51
|
Dong Q, Duan D, Zheng W, Huang D, Wang Q, Yang J, Liu C, Li C, Gong X, Li C, Ma F, Mao K. Overexpression of MdVQ37 reduces drought tolerance by altering leaf anatomy and SA homeostasis in transgenic apple. TREE PHYSIOLOGY 2022; 42:160-174. [PMID: 34328189 DOI: 10.1093/treephys/tpab098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Drought stress is an environmental factor that seriously threatens plant growth, development and yield. VQ proteins are transcriptional regulators that have been reported to be involved in plant growth, development and the responses to biotic and abiotic stressors. However, the relationship between VQ proteins and drought stress has not been well documented in plants. In this study, overexpressing the apple VQ motif-containing protein (MdVQ37) gene in apple plants markedly reduced the tolerance to drought. Physiological and biochemical studies further demonstrated lower enzymatic activities and decreased photosynthetic capacity in transgenic lines compared with wild-type (WT) plants under drought stress. Ultrastructural analysis of leaves showed that the leaves and palisade tissues from the transgenic lines were significantly thinner than those from WT plants. Salicylic acid (SA) analysis indicated that overexpression of MdVQ37 increased the accumulation of 2,5-DHBA by up-regulating the expression of the SA catabolic gene, which ultimately resulted to a significant reduction in endogenous SA content and the disruption of the SA-dependent signaling pathway under drought stress. Applying SA partially increased the survival rate of the transgenic lines under drought stress. These results demonstrate that the regulatory function of apple MdVQ37 is implicated in drought stress, through a change in leaf development and SA homeostasis. This study provides novel insight into understanding the multiple functions of VQ proteins.
Collapse
Affiliation(s)
- Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Wenqian Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
52
|
Tang Y, Li H, Liu C, He Y, Wang H, Zhao T, Xu X, Li J, Yang H, Jiang J. CRISPR-Cas9-mediated mutagenesis of the SlSRM1-like gene leads to abnormal leaf development in tomatoes. BMC PLANT BIOLOGY 2022; 22:13. [PMID: 34979927 PMCID: PMC8722279 DOI: 10.1186/s12870-021-03397-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Leaves, which are the most important organs of plants, can not only fix carbon sources through photosynthesis, but also absorb nutrients through transpiration. Leaf development directly determines the growth, flowering and fruiting of plants. There are many factors that affect leaf development, such as the growth environment, gene expression, and hormone synthesis. In this study, tomatoes were used to study the role of the transcription factor Solanum lycopersicum salt-related MYB1-like (SlSRM1-like) in the development of tomato leaves. RESULTS Loss-of-function of the SlSRM1-like gene mediated by clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) resulted in abnormal tomato leaf morphology, including thinner leaves, wrinkled edges, raised veins, disordered edge veins, and left and right asymmetry. An analysis of the transcription levels of genes related to leaf development revealed that the expression of these genes was significantly altered in the SlSRM1-like mutants (SlSRM1-like-Ms). Moreover, the SlSRM1-like gene was expressed at higher transcription levels in young tissues than in old tissues, and its expression was also induced in response to auxin. In addition, the transcription levels of genes related to the auxin pathway, which regulates tomato growth and development, were severely affected in the SlSRM1-like-Ms. Therefore, it is hypothesized that the SlSRM1-like gene functions in the regulation of tomato leaf development through the auxin-related pathway. CONCLUSIONS In this study, we successfully knocked out the SlSRM1-like gene in the tomato variety Ailsa Craig using CRISPR technology and found that knockout of the SlSRM1-like gene resulted in abnormal development of tomato leaves. Further research indicated that SlSRM1-like regulated tomato leaf development through auxin-related pathways. The results provide an important reference for the functional study of other SRM1-like genes in plants and provide new insights into the regulation of leaf development in tomato and other plants.
Collapse
Affiliation(s)
- Yao Tang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Huijia Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Chunxin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Yuqing He
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Hexuan Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Tingting Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 Heilongjiang Province China
| |
Collapse
|
53
|
Yamada Y, Sato F. Transcription Factors in Alkaloid Engineering. Biomolecules 2021; 11:1719. [PMID: 34827717 PMCID: PMC8615522 DOI: 10.3390/biom11111719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Plants produce a large variety of low-molecular-weight and specialized secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used in the pharmaceutical industry. Although alkaloid chemistry has been intensively investigated, characterization of alkaloid biosynthesis, including biosynthetic enzyme genes and their regulation, especially the transcription factors involved, has been relatively delayed, since only a limited number of plant species produce these specific types of alkaloids in a tissue/cell-specific or developmental-specific manner. Recent advances in molecular biology technologies, such as RNA sequencing, co-expression analysis of transcripts and metabolites, and functional characterization of genes using recombinant technology and cutting-edge technology for metabolite identification, have enabled a more detailed characterization of alkaloid pathways. Thus, transcriptional regulation of alkaloid biosynthesis by transcription factors, such as basic helix-loop-helix (bHLH), APETALA2/ethylene-responsive factor (AP2/ERF), and WRKY, is well elucidated. In addition, jasmonate signaling, an important cue in alkaloid biosynthesis, and its cascade, interaction of transcription factors, and post-transcriptional regulation are also characterized and show cell/tissue-specific or developmental regulation. Furthermore, current sequencing technology provides more information on the genome structure of alkaloid-producing plants with large and complex genomes, for genome-wide characterization. Based on the latest information, we discuss the application of transcription factors in alkaloid engineering.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Fumihiko Sato
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|
54
|
Thakur T, Gandass N, Mittal K, Jamwal P, Muthamilarasan M, Salvi P. A rapid, efficient, and low-cost BiFC protocol and its application in studying in vivo interaction of seed-specific transcription factors, RISBZ and RPBF. Funct Integr Genomics 2021; 21:593-603. [PMID: 34436705 DOI: 10.1007/s10142-021-00801-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Proteins regulate cellular and biological processes in all living organisms. More than 80% of the proteins interact with one another to perform their respective functions; therefore, studying the protein-protein-interaction has gained attention in functional characterization studies. Bimolecular fluorescence complement (BiFC) assay is widely adopted to determine the physical interaction of two proteins in vivo. Here, we developed a simple, yet effective BiFC assay for protein-protein-interaction using transient Agrobacterium-mediated-transformation of onion epidermal cells by taking case study of Rice-P-box-Binding-Factor (RPBF) and rice-seed-specific-bZIP (RISBZ) in vivo interaction. Our result revealed that both the proteins, i.e., RISBZ and RPBF, interacted in the nucleus and cytosol. These two transcription factors are known for their coordinate/synergistic regulation of seed-protein content via concurrent binding to the promoter region of the seed storage protein (SSP) encoding genes. We further validated our results with BiFC assay in Nicotiana by agroinfiltration method, which exhibited similar results as Agrobacterium-mediated-transformation of onion epidermal cells. We also examined the subcellular localization of RISBZ and RPBF to assess the efficacy of the protocol. The subcellular localization and BiFC assay presented here is quite easy-to-follow, reliable, and reproducible, which can be completed within 2-3 days without using costly instruments and technologies that demand a high skill set.
Collapse
Affiliation(s)
- Tanika Thakur
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India
| | - Nishu Gandass
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India
| | - Kajal Mittal
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India
| | - Pallavi Jamwal
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India
| | - Mehanathan Muthamilarasan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India.
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, India.
| |
Collapse
|
55
|
Shan D, Wang C, Song H, Bai Y, Zhang H, Hu Z, Wang L, Shi K, Zheng X, Yan T, Sun Y, Zhu Y, Zhang T, Zhou Z, Guo Y, Kong J. The MdMEK2-MdMPK6-MdWRKY17 pathway stabilizes chlorophyll levels by directly regulating MdSUFB in apple under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:814-828. [PMID: 34469599 DOI: 10.1111/tpj.15480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Drought stress severely limits plant growth and production in apple (Malus domestica Borkh.). To breed water-deficit-tolerant apple cultivars that maintain high yields under slight or moderate drought stress, it is important to uncover the mechanisms underlying the transcriptional regulation of chlorophyll metabolism in apple. To explore this mechanism, we generated transgenic 'Gala3' apple plants with overexpression or knockdown of MdWRKY17, which encodes a transcription factor whose expression is significantly induced by water deficit. Under moderate drought stress, we observed significantly higher chlorophyll contents and photosynthesis rates in overexpression transgenic plants than in controls, whereas these were dramatically lower in the knockdown lines. MdWRKY17 directly regulates MdSUFB expression, as demonstrated by in vitro and in vivo experiments. MdSUFB, a key component of the sulfur mobilization (SUF) system that assembles Fe-S clusters, is essential for inhibiting chlorophyll degradation and stabilizing electron transport during photosynthesis, leading to higher chlorophyll levels in transgenic apple plants overexpressing MdWRKY17. The activated MdMEK2-MdMPK6 cascade by water-deficit stress fine-tunes the MdWRKY17-MdSUFB pathway by phosphorylating MdWRKY17 under water-deficit stress. This fine-tuning of the MdWRKY17-MdSUFB regulatory pathway is important for balancing plant survival and yield losses (chlorophyll degradation and reduced photosynthesis) under slight or moderate drought stress. The phosphorylation by MdMEK2-MdMPK6 activates the MdWRKY17-MdSUFB pathway at S66 (identified by LC-MS), as demonstrated by in vitro and in vivo experiments. Our findings reveal that the MdMEK2-MdMPK6-MdWRKY17-MdSUFB pathway stabilizes chlorophyll levels under moderate drought stress, which could facilitate the breeding of apple varieties that maintain high yields under drought stress.
Collapse
Affiliation(s)
- Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chanyu Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Handong Song
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yixue Bai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Haixia Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zehui Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianci Yan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yunpeng Zhu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
56
|
Li J, Fan R, Wu B, Ji X, Hao C. Genome-Wide Identification and Functional Exploration of SBP-Box Gene Family in Black Pepper ( Piper nigrum L.). Genes (Basel) 2021; 12:genes12111740. [PMID: 34828347 PMCID: PMC8625754 DOI: 10.3390/genes12111740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Black pepper (Piper nigrum L.), is dubbed "the King of Spices". However, the lack of genic knowledge has limited the understanding of its physiological processes and hindered the development of its molecular breeding. The SBP-box gene family is an important family in plant development and integrates multiple physiological processes. Here, we made a genome-wide identification of the pepper SBP-box gene family to provide evolutionary and functional information about this conserved transcription factor. In total, 34 SBP genes were identified in pepper. All these pepper SBP genes were clustered into eight groups, and one pepper group was not found in Arabidopsis thaliana. Segment duplications played the most important role in the expansion process of pepper SBP genes, and all these duplications were subjected to purifying selection. Half of pepper SBP genes were found miR156 target sites, and 17 miR156s were predicted. The tissue expression analysis revealed the differential expression of pepper SBP genes. Eleven SBP genes were found in four co-expression networks, and the GO enrichment further provides a functional prediction for pepper SBP genes. This study lays a foundation for further studies of pepper and provides a valuable reference for functional mining of pepper SBP genes.
