51
|
Zheng ZL. Ras and Rho GTPase regulation of Pol II transcription: A shortcut model revisited. Transcription 2017; 8:268-274. [PMID: 28548879 DOI: 10.1080/21541264.2017.1321612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Transcriptional control is critical in relaying signals mediated by Ras and Rho family small GTPases to effect gene expression. In the classical model, signaling components such as MAP kinase target sequence-specific transcription factors, which in turn recruit RNA polymerase (Pol) II holoenzyme to the promoter and activate transcription. Findings in recent years have led to the proposal of a shortcut model in which the Mediator components of the Pol II holoenzyme are regulated by signaling pathways. A very recent finding shows that an evolutionarily conserved Rho GTPase signaling pathway can directly modulate the Pol II C-terminal domain (CTD) phosphorylation by inhibiting the CTD phosphatase in yeast and Arabidopsis. This shortcut model allows direct targeting of the Pol II CTD code and thus has an advantage over the classical model in bringing about rapid, large-scale changes in gene expression.
Collapse
Affiliation(s)
- Zhi-Liang Zheng
- a Department of Biological Sciences, Lehman College , City University of New York , Bronx , NY , USA.,b Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, Citrus Research Institute , Southwest University , Beibei , Chongqing , China
| |
Collapse
|
52
|
Yang Q, Shohag MJI, Feng Y, He Z, Yang X. Transcriptome Comparison Reveals the Adaptive Evolution of Two Contrasting Ecotypes of Zn/Cd Hyperaccumulator Sedum alfredii Hance. FRONTIERS IN PLANT SCIENCE 2017; 8:425. [PMID: 28439276 PMCID: PMC5383727 DOI: 10.3389/fpls.2017.00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/13/2017] [Indexed: 05/29/2023]
Abstract
Hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii Hance belong to the same species but exhibit contrasting characteristics regarding hyperaccumulation and hypertolerance to cadmium and zinc. The Illumina Hiseq 2500 platform was employed to sequence HE and NHE to study the genetic evolution of this contrasting trait. Greater than 90 million clean reads were obtained and 118,479/228,051 unigenes of HE/NHE were annotated based on seven existing databases. We identified 149,668/319,830 single nucleotide polymorphisms (SNPs) and 12,691/14,428 simple sequence repeats (SSRs) of HE/NHE. We used a branch-site model to identify 18 divergent orthologous genes and 57 conserved orthologous genes of S. alfredii Hance. The divergent orthologous genes were mainly involved in the transcription and translation processes, protein metabolism process, calcium (Ca2+) pathway, stress response process and signal transduction process. To the best of our knowledge, this is the first study to use RNA-seq to compare the genetic evolution of hyperaccumulating and non-hyperaccumulating plants from the same species. In addition, this study made the sole concrete for further studies on molecular markers and divergent orthologous genes to depict the evolution process and formation of the hyperaccumulation and hypertolerance traits in S. alfredii Hance.
Collapse
Affiliation(s)
- Qianying Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang UniversityHangzhou, China
| | - M. J. I. Shohag
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang UniversityHangzhou, China
- Department of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganj, Bangladesh
| | - Ying Feng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang UniversityHangzhou, China
| | - Zhenli He
- Institute of Food and Agricultural Sciences, Indian River Research and Education Center, University of FloridaFort Pierce, FL, USA
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang UniversityHangzhou, China
| |
Collapse
|
53
|
Berr A, Zhang X, Shen WH. [Reciprocity between active transcription and histone methylation]. Biol Aujourdhui 2017; 210:269-282. [PMID: 28327284 DOI: 10.1051/jbio/2017004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 01/08/2023]
Abstract
In the nucleus of eukaryotic cells, the chromatin states dictated by the different combinations of histone post-translational modifications, such as the methylation of lysine residues, are an integral part of the multitude of epigenomes involved in the fine tuning of all genome functions, and in particular transcription. Over the last decade, an increasing number of factors have been identified as regulators involved in the establishment, reading or erasure of histone methylations. Their characterization in model organisms such as Arabidopsis has thus unraveled their fundamental roles in the control and regulation of essential developmental processes such as the floral transition, cell differentiation, gametogenesis, and/or the response/adaptation of plants to environmental stresses. In this review, we will focus on the methylation of histones functioning as a mark of activate transcription and we will try to highlight, based on recent findings, the more or less direct links between this mark and gene expression. Thus, we will discuss the different mechanisms allowing the dynamics and the integration of the chromatin states resulting from the different histone methylations in connection with the transcriptional machinery of the RNA polymerase II.
