den Berg RM, Fidder A, van der Marel GA, Overkleeft HS, Noort D. Activity-Based Protein Profiling Reveals Broad Reactivity of the Nerve Agent Sarin. Chem Res Toxicol 2016; 22:683-9. [PMID: 19226147 DOI: 10.1021/tx8004218] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elucidation of noncholinesterase protein targets of organophosphates, and nerve agents in particular, may reveal additional mechanisms for their high toxicity as well as clues for novel therapeutic approaches toward intoxications with these agents. Within this framework, we here describe the synthesis of the activity-based probe 3, which contains a phosphonofluoridate moiety, a P-Me moiety, and a biotinylated O-alkyl group, and its use in activity-based protein profiling with two relevant biological samples, that is, rhesus monkey liver and cultured human A549 lung cells. In this way, we have unearthed eight serine hydrolases (fatty acid synthase, acylpeptide hydrolase, dipeptidyl peptidase 9, prolyl oligopeptidase, carboxylesterase, long-chain acyl coenzyme A thioesterase, PAF acetylhydrolase 1b, and esterase D/S-formyl glutathione hydrolase) as targets that are modified by the nerve agent sarin. It is also shown that the newly developed probe 3 might find its way into the development of alternative, less laborious purification protocols for human butyrylcholinesterase, a potent bioscavenger currently under clinical investigation as a prophylactic/therapeutic for nerve agent intoxications.
Collapse
Affiliation(s)
- Adriaan W Tuin
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, and Business Unit Biological and Chemical Protection, TNO Defense, Security and Safety, P.O. Box 45, 2280 AA Rijswijk, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
58
|
Worek F, Thiermann H, Wille T. Catalytic bioscavengers in nerve agent poisoning: A promising approach? Toxicol Lett 2016. [DOI: 10.1016/j.toxlet.2015.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
59
|
Alkanaimsh S, Karuppanan K, Guerrero A, Tu AM, Hashimoto B, Hwang MS, Phu ML, Arzola L, Lebrilla CB, Dandekar AM, Falk BW, Nandi S, Rodriguez RL, McDonald KA. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2016; 7:743. [PMID: 27379103 PMCID: PMC4909763 DOI: 10.3389/fpls.2016.00743] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/17/2016] [Indexed: 05/08/2023]
Abstract
To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed.
Collapse
Affiliation(s)
- Salem Alkanaimsh
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
| | - Kalimuthu Karuppanan
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
| | - Andrés Guerrero
- Department of Chemistry, University of California, DavisDavis, CA, USA
| | - Aye M. Tu
- Department of Plant Science, University of California, DavisDavis, CA, USA
| | - Bryce Hashimoto
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
| | - Min Sook Hwang
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - My L. Phu
- Department of Plant Science, University of California, DavisDavis, CA, USA
| | - Lucas Arzola
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
| | | | - Abhaya M. Dandekar
- Department of Plant Science, University of California, DavisDavis, CA, USA
| | - Bryce W. Falk
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - Somen Nandi
- Department of Molecular and Cellular Biology, University of California, DavisDavis, CA, USA
- Department of Global HealthShare Initiative, University of California, DavisDavis, CA, USA
| | - Raymond L. Rodriguez
- Department of Molecular and Cellular Biology, University of California, DavisDavis, CA, USA
- Department of Global HealthShare Initiative, University of California, DavisDavis, CA, USA
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
- Department of Global HealthShare Initiative, University of California, DavisDavis, CA, USA
- *Correspondence: Karen A. McDonald,
| |
Collapse
|
60
|
Jang YJ, Kim K, Tsay OG, Atwood DA, Churchill DG. Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chem Rev 2015; 115:PR1-76. [DOI: 10.1021/acs.chemrev.5b00402] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yoon Jeong Jang
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Olga G. Tsay
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - David A. Atwood
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305−701, Republic of Korea
| |
Collapse
|
61
|
Goldsmith M, Eckstein S, Ashani Y, Greisen P, Leader H, Sussman JL, Aggarwal N, Ovchinnikov S, Tawfik DS, Baker D, Thiermann H, Worek F. Catalytic efficiencies of directly evolved phosphotriesterase variants with structurally different organophosphorus compounds in vitro. Arch Toxicol 2015; 90:2711-2724. [DOI: 10.1007/s00204-015-1626-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/22/2015] [Indexed: 11/29/2022]
|
62
|
Expression and purification of biologically active recombinant human paraoxonase 1 from inclusion bodies of Escherichia coli. Protein Expr Purif 2015; 115:95-101. [DOI: 10.1016/j.pep.2015.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 11/23/2022]
|
63
|
Pharmacokinetics and immunogenicity of a recombinant human butyrylcholinesterase bioscavenger in macaques following intravenous and pulmonary delivery. Chem Biol Interact 2015; 242:219-26. [PMID: 26415620 DOI: 10.1016/j.cbi.2015.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/17/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
Recombinant (r) and native butyrylcholinesterse (BChE) are potent bioscavengers of organophosphates (OPs) such as nerve agents and pesticides and are undergoing development as antidotal treatments for OP-induced toxicity. Because of the lethal properties of such agents, regulatory approval will require extensive testing under the Animal Rule. However, human (Hu) glycoprotein biologicals, such as BChE, present a challenge for assessing immunogenicity and efficacy in heterologous animal models since any immune responses to the small species differences in amino acids or glycans between the host and biologic may alter pharmacodynamics and preclude accurate efficacy testing; possibly underestimating their potential protective value in humans. To establish accurate pharmacokinetic and efficacy data, an homologous animal model has been developed in which native and PEGylated forms of CHO-derived rMaBChE were multiply injected into homologous macaques with no induction of antibody. These now serve as controls for assessing the pharmacokinetics and immunogenicity in macaques of multiple administrations of PEGylated and unmodified human rBChE (rHuBChE) by both intravenous (IV) and pulmonary routes. The results indicate that, except for maximal concentration (Cmax), the pharmacokinetic parameters following IV injection with heterologous PEG-rHuBChE were greatly reduced even after the first injection compared with homologous PEG-rMaBChE. Anti-HuBChE antibody responses were induced in all monkeys after the second and third administrations regardless of the route of delivery; impacting rates of clearance and usually resulting in reduced endogenous MaBChE activity. These data highlight the difficulties inherent in assessing pharmacokinetics and immunogenicity in animal models, but bode well for the efficacy and safety of rHuBChE pretreatments in homologous humans.
