51
|
Rasheed S, Bashir K, Matsui A, Tanaka M, Seki M. Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:180. [PMID: 26941754 PMCID: PMC4763085 DOI: 10.3389/fpls.2016.00180] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/02/2016] [Indexed: 05/04/2023]
Abstract
Drought stress has a negative impact on crop yield. Thus, understanding the molecular mechanisms responsible for plant drought stress tolerance is essential for improving this beneficial trait in crops. In the current study, a transcriptional analysis was conducted of gene regulatory networks in roots of soil-grown Arabidopsis plants in response to a drought stress treatment. A microarray analysis of drought-stressed roots and shoots was performed at 0, 1, 3, 5, 7, and 9 days. Results indicated that the expression of many drought stress-responsive genes and abscisic acid biosynthesis-related genes was differentially regulated in roots and shoots from days 3 to 9. The expression of cellular and metabolic process-related genes was up-regulated at an earlier time-point in roots than in shoots. In this regard, the expression of genes involved in oxidative signaling, chromatin structure, and cell wall modification also increased significantly in roots compared to shoots. Moreover, the increased expression of genes involved in the transport of amino acids and other solutes; including malate, iron, and sulfur, was observed in roots during the early time points following the initiation of the drought stress. These data suggest that plants may utilize these signaling channels and metabolic adjustments as adaptive responses in the early stages of a drought stress. Collectively, the results of the present study increases our understanding of the differences pertaining to the molecular mechanisms occurring in roots vs. shoots in response to a drought stress. Furthermore, these findings also aid in the selection of novel genes and promoters that can be used to potentially produce crop plants with increased drought tolerance.
Collapse
Affiliation(s)
- Sultana Rasheed
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource SciencesYokohama, Japan
- Kihara Institute for Biological Research, Yokohama City UniversityYokohama, Japan
| | - Khurram Bashir
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource SciencesYokohama, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource SciencesYokohama, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource SciencesYokohama, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource SciencesYokohama, Japan
- Kihara Institute for Biological Research, Yokohama City UniversityYokohama, Japan
- CREST, Japan Science and Technology AgencySaitama, Japan
- *Correspondence: Motoaki Seki
| |
Collapse
|
52
|
López-Millán AF, Duy D, Philippar K. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology. FRONTIERS IN PLANT SCIENCE 2016; 7:178. [PMID: 27014281 PMCID: PMC4780311 DOI: 10.3389/fpls.2016.00178] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/02/2016] [Indexed: 05/08/2023]
Abstract
Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.
Collapse
Affiliation(s)
- Ana F. López-Millán
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service, HoustonTX, USA
| | - Daniela Duy
- Plastid Fatty Acid and Iron Transport – Plant Biochemistry and Physiology, Department Biology I, Ludwig-Maximilians-University of MunichMunich, Germany
| | - Katrin Philippar
- Plastid Fatty Acid and Iron Transport – Plant Biochemistry and Physiology, Department Biology I, Ludwig-Maximilians-University of MunichMunich, Germany
- *Correspondence: Katrin Philippar,
| |
Collapse
|
53
|
Zamioudis C, Korteland J, Van Pelt JA, van Hamersveld M, Dombrowski N, Bai Y, Hanson J, Van Verk MC, Ling HQ, Schulze-Lefert P, Pieterse CMJ. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:309-22. [PMID: 26307542 PMCID: PMC5019235 DOI: 10.1111/tpj.12995] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/07/2015] [Accepted: 08/14/2015] [Indexed: 05/19/2023]
Abstract
In Arabidopsis roots, the transcription factor MYB72 plays a dual role in the onset of rhizobacteria-induced systemic resistance (ISR) and plant survival under conditions of limited iron availability. Previously, it was shown that MYB72 coordinates the expression of a gene module that promotes synthesis and excretion of iron-mobilizing phenolic compounds in the rhizosphere, a process that is involved in both iron acquisition and ISR signaling. Here, we show that volatile organic compounds (VOCs) from ISR-inducing Pseudomonas bacteria are important elicitors of MYB72. In response to VOC treatment, MYB72 is co-expressed with the iron uptake-related genes FERRIC REDUCTION OXIDASE 2 (FRO2) and IRON-REGULATED TRANSPORTER 1 (IRT1) in a manner that is dependent on FER-LIKE IRON DEFICIENCY TRANSCRIPTION FACTOR (FIT), indicating that MYB72 is an intrinsic part of the plant's iron-acquisition response that is typically activated upon iron starvation. However, VOC-induced MYB72 expression is activated independently of iron availability in the root vicinity. Moreover, rhizobacterial VOC-mediated induction of MYB72 requires photosynthesis-related signals, while iron deficiency in the rhizosphere activates MYB72 in the absence of shoot-derived signals. Together, these results show that the ISR- and iron acquisition-related transcription factor MYB72 in Arabidopsis roots is activated by rhizobacterial volatiles and photosynthesis-related signals, and enhances the iron-acquisition capacity of roots independently of the iron availability in the rhizosphere. This work highlights the role of MYB72 in plant processes by which root microbiota simultaneously stimulate systemic immunity and activate the iron-uptake machinery in their host plants.