Collapse
Affiliation(s)
- Jing Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (J.L.); (R.F.); (B.W.); (X.J.)
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulatioin for Tropical Spice and Beverage Crops, Wanning 571533, China
- Academician Sim Soonliang of Hainan Province Research Station, Wanning 571533, China
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (J.L.); (R.F.); (B.W.); (X.J.)
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulatioin for Tropical Spice and Beverage Crops, Wanning 571533, China
- Academician Sim Soonliang of Hainan Province Research Station, Wanning 571533, China
| | - Baoduo Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (J.L.); (R.F.); (B.W.); (X.J.)
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulatioin for Tropical Spice and Beverage Crops, Wanning 571533, China
- Academician Sim Soonliang of Hainan Province Research Station, Wanning 571533, China
| | - Xunzhi Ji
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (J.L.); (R.F.); (B.W.); (X.J.)
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulatioin for Tropical Spice and Beverage Crops, Wanning 571533, China
- Academician Sim Soonliang of Hainan Province Research Station, Wanning 571533, China
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (J.L.); (R.F.); (B.W.); (X.J.)
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulatioin for Tropical Spice and Beverage Crops, Wanning 571533, China
- Academician Sim Soonliang of Hainan Province Research Station, Wanning 571533, China
- Correspondence:
| |
Collapse
|
57
|
Emerging roles of NAC transcription factor in medicinal plants: progress and prospects. 3 Biotech 2021; 11:425. [PMID: 34567930 DOI: 10.1007/s13205-021-02970-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
Transcriptional factors act as mediators in regulating stress response in plants from signal perception to processing the directed gene expression. WRKY, MYB, AP2/ERF, etc. are some of the major families of transcription factors known to mediate stress mechanisms in plants by regulating the production of secondary metabolites. NAC domain-containing proteins are among these large transcription factors families in plants. These proteins play impulsive roles in plant growth, development, and various abiotic as well as biotic stresses. They are involved in regulating the different signaling pathways of plant hormones that direct a plant's immunity against pathogens, thereby affecting their immune responses. However, their role in stress regulation or defence mechanism in plants through the secondary metabolite biosynthesis pathway is studied for very few cases. Emerging concern over the requirement of medicinal plants for the production of biocompatible drugs and antibiotics, the study of these vast, affecting proteins should be focused to improve their qualitative and quantitative production further. In medicinal plants, phytochemicals and secondary metabolites are the major biochemicals that impose antimicrobial and other medicinal properties in these plants. This review compiles the NAC transcription factors reported in selected medicinal plants and their possible roles in different mechanisms. Further, the comprehensive understanding of the molecular mechanism, genetic engineering, and regulation responses of NAC TFs in medicinal plants, can lead to improvement in stress response, immunity, and production of usable secondary metabolites.
Collapse
|
58
|
Dong Q, Duan D, Zheng W, Huang D, Wang Q, Li X, Mao K, Ma F. MdVQ37 overexpression reduces basal thermotolerance in transgenic apple by affecting transcription factor activity and salicylic acid homeostasis. HORTICULTURE RESEARCH 2021; 8:220. [PMID: 34593787 PMCID: PMC8484266 DOI: 10.1038/s41438-021-00655-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 06/01/2023]
Abstract
High temperature (HT) is one of the most important environmental stress factors and seriously threatens plant growth, development, and production. VQ motif-containing proteins are transcriptional regulators that have been reported to regulate plant growth and developmental processes, including responses to biotic and abiotic stresses. However, the relationships between VQ motif-containing proteins and HT stress have not been studied in depth in plants. In this study, transgenic apple (Malus domestica) plants overexpressing the apple VQ motif-containing protein-coding gene (MdVQ37) were exposed to HT stress, and the transgenic lines exhibited a heat-sensitive phenotype. In addition, physiological and biochemical studies revealed that, compared with WT plants, transgenic lines had lower enzymatic activity and photosynthetic capacity and lower amounts of nonenzymatic antioxidant system metabolites under HT stress. Transcriptome analysis revealed 1379 genes whose expression differed between the transgenic lines and WT plants. GO and KEGG pathway analyses showed that transcription factor activity and plant hormone signaling pathways were differentially influenced and enriched in the transgenic lines. Salicylic acid (SA) content analysis indicated that overexpression of MdVQ37 reduced the content of endogenous SA by regulating the expression of SA catabolism-related genes, which ultimately resulted in disruption of the SA-dependent signaling pathway under HT stress. The application of SA slightly increased the survival rate of the transgenic lines under HT stress. Taken together, our results indicate that apple MdVQ37 has a regulatory function in basal thermotolerance by modulating the activity of transcription factors and SA homeostasis. Overall, this study provides novel insights that improve our understanding of the various functions of VQ motif-containing proteins.
Collapse
Affiliation(s)
- Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Wenqian Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Xiaoran Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
59
|
Sun S, Wang B, Jiang Q, Li Z, Jia S, Wang Y, Guo H. Genome-wide analysis of BpDof genes and the tolerance to drought stress in birch ( Betula platyphylla). PeerJ 2021; 9:e11938. [PMID: 34513325 PMCID: PMC8395574 DOI: 10.7717/peerj.11938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/19/2021] [Indexed: 01/23/2023] Open
Abstract
Background DNA binding with one finger (Dof) proteins are plant-specific transcription factors playing vital roles in developmental processes and stress responses in plants. Nevertheless, the characterizations, expression patterns, and functions of the Dof family under drought stress (a key determinant of plant physiology and metabolic homeostasis) in woody plants remain unclear. Methods The birch (Betula platyphylla var. mandshuric) genome and plant TFDB database were used to identify Dof gene family members in birch plants. ClustalW2 of BioEdit v7.2.1, MEGA v7.0, ExPASy ProtParam tool, Subloc, TMHMM v2.0, GSDS v2.0, MEME, TBtools, KaKs Calculator v2.0, and PlantCARE were respectively used to align the BpDof sequences, build a phylogenetic tree, identify the physicochemical properties, analyze the chromosomal distribution and synteny, and identify the cis-elements in the promoter regions of the 26 BpDof genes. Additionally, the birch seedlings were exposed to PEG6000-simulated drought stress, and the expression patterns of the BpDof genes in different tissues were analyzed by qRT-PCR. The histochemical staining and the evaluation of physiological indexes were performed to assess the plant tolerance to drought with transient overexpression of BpDof4, BpDof11, and BpDof17 genes. SPSS software and ANOVA were used to conduct all statistical analyses and determine statistically significant differences between results. Results A total of 26 BpDof genes were identified in birch via whole-genome analysis. The conserved Dof domain with a C(x)2C(x)21C(x)2C zinc finger motif was present in all BpDof proteins. These birch BpDofs were classified into four groups (A to D) according to the phylogenetic analysis of Arabidopsis thaliana Dof genes. BpDof proteins within the same group mostly possessed similar motifs, as detected by conserved motif analysis. The exon–intron analysis revealed that the structures of BpDof genes differed, indicating probable gene gain and lose during the BpDof evolution. The chromosomal distribution and synteny analysis showed that the 26 BpDofs were unevenly distributed on 14 chromosomes, and seven duplication events among six chromosomes were found. Cis-acting elements were abundant in the promoter regions of the 26 BpDof genes. qRT-PCR revealed that the expression of the 26 BpDof genes was differentially regulated by drought stress among roots, stems, and leaves. Most BpDof genes responded to drought stress, and BpDof4, BpDof11, and BpDof17 were significantly up-regulated. Therefore, plants overexpressing these three genes were generated to investigate drought stress tolerance. The BpDof4-, BpDof11-, and BpDof17-overexpressing plants showed promoted reactive oxygen species (ROS) scavenging capabilities and less severe cell damage, suggesting that they conferred enhanced drought tolerance in birch. This study provided an in-depth insight into the structure, evolution, expression, and function of the Dof gene family in plants.
Collapse
Affiliation(s)
- Shilin Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bo Wang
- Department of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, Heilongjiang, China
| | - Qi Jiang
- Department of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, Heilongjiang, China
| | - Zhuoran Li
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Site Jia
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Huiyan Guo
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
60
|
Perea-García A, Andrés-Bordería A, Huijser P, Peñarrubia L. The Copper-microRNA Pathway Is Integrated with Developmental and Environmental Stress Responses in Arabidopsis thaliana. Int J Mol Sci 2021; 22:9547. [PMID: 34502449 PMCID: PMC8430956 DOI: 10.3390/ijms22179547] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
As an essential nutrient, copper (Cu) scarcity causes a decrease in agricultural production. Cu deficiency responses include the induction of several microRNAs, known as Cu-miRNAs, which are responsible for degrading mRNAs from abundant and dispensable cuproproteins to economize copper when scarce. Cu-miRNAs, such as miR398 and miR408 are conserved, as well as the signal transduction pathway to induce them under Cu deficiency. The Arabidopsis thaliana SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family member SPL7 binds to the cis-regulatory motifs present in the promoter regions of genes expressed under Cu deficiency, including Cu-miRNAs. The expression of several other SPL transcription factor family members is regulated by miR156. This regulatory miR156-SPL module plays a crucial role in developmental phase transitions while integrating internal and external cues. Here, we show that Cu deficiency also affects miR156 expression and that SPL3 overexpressing plants, resistant to miR156 regulation, show a severe decrease in SPL7-mediated Cu deficiency responses. These include the expression of Cu-miRNAs and their targets and is probably due to competition between SPL7 and miR156-regulated SPL3 in binding to cis-regulatory elements in Cu-miRNA promoters. Thus, the conserved SPL7-mediated Cu-miRNA pathway could generally be affected by the miR156-SPL module, thereby underscoring the integration of the Cu-miRNA pathway with developmental and environmental stress responses in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Ana Perea-García
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain; (A.P.-G.); (A.A.-B.)
| | - Amparo Andrés-Bordería
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain; (A.P.-G.); (A.A.-B.)
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany;
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain; (A.P.-G.); (A.A.-B.)
| |
Collapse
|
61
|
TEM1 combinatorially binds to FLOWERING LOCUS T and recruits a Polycomb factor to repress the floral transition in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2103895118. [PMID: 34446554 DOI: 10.1073/pnas.2103895118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Arabidopsis TEMPRANILLO 1 (TEM1) is a transcriptional repressor that participates in multiple flowering pathways and negatively regulates the juvenile-to-adult transition and the flowering transition. To understand the molecular basis for the site-specific regulation of FLOWERING LOCUS T (FT) by TEM1, we determined the structures of the two plant-specific DNA-binding domains in TEM1, AP2 and B3, in complex with their target DNA sequences from the FT gene 5'-untranslated region (5'-UTR), revealing the molecular basis for TEM1 specificity for its DNA targets. In vitro binding assays revealed that the combination of the AP2 and B3 binding sites greatly enhanced the overall binding of TEM1 to the FT 5'-UTR, indicating TEM1 combinatorically recognizes the FT gene 5'-UTR. We further showed that TEM1 recruits the Polycomb repressive complex 2 (PRC2) to the FT 5'-UTR. The simultaneous binding of the TEM1 AP2 and B3 domains to FT is necessary for deposition of H3K27me3 at the FT 5'-UTR and for the flowering repressor function of TEM1. Overall, our data suggest that the combinatorial recognition of FT 5'-UTR by TEM1 ensures H3K27me3 deposition to precisely regulate the floral transition.