Collapse
|
64
|
Mehr-un-Nisa, Munawar MA, Chattha FA, Kousar S, Munir J, Ismail T, Ashraf M, Khan MA. Synthesis of novel triazoles and a tetrazole of escitalopram as cholinesterase inhibitors. Bioorg Med Chem 2015; 23:6014-24. [DOI: 10.1016/j.bmc.2015.06.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 11/16/2022]
|
65
|
Satvik Iyengar A, Tripathy RK, Bajaj P, Pande AH. Improving storage stability of recombinant organophosphorus hydrolase. Protein Expr Purif 2015; 111:28-35. [DOI: 10.1016/j.pep.2015.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 01/30/2015] [Indexed: 11/16/2022]
|
66
|
Atsmon J, Brill-Almon E, Nadri-Shay C, Chertkoff R, Alon S, Shaikevich D, Volokhov I, Haim KY, Bartfeld D, Shulman A, Ruderfer I, Ben-Moshe T, Shilovitzky O, Soreq H, Shaaltiel Y. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R. Toxicol Appl Pharmacol 2015; 287:202-9. [PMID: 26051873 DOI: 10.1016/j.taap.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 12/18/2022]
Abstract
PRX-105 is a plant-derived recombinant version of the human 'read-through' acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50nmol/kg PRX-105, 2min before being exposed to 1.33×LD50 and 1.5×LD50 of toxin and 10min after exposure to 1.5×LD50 survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t½) in mice was 994 (±173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t½ in humans was substantially longer than in mice (average 26.7h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation.
Collapse
Affiliation(s)
- Jacob Atsmon
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | - Sari Alon
- Protalix Biotherapeutics, Science Park, Carmiel, Israel
| | - Dimitri Shaikevich
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Inna Volokhov
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Kirsten Y Haim
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | - Avidor Shulman
- Protalix Biotherapeutics, Science Park, Carmiel, Israel.
| | - Ilya Ruderfer
- Protalix Biotherapeutics, Science Park, Carmiel, Israel
| | | | | | - Hermona Soreq
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
67
|
Kovarik Z, Hrvat NM, Katalinić M, Sit RK, Paradyse A, Žunec S, Musilek K, Fokin VV, Taylor P, Radić Z. Catalytic Soman Scavenging by the Y337A/F338A Acetylcholinesterase Mutant Assisted with Novel Site-Directed Aldoximes. Chem Res Toxicol 2015; 28:1036-44. [PMID: 25835984 PMCID: PMC4791098 DOI: 10.1021/acs.chemrestox.5b00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure to the nerve agent soman is difficult to treat due to the rapid dealkylation of the soman-acetylcholinesterase (AChE) conjugate known as aging. Oxime antidotes commonly used to reactivate organophosphate inhibited AChE are ineffective against soman, while the efficacy of the recommended nerve agent bioscavenger butyrylcholinesterase is limited by strictly stoichiometric scavenging. To overcome this limitation, we tested ex vivo, in human blood, and in vivo, in soman exposed mice, the capacity of aging-resistant human AChE mutant Y337A/F338A in combination with oxime HI-6 to act as a catalytic bioscavenger of soman. HI-6 was previously shown in vitro to efficiently reactivate this mutant upon soman, as well as VX, cyclosarin, sarin, and paraoxon, inhibition. We here demonstrate that ex vivo, in whole human blood, 1 μM soman was detoxified within 30 min when supplemented with 0.5 μM Y337A/F338A AChE and 100 μM HI-6. This combination was further tested in vivo. Catalytic scavenging of soman in mice improved the therapeutic outcome and resulted in the delayed onset of toxicity symptoms. Furthermore, in a preliminary in vitro screen we identified an even more efficacious oxime than HI-6, in a series of 42 pyridinium aldoximes, and 5 imidazole 2-aldoxime N-propylpyridinium derivatives. One of the later imidazole aldoximes, RS-170B, was a 2-3-fold more effective reactivator of Y337A/F338A AChE than HI-6 due to the smaller imidazole ring, as indicated by computational molecular models, that affords a more productive angle of nucleophilic attack.
Collapse
Affiliation(s)
- Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Rakesh K. Sit
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexander Paradyse
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Valery V. Fokin
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | - Zoran Radić
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| |
Collapse
|
68
|
Worek F, Horn G, Wille T, Thiermann H. Adaptation of a dynamic in vitro model with real-time determination of butyrylcholinesterase activity in the presence of cyclosarin and an oxime. Toxicol In Vitro 2015; 29:162-7. [DOI: 10.1016/j.tiv.2014.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 02/03/2023]
|
69
|
Kaur S, Singh S, Chahal KS, Prakash A. Potential pharmacological strategies for the improved treatment of organophosphate-induced neurotoxicity. Can J Physiol Pharmacol 2014; 92:893-911. [DOI: 10.1139/cjpp-2014-0113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Organophosphates (OP) are highly toxic compounds that cause cholinergic neuronal excitotoxicity and dysfunction by irreversible inhibition of acetylcholinesterase, resulting in delayed brain damage. This delayed secondary neuronal destruction, which arises primarily in the cholinergic areas of the brain that contain dense accumulations of cholinergic neurons and the majority of cholinergic projection, could be largely responsible for persistent profound neuropsychiatric and neurological impairments such as memory, cognitive, mental, emotional, motor, and sensory deficits in the victims of OP poisoning. The therapeutic strategies for reducing neuronal brain damage must adopt a multifunctional approach to the various steps of brain deterioration: (i) standard treatment with atropine and related anticholinergic compounds; (ii) anti-excitotoxic therapies to prevent cerebral edema, blockage of calcium influx, inhibition of apoptosis, and allow for the control of seizure; (iii) neuroprotection by aid of antioxidants and N-methyl-d-aspartate (NMDA) antagonists (multifunctional drug therapy), to inhibit/limit the secondary neuronal damage; and (iv) therapies targeting chronic neuropsychiatric and neurological symptoms. These neuroprotective strategies may prevent secondary neuronal damage in both early and late stages of OP poisoning, and thus may be a beneficial approach to treating the neuropsychological and neuronal impairments resulting from OP toxicity.