Collapse
Affiliation(s)
- Christos Zamioudis
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Jolanda Korteland
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Johan A Van Pelt
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Muriël van Hamersveld
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Nina Dombrowski
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Yang Bai
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Johannes Hanson
- Molecular Plant Physiology, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden
| | - Marcel C Van Verk
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
- Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
54
|
Valentinuzzi F, Pii Y, Vigani G, Lehmann M, Cesco S, Mimmo T. Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria×ananassa. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6483-95. [PMID: 26188206 DOI: 10.1093/jxb/erv364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Strawberries are a very popular fruit among berries, for both their commercial and economic importance, but especially for their beneficial effects for human health. However, their bioactive compound content is strictly related to the nutritional status of the plant and might be affected if nutritional disorders (e.g. Fe or P shortage) occur. To overcome nutrient shortages, plants evolved different mechanisms, which often involve the release of root exudates. The biochemical and molecular mechanisms underlying root exudation and its regulation are as yet still poorly known, in particular in woody crop species. The aim of this work was therefore to characterize the pattern of root exudation of strawberry plants grown in either P or Fe deficiency, by investigating metabolomic changes of root tissues and the expression of genes putatively involved in exudate extrusion. Although P and Fe deficiencies differentially affected the total metabolism, some metabolites (e.g. raffinose and galactose) accumulated in roots similarly under both conditions. Moreover, P deficiency specifically affected the content of galactaric acid, malic acid, lysine, proline, and sorbitol-6-phosphate, whereas Fe deficiency specifically affected the content of sucrose, dehydroascorbic acid, galactonate, and ferulic acid. At the same time, the citrate content did not change in roots under both nutrient deficiencies with respect to the control. However, a strong release of citrate was observed, and it increased significantly with time, being +250% and +300% higher in Fe- and P-deficient plants, respectively, compared with the control. Moreover, concomitantly, a significant acidification of the growth medium was observed in both treatments. Gene expression analyses highlighted for the first time that at least two members of the multidrug and toxic compound extrusion (MATE) transporter family and one member of the plasma membrane H(+)-ATPase family are involved in the response to both P and Fe starvation in strawberry plants.
Collapse
Affiliation(s)
- Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia; Università degli Studi di Milano; Via Giovanni Celoria 2, 20133 Milano, Italy
| | - Martin Lehmann
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, D-82152 Planegg-Martinsried, Germany
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| |
Collapse
|
55
|
Murgia I, Giacometti S, Balestrazzi A, Paparella S, Pagliano C, Morandini P. Analysis of the transgenerational iron deficiency stress memory in Arabidopsis thaliana plants. FRONTIERS IN PLANT SCIENCE 2015; 6:745. [PMID: 26442058 PMCID: PMC4585125 DOI: 10.3389/fpls.2015.00745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/31/2015] [Indexed: 05/23/2023]
Abstract
We investigated the existence of the transgenerational memory of iron (Fe) deficiency stress, in Arabidopsis thaliana. Plants were grown under Fe deficiency/sufficiency, and so were their offspring. The frequency of somatic homologous recombination (SHR) events, of DNA strand breaks as well as the expression of the transcription elongation factor TFIIS-like gene increase when plants are grown under Fe deficiency. However, SHR frequency, DNA strand break events, and TFIIS-like gene expression do not increase further when plants are grown for more than one generation under the same stress, and furthermore, they decrease back to control values within two succeeding generations grown under control conditions, regardless of the Fe deficiency stress history of the mother plants. Seedlings produced from plants grown under Fe deficiency evolve more oxygen than control seedlings, when grown under Fe sufficiency: however, this trait is not associated with any change in the protein profile of the photosynthetic apparatus and is not transmitted to more than one generation. Lastly, plants grown for multiple generations under Fe deficiency produce seeds with greater longevity: however, this trait is not inherited in offspring generations unexposed to stress. These findings suggest the existence of multiple-step control of mechanisms to prevent a genuine and stable transgenerational transmission of Fe deficiency stress memory, with the tightest control on DNA integrity.
