51
|
A screen-printed electrode modified with silver nanoparticles and carbon nanofibers in a nafion matrix for ionic liquid-based dispersive liquid-liquid microextraction and voltammetric assay of heterocyclic amine 8-MeIQx in food. Mikrochim Acta 2020; 187:190. [PMID: 32103341 DOI: 10.1007/s00604-020-4138-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 01/24/2020] [Indexed: 10/24/2022]
Abstract
An electrochemical method is described for the determination of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (8-MeIQx) which is a heterocyclic aromatic amine formed in cooked food samples. The method uses a screen-printed carbon nanofiber electrode that is modified with silver nanoparticles (AgNPs) in a Nafion matrix. The surface of the modified electrode was characterized by UV-vis spectrometry, dynamic light scattering, scanning electron microscopy and Raman spectroscopy. The average size of the AgNPs is 14 nm. The modified electrode exhibits good properties in terms of reversibility, fast kinetics of electron transfer, and large electroactive area toward the reduction of 8-MeIQx. Differential pulse voltammetry is the most suitable electrochemical technique for quantification of 8-MeIQx, best at a voltage of -0.21 V (versus Ag reference electrode). The first derivative serves as the analytical signal that increases linearly in the 0.015-40 mg L-1 8-MeIQx concentration range, with a 5 μg L-1 detection limit. A dispersive liquid-liquid microextraction procedure assisted via ionic liquid was developed to isolate the analyte from real samples. The whole extraction-preconcentration and voltammetric method allows to determine 30 and 70 μg L-1 in (spiked) bouillon cube, meat broth, beer and wine, with recoveries in the 93.6-110.4% range. Graphical abstractSchematic presentation for the analysis of aromatic amine 8-MeIQx, resultant compound from cooking meat. Extracted sample solution was placed onto modified electrode surface thus obtaining voltammetric analytical signal. So, quantification atrelevant levels can be performed.
Collapse
|
52
|
Draye M, Chatel G, Duwald R. Ultrasound for Drug Synthesis: A Green Approach. Pharmaceuticals (Basel) 2020; 13:E23. [PMID: 32024033 PMCID: PMC7168956 DOI: 10.3390/ph13020023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
This last century, the development of new medicinal molecules represents a real breakthrough in terms of humans and animal life expectancy and quality of life. However, this success is tainted by negative environmental consequences. Indeed, the synthesis of drug candidates requires the use of many chemicals, solvents, and processes that are very hazardous, toxic, energy consuming, expensive, and generates a large amount of waste. Many large pharmaceutical companies have thus moved to using green chemistry practices for drug discovery, development, and manufacturing. One of them is the use of energy-efficient activation techniques, such as ultrasound. This review summarizes the latest most representative works published on the use of ultrasound for sustainable bioactive molecules synthesis.
Collapse
Affiliation(s)
- Micheline Draye
- Université Savoie Mont Blanc—LCME, F-73000 Chambéry, France; (G.C.); (R.D.)
| | | | | |
Collapse
|
53
|
Recent advances and trends in miniaturized sample preparation techniques. J Sep Sci 2019; 43:202-225. [DOI: 10.1002/jssc.201900776] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
|
54
|
Nowak I, Rykowska I, Ziemblińska-Bernart J. Orthogonal array design optimisation of an in situ ionic liquid dispersive liquid–liquid microextraction for the detection of phenol and endocrine-disrupting phenols in aqueous samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01816-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
55
|
Jia L, Yang J, Zhao W, Jing X. Air-assisted ionic liquid dispersive liquid-liquid microextraction based on solidification of the aqueous phase for the determination of triazole fungicides in water samples by high-performance liquid chromatography. RSC Adv 2019; 9:36664-36669. [PMID: 35547267 PMCID: PMC9087865 DOI: 10.1039/c9ra07348e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/03/2019] [Indexed: 01/24/2023] Open
Abstract
A simple, rapid, and environmentally friendly approach was introduced to determine triazole fungicides in water samples by air-assisted ionic liquid dispersive liquid-liquid microextraction based on solidification of the aqueous phase using high-performance liquid chromatography-diode array detection. Ionic liquid was applied as the extraction solvent rather than a high-toxicity extraction solvent. The air-assisted dispersion method induced a trace amount of the ionic liquid to disperse as small droplets in the water sample, which significantly increased the contact area between the organic phase and the aqueous phase for the rapid transfer of target fungicides without using a dispersion solvent or auxiliary extraction devices. The solidification of the aqueous phase facilitated the collection of extraction solvent. The type of extraction solvent, the volume ratio of the extraction solvent to the water sample, the number of extraction cycles, the addition of NaCl, and pH values were evaluated. The recoveries were 72.65-100.13% with a relative standard deviation of 0.92% to 5.99%. The limits of quantification varied from 0.65 ng mL-1 to 1.83 ng mL-1. This approach can be used to determine fungicides in ground, river, and lake water samples.