Collapse
Affiliation(s)
- Shamsherjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
- Punjab Technical University, Kapurthala 144601, Punjab, India
| | - Satinderpal Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Karan Singh Chahal
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Atish Prakash
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| |
Collapse
|
70
|
Post-exposure treatment of VX poisoned guinea pigs with the engineered phosphotriesterase mutant C23: A proof-of-concept study. Toxicol Lett 2014; 231:45-54. [DOI: 10.1016/j.toxlet.2014.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 11/21/2022]
|
71
|
Human paraoxonase 1 as a pharmacologic agent: limitations and perspectives. ScientificWorldJournal 2014; 2014:854391. [PMID: 25386619 PMCID: PMC4217237 DOI: 10.1155/2014/854391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/13/2014] [Accepted: 08/27/2014] [Indexed: 01/02/2023] Open
Abstract
Human PON1 (h-PON1) is a multifaceted enzyme and can hydrolyze (and inactivate) a wide range of substrates. The enzyme shows anti-inflammatory, antioxidative, antiatherogenic, ant-diabetic, antimicrobial, and organophosphate (OP)-detoxifying properties. However, there are certain limitations regarding large-scale production and use of h-PON1 as a therapeutic candidate. These include difficulties in producing recombinant h-PON1 (rh-PON1) using microbial expression system, low hydrolytic activity of wild-type h-PON1 towards certain substrates, and low storage stability of the purified enzyme. This review summarizes the work done in our laboratory to address these limitations. Our results show that (a) optimized polynucleotide sequence encoding rh-PON1 can express the protein in an active form in E. coli and can be used to generate variant of the enzyme having enhanced hydrolytic activity, (b) in vitro refolding of rh-PON1 enzyme can dramatically increase the yield of an active enzyme, (c) common excipients can be used to stabilize purified rh-PON1 enzyme when stored under different storage conditions, and (d) variants of rh-PON1 enzyme impart significant protection against OP-poisoning in human blood (ex vivo) and mouse (in vivo) model of OP-poisoning. The rh-PON1 variants and their process of production discussed here will help to develop h-PON1 as a therapeutic candidate.
Collapse
|
72
|
Legler PM, Boisvert SM, Compton JR, Millard CB. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase. Front Chem 2014; 2:46. [PMID: 25077141 PMCID: PMC4100338 DOI: 10.3389/fchem.2014.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/19/2014] [Indexed: 01/10/2023] Open
Abstract
We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine Oγ. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its k cat/K m for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1 (hCE1). We discuss the use of pNBE as a surrogate scaffold for the mammalian esterases, and the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.
Collapse
Affiliation(s)
- Patricia M. Legler
- Naval Research Laboratory, Center for Bio/Molecular Science and EngineeringWashington, DC, USA
| | | | | | - Charles B. Millard
- United States Army Medical Research and Materiel CommandFort Detrick, MD, USA
| |
Collapse
|
73
|
Reactivation kinetics of 31 structurally different bispyridinium oximes with organophosphate-inhibited human butyrylcholinesterase. Arch Toxicol 2014; 89:405-14. [DOI: 10.1007/s00204-014-1288-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/28/2014] [Indexed: 02/02/2023]
|
74
|
Rajagopalan S, Wang C, Yu K, Kuzin AP, Richter F, Lew S, Miklos AE, Matthews ML, Seetharaman J, Su M, Hunt JF, Cravatt BF, Baker D. Design of activated serine-containing catalytic triads with atomic-level accuracy. Nat Chem Biol 2014; 10:386-91. [PMID: 24705591 PMCID: PMC4048123 DOI: 10.1038/nchembio.1498] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 03/10/2014] [Indexed: 01/07/2023]
Abstract
A challenge in the computational design of enzymes is that multiple properties, including substrate binding, transition state stabilization and product release, must be simultaneously optimized, and this has limited the absolute activity of successful designs. Here, we focus on a single critical property of many enzymes: the nucleophilicity of an active site residue that initiates catalysis. We design proteins with idealized serine-containing catalytic triads and assess their nucleophilicity directly in native biological systems using activity-based organophosphate probes. Crystal structures of the most successful designs show unprecedented agreement with computational models, including extensive hydrogen bonding networks between the catalytic triad (or quartet) residues, and mutagenesis experiments demonstrate that these networks are critical for serine activation and organophosphate reactivity. Following optimization by yeast display, the designs react with organophosphate probes at rates comparable to natural serine hydrolases. Co-crystal structures with diisopropyl fluorophosphate bound to the serine nucleophile suggest that the designs could provide the basis for a new class of organophosphate capture agents.