Collapse
Affiliation(s)
- Irene Murgia
- Department of Biosciences, University of MilanoMilano, Italy
| | | | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of PaviaPavia, Italy
| | - Stefania Paparella
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of PaviaPavia, Italy
| | - Cristina Pagliano
- Applied Science and Technology Department – BioSolar Lab, Polytechnic University of TurinAlessandria, Italy
| | - Piero Morandini
- Department of Biosciences, University of MilanoMilano, Italy
| |
Collapse
|
56
|
Three-Dimensional Reconstruction, by TEM Tomography, of the Ultrastructural Modifications Occurring in Cucumis sativus L. Mitochondria under Fe Deficiency. PLoS One 2015; 10:e0129141. [PMID: 26107946 PMCID: PMC4479487 DOI: 10.1371/journal.pone.0129141] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/04/2015] [Indexed: 11/19/2022] Open
Abstract
Background Mitochondria, as recently suggested, might be involved in iron sensing and signalling pathways in plant cells. For a better understanding of the role of these organelles in mediating the Fe deficiency responses in plant cells, it is crucial to provide a full overview of their modifications occurring under Fe-limited conditions. The aim of this work is to characterize the ultrastructural as well as the biochemical changes occurring in leaf mitochondria of cucumber (Cucumis sativus L.) plants grown under Fe deficiency. Methodology/Results Mitochondrial ultrastructure was investigated by transmission electron microscopy (TEM) and electron tomography techniques, which allowed a three-dimensional (3D) reconstruction of cellular structures. These analyses reveal that mitochondria isolated from cucumber leaves appear in the cristae junction model conformation and that Fe deficiency strongly alters both the number and the volume of cristae. The ultrastructural changes observed in mitochondria isolated from Fe-deficient leaves reflect a metabolic status characterized by a respiratory chain operating at a lower rate (orthodox-like conformation) with respect to mitochondria from control leaves. Conclusions To our knowledge, this is the first report showing a 3D reconstruction of plant mitochondria. Furthermore, these results suggest that a detailed characterization of the link between changes in the ultrastructure and functionality of mitochondria during different nutritional conditions, can provide a successful approach to understand the role of these organelles in the plant response to Fe deficiency.
Collapse
|
57
|
Chorianopoulou SN, Saridis YI, Dimou M, Katinakis P, Bouranis DL. Arbuscular mycorrhizal symbiosis alters the expression patterns of three key iron homeostasis genes, ZmNAS1, ZmNAS3, and ZmYS1, in S deprived maize plants. FRONTIERS IN PLANT SCIENCE 2015; 6:257. [PMID: 25941530 PMCID: PMC4403604 DOI: 10.3389/fpls.2015.00257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/01/2015] [Indexed: 05/09/2023]
Abstract
Nicotianamine is an essential molecule for Fe homeostasis in plants, its primary precursor is the S-containing compound methionine, and it is biosynthesized by the enzyme family of nicotianamine synthases (NASs). In maize, a graminaceous plant that follows Strategy II for Fe uptake, ZmNAS genes can be subgrouped into two classes, according to their roles and tissue specific expression profiles. In roots, the genes of class I provide NA for the production of deoxymugineic acid (DMA), which is secreted to the rhizosphere and chelates Fe(III). The Fe(III)-DMA complex is then inserted to the root via a ZmYS1 transporter. The genes of class II provide NA for local translocation and detoxification of Fe in the leaves. Due to the connection between S and Fe homeostasis, S deficiency causes Fe deprivation responses to graminaceous plants and when S is supplied, these responses are inverted. In this study, maize plants were grown in pots with sterile river sand containing FePO4 and were inoculated with the mycorrhizal fungus Rhizophagus irregularis. The plants were grown under S deficient conditions until day 60 from sowing and on that day sulfate was provided to the plants. In order to assess the impact of AM symbiosis on Fe homeostasis, the expression patterns of ZmNAS1, ZmNAS3 (representatives of ZmNAS class I and class II), and ZmYS1 were monitored before and after S supply by means of real time RT-PCR and they were used as indicators of the plant Fe status. In addition, total shoot Fe concentration was determined before and after S supply. AM symbiosis prevented Fe deprivation responses in the S deprived maize plants and iron was possibly provided directly to the mycorrhizal plants through the fungal network. Furthermore, sulfate possibly regulated the expression of all three genes revealing its potential role as signal molecule for Fe homeostasis.