Collapse
|
54
|
C-terminal domain (CTD) phosphatase links Rho GTPase signaling to Pol II CTD phosphorylation in Arabidopsis and yeast. Proc Natl Acad Sci U S A 2016; 113:E8197-E8206. [PMID: 27911772 DOI: 10.1073/pnas.1605871113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rho GTPases, including the Rho, Cdc42, Rac, and ROP subfamilies, act as pivotal signaling switches in various growth and developmental processes. Compared with the well-defined role of cytoskeletal organization in Rho signaling, much less is known regarding transcriptional regulation. In a mutant screen for phenotypic enhancers of transgenic Arabidopsis plants expressing a constitutively active form of ROP2 (designated CA1-1), we identified RNA polymerase II (Pol II) C-terminal domain (CTD) phosphatase-like 1 (CPL1) as a transcriptional regulator of ROP2 signaling. We show that ROP2 activation inhibits CPL1 activity by promoting its degradation, leading to an increase in CTD Ser5 and Ser2 phosphorylation. We also observed similar modulation of CTD phosphorylation by yeast Cdc42 GTPase and enhanced degradation of the yeast CTD phosphatase Fcp1 by activated ROP2 signaling. Taken together, our results suggest that modulation of the Pol II CTD code by Rho GTPase signaling represents an evolutionarily conserved mechanism in both unicellular and multicellular eukaryotes.
Collapse
|
55
|
Liu C, Wang C, Wang G, Becker C, Zaidem M, Weigel D. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res 2016; 26:1057-68. [PMID: 27225844 PMCID: PMC4971768 DOI: 10.1101/gr.204032.116] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022]
Abstract
The three-dimensional packing of the genome plays an important role in regulating gene expression. We have used Hi-C, a genome-wide chromatin conformation capture (3C) method, to analyze Arabidopsis thaliana chromosomes dissected into subkilobase segments, which is required for gene-level resolution in this species with a gene-dense genome. We found that the repressive H3K27me3 histone mark is overrepresented in the promoter regions of genes that are in conformational linkage over long distances. In line with the globally dispersed distribution of RNA polymerase II in A. thaliana nuclear space, actively transcribed genes do not show a strong tendency to associate with each other. In general, there are often contacts between 5' and 3' ends of genes, forming local chromatin loops. Such self-loop structures of genes are more likely to occur in more highly expressed genes, although they can also be found in silent genes. Silent genes with local chromatin loops are highly enriched for the histone variant H3.3 at their 5' and 3' ends but depleted of repressive marks such as heterochromatic histone modifications and DNA methylation in flanking regions. Our results suggest that, different from animals, a major theme of genome folding in A. thaliana is the formation of structural units that correspond to gene bodies.
Collapse
Affiliation(s)
- Chang Liu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Congmao Wang
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Institute of Digital Agriculture, Zhejiang Academy of Agriculture Sciences, Hangzhou 310029, China
| | - George Wang
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
56
|
Burton ZF. The Old and New Testaments of gene regulation. Evolution of multi-subunit RNA polymerases and co-evolution of eukaryote complexity with the RNAP II CTD. Transcription 2015; 5:e28674. [PMID: 25764332 PMCID: PMC4215175 DOI: 10.4161/trns.28674] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
I relate a story of genesis told from the point of view of multi-subunit RNA polymerases (RNAPs) including an Old Testament (core RNAP motifs in all cellular life) and a New Testament (the RNAP II heptad repeat carboxy terminal domain (CTD) and CTD interactome in eukarya). The Old Testament: at their active site, one class of eukaryotic interfering RNAP and ubiquitous multi-subunit RNAPs each have two-double psi β barrel (DPBB) motifs (a distinct pattern for compact 6-β sheet barrels). Between β sheets 2 and 3 of the β subunit type DPBB of all multi-subunit RNAPs is a sandwich barrel hybrid motif (SBHM) that interacts with conserved initiation and elongation factors required to utilize a DNA template. Analysis of RNAP core protein motifs, therefore, indicates that RNAP evolution can be traced from the RNA-protein world to LUCA (the last universal common ancestor) branching to LECA (the last eukaryotic common ancestor) and to the present day, spanning about 4 billion years. The New Testament: in the eukaryotic lineage, I posit that splitting RNAP functions into RNAPs I, II and III and innovations developed around the CTD heptad repeat of RNAP II and the extensive CTD interactome helps to describe how greater structural, cell cycle, epigenetic and signaling complexity co-evolved in eukaryotes relative to eubacteria and archaea.