Collapse
|
62
|
Zhang W, Liao L, Xu J, Han Y, Li L. Genome-wide identification, characterization and expression analysis of MATE family genes in apple (Malus × domestica Borkh). BMC Genomics 2021; 22:632. [PMID: 34461821 PMCID: PMC8406601 DOI: 10.1186/s12864-021-07943-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As an important group of the multidrug efflux transporter family, the multidrug and toxic compound extrusion (MATE) family has a wide range of functions and is distributed in all kingdoms of living organisms. However, only two MATE genes in apple have been analyzed and genome-wide comprehensive analysis of MATE family is needed. RESULTS In this study, a total of 66 MATE (MdMATE) candidates encoding putative MATE transporters were identified in the apple genome. These MdMATE genes were classified into four groups by phylogenetic analysis with MATE genes in Arabidopsis. Synteny analysis reveals that whole genome duplication (WGD) and segmental duplication events played a major role in the expansion of MATE gene family in apple. MdMATE genes show diverse expression patterns in different tissues/organs and developmental stages. Analysis of cis-regulatory elements in MdMATE promoter regions indicates that the function of MdMATE genes is mainly related to stress response. Besides, the changes of gene expression levels upon different pathogen infections reveal that MdMATE genes are involved in biotic stress response. CONCLUSIONS In this work, we systematically identified MdMATE genes in apple genome using a set of bioinformatics approaches. Our comprehensive analysis provided valuable resources for improving disease resistance in apple and further functional characterization of MATE genes in other species.
Collapse
Affiliation(s)
- Weihan Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Jinsheng Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Li Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. .,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
63
|
Wani SH, Anand S, Singh B, Bohra A, Joshi R. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. PLANT CELL REPORTS 2021; 40:1071-1085. [PMID: 33860345 DOI: 10.1007/s00299-021-02691-8] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/28/2021] [Indexed: 05/24/2023]
Abstract
WRKY transcription factors are among the largest families of transcriptional regulators. In this review, their pivotal role in modulating various signal transduction pathways during biotic and abiotic stresses is discussed. Transcription factors (TFs) are important constituents of plant signaling pathways that define plant responses against biotic and abiotic stimuli besides playing a role in response to internal signals which coordinate different interacting partners during developmental processes. WRKY TFs, deriving their nomenclature from their signature DNA-binding sequence, represent one of the largest families of transcriptional regulators found exclusively in plants. By modulating different signal transduction pathways, these TFs contribute to various plant processes including nutrient deprivation, embryogenesis, seed and trichome development, senescence as well as other developmental and hormone-regulated processes. A growing body of research suggests transcriptional regulation of WRKY TFs in adapting plant to a variety of stressed environments. WRKY TFs can regulate diverse biological functions from receptors for pathogen triggered immunity, modulator of chromatin for specific interaction and signal transfer through a complicated network of genes. Latest discoveries illustrate the interaction of WRKY proteins with other TFs to form an integral part of signaling webs that regulate several seemingly disparate processes and defense-related genes, thus establishing their significant contributions to plant immune response. The present review starts with a brief description on the structural characteristics of WRKY TFs followed by the sections that present recent evidence on their roles in diverse biological processes in plants. We provide a comprehensive overview on regulatory crosstalks involving WRKY TFs during multiple stress responses in plants and future prospects of WRKY TFs as promising molecular diagnostics for enhancing crop improvement.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Centre for Field Crops, Sher‑e‑Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192101, India
| | - Shruti Anand
- Mountain Research Centre for Field Crops, Sher‑e‑Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192101, India
| | - Balwant Singh
- National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Abhishek Bohra
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, 208024, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
64
|
Wang M, Qiu X, Pan X, Li C. Transcriptional Factor-Mediated Regulation of Active Component Biosynthesis in Medicinal Plants. Curr Pharm Biotechnol 2021; 22:848-866. [PMID: 32568019 DOI: 10.2174/1389201021666200622121809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/06/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
Plants produce thousands of chemically diverse secondary metabolites, many of which have valuable pharmaceutical properties. There is much interest in the synthesis of these pharmaceuticallyvaluable compounds, including the key enzymes and the transcription factors involved. The function and regulatory mechanism of transcription factors in biotic and abiotic stresses have been studied in depth. However, their regulatory roles in the biosynthesis of bioactive compounds, especially in medicinal plants, have only begun. Here, we review what is currently known about how transcription factors contribute to the synthesis of bioactive compounds (alkaloids, terpenoids, flavonoids, and phenolic acids) in medicinal plants. Recent progress has been made in the cloning and characterization of transcription factors in medicinal plants on the genome scale. So far, several large transcription factors have been identified in MYB, WRKY, bHLH, ZIP, AP2/ERF transcription factors. These transcription factors have been predicted to regulate bioactive compound production. These transcription factors positively or negatively regulate the expression of multiple genes encoding key enzymes, and thereby control the metabolic flow through the biosynthetic pathway. Although the research addressing this niche topic is in its infancy, significant progress has been made, and advances in high-throughput sequencing technology are expected to accelerate the discovery of key regulatory transcription factors in medicinal plants. This review is likely to be useful for those interested in the synthesis of pharmaceutically- valuable plant compounds, especially those aiming to breed or engineer plants that produce greater yields of these compounds.
Collapse
Affiliation(s)
- Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xian Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
65
|
Yamada Y, Nishida S, Shitan N, Sato F. Genome-Wide Profiling of WRKY Genes Involved in Benzylisoquinoline Alkaloid Biosynthesis in California Poppy ( Eschscholzia californica). FRONTIERS IN PLANT SCIENCE 2021; 12:699326. [PMID: 34220919 PMCID: PMC8248504 DOI: 10.3389/fpls.2021.699326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Transcription factors of the WRKY family play pivotal roles in plant defense responses, including the biosynthesis of specialized metabolites. Based on the previous findings of WRKY proteins regulating benzylisoquinoline alkaloid (BIA) biosynthesis, such as CjWRKY1-a regulator of berberine biosynthesis in Coptis japonica-and PsWRKY1-a regulator of morphine biosynthesis in Papaver somniferum-we performed genome-wide characterization of the WRKY gene family in Eschscholzia californica (California poppy), which produces various BIAs. Fifty WRKY genes were identified by homology search and classified into three groups based on phylogenetic, gene structure, and conserved motif analyses. RNA sequencing showed that several EcWRKY genes transiently responded to methyl jasmonate, a known alkaloid inducer, and the expression patterns of these EcWRKY genes were rather similar to those of BIA biosynthetic enzyme genes. Furthermore, tissue expression profiling suggested the involvement of a few subgroup IIc EcWRKYs in the regulation of BIA biosynthesis. Transactivation analysis using luciferase reporter genes harboring the promoters of biosynthetic enzyme genes indicated little activity of subgroup IIc EcWRKYs, suggesting that the transcriptional network of BIA biosynthesis constitutes multiple members. Finally, we investigated the coexpression patterns of EcWRKYs with some transporter genes and discussed the diversified functions of WRKY genes based on a previous finding that CjWRKY1 overexpression in California poppy cells enhanced BIA secretion into the medium.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Shohei Nishida
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nobukazu Shitan
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Fumihiko Sato
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
66
|
Forlani S, Mizzotti C, Masiero S. The NAC side of the fruit: tuning of fruit development and maturation. BMC PLANT BIOLOGY 2021; 21:238. [PMID: 34044765 PMCID: PMC8157701 DOI: 10.1186/s12870-021-03029-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/10/2021] [Indexed: 05/16/2023]
Abstract
Fruits and seeds resulting from fertilization of flowers, represent an incredible evolutionary advantage in angiosperms and have seen them become a critical element in our food supply.Many studies have been conducted to reveal how fruit matures while protecting growing seeds and ensuring their dispersal. As result, several transcription factors involved in fruit maturation and senescence have been isolated both in model and crop plants. These regulators modulate several cellular processes that occur during fruit ripening such as chlorophyll breakdown, tissue softening, carbohydrates and pigments accumulation.The NAC superfamily of transcription factors is known to be involved in almost all these aspects of fruit development and maturation. In this review, we summarise the current knowledge regarding NACs that modulate fruit ripening in model species (Arabidopsis thaliana and Solanum lycopersicum) and in crops of commercial interest (Oryza sativa, Malus domestica, Fragaria genus, Citrus sinensis and Musa acuminata).
Collapse
Affiliation(s)
- Sara Forlani
- Department of Biosciences, Università Degli Studi Di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Chiara Mizzotti
- Department of Biosciences, Università Degli Studi Di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Simona Masiero
- Department of Biosciences, Università Degli Studi Di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
67
|
Zeng D, Teixeira da Silva JA, Zhang M, Yu Z, Si C, Zhao C, Dai G, He C, Duan J. Genome-Wide Identification and Analysis of the APETALA2 (AP2) Transcription Factor in Dendrobium officinale. Int J Mol Sci 2021; 22:5221. [PMID: 34069261 PMCID: PMC8156592 DOI: 10.3390/ijms22105221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
The APETALA2 (AP2) transcription factors (TFs) play crucial roles in regulating development in plants. However, a comprehensive analysis of the AP2 family members in a valuable Chinese herbal orchid, Dendrobium officinale, or in other orchids, is limited. In this study, the 14 DoAP2 TFs that were identified from the D. officinale genome and named DoAP2-1 to DoAP2-14 were divided into three clades: euAP2, euANT, and basalANT. The promoters of all DoAP2 genes contained cis-regulatory elements related to plant development and also responsive to plant hormones and stress. qRT-PCR analysis showed the abundant expression of DoAP2-2, DoAP2-5, DoAP2-7, DoAP2-8 and DoAP2-12 genes in protocorm-like bodies (PLBs), while DoAP2-3, DoAP2-4, DoAP2-6, DoAP2-9, DoAP2-10 and DoAP2-11 expression was strong in plantlets. In addition, the expression of some DoAP2 genes was down-regulated during flower development. These results suggest that DoAP2 genes may play roles in plant regeneration and flower development in D. officinale. Four DoAP2 genes (DoAP2-1 from euAP2, DoAP2-2 from euANT, and DoAP2-6 and DoAP2-11 from basal ANT) were selected for further analyses. The transcriptional activation of DoAP2-1, DoAP2-2, DoAP2-6 and DoAP2-11 proteins, which were localized in the nucleus of Arabidopsis thaliana mesophyll protoplasts, was further analyzed by a dual-luciferase reporter gene system in Nicotiana benthamiana leaves. Our data showed that pBD-DoAP2-1, pBD-DoAP2-2, pBD-DoAP2-6 and pBD-DoAP2-11 significantly repressed the expression of the LUC reporter compared with the negative control (pBD), suggesting that these DoAP2 proteins may act as transcriptional repressors in the nucleus of plant cells. Our findings on AP2 genes in D. officinale shed light on the function of AP2 genes in this orchid and other plant species.