Collapse
Affiliation(s)
- Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University Taigu Shanxi 030801 P. R. China +86-354-6288325
| | - Jingrui Yang
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang Jiangxi 330047 China
| | - Wenfei Zhao
- College of Food Science and Engineering, Shanxi Agricultural University Taigu Shanxi 030801 P. R. China +86-354-6288325
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University Taigu Shanxi 030801 P. R. China +86-354-6288325
| |
Collapse
|
56
|
Review of Ionic Liquids in Microextraction Analysis of Pesticide Residues in Fruit and Vegetable Samples. Chromatographia 2019. [DOI: 10.1007/s10337-019-03818-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
57
|
Chen Y, Xia L, Liang R, Lu Z, Li L, Huo B, Li G, Hu Y. Advanced materials for sample preparation in recent decade. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115652] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
58
|
Li G, Row KH. Utilization of deep eutectic solvents in dispersive liquid-liquid micro-extraction. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115651] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
59
|
|
60
|
Bowers AN, Trujillo-Rodríguez MJ, Farooq MQ, Anderson JL. Extraction of DNA with magnetic ionic liquids using in situ dispersive liquid-liquid microextraction. Anal Bioanal Chem 2019; 411:7375-7385. [PMID: 31655857 DOI: 10.1007/s00216-019-02163-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022]
Abstract
A new class of magnetic ionic liquids (MILs) with metal-containing cations was applied in in situ dispersive liquid-liquid microextraction (DLLME) for the extraction of long and short double-stranded DNA. For developing the method, MILs comprised of N-substituted imidazole ligands (with butyl-, benzyl-, or octyl-groups as substituents) coordinated to different metal centers (Ni2+, Mn2+, or Co2+) as cations, and chloride anions were investigated. These water-soluble MILs were reacted with the bis[(trifluoromethyl)sulfonyl]imide anion during the extraction to generate a water-immiscible MIL capable of preconcentrating DNA. The feasibility of combining the extraction methodology with anion-exchange high-performance liquid chromatography with diode array detection (HPLC-DAD) or fluorescence spectroscopy was studied. The method with the Ni2+- and Co2+-based MILs was easily combined with fluorescence spectroscopy and provided a faster and more sensitive method than HPLC-DAD for the determination of DNA. In addition, the method was compared to conventional DLLME using analogous water-immiscible MILs. The developed in situ MIL-DLLME method required only 3 min for DNA extraction and yielded 1.1-1.5 times higher extraction efficiency (EFs) than the conventional MIL-DLLME method. The in situ MIL-DLLME method was also compared to the trihexyl(tetradecyl)phosphonium tris(hexafluorocetylaceto)nickelate(II) MIL, which has been used in previous DNA extraction studies. EFs of 42-99% were obtained using the new generation of MILs, whereas EFs of only 20-38% were achieved with the phosphonium MIL. This new class of MILs is simple and inexpensive to prepare. In addition, the MILs present operational advantages such as easier manipulation in comparison to hydrophobic MILs, which can have high viscosities. These MILs are a promising new class of DNA extraction solvents that can be manipulated using an external magnetic field. Graphical abstract Magnetic ionic liquids with metal-containing cations are applied in in situ dispersive liquid-liquid microextraction for the extraction of long and short double-stranded DNA.
Collapse
Affiliation(s)
- Ashley N Bowers
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA, 50011, USA
| | | | - Muhammad Q Farooq
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA, 50011, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA, 50011, USA.