Collapse
Affiliation(s)
- Styliani N. Chorianopoulou
- Plant Physiology and Morphology Laboratory, Crop Science Department, Agricultural University of AthensAthens, Greece
| | - Yiorgos I. Saridis
- Plant Physiology and Morphology Laboratory, Crop Science Department, Agricultural University of AthensAthens, Greece
| | - Maria Dimou
- General and Agricultural Microbiology Laboratory, Crop Science Department, Agricultural University of AthensAthens, Greece
| | - Panagiotis Katinakis
- General and Agricultural Microbiology Laboratory, Crop Science Department, Agricultural University of AthensAthens, Greece
| | - Dimitris L. Bouranis
- Plant Physiology and Morphology Laboratory, Crop Science Department, Agricultural University of AthensAthens, Greece
| |
Collapse
|
58
|
Gayomba SR, Zhai Z, Jung HI, Vatamaniuk OK. Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. FRONTIERS IN PLANT SCIENCE 2015; 6:716. [PMID: 26442030 PMCID: PMC4568396 DOI: 10.3389/fpls.2015.00716] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/27/2015] [Indexed: 05/03/2023]
Abstract
Iron (Fe) is essential for plant growth and development. However, alkaline soils, which occupy approximately 30% of the world's arable lands, are considered Fe-limiting for plant growth because insoluble Fe (III) chelates prevail under these conditions. In contrast, high bioavailability of Fe in acidic soils can be toxic to plants due to the ability of Fe ions to promote oxidative stress. Therefore, plants have evolved sophisticated mechanisms to sense and respond to the fluctuation of Fe availability in the immediate environment and to the needs of developing shoot tissues to preclude deficiency while avoiding toxicity. In this review, we focus on recent advances in our understanding of local and systemic signaling of Fe status with emphasis on the contribution of Fe, its interaction with other metals and metal ligands in triggering molecular responses that regulate Fe uptake and partitioning in the plant body.
Collapse
Affiliation(s)
| | | | | | - Olena K. Vatamaniuk
- *Correspondence: Olena K. Vatamaniuk, Soil and Crop Sciences Section, School of Integrative Plant Sciences, Cornell University, 360 Tower Road, 608 Bradfield Hall, Ithaca, NY 14853, USA,
| |
Collapse
|
59
|
Briat JF, Rouached H, Tissot N, Gaymard F, Dubos C. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). FRONTIERS IN PLANT SCIENCE 2015; 6:290. [PMID: 25972885 PMCID: PMC4411997 DOI: 10.3389/fpls.2015.00290] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/09/2015] [Indexed: 05/18/2023]
Abstract
Phosphate and sulfate are essential macro-elements for plant growth and development, and deficiencies in these mineral elements alter many metabolic functions. Nutritional constraints are not restricted to macro-elements. Essential metals such as zinc and iron have their homeostasis strictly genetically controlled, and deficiency or excess of these micro-elements can generate major physiological disorders, also impacting plant growth and development. Phosphate and sulfate on one hand, and zinc and iron on the other hand, are known to interact. These interactions have been partly described at the molecular and physiological levels, and are reviewed here. Furthermore the two macro-elements phosphate and sulfate not only interact between themselves but also influence zinc and iron nutrition. These intricated nutritional cross-talks are presented. The responses of plants to phosphorus, sulfur, zinc, or iron deficiencies have been widely studied considering each element separately, and some molecular actors of these regulations have been characterized in detail. Although some scarce reports have started to examine the interaction of these mineral elements two by two, a more complex analysis of the interactions and cross-talks between the signaling pathways integrating the homeostasis of these various elements is still lacking. However, a MYB-like transcription factor, PHOSPHATE STARVATION RESPONSE 1, emerges as a common regulator of phosphate, sulfate, zinc, and iron homeostasis, and its role as a potential general integrator for the control of mineral nutrition is discussed.