Collapse
Affiliation(s)
- Zachary F Burton
- a Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing, MI USA
| |
Collapse
|
57
|
Baroux C, Autran D. Chromatin dynamics during cellular differentiation in the female reproductive lineage of flowering plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:160-76. [PMID: 26031902 PMCID: PMC4502977 DOI: 10.1111/tpj.12890] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 05/05/2023]
Abstract
Sexual reproduction in flowering plants offers a number of remarkable aspects to developmental biologists. First, the spore mother cells - precursors of the plant reproductive lineage - are specified late in development, as opposed to precocious germline isolation during embryogenesis in most animals. Second, unlike in most animals where meiosis directly produces gametes, plant meiosis entails the differentiation of a multicellular, haploid gametophyte, within which gametic as well as non-gametic accessory cells are formed. These observations raise the question of the factors inducing and modus operandi of cell fate transitions that originate in floral tissues and gametophytes, respectively. Cell fate transitions in the reproductive lineage imply cellular reprogramming operating at the physiological, cytological and transcriptome level, but also at the chromatin level. A number of observations point to large-scale chromatin reorganization events associated with cellular differentiation of the female spore mother cells and of the female gametes. These include a reorganization of the heterochromatin compartment, the genome-wide alteration of the histone modification landscape, and the remodeling of nucleosome composition. The dynamic expression of DNA methyltransferases and actors of small RNA pathways also suggest additional, global epigenetic alterations that remain to be characterized. Are these events a cause or a consequence of cellular differentiation, and how do they contribute to cell fate transition? Does chromatin dynamics induce competence for immediate cellular functions (meiosis, fertilization), or does it also contribute long-term effects in cellular identity and developmental competence of the reproductive lineage? This review attempts to review these fascinating questions.
Collapse
Affiliation(s)
- Célia Baroux
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of ZürichZollikerstrasse 107, 8008, Zürich, Switzerland
- *For correspondence (e-mail )
| | - Daphné Autran
- Institut de Recherche pour le Développement (UMR DIADE 232), Centre National de la Recherche Scientifique (URL 5300), Université de Montpellier911 avenue Agropolis, 34000, Montpellier, France
| |
Collapse
|
58
|
Kleinmanns JA, Schubert D. Polycomb and Trithorax group protein-mediated control of stress responses in plants. Biol Chem 2015; 395:1291-300. [PMID: 25153238 DOI: 10.1515/hsz-2014-0197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/28/2014] [Indexed: 11/15/2022]
Abstract
A plant's experience of abiotic or biotic stress can lead to stress memory in order to react faster and more efficiently to subsequent stresses. Molecularly, the memory of a stress can rely on stable inheritance through mitotic and meiotic cell divisions, thus epigenetic inheritance. The key epigenetic regulators are DNA cytosine methyltransferases and the Polycomb group (PcG) and Trithorax group (TrxG) proteins, which control numerous developmental processes. PcG and TrxG proteins act antagonistically on stable gene repression through mediating trimethylation of histone H3 lysine 27 (H3K27me3) and H3K4me3, respectively, and target thousands of genes in plants, including many genes responsive to stress. The role of PcG/TrxG proteins in regulating stress responses and memory, however, is just emerging. While it is well investigated that stress can induce changes of histone modifications at genes regulated by stress, it is largely unclear whether these changes are mitotically and/or meiotically heritable, hence confer somatic and/or transgenerational stress memory. As the literature on the role of DNA methylation in regulating stress responses has recently been extensively summarized, we focus this review on the current knowledge on the role of PcG and TrxG in stress responses and memory.