| |
Collapse
|
61
|
Marcinkowska R, Konieczna K, Marcinkowski Ł, Namieśnik J, Kloskowski A. Application of ionic liquids in microextraction techniques: Current trends and future perspectives. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
62
|
Ali J, Tuzen M, Citak D, Uluozlu OD, Mendil D, Kazi TG, Afridi HI. Separation and preconcentration of trivalent chromium in environmental waters by using deep eutectic solvent with ultrasound-assisted based dispersive liquid-liquid microextraction method. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111299] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
63
|
Ionic liquid-based miniaturized aqueous biphasic system to develop an environmental-friendly analytical preconcentration method. Talanta 2019; 203:305-313. [DOI: 10.1016/j.talanta.2019.05.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/26/2022]
|
64
|
Deng ZH, Li N, Jiang HL, Lin JM, Zhao RS. Pretreatment techniques and analytical methods for phenolic endocrine disrupting chemicals in food and environmental samples. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
65
|
Alternative Green Extraction Phases Applied to Microextraction Techniques for Organic Compound Determination. SEPARATIONS 2019. [DOI: 10.3390/separations6030035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The use of green extraction phases has gained much attention in different fields of study, including in sample preparation for the determination of organic compounds by chromatography techniques. Green extraction phases are considered as an alternative to conventional phases due to several advantages such as non-toxicity, biodegradability, low cost and ease of preparation. In addition, the use of greener extraction phases reinforces the environmentally-friendly features of microextraction techniques. Thus, this work presents a review about new materials that have been used in extraction phases applied to liquid and sorbent-based microextractions of organic compounds in different matrices.
Collapse
|
66
|
Pletnev IV, Smirnova SV, Shvedene NV. New Directions in Using Ionic Liquids in Analytical Chemistry. 1: Liquid–Liquid Extraction. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819070062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
67
|
Lv Y, Bai H, Yang J, He Y, Ma Q. Direct Mass Spectrometry Analysis Using In-Capillary Dicationic Ionic Liquid-Based in Situ Dispersive Liquid–Liquid Microextraction and Sonic-Spray Ionization. Anal Chem 2019; 91:6661-6668. [DOI: 10.1021/acs.analchem.9b00597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yueguang Lv
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Jingkui Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| |
Collapse
|
68
|
Yang C, Ran L, Xu M, Ren D, Yi L. In situ ionic liquid dispersive liquid–liquid microextraction combined with ultra high performance liquid chromatography for determination of neonicotinoid insecticides in honey samples. J Sep Sci 2019; 42:1930-1937. [DOI: 10.1002/jssc.201801263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Chong Yang
- Yunnan Food Safety Research InstituteKunming University of Science and Technology Kunming P. R. China
| | - Lu Ran
- Yunnan Food Safety Research InstituteKunming University of Science and Technology Kunming P. R. China
| | - Meilin Xu
- Yunnan Food Safety Research InstituteKunming University of Science and Technology Kunming P. R. China
| | - Dabing Ren
- Yunnan Food Safety Research InstituteKunming University of Science and Technology Kunming P. R. China
| | - Lunzhao Yi
- Yunnan Food Safety Research InstituteKunming University of Science and Technology Kunming P. R. China
| |
Collapse
|
69
|
|
70
|
|
71
|
Garcia-Alonso S, Perez-Pastor RM. Organic Analysis of Environmental Samples Using Liquid Chromatography with Diode Array and Fluorescence Detectors: An Overview. Crit Rev Anal Chem 2019; 50:29-49. [PMID: 30925844 DOI: 10.1080/10408347.2019.1570461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This overview is focused to provide an useful guide of the families of organic pollutants that can be determined by liquid chromatography operating in reverse phase and ultraviolet/fluorescence detection. Eight families have been classified as the main groups to be considered: carbonyls, carboxyls, aromatics, phenols, phthalates, isocyanates, pesticides and emerging. The references have been selected based on analytical methods used in the environmental field, including both the well-established procedures and those more recently developed.
Collapse
|
72
|
Wang Q, Chen R, Shatner W, Cao Y, Bai Y. State-of-the-art on the technique of dispersive liquid-liquid microextraction. ULTRASONICS SONOCHEMISTRY 2019; 51:369-377. [PMID: 30377081 DOI: 10.1016/j.ultsonch.2018.08.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Dispersive liquid-liquid microextraction is a new sample pretreatment technology based on traditional liquid liquid extraction. In this paper, the application of low-toxicity extractants such as low-density extractants, auxiliary extractants, stripping agents and ionic liquids in this technology and the extraction modes such as solvent de-emulsification, suspension extractant curing, auxiliary extraction, back extraction, and ionic liquid-dispersion liquid microextraction, are summarized. In addition, the synergism of this technique with other sample preparation techniques, such as liquid-liquid extraction, solid-phase extraction, solid-phase microextraction, dispersive solid phase extraction, matrix solid-phase dispersion extraction, supercritical fluid extraction and ultrasound-assisted dispersive liquid-liquid microextraction is discussed.