Collapse
Affiliation(s)
- Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (D.Z.); (M.Z.); (Z.Y.); (C.S.); (C.Z.)
- College of Life Sciences, University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | | | - Mingze Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (D.Z.); (M.Z.); (Z.Y.); (C.S.); (C.Z.)
- College of Life Sciences, University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (D.Z.); (M.Z.); (Z.Y.); (C.S.); (C.Z.)
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (D.Z.); (M.Z.); (Z.Y.); (C.S.); (C.Z.)
| | - Conghui Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (D.Z.); (M.Z.); (Z.Y.); (C.S.); (C.Z.)
- College of Life Sciences, University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Guangyi Dai
- Opening Public Laboratory, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (D.Z.); (M.Z.); (Z.Y.); (C.S.); (C.Z.)
| | - Juan Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (D.Z.); (M.Z.); (Z.Y.); (C.S.); (C.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
68
|
Perspectives for epigenetic editing in crops. Transgenic Res 2021; 30:381-400. [PMID: 33891288 DOI: 10.1007/s11248-021-00252-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/29/2021] [Indexed: 01/10/2023]
Abstract
Site-specific nucleases (SSNs) have drawn much attention in plant biotechnology due to their ability to drive precision mutagenesis, gene targeting or allele replacement. However, when devoid of its nuclease activity, the underlying DNA-binding activity of SSNs can be used to bring other protein functional domains close to specific genomic sites, thus expanding further the range of applications of the technology. In particular, the addition of functional domains encoding epigenetic effectors and chromatin modifiers to the CRISPR/Cas ribonucleoprotein complex opens the possibility to introduce targeted epigenomic modifications in plants in an easily programmable manner. Here we examine some of the most important agronomic traits known to be controlled epigenetically and review the best studied epigenetic catalytic effectors in plants, such as DNA methylases/demethylases or histone acetylases/deacetylases and their associated marks. We also review the most efficient strategies developed to date to functionalize Cas proteins with both catalytic and non-catalytic epigenetic effectors, and the ability of these domains to influence the expression of endogenous genes in a regulatable manner. Based on these new technical developments, we discuss the possibilities offered by epigenetic editing tools in plant biotechnology and their implications in crop breeding.
Collapse
|
69
|
Wu S, Zhu B, Qin L, Rahman K, Zhang L, Han T. Transcription Factor: A Powerful Tool to Regulate Biosynthesis of Active Ingredients in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2021; 12:622011. [PMID: 33719294 PMCID: PMC7943460 DOI: 10.3389/fpls.2021.622011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/22/2021] [Indexed: 05/28/2023]
Abstract
Salvia miltiorrhiza Bunge is a common Chinese herbal medicine, and its major active ingredients are phenolic acids and tanshinones, which are widely used to treat vascular diseases. However, the wild form of S. miltiorrhiza possess low levels of these important pharmaceutical agents; thus, improving their levels is an active area of research. Transcription factors, which promote or inhibit the expressions of multiple genes involved in one or more biosynthetic pathways, are powerful tools for controlling gene expression in biosynthesis. Several families of transcription factors have been reported to participate in regulating phenolic acid and tanshinone biosynthesis and influence their accumulation. This review summarizes the current status in this field, with focus on the transcription factors which have been identified in recent years and their functions in the biosynthetic regulation of phenolic acids and tanshinones. Otherwise, the new insight for further research is provided. Finally, the application of the biosynthetic regulation of active ingredients by the transcription factors in S. miltiorrhiza are discussed, and new insights for future research are explored.
Collapse
Affiliation(s)
- Sijia Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lei Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ting Han
- School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
70
|
Wang X, Liu H, Siddique KHM, Yan G. Transcriptomic profiling of wheat near-isogenic lines reveals candidate genes on chromosome 3A for pre-harvest sprouting resistance. BMC PLANT BIOLOGY 2021; 21:53. [PMID: 33478384 PMCID: PMC7818928 DOI: 10.1186/s12870-021-02824-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/05/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Pre-harvest sprouting (PHS) in wheat can cause severe damage to both grain yield and quality. Resistance to PHS is a quantitative trait controlled by many genes located across all 21 wheat chromosomes. The study targeted a large-effect quantitative trait locus (QTL) QPhs.ccsu-3A.1 for PHS resistance using several sets previously developed near-isogenic lines (NILs). Two pairs of NILs with highly significant phenotypic differences between the isolines were examined by RNA sequencing for their transcriptomic profiles on developing seeds at 15, 25 and 35 days after pollination (DAP) to identify candidate genes underlying the QTL and elucidate gene effects on PHS resistance. At each DAP, differentially expressed genes (DEGs) between the isolines were investigated. RESULTS Gene ontology and KEGG pathway enrichment analyses of key DEGs suggested that six candidate genes underlie QPhs.ccsu-3A.1 responsible for PHS resistance in wheat. Candidate gene expression was further validated by quantitative RT-PCR. Within the targeted QTL interval, 16 genetic variants including five single nucleotide polymorphisms (SNPs) and 11 indels showed consistent polymorphism between resistant and susceptible isolines. CONCLUSIONS The targeted QTL is confirmed to harbor core genes related to hormone signaling pathways that can be exploited as a key genomic region for marker-assisted selection. The candidate genes and SNP/indel markers detected in this study are valuable resources for understanding the mechanism of PHS resistance and for marker-assisted breeding of the trait in wheat.
Collapse
Affiliation(s)
- Xingyi Wang
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia.
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia.
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
71
|
Huang M, Zhang L, Zhou L, Wang M, Yung WS, Wang Z, Duan S, Xiao Z, Wang Q, Wang X, Li MW, Lam HM. An expedient survey and characterization of the soybean JAGGED 1 (GmJAG1) transcription factor binding preference in the soybean genome by modified ChIPmentation on soybean protoplasts. Genomics 2021; 113:344-355. [PMID: 33338631 DOI: 10.1016/j.ygeno.2020.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/11/2020] [Accepted: 12/13/2020] [Indexed: 12/21/2022]
Abstract
ChIP-seq is widely used for mapping the transcription factor (TF) binding sites throughout the genome in vivo. In this study, we adopted and modified ChIPmentation, a fast, robust, low-input requirement ChIP-seq method, to a transient expression system using soybean protoplasts to expedite the exploration of TF binding sites. To test this new protocol, we expressed a tagged version of a C2H2-type zinc finger TF, JAGGED1 (GmJAG1), in soybean protoplasts and successfully identified its binding sites in the soybean genome. Furthermore, valuable genomic features such as a novel GmJAG1-binding motif, and the epigenetic characteristics as well as an enhancer-like function of GmJBSs were also found via coupling ATAC-seq and H3K27me3 ChIP-seq data. The application of the modified ChIPmentation protocol in this study using soybean protoplasts provided a new approach for rapid elucidation of how a TF binds to the various target genes in the soybean genome, as illustrated here using GmJAG1.
Collapse
Affiliation(s)
- Mingkun Huang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Ling Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| | - Limeng Zhou
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Mozhu Wang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Wai-Shing Yung
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Zhili Wang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Shaowei Duan
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Zhixia Xiao
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Qianwen Wang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Xin Wang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Man-Wah Li
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China.
| |
Collapse
|
72
|
Park HC, Park BO, Kim HS, Kim SH, Lee SW, Chung WS. AtMPK6-induced phosphorylation of AtERF72 enhances its DNA binding activity and interaction with TGA4/OBF4 in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:11-20. [PMID: 33073469 DOI: 10.1111/plb.13196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The ethylene-responsive element binding factor (ERF) family is a large family of transcription factors involved in plant development and environmental stress responses. We previously reported the identification of 29 putative substrates of Mitogen-activated Protein Kinase3 (AtMPK3), AtMPK4 and AtMPK6, based on a solid-phase phosphorylation screening using a lambda phage expression library in Arabidopsis thaliana. In this study, a putative MPK substrate, AtERF72 (At3g16770), was strongly phosphorylated by AtMPK6 on the serine residue at position 151 (Ser151). AtERF72 binds to the GCC box (AGCCGCC) in the promoters of several pathogenesis-related (PR) genes and activates their transcription. We also show that the DNA-binding activity of AtERF72 is enhanced upon phosphorylation by AtMPK6 in vitro. In addition, transient co-expression experiments in Arabidopsis protoplasts revealed that effector constructs expressing a mutant variant of AtERF72, AtERF72S151D (carrying a Ser to aspartic acid [Asp] substitution at amino acid position 151) showed higher expression of the β-glucuronidase (GUS) reporter gene driven by the GCC box element than effector constructs expressing the wild-type AtERF72. Furthermore, yeast two-hybrid assays revealed that the interaction between AtERF72S151D and TGA4/OBF4 was stronger than that between wild-type AtERF72 and TGA4/OBF4. Since AtERF72S151D is equivalent to AtERF72 phosphorylated by AtMPK6 at Ser151, these results suggest that the phosphorylation of AtERF72 by AtMPK6 triggers an event of transcriptional regulation from defence signalling in Arabidopsis.
Collapse
Affiliation(s)
- H C Park
- Team of Vulnerable Ecological Research, Division of Climate and Ecology, Bureau of Conservation & Assessment Research, National Institute of Ecology, Seocheon, Republic of Korea
| | - B O Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - H S Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - S H Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - S W Lee
- Department of Agronomy & Medicinal Plant Resources, Gyeongnam National University of Science & Technology, Jinju, Republic of Korea
| | - W S Chung
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
73
|
Song M, Wang H, Wang Z, Huang H, Chen S, Ma H. Genome-Wide Characterization and Analysis of bHLH Transcription Factors Related to Anthocyanin Biosynthesis in Fig ( Ficus carica L.). FRONTIERS IN PLANT SCIENCE 2021; 12:730692. [PMID: 34691109 PMCID: PMC8531510 DOI: 10.3389/fpls.2021.730692] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/03/2021] [Indexed: 05/14/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factor family is the second largest transcription factor family in plants, and participates in various plant growth and development processes. A total of 118 bHLH genes were identified from fig (Ficus carica L.) by whole-genome database search. Phylogenetic analysis with Arabidopsis homologs divided them into 25 subfamilies. Most of the bHLHs in each subfamily shared a similar gene structure and conserved motifs. Seventy-two bHLHs were found expressed at fragments per kilobase per million mapped (FPKM) > 10 in the fig fruit; among them, 15 bHLHs from eight subfamilies had FPKM > 100 in at least one sample. bHLH subfamilies had different expression patterns in the female flower tissue and peel during fig fruit development. Comparing green and purple peel mutants, 13 bHLH genes had a significantly different (≥ 2-fold) expression. Light deprivation resulted in 68 significantly upregulated and 22 downregulated bHLH genes in the peel of the fruit. Sixteen bHLH genes in subfamily III were selected by three sets of transcriptomic data as candidate genes related to anthocyanin synthesis. Interaction network prediction and yeast two-hybrid screening verified the interaction between FcbHLH42 and anthocyanin synthesis-related genes. The transient expression of FcbHLH42 in tobacco led to an apparent anthocyanin accumulation. Our results confirm the first fig bHLH gene involved in fruit color development, laying the foundation for an in-depth functional study on other FcbHLH genes in fig fruit quality formation, and contributing to our understanding of the evolution of bHLH genes in other horticulturally important Ficus species.