Collapse
Affiliation(s)
- Jean-François Briat
- *Correspondence: Jean-François Briat, Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique – Université Montpellier 2, SupAgro, Bat 7, 2 Place Viala, 34060 Montpellier Cedex 1, France
| | | | | | | | | |
Collapse
|
60
|
Theil EC. IRE mRNA riboregulators use metabolic iron (Fe(2+)) to control mRNA activity and iron chemistry in animals. Metallomics 2014; 7:15-24. [PMID: 25209685 DOI: 10.1039/c4mt00136b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A family of noncoding RNAs bind Fe(2+) to increase protein synthesis. The structures occur in messenger RNAs encoding animal proteins for iron metabolism. Each mRNA regulatory sequence, ∼30 ribonucleotides long, is called an IRE (Iron Responsive Element), and folds into a bent, A-RNA helix with a terminal loop. Riboregulatory RNAs, like t-RNAs, r-RNAs micro-RNAs, etc. contrast with DNA, since single-stranded RNA can fold into a variety of complex, three-dimensional structures. IRE-RNAs bind two types of proteins: (1) IRPs which are protein repressors, sequence-related to mitochondrial aconitases. (2) eIF-4F, which bind ribosomes and enhances general protein biosynthesis. The competition between IRP and eIF-4F binding to IRE-RNA is controlled by Fe(2+)-induced changes in the IRE-RNA conformation. Mn(2+), which also binds to IRE-RNA in solution, is a convenient experimental proxy for air-sensitive Fe(2+) studies of in vitro protein biosynthesis and protein binding. However, only Fe(2+) has physiological effects on protein biosynthesis directed by IRE-mRNAs. The structures of the IRE-RNA riboregulators is known indirectly from effects of base substitutions on function, from solution NMR of the free RNA, and of X-ray crystallography of the IRE-RNA-IRP repressor complex. However, the inability to date, to crystallize the free IRE-RNA, and the dissociation of the IRE-RNA-IRP complex when metal binds, have hampered direct identification and characterization of the RNA-metal binding sites. The high conservation of the primary sequence in IRE-mRNA control elements has facilitated their identification and analysis of metal-assisted riboregulator function. Expansion of RNA search analyses beyond primary will likely reveal other, metal-dependent families of mRNA riboregulators.
Collapse
Affiliation(s)
- Elizabeth C Theil
- The Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| |
Collapse
|
61
|
Kobayashi T, Nishizawa NK. Iron sensors and signals in response to iron deficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:36-43. [PMID: 24908504 DOI: 10.1016/j.plantsci.2014.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 05/03/2023]
Abstract
The transcription of genes involved in iron acquisition in plants is induced under iron deficiency, but our understanding of iron sensors and signals remains limited. Iron Deficiency-responsive Element-binding Factor 1 (IDEF1) and Hemerythrin motif-containing Really Interesting New Gene- and Zinc-finger proteins (HRZs)/BRUTUS (BTS) have recently emerged as candidate iron sensors because of their functions as potent regulators of iron deficiency responses and their iron-binding properties. IDEF1 is a central transcriptional regulator of graminaceous genes involved in iron uptake and utilization, predominantly during the early stages of iron deficiency. HRZs/BTS are E3 ubiquitin ligases and negative regulators of iron deficiency responses in both graminaceous and non-graminaceous plants. Rice OsHRZ1 and OsHRZ2 are also potent regulators of iron accumulation. Characterizing these putative iron sensors also provides clues to understanding the nature of iron signals, which may involve ionized iron itself, other metals, oxygen, redox status, heme and iron-sulfur clusters, in addition to metabolites affected by iron deficiency. Systemic iron responses may also be regulated by phloem-mobile iron and its chelators such as nicotianamine. Iron sensors and signals will be identified by demonstration of signal transmission by IDEF1, HRZs/BTS, or unknown factors.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
| |
Collapse
|
62
|
Tissot N, Przybyla-Toscano J, Reyt G, Castel B, Duc C, Boucherez J, Gaymard F, Briat JF, Dubos C. Iron around the clock. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:112-9. [PMID: 24908512 DOI: 10.1016/j.plantsci.2014.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 05/26/2023]
Abstract
Carbon assimilation, a key determinant of plant biomass production, is under circadian regulation. Light and temperature are major inputs of the plant clock that control various daily rhythms. Such rhythms confer adaptive advantages to the organisms by adjusting their metabolism in anticipation of environmental fluctuations. The relationship between the circadian clock and nutrition extends far beyond the regulation of carbon assimilation as mineral nutrition, and specially iron homeostasis, is regulated through this mechanism. Conversely, iron status was identified as a new and important input regulating the central oscillator, raising the question of the nature of the Fe-dependent signal that modulates the period of the circadian clock. Several lines of evidence strongly suggest that fully developed and functional chloroplasts as well as early light signalling events, involving phytochromes, are essential to couple the clock to Fe responses. Nevertheless, the exact nature of the signal, which most probably involves unknown or not yet fully characterized elements of the chloroplast-to-nucleus retrograde signalling pathway, remains to be identified. Finally, this regulation may also involves epigenetic components.