Collapse
|
59
|
Schubert V, Weisshart K. Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1687-98. [PMID: 25740920 PMCID: PMC4357323 DOI: 10.1093/jxb/erv091] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
RNA polymerase II (RNAPII) is responsible for the transcription of most eukaryotic protein-coding genes. Analysing the topological distribution and quantification of RNAPII can contribute to understanding its function in interphase nuclei. Previously it was shown that RNAPII molecules in plant nuclei form reticulate structures within euchromatin of differentiated Arabidopsis thaliana nuclei rather than being organized in distinct 'transcription factories' as observed in mammalian nuclei. Immunosignal intensity measurements based on specific antibody labelling in maximum intensity projections of image stacks acquired by structured illumination microscopy (SIM) suggested a relative proportional increase of RNAPII in endopolyploid plant nuclei. Here, photoactivated localization microscopy (PALM) was applied to determine the absolute number and distribution of active and inactive RNAPII molecules in differentiated A. thaliana nuclei. The proportional increase of RNAPII during endopolyploidization is confirmed, but it is also shown that PALM measurements are more reliable than those based on SIM in terms of quantification. The single molecule localization results show that, although RNAPII molecules are globally dispersed within plant euchromatin, they also aggregate within smaller distances as described for mammalian transcription factories.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Stadt Seeland, Germany
| | | |
Collapse
|
60
|
Li F, Cheng C, Cui F, de Oliveira MVV, Yu X, Meng X, Intorne AC, Babilonia K, Li M, Li B, Chen S, Ma X, Xiao S, Zheng Y, Fei Z, Metz RP, Johnson CD, Koiwa H, Sun W, Li Z, de Souza Filho GA, Shan L, He P. Modulation of RNA polymerase II phosphorylation downstream of pathogen perception orchestrates plant immunity. Cell Host Microbe 2014; 16:748-58. [PMID: 25464831 DOI: 10.1016/j.chom.2014.10.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/22/2014] [Accepted: 10/24/2014] [Indexed: 01/03/2023]
Abstract
Perception of microbe-associated molecular patterns (MAMPs) elicits host transcriptional reprogramming as part of the immune response. Although pathogen perception is well studied, the signaling networks orchestrating immune gene expression remain less clear. In a genetic screen for components involved in the early immune gene transcription reprogramming, we identified Arabidopsis RNA polymerase II C-terminal domain (CTD) phosphatase-like 3 (CPL3) as a negative regulator of immune gene expression. MAMP perception induced rapid and transient cyclin-dependent kinase C (CDKC)-mediated phosphorylation of Arabidopsis CTD. The CDKCs, which are in turn phosphorylated and activated by a canonical MAP kinase (MAPK) cascade, represent a point of signaling convergence downstream of multiple immune receptors. CPL3 directly dephosphorylated CTD to counteract MAPK-mediated CDKC regulation. Thus, modulation of the phosphorylation dynamics of eukaryotic RNA polymerase II transcription machinery by MAPKs, CTD kinases, and phosphatases constitutes an essential mechanism for rapid orchestration of host immune gene expression and defense upon pathogen attacks.
Collapse
Affiliation(s)
- Fangjun Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Cheng Cheng
- Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Fuhao Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Marcos V V de Oliveira
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Center of Biosciences & Biotechnology, North Rio de Janeiro State University, 28013-602, Brazil
| | - Xiao Yu
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Xiangzong Meng
- Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Aline C Intorne
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Center of Biosciences & Biotechnology, North Rio de Janeiro State University, 28013-602, Brazil
| | - Kevin Babilonia
- Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Biology, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00680, USA
| | - Maoying Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Bo Li
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32610, USA
| | - Xianfeng Ma
- Institute for Bioscience & Biotechnology Research, University of Maryland, Rockville, MD 20850; Department of Plant Science & Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Shunyuan Xiao
- Institute for Bioscience & Biotechnology Research, University of Maryland, Rockville, MD 20850; Department of Plant Science & Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Richard P Metz
- Genomics and Bioinformatics Services, Texas A&M AgriLife Research, College Station, TX 77845, USA
| | - Charles D Johnson
- Genomics and Bioinformatics Services, Texas A&M AgriLife Research, College Station, TX 77845, USA
| | - Hisashi Koiwa
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Wenxian Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | | | - Libo Shan
- Department of Plant Pathology & Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| | - Ping He
- Department of Biochemistry & Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
61
|
Van Lijsebettens M, Grasser KD. Transcript elongation factors: shaping transcriptomes after transcript initiation. TRENDS IN PLANT SCIENCE 2014; 19:717-26. [PMID: 25131948 DOI: 10.1016/j.tplants.2014.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 05/06/2023]
Abstract
Elongation is a dynamic and highly regulated step of eukaryotic gene transcription. A variety of transcript elongation factors (TEFs), including modulators of RNA polymerase II (RNAPII) activity, histone chaperones, and histone modifiers, have been characterized from plants. These factors control the efficiency of transcript elongation of subsets of genes in the chromatin context and thus contribute to tuning gene expression programs. We review here how genetic and biochemical analyses, primarily in Arabidopsis thaliana, have advanced our understanding of how TEFs adjust plant gene transcription. These studies have revealed that TEFs regulate plant growth and development by modulating diverse processes including hormone signaling, circadian clock, pathogen defense, responses to light, and developmental transitions.