Collapse
Affiliation(s)
- Sridharan Rajagopalan
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chu Wang
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kai Yu
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alexandre P. Kuzin
- Northeast Structural Genomics Consortium, Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Florian Richter
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States,Graduate program in Biological Physics, Structure and Design, University of Washington, Seattle, Washington 98195, USA
| | - Scott Lew
- Northeast Structural Genomics Consortium, Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | - Megan L. Matthews
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jayaraman Seetharaman
- Northeast Structural Genomics Consortium, Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Min Su
- Northeast Structural Genomics Consortium, Department of Biological Sciences, Columbia University, New York, New York 10027
| | - John. F. Hunt
- Northeast Structural Genomics Consortium, Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States,Graduate program in Biological Physics, Structure and Design, University of Washington, Seattle, Washington 98195, USA,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
75
|
Reiter G, Müller S, Koller M, Thiermann H, Worek F. In vitro toxicokinetic studies of cyclosarin: Molecular mechanisms of elimination. Toxicol Lett 2014; 227:1-11. [DOI: 10.1016/j.toxlet.2014.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/17/2022]
|
76
|
Effectiveness of a substituted β-cyclodextrin to prevent cyclosarin toxicity in vivo. Toxicol Lett 2014; 226:222-7. [DOI: 10.1016/j.toxlet.2014.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 11/15/2022]
|
77
|
Rezk PE, Zdenka P, Sabnekar P, Kajih T, Mata DG, Wrobel C, Cerasoli DM, Chilukuri N. Anin vitroandin vivoevaluation of the efficacy of recombinant human liver prolidase as a catalytic bioscavenger of chemical warfare nerve agents. Drug Chem Toxicol 2014; 38:37-43. [DOI: 10.3109/01480545.2014.900071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
78
|
Stabilization Studies on Bacterially Produced Human Paraoxonase 1 for Improving Its Shelf Life. Appl Biochem Biotechnol 2014; 172:3798-809. [DOI: 10.1007/s12010-014-0806-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
79
|
Sit RK, Fokin VV, Amitai G, Sharpless KB, Taylor P, Radić Z. Imidazole aldoximes effective in assisting butyrylcholinesterase catalysis of organophosphate detoxification. J Med Chem 2014; 57:1378-89. [PMID: 24571195 PMCID: PMC4167068 DOI: 10.1021/jm401650z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Intoxication
by organophosphate (OP) nerve agents and pesticides
should be addressed by efficient, quickly deployable countermeasures
such as antidotes reactivating acetylcholinesterase or scavenging
the parent OP. We present here synthesis and initial in vitro characterization of 14 imidazole aldoximes and their structural
refinement into three efficient reactivators of human butyrylcholinesterase
(hBChE) inhibited covalently by nerve agent OPs, sarin, cyclosarin,
VX, and the OP pesticide metabolite, paraoxon. Rapid reactivation
of OP–hBChE conjugates by uncharged and nonprotonated tertiary
imidazole aldoximes allows the design of a new OP countermeasure by
conversion of hBChE from a stoichiometric to catalytic OP bioscavenger
with the prospect of oral bioavailability and central nervous system
penetration. The enhanced in vitro reactivation efficacy
determined for tertiary imidazole aldoximes compared to that of their
quaternary N-methyl imidazolium analogues is attributed
to ion pairing of the cationic imidazolium with Asp 70, altering a
reactive alignment of the aldoxime with the phosphorus in the OP–hBChE
conjugate.
Collapse
Affiliation(s)
- Rakesh K Sit
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
80
|
Worek F, Seeger T, Goldsmith M, Ashani Y, Leader H, Sussman JS, Tawfik D, Thiermann H, Wille T. Efficacy of the rePON1 mutant IIG1 to prevent cyclosarin toxicity in vivo and to detoxify structurally different nerve agents in vitro. Arch Toxicol 2014; 88:1257-66. [DOI: 10.1007/s00204-014-1204-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/16/2014] [Indexed: 01/09/2023]
|
81
|
Cherny I, Greisen P, Ashani Y, Khare SD, Oberdorfer G, Leader H, Baker D, Tawfik DS. Engineering V-type nerve agents detoxifying enzymes using computationally focused libraries. ACS Chem Biol 2013; 8:2394-403. [PMID: 24041203 DOI: 10.1021/cb4004892] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
VX and its Russian (RVX) and Chinese (CVX) analogues rapidly inactivate acetylcholinesterase and are the most toxic stockpile nerve agents. These organophosphates have a thiol leaving group with a choline-like moiety and are hydrolyzed very slowly by natural enzymes. We used an integrated computational and experimental approach to increase Brevundimonas diminuta phosphotriesterase's (PTE) detoxification rate of V-agents by 5000-fold. Computational models were built of the complex between PTE and V-agents. On the basis of these models, the active site was redesigned to be complementary in shape to VX and RVX and to include favorable electrostatic interactions with their choline-like leaving group. Small libraries based on designed sequences were constructed. The libraries were screened by a direct assay for V-agent detoxification, as our initial studies showed that colorimetric surrogates fail to report the detoxification rates of the actual agents. The experimental results were fed back to improve the computational models. Overall, five rounds of iterating between experiment and model refinement led to variants that hydrolyze the toxic SP isomers of all three V-agents with kcat/KM values of up to 5 × 10(6) M(-1) min(-1) and also efficiently detoxify G-agents. These new catalysts provide the basis for broad spectrum nerve agent detoxification.