Collapse
Affiliation(s)
- Nicolas Tissot
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (INRA, CNRS, Montpellier SupAgro, Université Montpellier 2), 34060 Montpellier Cedex 2, France
| | - Jonathan Przybyla-Toscano
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (INRA, CNRS, Montpellier SupAgro, Université Montpellier 2), 34060 Montpellier Cedex 2, France
| | - Guilhem Reyt
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (INRA, CNRS, Montpellier SupAgro, Université Montpellier 2), 34060 Montpellier Cedex 2, France
| | - Baptiste Castel
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (INRA, CNRS, Montpellier SupAgro, Université Montpellier 2), 34060 Montpellier Cedex 2, France
| | - Céline Duc
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (INRA, CNRS, Montpellier SupAgro, Université Montpellier 2), 34060 Montpellier Cedex 2, France
| | - Jossia Boucherez
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (INRA, CNRS, Montpellier SupAgro, Université Montpellier 2), 34060 Montpellier Cedex 2, France
| | - Frédéric Gaymard
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (INRA, CNRS, Montpellier SupAgro, Université Montpellier 2), 34060 Montpellier Cedex 2, France
| | - Jean-François Briat
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (INRA, CNRS, Montpellier SupAgro, Université Montpellier 2), 34060 Montpellier Cedex 2, France.
| | - Christian Dubos
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (INRA, CNRS, Montpellier SupAgro, Université Montpellier 2), 34060 Montpellier Cedex 2, France.
| |
Collapse
|
63
|
Jain A, Wilson GT, Connolly EL. The diverse roles of FRO family metalloreductases in iron and copper homeostasis. FRONTIERS IN PLANT SCIENCE 2014; 5:100. [PMID: 24711810 PMCID: PMC3968747 DOI: 10.3389/fpls.2014.00100] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/02/2014] [Indexed: 05/18/2023]
Abstract
Iron and copper are essential for plants and are important for the function of a number of protein complexes involved in photosynthesis and respiration. As the molecular mechanisms that control uptake, trafficking and storage of these nutrients emerge, the importance of metalloreductase-catalyzed reactions in iron and copper metabolism has become clear. This review focuses on the ferric reductase oxidase (FRO) family of metalloreductases in plants and highlights new insights into the roles of FRO family members in metal homeostasis. Arabidopsis FRO2 was first identified as the ferric chelate reductase that reduces ferric iron-chelates at the root surface-rhizosphere interface. The resulting ferrous iron is subsequently transported across the plasma membrane of root epidermal cells by the ferrous iron transporter, IRT1. Recent work has shown that two other members of the FRO family (FRO4 and FRO5) function redundantly to reduce copper to facilitate its uptake from the soil. In addition, FROs appear to play important roles in subcellular compartmentalization of iron as FRO7 is known to contribute to delivery of iron to chloroplasts while mitochondrial family members FRO3 and FRO8 are hypothesized to influence mitochondrial metal ion homeostasis. Finally, recent studies have underscored the importance of plasma membrane-localized ferric reductase activity in leaves for photosynthetic efficiency. Taken together, these studies highlight a number of diverse roles for FROs in both iron and copper metabolism in plants.
Collapse
Affiliation(s)
| | | | - Erin L. Connolly
- *Correspondence: Erin L. Connolly, Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA e-mail:
| |
Collapse
|
64
|
Bashir K, Nozoye T, Ishimaru Y, Nakanishi H, Nishizawa NK. Exploiting new tools for iron bio-fortification of rice. Biotechnol Adv 2013; 31:1624-33. [DOI: 10.1016/j.biotechadv.2013.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
|
65
|
Bashir K, Takahashi R, Akhtar S, Ishimaru Y, Nakanishi H, Nishizawa NK. The knockdown of OsVIT2 and MIT affects iron localization in rice seed. RICE (NEW YORK, N.Y.) 2013; 6:31. [PMID: 24280309 PMCID: PMC4883708 DOI: 10.1186/1939-8433-6-31] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/12/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND The mechanism of iron (Fe) uptake in plants has been extensively characterized, but little is known about how Fe transport to different subcellular compartments affects Fe localization in rice seed. Here, we discuss the characterization of a rice vacuolar Fe transporter 2 (OsVIT2) T-DNA insertion line (osvit2) and report that the knockdown of OsVIT2 and mitochondrial Fe transporter (MIT) expression affects seed Fe localization. FINDINGS osvit2 plants accumulated less Fe in their shoots when grown under normal or excess Fe conditions, while the accumulation of Fe was comparable to that in wild-type (WT) plants under Fe-deficient conditions. The accumulation of zinc, copper, and manganese also changed significantly in the shoots of osvit2 plants. The growth of osvit2 plants was also slow compared to that of WT plants. The concentration of Fe increased in osvit2 polished seeds. Previously, we reported that the expression of OsVIT2 was higher in MIT knockdown (mit-2) plants, and in this study, the accumulation of Fe in mit-2 seeds decreased significantly. CONCLUSIONS These results suggest that vacuolar Fe trafficking is important for plant Fe homeostasis and distribution, especially in plants grown in the presence of excess Fe. Moreover, changes in the expression of OsVIT2 and MIT affect the concentration and localization of metals in brown rice as well as in polished rice seeds.