Collapse
Affiliation(s)
- Miaoyu Song
- College of Horticulture, China Agricultural University, Beijing, China
| | - Haomiao Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhe Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Hantang Huang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Shangwu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- *Correspondence: Huiqin Ma
| |
Collapse
|
74
|
Li W, Chen Y, Ye M, Lu H, Wang D, Chen Q. Evolutionary history of the C-repeat binding factor/dehydration-responsive element-binding 1 (CBF/DREB1) protein family in 43 plant species and characterization of CBF/DREB1 proteins in Solanum tuberosum. BMC Evol Biol 2020; 20:142. [PMID: 33143637 PMCID: PMC7607821 DOI: 10.1186/s12862-020-01710-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background Plants are easily affected by temperature variations, and high temperature (heat stress) and low temperature (cold stress) will lead to poor plant development and reduce crop yields. Therefore, it is very important to identify resistance genes for improving the ability of plants to resist heat stress or cold stress by using modern biotechnology. Members of the C-repeat binding factor/Dehydration responsive element-binding 1 (CBF/DREB1) protein family are related to the stress resistance of many plant species. These proteins affect the growth and development of plants and play vital roles during environmental stress (cold, heat, drought, salt, etc.). In this study, we identified CBF/DREB1 genes from 43 plant species (including algae, moss, ferns, gymnosperms, angiosperms) by using bioinformatic methods to clarify the characteristics of the CBF/DREB1 protein family members and their functions in potato under heat and cold stresses. Results In this study, we identified 292 CBF/DREB1 proteins from 43 plant species. However, no CBF/DREB1 protein was found in algae, moss, ferns, or gymnosperms; members of this protein family exist only in angiosperms. Phylogenetic analysis of all the CBF/DREB1 proteins revealed five independent groups. Among them, the genes of group I do not exist in eudicots and are found only in monocots, indicating that these genes have a special effect on monocots. The analysis of motifs, gene duplication events, and the expression data from the PGSC website revealed the gene structures, evolutionary relationships, and expression patterns of the CBF/DREB1 proteins. In addition, analysis of the transcript levels of the 8 CBF/DREB1 genes in potato (Solanum tuberosum) under low-temperature and high-temperature stresses showed that these genes were related to temperature stresses. In particular, the expression levels of StCBF3 and StCBF4 in the leaves, stems, and roots significantly increased under high-temperature conditions, which suggested that StCBF3 and StCBF4 may be closely related to heat tolerance in potato. Conclusion Overall, members of the CBF/DREB1 protein family exist only in angiosperms and plays an important role in the growth and development of plants. In addition, the CBF/DREB1 protein family is related to the heat and cold resistance of potato. Our research revealed the evolution of the CBF/DREB1 family, and is useful for studying the precise functions of the CBF/DREB1 proteins when the plants are developing and are under temperature stress.
Collapse
Affiliation(s)
- Wan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Minghui Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haibin Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
75
|
Zhao L, Zhang W, Song Q, Xuan Y, Li K, Cheng L, Qiao H, Wang G, Zhou C. A WRKY transcription factor, TaWRKY40-D, promotes leaf senescence associated with jasmonic acid and abscisic acid pathways in wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1072-1085. [PMID: 32609938 DOI: 10.1111/plb.13155] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Leaf senescence is a complex and precise regulatory process that is correlated with numerous internal and environmental factors. Leaf senescence is tightly related to the redistribution of nutrients, which significantly affects productivity and quality, especially in crops. Evidence shows that the mediation of transcriptional regulation by WRKY transcription factors is vital for the fine-tuning of leaf senescence. However, the underlying mechanisms of the involvement of WRKY in leaf senescence are still unclear in wheat. Using RNA sequencing data, we isolated a novel WRKY transcription factor, TaWRKY40-D, which localizes in the nucleus and is basically induced by the progression of leaf senescence. TaWRKY40-D is a promoter of natural and dark-induced leaf senescence in transgenic Arabidopsis thaliana and wheat. We also demonstrated a positive response of TaWRKY40-D in wheat upon jasmonic acid (JA) and abscisic acid (ABA) treatment. Consistent with this, the detached leaves of TaWRKY40-D VIGS (virus-induced gene silencing) wheat plants showed a stay-green phenotype, while TaWRKY40-D overexpressing Arabidopsis plants showed premature leaf senescence after JA and ABA treatment. Moreover, our results revealed that TaWRKY40-D positively regulates leaf senescence, possibly by altering the biosynthesis and signalling of JA and ABA pathway genes. Together, our results suggest a new regulator of JA- and ABA-related leaf senescence, as well as a new candidate gene that can be used for molecular breeding in wheat.
Collapse
Affiliation(s)
- L Zhao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - W Zhang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Q Song
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Y Xuan
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - K Li
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - L Cheng
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - H Qiao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - G Wang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - C Zhou
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
76
|
Zhong H, Zhang F, Pan M, Wu X, Zhang W, Han S, Xie H, Zhou X, Wang M, Ai CM, He T. Comparative phenotypic and transcriptomic analysis of Victoria and flame seedless grape cultivars during berry ripening. FEBS Open Bio 2020; 10:2616-2630. [PMID: 33090714 PMCID: PMC7714085 DOI: 10.1002/2211-5463.12996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Grape berry development is a highly coordinated and intricate process. Herein, we analyzed the phenotypic and transcriptomic patterns of Victoria (VT) and Flame Seedless (FS) grape varieties during berry development. Physiological analysis and transcriptomic sequencing were performed at four berry developmental phases. VT berry size was comparatively larger to the FS variety. At maturity, 80 days postanthesis (DPA), the FS soluble solids were 61.8% higher than VT. Further, 4889 and 2802 differentially expressed genes were identified from VT and FS 40 DPA to 80 DPA development stages, respectively. VvSWEET15, VvHXK, and MYB44 genes were up‐regulated during the postanthesis period, while bHLH14, linked to glucose metabolism, was gradually down‐regulated during berry development. These genes may have significant roles in berry development, ripening, and sugar accumulation.
Collapse
Affiliation(s)
- Haixia Zhong
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Fuchun Zhang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Mingqi Pan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xinyu Wu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wen Zhang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shouan Han
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hui Xie
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiaoming Zhou
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Min Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Caikasimu Maikeer Ai
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Tianming He
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
77
|
Lv J, Pang Q, Chen X, Li T, Fang J, Lin S, Jia H. Transcriptome analysis of strawberry fruit in response to exogenous arginine. PLANTA 2020; 252:82. [PMID: 33040169 DOI: 10.1007/s00425-020-03489-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/01/2020] [Indexed: 05/19/2023]
Abstract
Transcriptome and physiological analysis showed that exogenous arginine can delay the ripening process of postharvest strawberry fruit. Arginine (Arg) plays an important role in the growth and development of plants, but its growth and development regulatory mechanisms in strawberry fruit are unknown. In this study, we found that the content of Arg decreased after the onset of fruit coloration and exogenous Arg inhibited fruit coloration. We comprehensively analyzed the transcriptome of 'Sweet Charlie' strawberry fruit with or without Arg treatment and identified a large number of differential genes and metabolites. Based on the transcriptome data, we also found that Arg inhibited ripening, which coincided with changes in several physiological parameters and their corresponding gene transcripts, including firmness, anthocyanin content, sugar content, Arg content, indole-acetic acid (IAA) content, abscisic acid (ABA) content, and ethylene emissions. We also found that Arg induced the expression of heat-shock proteins (HSPs) and antioxidant enzyme genes, which improved strawberry stress resistance. This study elucidated the molecular mechanism by which exogenous Arg delays strawberry fruit ripening, providing some genetic information to help guide the future improvement and cultivation of strawberry.
Collapse
Affiliation(s)
- Jinhua Lv
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qianqian Pang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xueqin Chen
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Teng Li
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shaoyan Lin
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
78
|
Li Z, Wang X, Cao X, Chen B, Ma C, Lv J, Sun Z, Qiao K, Zhu L, Zhang C, Fan S, Ma Q. GhTULP34, a member of tubby-like proteins, interacts with GhSKP1A to negatively regulate plant osmotic stress. Genomics 2020; 113:462-474. [PMID: 33022357 DOI: 10.1016/j.ygeno.2020.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022]
Abstract
Tubby-like protein genes (TULPs), present in the form of large multigene families, play important roles in environmental stress. However, little is known regarding the TULP family genes in cotton. In this study, we systematically identified and analyzed the membership, characterization, and evolutionary relationship of TULPs in four species of cotton. Transcriptome analysis indicated that GhTULPs participate in environmental stress and cotton tissue development. At the same time, we also predicted and analyzed the potential molecular regulatory mechanisms and functions of TULPs. GhTULP34, as a candidate gene, significantly reduced the germination rate of transgenic Arabidopsis plants under salt stress, and inhibited root development and stomatal closure under mannitol stress. The yeast two-hybrid and luciferase (LUC) systems showed that GhTULP34 can interact with GhSKP1A, a subunit of the SCF-type (Skp1-Cullin-1-F-box) complex. This study will provide a basis and reference for future research on their roles in stress tolerance.
Collapse
Affiliation(s)
- Zhanshuai Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| | - Xiaoyan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xiaocong Cao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Baizhi Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Changkai Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Jiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Zhimao Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430000, China.