Collapse
Affiliation(s)
- Izhack Cherny
- Department
of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Per Greisen
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yacov Ashani
- Department
of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagar D. Khare
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gustav Oberdorfer
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Haim Leader
- Department
of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dan S. Tawfik
- Department
of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
82
|
Bajaj P, Tripathy RK, Aggarwal G, Pande AH. Characterization of human paraoxonase 1 variants suggest that His residues at 115 and 134 positions are not always needed for the lactonase/arylesterase activities of the enzyme. Protein Sci 2013; 22:1799-807. [PMID: 24123308 DOI: 10.1002/pro.2380] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022]
Abstract
Human paraoxonase 1 (h-PON1) hydrolyzes variety of substrates and the hydrolytic activities of enzyme can be broadly grouped into three categories; arylesterase, phosphotriesterase, and lactonase. Current models of the catalytic mechanism of h-PON1 suggest that catalytic residues H115 and H134 mediate the lactonase and arylesterase activities of the enzyme. H-PON1 is a strong candidate for the development of catalytic bioscavenger for organophosphate poisoning in humans. Recently, Gupta et al. (Nat. Chem. Biol. 2011. 7, 120) identified amino acid substitutions that significantly increased the activity of chimeric-PON1 variant (4E9) against some organophosphate nerve agents. In this study we have examined the effect of these (L69G/S111T/H115W/H134R/R192K/F222S/T332S) and other substitutions (H115W/H134R and H115W/H134R/R192K) on the hydrolytic activities of recombinant h-PON1 (rh-PON1) variants. Our results show that the substitutions resulted in a significant increase in the organophosphatase activity of all the three variants of rh-PON1 enzyme while had a variable effect on the lactonase/arylesterase activities. The results suggest that H residues at positions 115 and 134 are not always needed for the lactonase/arylesterase activities of h-PON1 and force a reconsideration of the current model(s) of the catalytic mechanism of h-PON1.
Collapse
Affiliation(s)
- Priyanka Bajaj
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali) 160062, Punjab, India
| | | | | | | |
Collapse
|
83
|
Brandhuber F, Zengerle M, Porwol L, Bierwisch A, Koller M, Reiter G, Worek F, Kubik S. Tabun scavengers based on hydroxamic acid containing cyclodextrins. Chem Commun (Camb) 2013; 49:3425-7. [PMID: 23503705 DOI: 10.1039/c3cc41290c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arrangement of several hydroxamic acid-derived substituents along the cavity of a cyclodextrin ring leads to compounds that detoxify tabun in TRIS-HCl buffer at physiological pH and 37.0 °C with half-times as low as 3 min.
Collapse
Affiliation(s)
- Florian Brandhuber
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstraße 11, D-80937 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Nachon F, Brazzolotto X, Trovaslet M, Masson P. Progress in the development of enzyme-based nerve agent bioscavengers. Chem Biol Interact 2013; 206:536-44. [PMID: 23811386 DOI: 10.1016/j.cbi.2013.06.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 11/17/2022]
Abstract
Acetylcholinesterase is the physiological target for acute toxicity of nerve agents. Attempts to protect acetylcholinesterase from phosphylation by nerve agents, is currently achieved by reversible inhibitors that transiently mask the enzyme active site. This approach either protects only peripheral acetylcholinesterase or may cause side effects. Thus, an alternative strategy consists in scavenging nerve agents in the bloodstream before they can reach acetylcholinesterase. Pre- or post-exposure administration of bioscavengers, enzymes that neutralize and detoxify organophosphorus molecules, is one of the major developments of new medical counter-measures. These enzymes act either as stoichiometric or catalytic bioscavengers. Human butyrylcholinesterase is the leading stoichiometric bioscavenger. Current efforts are devoted to its mass production with care to pharmacokinetic properties of the final product for extended lifetime. Development of specific reactivators of phosphylated butyrylcholinesterase, or variants with spontaneous reactivation activity is also envisioned for rapid in situ regeneration of the scavenger. Human paraoxonase 1 is the leading catalytic bioscavenger under development. Research efforts focus on improving its catalytic efficiency toward the most toxic isomers of nerve agents, by means of directed evolution-based strategies. Human prolidase appears to be another promising human enzyme. Other non-human efficient enzymes like bacterial phosphotriesterases or squid diisopropylfluorophosphatase are also considered though their intrinsic immunogenic properties remain challenging for use in humans. Encapsulation, PEGylation and other modifications are possible solutions to address this problem as well as that of their limited lifetime. Finally, gene therapy for in situ generation and delivery of bioscavengers is for the far future, but its proof of concept has been established.
Collapse
Affiliation(s)
- Florian Nachon
- Institut de Recherche Biomédicale des Armées, BP87, 38702 La Tronche Cédex, France.
| | | | | | | |
Collapse
|
85
|
Kurkova IN, Smirnov IV, Belogurov AA, Ponomarenko NA, Gabibov AG. Creation of catalytic antibodies metabolizing organophosphate compounds. BIOCHEMISTRY (MOSCOW) 2013; 77:1139-46. [PMID: 23157294 DOI: 10.1134/s0006297912100069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Development of new ways of creating catalytic antibodies possessing defined substrate specificity towards artificial substrates has important fundamental and practical aspects. Low immunogenicity combined with high stability of immunoglobulins in the blood stream makes abzymes potent remedies. A good example is the cocaine-hydrolyzing antibody that has successfully passed clinical trials. Creation of an effective antidote against organophosphate compounds, which are very toxic substances, is a very realistic goal. The most promising antidotes are based on cholinesterases. These antidotes are now expensive, and their production methods are inefficient. Recombinant antibodies are widely applied in clinics and have some advantage compared to enzymatic drugs. A new potential abzyme antidote will combine effective catalysis comparable to enzymes with high stability and the ability to switch on effector mechanisms specific for antibodies. Examples of abzymes metabolizing organophosphate substrates are discussed in this review.