Collapse
Affiliation(s)
- Khurram Bashir
- />Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
- />Plant Genomic Network Research Team, Center for Sustainable Resource Sciences, RIKEN Yokohama Campus, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Ryuichi Takahashi
- />Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Shamim Akhtar
- />Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Yasuhiro Ishimaru
- />Faculty of Science, Graduate School of Science, Tohoku University, 6-3 Aramakiaza-aoba, Aoba-ku, Sendai, Miyagi, 980-8578 Japan
| | - Hiromi Nakanishi
- />Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Naoko K Nishizawa
- />Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
- />Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa, 921-8836 Japan
| |
Collapse
|
66
|
Quinolinic acid: neurotoxin or oxidative stress modulator? Int J Mol Sci 2013; 14:21328-38. [PMID: 24232578 PMCID: PMC3856007 DOI: 10.3390/ijms141121328] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023] Open
Abstract
Quinolinic acid (2,3-pyridinedicarboxylic acid, QUIN) is a well-known neurotoxin. Consequently, QUIN could produce reactive oxygen species (ROS). ROS are generated in reactions catalyzed by transition metals, especially iron (Fe). QUIN can form coordination complexes with iron. A combination of differential pulse voltammetry, deoxyribose degradation and Fe(II) autoxidation assays was used for explorating ROS formation in redox reactions that are catalyzed by iron in QUIN-Fe complexes. Differential pulse voltammetry showed an anodic shift of the iron redox potential if iron was liganded by QUIN. In the H2O2/FeCl3/ascorbic acid variant of the deoxyribose degradation assay, the dose-response curve was U-shaped. In the FeCl3/ascorbic acid variant, QUIN unambiguously showed antioxidant effects. In the Fe(II) autoxidation assay, QUIN decreased the rate of ROS production caused by Fe(II) oxidation. Our study confirms that QUIN toxicity may be caused by ROS generation via the Fenton reaction. This, however, applies only for unnaturally high concentrations that were used in attempts to provide support for the neurotoxic effect. In lower concentrations, we show that by liganding iron, QUIN affects the Fe(II)/Fe(III) ratios that are beneficial to homeostasis. Our results support the notion that redox chemistry can contribute to explaining the hormetic dose-response effects.
Collapse
|
67
|
Jain A, Connolly EL. Mitochondrial iron transport and homeostasis in plants. FRONTIERS IN PLANT SCIENCE 2013; 4:348. [PMID: 24046773 PMCID: PMC3764374 DOI: 10.3389/fpls.2013.00348] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/18/2013] [Indexed: 05/20/2023]
Abstract
Iron (Fe) is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.
Collapse
Affiliation(s)
| | - Erin L. Connolly
- *Correspondence: Erin L. Connolly, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA e-mail:
| |
Collapse
|
68
|
Glaesener AG, Merchant SS, Blaby-Haas CE. Iron economy in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2013; 4:337. [PMID: 24032036 PMCID: PMC3759009 DOI: 10.3389/fpls.2013.00337] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/09/2013] [Indexed: 05/05/2023]
Abstract
While research on iron nutrition in plants has largely focused on iron-uptake pathways, photosynthetic microbes such as the unicellular green alga Chlamydomonas reinhardtii provide excellent experimental systems for understanding iron metabolism at the subcellular level. Several paradigms in iron homeostasis have been established in this alga, including photosystem remodeling in the chloroplast and preferential retention of some pathways and key iron-dependent proteins in response to suboptimal iron supply. This review presents our current understanding of iron homeostasis in Chlamydomonas, with specific attention on characterized responses to changes in iron supply, like iron-deficiency. An overview of frequently used methods for the investigation of iron-responsive gene expression, physiology and metabolism is also provided, including preparation of media, the effect of cell size, cell density and strain choice on quantitative measurements and methods for the determination of metal content and assessing the effect of iron supply on photosynthetic performance.