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China.
| |
Collapse
|
79
|
Ko DK, Brandizzi F. Network-based approaches for understanding gene regulation and function in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:302-317. [PMID: 32717108 PMCID: PMC8922287 DOI: 10.1111/tpj.14940] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/14/2020] [Indexed: 05/03/2023]
Abstract
Expression reprogramming directed by transcription factors is a primary gene regulation underlying most aspects of the biology of any organism. Our views of how gene regulation is coordinated are dramatically changing thanks to the advent and constant improvement of high-throughput profiling and transcriptional network inference methods: from activities of individual genes to functional interactions across genes. These technical and analytical advances can reveal the topology of transcriptional networks in which hundreds of genes are hierarchically regulated by multiple transcription factors at systems level. Here we review the state of the art of experimental and computational methods used in plant biology research to obtain large-scale datasets and model transcriptional networks. Examples of direct use of these network models and perspectives on their limitations and future directions are also discussed.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- For correspondence ()
| |
Collapse
|
80
|
Jiang W, Geng Y, Liu Y, Chen S, Cao S, Li W, Chen H, Ma D, Yin J. Genome-wide identification and characterization of SRO gene family in wheat: Molecular evolution and expression profiles during different stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:590-611. [PMID: 32912491 DOI: 10.1016/j.plaphy.2020.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
SRO (SIMILAR TO RCD ONE), a type of plant-specific small protein family, play important roles in plant growth and development, as well as in response to biotic/abiotic stresses. Although characterization of SROs have been performed in model plants, little is known about their function in wheat, especially under stress conditions. In this study, 30 SRO genes were identified from the wheat genome (TaSRO). They were phylogenetically separated into two groups with distinct structures. The cis-regulatory elements in the promoter region of TaSROs were analyzed and numerous elements functionally associated with stress responding and hormones were interpreted, implying the reason for induction expression patterns of TaSROs during abiotic and biotic stresses in wheat. Whole-genome replication events in the SRO gene family of wheat and seven other species (Arabidopsis thaliana, rice, maize, barley, soybean, upland cotton, and cucumber) were analyzed, resulting in 1, 12, 9, 23, 6, 5, and 3 of gene pairs, respectively. The tissue-specific expression pattern profiling revealed that most TaSROs are highly expressed in one or more tissues and may play an important role in wheat growth and development. In addition, qRT-PCR results further confirmed that these TaSRO genes are involved in wheat stress response. In summary, our study laid a theoretical basis for molecular function deciphering of TaSROs, especially in plant hormones and biotic/abiotic stress responses.
Collapse
Affiliation(s)
- Wenqiang Jiang
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center/College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Yuepan Geng
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210014, Jiangsu, China
| | - Yike Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Shuhui Chen
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center/College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Dongfang Ma
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center/College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China.
| | - Junliang Yin
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center/College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China; Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| |
Collapse
|
81
|
Li W, Chen Y, Ye M, Wang D, Chen Q. Evolutionary history of the heat shock protein 90 (Hsp90) family of 43 plants and characterization of Hsp90s in Solanum tuberosum. Mol Biol Rep 2020; 47:6679-6691. [PMID: 32780253 DOI: 10.1007/s11033-020-05722-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/02/2020] [Indexed: 01/12/2023]
Abstract
Heat shock protein 90 genes/proteins (Hsp90s) are related to the stress resistance found in various plant species. These proteins affect the growth and development of plants and have important effects on the plants under various stresses (cold, drought and salt) in the environment. In this study, we identified 334 Hsp90s from 43 plant species, and Hsp90s were found in all species. Phylogenetic tree and conserved domain database analysis of all Hsp90s showed three independent clades. The analysis of motifs, gene duplication events, and the expression data from PGSC website revealed the gene structures, evolution relationships, and expression patterns of the Hsp90s. In addition, analysis of the transcript levels of the 7 Hsp90s in potato (Solanum tuberosum) under low temperature and high temperature stresses showed that these genes were related to the temperature stresses. Especially StHsp90.2 and StHsp90.4, under high or low temperature conditions, the expression levels in leaves, stems, or roots were significantly up-regulated. Our findings revealed the evolution of the Hsp90s, which had guiding significance for further researching the precise functions of the Hsp90s.
Collapse
Affiliation(s)
- Wan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Minghui Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
82
|
Didelon M, Khafif M, Godiard L, Barbacci A, Raffaele S. Patterns of Sequence and Expression Diversification Associate Members of the PADRE Gene Family With Response to Fungal Pathogens. Front Genet 2020; 11:491. [PMID: 32547597 PMCID: PMC7272662 DOI: 10.3389/fgene.2020.00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022] Open
Abstract
Pathogen infection triggers extensive reprogramming of the plant transcriptome, including numerous genes the function of which is unknown. Due to their wide taxonomic distribution, genes encoding proteins with Domains of Unknown Function (DUFs) activated upon pathogen challenge likely play important roles in disease. In Arabidopsis thaliana, we identified thirteen genes harboring a DUF4228 domain in the top 10% most induced genes after infection by the fungal pathogen Sclerotinia sclerotiorum. Based on functional information collected through homology and contextual searches, we propose to refer to this domain as the pathogen and abiotic stress response, cadmium tolerance, disordered region-containing (PADRE) domain. Genome-wide and phylogenetic analyses indicated that PADRE is specific to plants and diversified into 10 subfamilies early in the evolution of Angiosperms. PADRE typically occurs in small single-domain proteins with a bipartite architecture. PADRE N-terminus harbors conserved sequence motifs, while its C-terminus includes an intrinsically disordered region with multiple phosphorylation sites. A pangenomic survey of PADRE genes expression upon S. sclerotiorum inoculation in Arabidopsis, castor bean, and tomato indicated consistent expression across species within phylogenetic groups. Multi-stress expression profiling and co-expression network analyses associated AtPADRE genes with the induction of anthocyanin biosynthesis and responses to chitin and to hypoxia. Our analyses reveal patterns of sequence and expression diversification consistent with the evolution of a role in disease resistance for an uncharacterized family of plant genes. These findings highlight PADRE genes as prime candidates for the functional dissection of mechanisms underlying plant disease resistance to fungi.
Collapse
Affiliation(s)
| | | | | | | | - Sylvain Raffaele
- Université de Toulouse, Laboratoire des Interactions Plantes Micro-organismes (LIPM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) – Centre National de la Recherche Scientifique (CNRS), Castanet-Tolosan, France
| |
Collapse
|
83
|
Kijak H, Ratajczak E. What Do We Know About the Genetic Basis of Seed Desiccation Tolerance and Longevity? Int J Mol Sci 2020; 21:E3612. [PMID: 32443842 PMCID: PMC7279459 DOI: 10.3390/ijms21103612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/02/2023] Open
Abstract
Long-term seed storage is important for protecting both economic interests and biodiversity. The extraordinary properties of seeds allow us to store them in the right conditions for years. However, not all types of seeds are resilient, and some do not tolerate extreme desiccation or low temperature. Seeds can be divided into three categories: (1) orthodox seeds, which tolerate water losses of up to 7% of their water content and can be stored at low temperature; (2) recalcitrant seeds, which require a humidity of 27%; and (3) intermediate seeds, which lose their viability relatively quickly compared to orthodox seeds. In this article, we discuss the genetic bases for desiccation tolerance and longevity in seeds and the differences in gene expression profiles between the mentioned types of seeds.
Collapse
Affiliation(s)
- Hanna Kijak
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland;
| | | |
Collapse
|
84
|
Rong S, Wu Z, Cheng Z, Zhang S, Liu H, Huang Q. Genome-Wide Identification, Evolutionary Patterns, and Expression Analysis of bZIP Gene Family in Olive ( Olea europaea L.). Genes (Basel) 2020; 11:genes11050510. [PMID: 32380769 PMCID: PMC7288668 DOI: 10.3390/genes11050510] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Olive (Olea europaea.L) is an economically important oleaginous crop and its fruit cold-pressed oil is used for edible oil all over the world. The basic region-leucine zipper (bZIP) family is one of the largest transcription factors families among eukaryotic organisms; its members play vital roles in environmental signaling, stress response, plant growth, seed maturation, and fruit development. However, a comprehensive report on the bZIP gene family in olive is lacking. In this study, 103 OebZIP genes from the olive genome were identified and divided into 12 subfamilies according to their genetic relationship with 78 bZIPs of A. thaliana. Most OebZIP genes are clustered in the subgroup that has a similar gene structure and conserved motif distribution. According to the characteristics of the leucine zipper region, the dimerization characteristics of 103 OebZIP proteins were predicted. Gene duplication analyses revealed that 22 OebZIP genes were involved in the expansion of the bZIP family. To evaluate the expression patterns of OebZIP genes, RNA-seq data available in public databases were analyzed. The highly expressed OebZIP genes and several lipid synthesis genes (LPGs) in fruits of two varieties with different oil contents during the fast oil accumulation stage were examined via qRT-PCR. By comparing the dynamic changes of oil accumulation, OebZIP1, OebZIP7, OebZIP22, and OebZIP99 were shown to have a close relationship with fruit development and lipid synthesis. Additionally, some OebZIP had a significant positive correlation with various LPG genes. This study gives insights into the structural features, evolutionary patterns, and expression analysis, laying a foundation to further reveal the function of the 103 OebZIP genes in olive.
Collapse
|
85
|
Liu Z, Ge XX, Wu XM, Xu Q, Atkinson RG, Guo WW. Genome-wide analysis of the citrus B3 superfamily and their association with somatic embryogenesis. BMC Genomics 2020; 21:305. [PMID: 32299363 PMCID: PMC7161213 DOI: 10.1186/s12864-020-6715-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/03/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND In citrus, genetic improvement via biotechnology is hindered by the obstacle of in vitro regeneration via somatic embryogenesis (SE). Although a few B3 transcription factors are reported to regulate embryogenesis, little is known about the B3 superfamily in citrus, and which members might be involved in SE. RESULTS Genome-wide sequence analysis identified 72 (CsB3) and 69 (CgB3) putative B3 superfamily members in the genomes of sweet orange (Citrus sinensis, polyembryonic) and pummelo (C. grandis, monoembryonic), respectively. Genome duplication analysis indicated that segmental and tandem duplication events contributed to the expansion of the B3 superfamily in citrus, and that the B3 superfamily evolved under the effect of purifying selection. Phylogenetic relationships were well supported by conserved gene structure and motifs outside the B3 domain, which allowed possible functions to be inferred by comparison with homologous genes from Arabidopsis. Expression analysis identified 23 B3 superfamily members that were expressed during SE in citrus and 17 that may play functional roles at late SE stages. Eight B3 genes were identified that were specific to the genome of polyembryonic sweet orange compared to monoembryonic pummelo. Of these eight B3 genes, CsARF19 was found to be specifically expressed at higher levels in embryogenic callus (EC), implying its possible involvement in EC initiation. CONCLUSIONS This study provides a genome-wide analysis of the citrus B3 superfamily, including its genome organization, evolutionary features and expression profiles, and identifies specific family members that may be associated with SE.