Collapse
Affiliation(s)
- I N Kurkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| | | | | | | | | |
Collapse
|
86
|
Catalytic detoxification of nerve agent and pesticide organophosphates by butyrylcholinesterase assisted with non-pyridinium oximes. Biochem J 2013; 450:231-42. [PMID: 23216060 DOI: 10.1042/bj20121612] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present paper we show a comprehensive in vitro, ex vivo and in vivo study on hydrolytic detoxification of nerve agent and pesticide OPs (organophosphates) catalysed by purified hBChE (human butyrylcholinesterase) in combination with novel non-pyridinium oxime reactivators. We identified TAB2OH (2-trimethylammonio-6-hydroxybenzaldehyde oxime) as an efficient reactivator of OP-hBChE conjugates formed by the nerve agents VX and cyclosarin, and the pesticide paraoxon. It was also functional in reactivation of sarin- and tabun-inhibited hBChE. A 3-5-fold enhancement of in vitro reactivation of VX-, cyclosarin- and paraoxon-inhibited hBChE was observed when compared with the commonly used N-methylpyridinium aldoxime reactivator, 2PAM (2-pyridinealdoxime methiodide). Kinetic analysis showed that the enhancement resulted from improved molecular recognition of corresponding OP-hBChE conjugates by TAB2OH. The unique features of TAB2OH stem from an exocyclic quaternary nitrogen and a hydroxy group, both ortho to an oxime group on a benzene ring. pH-dependences reveal participation of the hydroxy group (pKa=7.6) forming an additional ionizing nucleophile to potentiate the oxime (pKa=10) at physiological pH. The TAB2OH protective indices in therapy of sarin- and paraoxon-exposed mice were enhanced by 30-60% when they were treated with a combination of TAB2OH and sub-stoichiometric hBChE. The results of the present study establish that oxime-assisted catalysis is feasible for OP bioscavenging.
Collapse
|
87
|
Damianys AL, Fernanda MSM, Laura OHM, Rafael VD, Antonio MN. Fenamiphos is recalcitrant to the hydrolysis by alloforms PON1 Q192R of human serum. Toxicol In Vitro 2013. [DOI: 10.1016/j.tiv.2012.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
88
|
|
89
|
Muthukrishnan S, Shete VS, Sanan TT, Vyas S, Oottikkal S, Porter LM, Magliery TJ, Hadad CM. Mechanistic Insights into the Hydrolysis of Organophosphorus Compounds by Paraoxonase-1: Exploring the Limits of Substrate Tolerance in a Promiscuous Enzyme. J PHYS ORG CHEM 2012; 25:1247-1260. [PMID: 23946555 PMCID: PMC3740977 DOI: 10.1002/poc.3002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We designed, synthesized and screened a library of analogs of the organophosphate pesticide metabolite paraoxon against a recombinant variant of human serum paraoxonase-1. Alterations of both the aryloxy leaving group and the retained alkyl chains of paraoxon analogs resulted in substantial changes to binding and hydrolysis, as measured directly by spectrophotometric methods or in competition experiments with paraoxon. Increases or decreases in the steric bulk of the retained groups generally reduced the rate of hydrolysis, while modifications of the leaving group modulated both binding and turnover. Studies on the hydrolysis of phosphoryl azide analogs as well as amino-modified paraoxon analogs, the former being developed as photo-affinity labels, found enhanced tolerance of structural modifications, when compared with O-alkyl substituted molecules. Results from computational modeling predict a predominant active site binding mode for these molecules which is consistent with several proposed catalytic mechanisms in the literature, and from which a molecular-level explanation of the experimental trends is attempted. Overall, the results of this study suggest that while paraoxonase-1 is a promiscuous enzyme, there are substantial constraints in the active site pocket, which may relate to both the leaving group and the retained portion of paraoxon analogs.
Collapse
Affiliation(s)
| | - Vivekanand S. Shete
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
| | - Toby. T. Sanan
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
| | - Shubham Vyas
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
| | - Shameema Oottikkal
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
| | - Lauren M. Porter
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
| | - Thomas J. Magliery
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
- Department of Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
| | - Christopher M. Hadad
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, U.S.A
| |
Collapse
|
90
|
Brandhuber F, Zengerle M, Porwol L, Tenberken O, Thiermann H, Worek F, Kubik S, Reiter G. Detoxification of tabun at physiological pH mediated by substituted β-cyclodextrin and glucose derivatives containing oxime groups. Toxicology 2012; 302:163-71. [DOI: 10.1016/j.tox.2012.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 01/10/2023]
|
91
|
Moshiri M, Darchini-Maragheh E, Balali-Mood M. Advances in toxicology and medical treatment of chemical warfare nerve agents. ACTA ACUST UNITED AC 2012; 20:81. [PMID: 23351280 PMCID: PMC3556041 DOI: 10.1186/2008-2231-20-81] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/17/2012] [Indexed: 11/10/2022]
Abstract
Organophosphorous (OP) Nerve agents (NAs) are known as the deadliest chemical warfare agents. They are divided into two classes of G and V agents. Most of them are liquid at room temperature. NAs chemical structures and mechanisms of actions are similar to OP pesticides, but their toxicities are higher than these compounds. The main mechanism of action is irreversible inhibition of Acetyl Choline Esterase (AChE) resulting in accumulation of toxic levels of acetylcholine (ACh) at the synaptic junctions and thus induces muscarinic and nicotinic receptors stimulation. However, other mechanisms have recently been described. Central nervous system (CNS) depression particularly on respiratory and vasomotor centers may induce respiratory failure and cardiac arrest. Intermediate syndrome after NAs exposure is less common than OP pesticides poisoning. There are four approaches to detect exposure to NAs in biological samples: (I) AChE activity measurement, (II) Determination of hydrolysis products in plasma and urine, (III) Fluoride reactivation of phosphylated binding sites and (IV) Mass spectrometric determination of cholinesterase adducts. The clinical manifestations are similar to OP pesticides poisoning, but with more severity and fatalities. The management should be started as soon as possible. The victims should immediately be removed from the field and treatment is commenced with auto-injector antidotes (atropine and oximes) such as MARK I kit. A 0.5% hypochlorite solution as well as novel products like M291 Resin kit, G117H and Phosphotriesterase isolated from soil bacterias, are now available for decontamination of NAs. Atropine and oximes are the well known antidotes that should be infused as clinically indicated. However, some new adjuvant and additional treatment such as magnesium sulfate, sodium bicarbonate, gacyclidine, benactyzine, tezampanel, hemoperfusion, antioxidants and bioscavengers have recently been used for OP NAs poisoning.