Collapse
Affiliation(s)
- Mieke Van Lijsebettens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium.
| | - Klaus D Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
62
|
Fukudome A, Aksoy E, Wu X, Kumar K, Jeong IS, May K, Russell WK, Koiwa H. Arabidopsis CPL4 is an essential C-terminal domain phosphatase that suppresses xenobiotic stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:27-39. [PMID: 25041272 DOI: 10.1111/tpj.12612] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 05/20/2023]
Abstract
Eukaryotic gene expression is both promoted and inhibited by the reversible phosphorylation of the C-terminal domain of RNA polymerase II (pol II CTD). More than 20 Arabidopsis genes encode CTD phosphatase homologs, including four CTD phosphatase-like (CPL) family members. Although in vitro CTD phosphatase activity has been established for some CPLs, none have been shown to be involved in the phosphoregulation of pol II in vivo. Here we report that CPL4 is a CTD phosphatase essential for the viability of Arabidopsis thaliana. Mass spectrometry analysis identified the pol II subunits RPB1, RPB2 and RPB3 in the affinity-purified CPL4 complex. CPL4 dephosphorylates both Ser2- and Ser5-PO(4) of the CTD in vitro, with a preference for Ser2-PO(4). Arabidopsis plants overexpressing CPL4 accumulated hypophosphorylated pol II, whereas RNA interference-mediated silencing of CPL4 promoted hyperphosphorylation of pol II. A D128A mutation in the conserved DXDXT motif of the CPL4 catalytic domain resulted in a dominant negative form of CPL4, the overexpression of which inhibited transgene expression in transient assays. Inhibition was abolished by truncation of the phosphoprotein-binding Breast Cancer 1 C-terminal domain of CPL4, suggesting that both catalytic function and protein-protein interaction are essential for CPL4-mediated regulation of gene expression. We were unable to recover a homozygous cpl4 mutant, probably due to the zygotic lethality of this mutation. The reduction in CPL4 levels in CPL4(RNAi) plants increased transcript levels of a suite of herbicide/xenobiotic-responsive genes and improved herbicide tolerance, thus suggesting an additional role for CPL4 as a negative regulator of the xenobiotic detoxification pathway.
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Department of Horticultural Sciences, Vegetable and Fruit Development Center, Texas A&M University, College Station, TX, 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Bigeard J, Rayapuram N, Pflieger D, Hirt H. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. Proteomics 2014; 14:2127-40. [PMID: 24889195 DOI: 10.1002/pmic.201400073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 12/25/2022]
Abstract
In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.
Collapse
Affiliation(s)
- Jean Bigeard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, Evry, France
| | | | | | | |
Collapse
|
64
|
Bowman EA, Kelly WG. RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases. Nucleus 2014; 5:224-36. [PMID: 24879308 DOI: 10.4161/nucl.29347] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transition between initiation and productive elongation during RNA Polymerase II (Pol II) transcription is a well-appreciated point of regulation across many eukaryotes. Elongating Pol II is modified by phosphorylation of serine 2 (Ser2) on its carboxy terminal domain (CTD) by two kinases, Bur1/Ctk1 in yeast and Cdk9/Cdk12 in metazoans. Here, we discuss the roles and regulation of these kinases and their relationship to Pol II elongation control, and focus on recent data from work in C. elegans that point out gaps in our current understand of transcription elongation.
Collapse
Affiliation(s)
- Elizabeth A Bowman
- National Institute of Environmental Health Sciences; Research Triangle Park, NC USA
| | | |
Collapse
|
65
|
Karagiannis J. On the computational ability of the RNA polymerase II carboxy terminal domain. Commun Integr Biol 2014; 7:e28303. [PMID: 25371772 PMCID: PMC4217226 DOI: 10.4161/cib.28303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
The RNA polymerase II carboxy terminal domain has long been known to play an important role in the control of eukaryotic transcription. This role is mediated, at least in part, through complex post-translational modifications that take place on specific residues within the heptad repeats of the domain. In this addendum, a speculative, but formal mathematical conceptualization of this biological phenomenon (in the form of a semi-Thue string rewriting system) is presented. Since the semi-Thue formalism is known to be Turing complete, this raises the possibility that the CTD – in association with the regulatory pathways controlling its post-translational modification – functions as a biological incarnation of a universal computing machine.
Collapse
|