Collapse
Affiliation(s)
- Zheng Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiao-Xia Ge
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415 China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Ross G. Atkinson
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
86
|
Tolosa LN, Zhang Z. The Role of Major Transcription Factors in Solanaceous Food Crops under Different Stress Conditions: Current and Future Perspectives. PLANTS 2020; 9:plants9010056. [PMID: 31906447 PMCID: PMC7020414 DOI: 10.3390/plants9010056] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 01/08/2023]
Abstract
Plant growth, development, and productivity are adversely affected by environmental stresses such as drought (osmotic stress), soil salinity, cold, oxidative stress, irradiation, and diverse diseases. These impacts are of increasing concern in light of climate change. Noticeably, plants have developed their adaptive mechanism to respond to environmental stresses by transcriptional activation of stress-responsive genes. Among the known transcription factors, DoF, WRKY, MYB, NAC, bZIP, ERF, ARF and HSF are those widely associated with abiotic and biotic stress response in plants. Genome-wide identification and characterization analyses of these transcription factors have been almost completed in major solanaceous food crops, emphasizing these transcription factor families which have much potential for the improvement of yield, stress tolerance, reducing marginal land and increase the water use efficiency of solanaceous crops in arid and semi-arid areas where plant demand more water. Most importantly, transcription factors are proteins that play a key role in improving crop yield under water-deficient areas and a place where the severity of pathogen is very high to withstand the ongoing climate change. Therefore, this review highlights the role of major transcription factors in solanaceous crops, current and future perspectives in improving the crop traits towards abiotic and biotic stress tolerance and beyond. We have tried to accentuate the importance of using genome editing molecular technologies like CRISPR/Cas9, Virus-induced gene silencing and some other methods to improve the plant potential in giving yield under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Lemessa Negasa Tolosa
- Key Laboratory of Agricultural Water Resources, Hebie Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Shijiazhuang 050021, China;
- University of Chinese Academy Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences CAS, Beijing 100101, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebie Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Shijiazhuang 050021, China;
- University of Chinese Academy Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences CAS, Beijing 100101, China
- Correspondence:
| |
Collapse
|
87
|
Yang H, Yang Z, Mao Z, Li Y, Hu D, Li X, Shi G, Huang F, Liu B, Kong F, Yu D. Genome-Wide DNA Methylation Analysis of Soybean Curled-Cotyledons Mutant and Functional Evaluation of a Homeodomain-Leucine Zipper (HD-Zip) I Gene GmHDZ20. FRONTIERS IN PLANT SCIENCE 2020; 11:593999. [PMID: 33505408 PMCID: PMC7830220 DOI: 10.3389/fpls.2020.593999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 05/17/2023]
Abstract
DNA methylation is a major, conserved epigenetic modification that influences many biological processes. Cotyledons are specialized tissues that provide nutrition for seedlings at the early developmental stage. To investigate the patterns of genomic DNA methylation of germinated cotyledons in soybean (Glycine max) and its effect on cotyledon development, we performed a genome-wide comparative analysis of DNA methylation between the soybean curled-cotyledons (cco) mutant, which has abnormal cotyledons, and its corresponding wild type (WT) by whole-genome bisulfite sequencing. The cco mutant was methylated at more sites but at a slightly lower level overall than the WT on the whole-genome level. A total of 46 CG-, 92 CHG-, and 9723 CHH- (H = A, C, or T) differentially methylated genes (DMGs) were identified in cotyledons. Notably, hypomethylated CHH-DMGs were enriched in the gene ontology term "sequence-specific DNA binding transcription factor activity." We selected a DMG encoding a homeodomain-leucine zipper (HD-Zip) I subgroup transcription factor (GmHDZ20) for further functional characterization. GmHDZ20 localized to the nucleus and was highly expressed in leaf and cotyledon tissues. Constitutive expression of GmHDZ20 in Arabidopsis thaliana led to serrated rosette leaves, shorter siliques, and reduced seed number per silique. A yeast two-hybrid assay revealed that GmHDZ20 physically interacted with three proteins associated with multiple aspects of plant growth. Collectively, our results provide a comprehensive study of soybean DNA methylation in normal and aberrant cotyledons, which will be useful for the identification of specific DMGs that participate in cotyledon development, and also provide a foundation for future in-depth functional study of GmHDZ20 in soybean.
Collapse
Affiliation(s)
- Hui Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Hui Yang,
| | - Zhongyi Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Zhuozhuo Mao
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yali Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Dezhou Hu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiao Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Guixia Shi
- Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- Deyue Yu,
| |
Collapse
|
88
|
Solomon CU, Drea S. Besides and Beyond Flowering: Other roles of EuAP2 Genes in Plant Development. Genes (Basel) 2019; 10:genes10120994. [PMID: 31805740 PMCID: PMC6947164 DOI: 10.3390/genes10120994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
EuAP2 genes are well-known for their role in flower development, a legacy of the founding member of this subfamily of transcription factors, whose mutants lacked petals in Arabidopsis. However, studies of euAP2 genes in several species have accumulated evidence highlighting the diverse roles of euAP2 genes in other aspects of plant development. Here, we emphasize other developmental roles of euAP2 genes in various species and suggest a shift from regarding euAP2 genes as just flowering genes to consider the global role they may be playing in plant development. We hypothesize that their almost universal expression profile and pleiotropic effects of their mutation suggest their involvement in fundamental plant development processes.
Collapse
Affiliation(s)
- Charles U. Solomon
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Department of Plant Science and Biotechnology, Abia State University, PMB 2000, Uturu 441107, Nigeria
- Correspondence:
| | - Sinéad Drea
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
89
|
Identification of miRNAs Involved in Bacillus velezensis FZB42-Activated Induced Systemic Resistance in Maize. Int J Mol Sci 2019; 20:ijms20205057. [PMID: 31614702 PMCID: PMC6829523 DOI: 10.3390/ijms20205057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022] Open
Abstract
Bacillus velezensis FZB42 is able to activate induced systemic resistance (ISR) to enhance plant defense response against pathogen infections. Though the roles of microRNAs (miRNAs) in Bacillus-triggered ISR have been reported in Arabidopsis, the maize miRNAs responsible for the Bacillus-activated ISR process have not been discovered. To explore the maize miRNAs involved in ISR, maize miRNAs in response to FZB42 (ISR activating), FZB42△sfp△alss (deficient in triggering ISR), and a control for 12 h were sequenced. A total of 146 known miRNAs belonging to 30 miRNA families and 217 novel miRNAs were identified. Four miRNAs specifically repressed in FZB42-treatment were selected as candidate ISR-associated miRNAs. All of them contained at least one defense response-related cis-element, suggesting their potential roles in activating the ISR process. Interestingly, three of the four candidate ISR-associated miRNAs belong to the conserved miR169 family, which has previously been confirmed to play roles in abiotic stress response. Moreover, 52 mRNAs were predicted as potential targets of these candidate ISR-associated miRNAs through TargetFinder software and degradome sequencing. Gene Ontology (GO) and network analyses of target genes showed that these differentially expressed miRNA might participate in the ISR process by regulating nuclear factor Y transcription factor. This study is helpful in better understanding the regulatory roles of maize miRNAs in the Bacillus-activated ISR process.
Collapse
|
90
|
Li MY, Liu JX, Hao JN, Feng K, Duan AQ, Yang QQ, Xu ZS, Xiong AS. Genomic identification of AP2/ERF transcription factors and functional characterization of two cold resistance-related AP2/ERF genes in celery (Apium graveolens L.). PLANTA 2019; 250:1265-1280. [PMID: 31236696 DOI: 10.1007/s00425-019-03222-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/20/2019] [Indexed: 05/09/2023]
Abstract
This study analyzed the AP2/ERF transcription factors in celery and showed that two dehydration-responsive-element-binding (DREB) transcription factors, AgDREB1 and AgDREB2, contribute to the enhanced resistance to abiotic stress in transgenic Arabidopsis. The AP2/ERF family is a large family of transcription factors (TFs) in higher plants that plays a central role in plant growth, development, and response to environmental stress. Here, 209 AP2/ERF family members were identified in celery based on genomic and transcriptomic data. The TFs were classified into four subfamilies (i.e., DREB, ERF, RAV, and AP2) and Soloist. Evolution analysis indicated that the AP2/ERF TFs are ancient molecules and have expanded in the long-term evolution process of plants and whole-genome duplication events. AgAP2/ERF proteins may be associated with multiple biological processes as predicted by the interaction network. The expression profiles and sequence alignment analysis of the TFs in the DREB-A1 group showed that eight genes could be divided into four branches. Two genes, AgDREB1 and AgDREB2, from the DREB-A1 group were selected for further analysis. Subcellular localization assay suggested that the two proteins are nuclear proteins. Yeast one hybrid assay demonstrated that the two proteins could bind to the dehydration-responsive element (DRE). The overexpression of AgDREB1 and AgDREB2 in Arabidopsis induced the increased tolerance to cold treatment and the up-regulation of the COR genes expression. AgDREB1 and AgDREB2 might function as transcriptional activators in regulating the downstream genes by binding to corresponding DRE to enhance stress tolerance in celery.
Collapse
Affiliation(s)
- Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jian-Nan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Qing-Qing Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
91
|
Evolution of the Auxin Response Factors from charophyte ancestors. PLoS Genet 2019; 15:e1008400. [PMID: 31553720 PMCID: PMC6797205 DOI: 10.1371/journal.pgen.1008400] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/17/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
Auxin is a major developmental regulator in plants and the acquisition of a transcriptional response to auxin likely contributed to developmental innovations at the time of water-to-land transition. Auxin Response Factors (ARFs) Transcription Factors (TFs) that mediate auxin-dependent transcriptional changes are divided into A, B and C evolutive classes in land plants. The origin and nature of the first ARF proteins in algae is still debated. Here, we identify the most ‘ancient’ ARF homologue to date in the early divergent charophyte algae Chlorokybus atmophyticus, CaARF. Structural modelling combined with biochemical studies showed that CaARF already shares many features with modern ARFs: it is capable of oligomerization, interacts with the TOPLESS co-repressor and specifically binds Auxin Response Elements as dimer. In addition, CaARF possesses a DNA-binding specificity that differs from class A and B ARFs and that was maintained in class C ARF along plants evolution. Phylogenetic evidence together with CaARF biochemical properties indicate that the different classes of ARFs likely arose from an ancestral proto-ARF protein with class C-like features. The foundation of auxin signalling would have thus happened from a pre-existing hormone-independent transcriptional regulation together with the emergence of a functional hormone perception complex. Plants transition from water to land was determining for the history of our planet, since it led to atmospheric and soil condition changes that promoted the appearance of other life forms. This transition initiated around 1 billion years ago from a Charophyte algae lineage that acquired features allowing it to adapt to the very different terrestrial conditions. Land plants coordinate their development with external stimuli through signalling mechanisms triggered by plant hormones. Therefore, evolution of these molecules and their signalling pathways likely played an important role in the aquatic to terrestrial move. In this manuscript we study the origin of auxin signalling, a plant hormone implicated in all plant developmental steps. Our studies suggest that out of the three families of proteins originally proposed to trigger auxin signalling in land plants, only one existed in Charophyte ancestors as a likely transcriptional repressor independent of auxin. We show that despite millions of years of evolution, this family of proteins has conserved its biochemical and structural properties that are found today in land plants. The results presented here provide an insight on how hormone signalling pathways could have evolved by co-opting a pre-existing hormone-independent transcriptional regulatory mechanism.