Collapse
Affiliation(s)
- Mohammd Moshiri
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | |
Collapse
|
92
|
Wang Y, Wei Y, Oguntayo S, Doctor BP, Nambiar MP. A combination of [+] and [-]-Huperzine A improves protection against soman toxicity compared to [+]-Huperzine A in guinea pigs. Chem Biol Interact 2012; 203:120-4. [PMID: 23123250 DOI: 10.1016/j.cbi.2012.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/10/2012] [Accepted: 10/15/2012] [Indexed: 01/01/2023]
Abstract
The neuropathologic mechanisms after exposure to lethal doses of nerve agent are complex and involve multiple biochemical pathways. Effective treatment requires drugs that can simultaneously protect by reversible binding to the acetylcholinesterase (AChE) and blocking cascades of seizure related brain damage, inflammation, neuronal degeneration as well as promoting induction of neuroregeneration. [-]-Huperzine A ([-]-Hup A), is a naturally occurring potent reversible AChE inhibitor that penetrates the blood-brain barrier. It also has several neuroprotective effects including modification of beta-amyloid peptide, reduction of oxidative stress, anti-inflammatory, anti-apoptotic and induction and regulation of nerve growth factor. Toxicities at higher doses restrict the neuroporotective ability of [-]-Hup A for treatment. The synthetic stereoisomer, [+]-Hup A, is less toxic due to poor AChE inhibition and is suitable for both pre-/post-exposure treatments of nerve agent toxicity. [+]-Hup A block the N-methyl-D-aspartate (NMDA)-induced seizure in rats, reduce excitatory amino acid induced neurotoxicity and also prevent soman induced toxicity with minimum performance decrement. Unique combinations of two stereo-isomers of Hup A may provide an excellent pre/post-treatment drug for the nerve agent induced seizure/status epilepticus. We investigated a combination of [+]-Hup A with a small dose of [-]-Hup A ([+] and [-]-Hup A) against soman toxicity. Our data showed that pretreatment with a combination [+] and [-]-Hup A significantly increased the survival rate and reduced behavioral abnormalities after exposure to 1.2 × LD(50) soman compared to [+]-Hup A in guinea pigs. In addition, [+] and [-]-Hup A pretreatment inhibited the development of high power of EEG better than [+]-Hup A pretreatment alone. These data suggest that a combination of [+] and [-]-Hup A offers better protection than [+]-Hup A and serves as a potent medical countermeasure against lethal dose nerve agent toxicity in guinea pigs.
Collapse
Affiliation(s)
- Ying Wang
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | | | | | | |
Collapse
|
93
|
Aleti V, Reddy GB, Parikh K, Arun P, Chilukuri N. Persistent and high-level expression of human liver prolidase in vivo in mice using adenovirus. Chem Biol Interact 2012; 203:191-5. [PMID: 22982776 DOI: 10.1016/j.cbi.2012.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/20/2012] [Accepted: 08/24/2012] [Indexed: 11/18/2022]
Abstract
Human liver prolidase, a metal-dependent dipeptidase, is being tested as a potential catalytic bioscavenger against organophosphorus (OP) chemical warfare nerve agents. The purpose of this study was to determine whether persistent and high-levels of biologically active and intact recombinant human (rHu) prolidase could be introduced in vivo in mice using adenovirus (Ad). Here, we report that a single intravenous injection of Ad containing the prolidase gene with a 6× histidine-tag (Ad-prolidase) introduced high-levels of rHu prolidase in the circulation of mice which peaked on days 5-7 at 159 ± 129 U/mL. This level of prolidase is ~120 times greater than that of the enzyme level in mice injected with Ad-null virus. To determine if all of Ad-prolidase-produced rHu prolidase was exported into the circulation, enzyme activity was measured in a variety of tissues. Liver contained the highest levels of rHu prolidase on day 7 (5647 ± 454 U/g) compared to blood or any other tissue. Recombinant Hu prolidase hydrolyzed DFP, a simulant of OP nerve agents, in vitro. In vivo, prolidase overexpression extended the survival of 4 out of 6 mice by 4-8h against exposure to two 1× LD(50) doses of DFP. In contrast, overexpression of mouse butyrylcholinesterase (BChE), a proven stoichiometric bioscavenger of OP compounds, protected 5 out of 6 mice from DFP lethality and surviving mice showed no symptoms of DFP toxicity. In conclusion, the results suggest that gene delivery using Ad is capable of introducing persistent and high levels of human liver prolidase in vivo. The gene-delivered prolidase hydrolyzed DFP in vitro but provided only modest protection in vivo in mice, delaying the death of the animals by only 4-8h.
Collapse
Affiliation(s)
- Vineela Aleti
- Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | | | |
Collapse
|
94
|
Kazlauskas R. Biology evolves to fight chemistry. ACTA ACUST UNITED AC 2012; 19:435-7. [PMID: 22520746 DOI: 10.1016/j.chembiol.2012.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A human enzyme variant, PON1-G3C9, accidentally catalyzes the hydrolysis of organophosphorus chemical weapons. In this issue of Chemistry & Biology, Goldsmith and coworkers describe a new PON1 variant with improved hydrolysis by several hundred fold; enough that it may protect animals from a toxic dose.