Collapse
Affiliation(s)
- Anne G. Glaesener
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of CaliforniaLos Angeles, CA, USA
| | - Crysten E. Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
- *Correspondence: Crysten E. Blaby-Haas, Department of Chemistry and Biochemistry, University of California, Box 951569, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA e-mail:
| |
Collapse
|
69
|
Vigani G, Tarantino D, Murgia I. Mitochondrial ferritin is a functional iron-storage protein in cucumber (Cucumis sativus) roots. FRONTIERS IN PLANT SCIENCE 2013; 4:316. [PMID: 23967005 PMCID: PMC3744851 DOI: 10.3389/fpls.2013.00316] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/28/2013] [Indexed: 05/23/2023]
Abstract
In plants, intracellular Fe trafficking must satisfy chloroplasts' and mitochondrial demands for Fe without allowing its accumulation in the organelles in dangerous redox-active forms. Protein ferritin is involved in such homeostatic control, however its functional role in mitochondria, differently from its role in chloroplasts, is still matter of debate. To test ferritin functionality as a 24-mer Fe-storage complex in mitochondria, cucumber seedlings were grown under different conditions of Fe supply (excess, control, deficiency) and mitochondria were purified from the roots. A ferritin monomer of around 25 KDa was detected by SDS-PAGE in Fe-excess root mitochondria, corresponding to the annotated Csa5M215130/XP_004163524 protein: such a monomer is barely detectable in the control mitochondria and not at all in the Fe-deficient ones. Correspondingly, the ferritin 24-mer complex is abundant in root mitochondria from Fe-excess plants and it stores Fe as Fe(III): such a complex is also detectable, though to a much smaller extent, in control mitochondria, but not in Fe-deficient ones. Cucumber ferritin Csa5M215130/XP_004163524 is therefore a functional Fe(III)-store in root mitochondria and its abundance is dependent on the Fe nutritional status of the plant.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia, Università degli Studi di MilanoMilano, Italy
| | - Delia Tarantino
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
| | - Irene Murgia
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
| |
Collapse
|
70
|
Forieri I, Wirtz M, Hell R. Toward new perspectives on the interaction of iron and sulfur metabolism in plants. FRONTIERS IN PLANT SCIENCE 2013; 4:357. [PMID: 24106494 PMCID: PMC3788360 DOI: 10.3389/fpls.2013.00357] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/23/2013] [Indexed: 05/18/2023]
Abstract
The deficiency of nutrients has been extensively investigated because of its impact on plant growth and yield. So far, the effects of a combined nutrient limitation have rarely been analyzed, although such situations are likely to occur in agroecosystems. Iron (Fe) is a prerequisite for many essential cellular functions. Its availability is easily becoming limiting for plant growth and thus higher plants have evolved different strategies to cope with Fe deficiency. Sulfur (S) is an essential macro-nutrient and the responses triggered by shortage situations have been well characterized. The interaction between these two nutrients is less investigated but might be of particular importance because most of the metabolically active Fe is bound to S in Fe-S clusters. The biosynthesis of Fe-S clusters requires the provision of reduced S and chelated Fe in a defined stoichiometric ratio, strongly suggesting coordination between the metabolisms of the two nutrients. Here the available information on interactions between Fe and S nutritional status is evaluated. Experiments with Arabidopsis thaliana and crop plants indicate a co-regulation and point to a possible role of Fe-S cluster synthesis or abundance in the Fe/S network.
Collapse
Affiliation(s)
- Ilaria Forieri
- Department of Molecular Biology of Plants, Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
- The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of HeidelbergHeidelberg, Germany
| | - Markus Wirtz
- Department of Molecular Biology of Plants, Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
| | - Rüdiger Hell
- Department of Molecular Biology of Plants, Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
- *Correspondence: Rüdiger Hell, Department of Molecular Biology of Plants, Centre for Organismal Studies Heidelberg, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany e-mail:
| |
Collapse
|
71
|
Vigani G, Zocchi G, Bashir K, Philippar K, Briat JF. Cellular iron homeostasis and metabolism in plant. FRONTIERS IN PLANT SCIENCE 2013; 4:490. [PMID: 24348493 PMCID: PMC3847546 DOI: 10.3389/fpls.2013.00490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/14/2013] [Indexed: 05/07/2023]
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio e Agroenergia, Università degli Studi di MilanoMilano, Italy
- *Correspondence: ; ; ; ;
| | - Graziano Zocchi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio e Agroenergia, Università degli Studi di MilanoMilano, Italy
- *Correspondence: ; ; ; ;
| | - Khurram Bashir
- Center for Sustainable Resource Sciences, RIKEN Yokohama campus, RIKENYokohama, Japan
- *Correspondence: ; ; ; ;
| | - Katrin Philippar
- Department Biology I-Plant Biochemistry and Physiology, Ludwig-Maximilians-University MunichMunich, Germany
- *Correspondence: ; ; ; ;
| | - Jean François Briat
- Biochimie and Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier 2Montpellier, France
- *Correspondence: ; ; ; ;
| |
Collapse
|