Collapse
|
92
|
Ahmad B, Zhang S, Yao J, Rahman MU, Hanif M, Zhu Y, Wang X. Genomic Organization of the B3-Domain Transcription Factor Family in Grapevine ( Vitis vinifera L.) and Expression during Seed Development in Seedless and Seeded Cultivars. Int J Mol Sci 2019; 20:ijms20184553. [PMID: 31540007 PMCID: PMC6770561 DOI: 10.3390/ijms20184553] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Members of the plant-specific B3-domain transcription factor family have important and varied functions, especially with respect to vegetative and reproductive growth. Although B3 genes have been studied in many other plants, there is limited information on the genomic organization and expression of B3 genes in grapevine (Vitis vinifera L.). In this study, we identified 50 B3 genes in the grapevine genome and analyzed these genes in terms of chromosomal location and syntenic relationships, intron–exon organization, and promoter cis-element content. We also analyzed the presumed proteins in terms of domain structure and phylogenetic relationships. Based on the results, we classified these genes into five subfamilies. The syntenic relationships suggest that approximately half of the genes resulted from genome duplication, contributing to the expansion of the B3 family in grapevine. The analysis of cis-element composition suggested that most of these genes may function in response to hormones, light, and stress. We also analyzed expression of members of the B3 family in various structures of grapevine plants, including the seed during seed development. Many B3 genes were expressed preferentially in one or more structures of the developed plant, suggesting specific roles in growth and development. Furthermore, several of the genes were expressed differentially in early developing seeds from representative seeded and seedless cultivars, suggesting a role in seed development or abortion. The results of this study provide a foundation for functional analysis of B3 genes and new resources for future molecular breeding of grapevine.
Collapse
Affiliation(s)
- Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Mati Ur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Muhammad Hanif
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Yanxun Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| |
Collapse
|
93
|
A comprehensive analysis of the B3 superfamily identifies tissue-specific and stress-responsive genes in chickpea ( Cicer arietinum L.). 3 Biotech 2019; 9:346. [PMID: 31497464 DOI: 10.1007/s13205-019-1875-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to provide a comprehensive analysis of the plant-specific B3 domain-containing transcription factors (TFs) in chickpea. Scanning of the chickpea genome resulted in the identification of 51 B3 domain-containing TFs that were located on seven out of eight chickpea chromosomes. Based on the presence of additional domains other than the B3 domain, the candidates were classified into four subfamilies, i.e., ARF (24), REM (19), LAV (6) and RAV (2). Phylogenetic analysis classified them into four groups in which members of the same group had similar intron-exon organization and motif composition. Genome duplication analysis of the candidate B3 genes revealed an event of segmental duplication that was instrumental in the expansion of the B3 gene family. Ka/Ks analysis showed that the B3 gene family was under purifying selection. Further, chickpea B3 genes showed maximum orthology with Medicago followed by soybean and Arabidopsis. Promoter analyses of the B3 genes led to the identification of several tissue-specific and stress-responsive cis-regulatory elements. Expression profiling of the candidate B3 genes using publicly available RNA-seq data of several chickpea tissues indicated their putative role in plant development and abiotic stress response. These findings were further validated by real-time expression analysis. Overall, this study provides a comprehensive analysis of the B3 domain-containing proteins in chickpea that would aid in devising strategies for crop manipulation in chickpea.
Collapse
|
94
|
Transcription Factor OpWRKY3 Is Involved in the Development and Biosynthesis of Camptothecin and Its Precursors in Ophiorrhiza pumila Hairy Roots. Int J Mol Sci 2019; 20:ijms20163996. [PMID: 31426351 PMCID: PMC6719216 DOI: 10.3390/ijms20163996] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/25/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
The plant Ophiorrhiza pumila produces camptothecin (CPT), a kind of terpene indole alkaloid (TIAs) that has been widely used in treatment of cancer. Tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors have been reported to play important roles in plant metabolism and development. In this study, a novel WRKY transcription factor named OpWRKY3 was isolated from O. pumila, with full-length open reading frame (ORF) of 1128 bp, encoding 375 amino acids. Phylogenetic tree analysis revealed that OpWRKY3 shared the highest homology with VvWRKY30, and it is a significant feature belonging to group III. OpWRKY3 was responsive to various treatments, including gibberellin (GA3), methyl jasmonate (MJ), acetylsalicylic acid (ASA), salicylic acid (SA), and abscisic acid (ABA). Besides, OpWRKY3 is expressed predominantly in stems. Subcellular localization analysis showed that OpWRKY3 localized in the nucleus. The biomass of OpWRKY3-SRDX transgenic hairy roots (S line) was visibly suppressed, while there were slight changes between overexpression of the OpWRKY3 line (OE line) and the control. In addition, the concentration and total production of camptothecin precursors including loganin and secologanin were significantly changed in both OE and S lines while total production of CPT was significantly changed in most transgenic lines. Thus, the present work revealed that OpWRKY3 may act as a regulator in the growth and development of O. pumila, and in production of camptothecin and its precursors.
Collapse
|
95
|
Kimotho RN, Baillo EH, Zhang Z. Transcription factors involved in abiotic stress responses in Maize ( Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ 2019; 7:e7211. [PMID: 31328030 PMCID: PMC6622165 DOI: 10.7717/peerj.7211] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maize (Zea mays L.) is a principal cereal crop cultivated worldwide for human food, animal feed, and more recently as a source of biofuel. However, as a direct consequence of water insufficiency and climate change, frequent occurrences of both biotic and abiotic stresses have been reported in various regions around the world, and recently, this has become a constant threat in increasing global maize yields. Plants respond to abiotic stresses by utilizing the activities of transcription factors (TFs), which are families of genes coding for specific TF proteins. TF target genes form a regulon that is involved in the repression/activation of genes associated with abiotic stress responses. Therefore, it is of utmost importance to have a systematic study on each TF family, the downstream target genes they regulate, and the specific TF genes involved in multiple abiotic stress responses in maize and other staple crops. METHOD In this review, the main TF families, the specific TF genes and their regulons that are involved in abiotic stress regulation will be briefly discussed. Great emphasis will be given on maize abiotic stress improvement throughout this review, although other examples from different plants like rice, Arabidopsis, wheat, and barley will be used. RESULTS We have described in detail the main TF families in maize that take part in abiotic stress responses together with their regulons. Furthermore, we have also briefly described the utilization of high-efficiency technologies in the study and characterization of TFs involved in the abiotic stress regulatory networks in plants with an emphasis on increasing maize production. Examples of these technologies include next-generation sequencing, microarray analysis, machine learning, and RNA-Seq. CONCLUSION In conclusion, it is expected that all the information provided in this review will in time contribute to the use of TF genes in the research, breeding, and development of new abiotic stress tolerant maize cultivars.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Elamin Hafiz Baillo
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
96
|
Yang QQ, Feng K, Xu ZS, Duan AQ, Liu JX, Xiong AS. Genome-wide identification of bZIP transcription factors and their responses to abiotic stress in celery. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1611386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Qing-Qing Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
97
|
Guo C, Saren Q, Hao J, Guan X, Niu Y, Hasi A. In silico and Expression Profile Analyses of the ERF Subfamily in Melon. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419050090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
98
|
ApiAP2 Transcription Factors in Apicomplexan Parasites. Pathogens 2019; 8:pathogens8020047. [PMID: 30959972 PMCID: PMC6631176 DOI: 10.3390/pathogens8020047] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
Apicomplexan parasites are protozoan organisms that are characterised by complex life cycles and they include medically important species, such as the malaria parasite Plasmodium and the causative agents of toxoplasmosis (Toxoplasma gondii) and cryptosporidiosis (Cryptosporidium spp.). Apicomplexan parasites can infect one or more hosts, in which they differentiate into several morphologically and metabolically distinct life cycle stages. These developmental transitions rely on changes in gene expression. In the last few years, the important roles of different members of the ApiAP2 transcription factor family in regulating life cycle transitions and other aspects of parasite biology have become apparent. Here, we review recent progress in our understanding of the different members of the ApiAP2 transcription factor family in apicomplexan parasites.
Collapse
|
99
|
Nanda S, Hussain S. Genome-wide identification of the SPL gene family in Dichanthelium oligosanthes. Bioinformation 2019; 15:165-171. [PMID: 31354191 PMCID: PMC6637398 DOI: 10.6026/97320630015165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/12/2019] [Accepted: 01/12/2019] [Indexed: 11/23/2022] Open
Abstract
SQUAMOSA promoter-binding protein-like (SPL) transcription factors play vital roles in various plant physiological processes. Although, the identification of the SPL gene family has been done in C4 grass plants, including rice and maize, the same has not been characterized in the C3 grass species Dichanthelium oligosanthes. In this study, 14 SPL genes were identified in the genome of D. oligosanthes. Gene structure analysis of the identified DoSPLs revealed the similarity and redundancy in their exon/intron organizations. Sequence comparisons within the DoSPLs and along with rice SPLs revealed the putative paralogs and orthologs in D. oligosanthes SPL genes. Phylogenetic analysis clustered the DoSPLs into eight groups along with other plant SPLs. Identification of the conserved SBP motifs in all 14 DoSPLs suggested them to be putative SPLs. In addition, the prediction of sub-cellular localization and associated functions for DoSPLs further supported to be SPL genes. The outcome of this study can serve as a framework for the isolation and functional validation of SPL genes in D. oligosanthes.
Collapse
Affiliation(s)
- Satyabrata Nanda
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 311440, China
| | - Sajid Hussain
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 311440, China
| |
Collapse
|
100
|
Xia F, Sun T, Yang S, Wang X, Chao J, Li X, Hu J, Cui M, Liu G, Wang D, Sun Y. Insight into the B3Transcription Factor Superfamily and Expression Profiling of B3 Genes in Axillary Buds after Topping in Tobacco( Nicotiana tabacum L.). Genes (Basel) 2019; 10:E164. [PMID: 30791672 PMCID: PMC6409620 DOI: 10.3390/genes10020164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the plant-specific B3 transcription factor superfamily play important roles in various growth and developmental processes in plants. Even though there are many valuable studies on B3 genes in other species, little is known about the B3 superfamily in tobacco. We identified 114 B3 proteins from tobacco using comparative genome analysis. These proteins were classified into four subfamilies based on their phylogenetic relationships, and include the ARF, RAV, LAV, and REM subfamilies. The chromosomal locations, gene structures, conserved protein motifs, and sub-cellular localizations of the tobacco B3 proteins were analyzed. The patterns of exon-intron numbers and arrangement and the protein structures of the tobacco B3 proteins were in general agreement with their phylogenetic relationships. The expression patterns of 114 B3 genes revealed that many B3 genes show tissue-specific expression. The expression levels of B3 genes in axillary buds after topping showed that the REM genes are mainly up-regulated in response to topping, while the ARF genes are down-regulated after topping.
Collapse
Affiliation(s)
- Fei Xia
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Tingting Sun
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xiao Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Junhua Hu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Mengmeng Cui
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Dawei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| |
Collapse
|