Collapse
Affiliation(s)
- Romas Kazlauskas
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, 1479 Gortner Avenue, Saint Paul, MN 55108, USA.
| |
Collapse
|
95
|
Goldsmith M, Ashani Y, Simo Y, Ben-David M, Leader H, Silman I, Sussman JL, Tawfik DS. Evolved stereoselective hydrolases for broad-spectrum G-type nerve agent detoxification. ACTA ACUST UNITED AC 2012; 19:456-66. [PMID: 22520752 DOI: 10.1016/j.chembiol.2012.01.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 11/17/2022]
Abstract
A preferred strategy for preventing nerve agents intoxication is catalytic scavenging by enzymes that hydrolyze them before they reach their targets. Using directed evolution, we simultaneously enhanced the activity of a previously described serum paraoxonase 1 (PON1) variant for hydrolysis of the toxic S(P) isomers of the most threatening G-type nerve agents. The evolved variants show ≤340-fold increased rates and catalytic efficiencies of 0.2-5 × 10(7) M(-1) min(-1). Our selection for prevention of acetylcholinesterase inhibition also resulted in the complete reversion of PON1's stereospecificity, from an enantiomeric ratio (E) < 6.3 × 10(-4) in favor of the R(P) isomer of a cyclosarin analog in wild-type PON1, to E > 2,500 for the S(P) isomer in an evolved variant. Given their ability to hydrolyze G-agents, these evolved variants may serve as broad-range G-agent prophylactics.
Collapse
Affiliation(s)
- Moshe Goldsmith
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Solubilization and humanization of paraoxonase-1. J Lipids 2012; 2012:610937. [PMID: 22720164 PMCID: PMC3376767 DOI: 10.1155/2012/610937] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 02/03/2023] Open
Abstract
Paraoxonase-1 (PON1) is a serum protein, the activity of which is related to susceptibility to cardiovascular disease and intoxication by organophosphorus (OP) compounds. It may also be involved in innate immunity, and it is a possible lead molecule in the development of a catalytic bioscavenger of OP pesticides and nerve agents. Human PON1 expressed in E. coli is mostly found in the insoluble fraction, which motivated the engineering of soluble variants, such as G2E6, with more than 50 mutations from huPON1. We examined the effect on the solubility, activity, and stability of three sets of mutations designed to solubilize huPON1 with fewer overall changes: deletion of the N-terminal leader, polar mutations in the putative HDL binding site, and selection of the subset of residues that became more polar in going from huPON1 to G2E6. All three sets of mutations increase the solubility of huPON1; the HDL-binding mutant has the largest effect on solubility, but it also decreases the activity and stability the most. Based on the G2E6 polar mutations, we “humanized” an engineered variant of PON1 with high activity against cyclosarin (GF) and found that it was still very active against GF with much greater similarity to the human sequence.
Collapse
|
97
|
Wales ME, Reeves TE. Organophosphorus hydrolase as an in vivo catalytic nerve agent bioscavenger. Drug Test Anal 2012; 4:271-81. [DOI: 10.1002/dta.381] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 11/12/2022]
Affiliation(s)
- Melinda E. Wales
- Department of Biochemistry & Biophysics; Texas A&M University; College Station; TX; USA
| | - Tony E. Reeves
- Southwest Research Institute; Microencapsulation and Nanomaterials, Chemistry and Chemical Engineering Division; San Antonio; TX; USA
| |
Collapse
|
98
|
Wille T, Scott C, Thiermann H, Worek F. Detoxification of G- and V-series nerve agents by the phosphotriesterase OpdA. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.661724] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
99
|
Crossroads in the evaluation of paraoxonase 1 for protection against nerve agent and organophosphate toxicity. Toxicol Lett 2012; 210:87-94. [PMID: 22301377 DOI: 10.1016/j.toxlet.2012.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 12/22/2022]
Abstract
Human paraoxonase 1 (PON1), a 45kDa arylesterase associated with circulating high density lipoproteins (HDL), has been described as an anti-atherogenic element in cardiovascular disorders. The efficacy of PON1 as a catalytic bioscavenger against OP and CWNA toxicity has been on debate for the last few decades. Hydrolysis of various organophosphates (OPs) and chemical warfare nerve agents (CWNAs) by PON1 has been demonstrated in both in vitro and in vivo experiments. Recently, we established the protective efficacy of human and rabbit serum purified PON1 as well as human recombinant PON1 expressed in Trichoplusia ni larvae against nerve agent toxicity in guinea pigs. Exogenous administration of purified PON1 was effective in protecting against 1.2 X LCt(50) of sarin and soman administered endotracheally with microinstillation technology. However, the short half-life of exogenously administered PON1, probably due to poor association with circulating HDL, warrant alternative approaches for successful utility of PON1 in the treatment of OP/CWNA toxicity. In this mini review, we address the pros and cons of current PON1 prophylaxis and propose potential solutions for successful development of PON1 as an effective catalytic bioscavenger.
Collapse
|
100
|
Sekutor M, Mlinarić-Majerski K, Hrenar T, Tomić S, Primožič I. Adamantane-substituted guanylhydrazones: novel inhibitors of butyrylcholinesterase. Bioorg Chem 2012; 41-42:28-34. [PMID: 22336689 DOI: 10.1016/j.bioorg.2012.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/15/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
A series of novel adamantane-substituted guanylhydrazones was synthesized and used in a study of inhibitory potential toward butyrylcholinesterase. The experimental results were further supported by using docking studies to examine the behavior of the inhibitors within the active site regions of the enzyme. The enzyme-inhibitor dissociation constants K(i) were determined from Hunter-Downs diagrams using Ellman's method for cholinesterase activity determination. Compounds 2-(N-guanidino)iminoadamantane hydrochloride (1) and 2,4-bis(N,N'-guanidino)iminoadamantane dihydrochloride (2) were found to be the best BChE inhibitors and their affinities for the enzyme active site were about five times higher compared to the enzyme peripheral site. The strongest interaction observed in complexes obtained by docking studies was the H-bond between the guanidine and the carboxylate of Glu199 and the second guanidine group in bisguanidine compounds was stabilized with additional H-bonds.
Collapse
Affiliation(s)
- Marina Sekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, P.O. Box 180, 10002 Zagreb, Croatia
| | | | | | | | | |
Collapse
|