Collapse
Affiliation(s)
- Qiangfeng Wang
- College of Electromechanical, Xi'an Technological University, Xi'an 710021, China
| | - Renji Chen
- Cleft Lip and Palate Treatment Center, Beijing Stomatological Hospital, TianTan-XiLi the 4th, DongCheng District, BeiJing 100050, China.
| | - William Shatner
- Jiaotong Institute, A0E 2Z0: Monkstown, Newfoundland, Canada
| | - Yan Cao
- College of Electromechanical, Xi'an Technological University, Xi'an 710021, China
| | - Yu Bai
- College of Electromechanical, Xi'an Technological University, Xi'an 710021, China
| |
Collapse
|
73
|
Lu D, Liu C, Deng J, Zhou X, Shi G, Zhou T. Rational design of an ionic liquid dispersive liquid–liquid micro-extraction method for the detection of organophosphorus pesticides. Analyst 2019; 144:2166-2172. [DOI: 10.1039/c9an00123a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, a functionalized ionic liquid (IL), [MimCH2COOCH3][NTf2] was rationally designed and explored as an extraction solvent in dispersive liquid–liquid microextraction (DLLME) combined with ultra-high performance liquid chromatography (UHPLC) for the sensitive determination of organophosphorus pesticides (OPs).
Collapse
Affiliation(s)
- Dingkun Lu
- School of Ecological and Environmental Sciences
- Shanghai Key Lab for Urban Ecological Process and Eco-Restoration
- East China Normal University
- Shanghai 200241
- China
| | - Chang Liu
- School of Ecological and Environmental Sciences
- Shanghai Key Lab for Urban Ecological Process and Eco-Restoration
- East China Normal University
- Shanghai 200241
- China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences
- Shanghai Key Lab for Urban Ecological Process and Eco-Restoration
- East China Normal University
- Shanghai 200241
- China
| | - Xinguang Zhou
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
- Institute of Eco-Chongming (IEC)
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences
- Shanghai Key Lab for Urban Ecological Process and Eco-Restoration
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
74
|
Trujillo-Rodríguez MJ, Anderson JL. In situ formation of hydrophobic magnetic ionic liquids for dispersive liquid-liquid microextraction. J Chromatogr A 2018; 1588:8-16. [PMID: 30600165 DOI: 10.1016/j.chroma.2018.12.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/30/2022]
Abstract
A new class of magnetic ionic liquid (MIL) containing paramagnetic cations has been applied for in situ dispersive liquid-liquid microextraction in the determination of both polar and non-polar pollutants, including ultraviolet filters, polycyclic aromatic hydrocarbons, alkylphenols, a plasticizer and a preservative in aqueous samples. The MILs were based on cations containing Ni(II) metal centers coordinated with four N-alkylimidazole ligands and chloride anions. The MILs were capable of undergoing in situ metathesis reaction with the bis[(trifluoromethyl)sulfonyl]imide ([NTf2-]) anion during the microextraction procedure, generating a water-immiscible extraction solvent containing the preconcentrated analytes. The MIL was then isolated by magnetic separation, followed by direct analysis using reversed-phase high performance liquid chromatography with diode array detection. Among all of the studied MILs, those containing the N-butylimidazole and N-benzylimidazole ligands ([Ni(C4IM)42+]2[Cl-] and [Ni(BeIM)42+]2[Cl-], respectively) exhibited the best extraction performance. The method under optimum conditions required 5 mL of sample at pH 3, 20 mg of [Ni(C4IM)42+]2[Cl-] or 30 mg of [Ni(BeIM)42+]2[Cl-], 300 μL of acetone or acetonitrile as dispersive solvent (depending on the MIL), a 1:2 M ratio of MIL to [NTf2-], and 3 min of vortex. The developed method achieved higher extraction efficiency compared to the conventional MIL-dispersive liquid-liquid microextraction mode, with extraction efficiencies of 46.8-88.6% and 65.4-97.0% for the [Ni(C4IM)42+]2[Cl-] and the [Ni(BeIM)42+]2[Cl-] MILs (at a spiked level of 81 μg L-1), respectively, limits of detection down to 5.2 μg L-1, and inter-day relative standard deviation lower than 16%.
Collapse
Affiliation(s)
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, 50011 USA.
| |
Collapse
|
75
|
Di X, Wang X, Liu Y, Guo X, Di X. Solid-phase extraction coupled with switchable hydrophilicity solvent-based homogeneous liquid–liquid microextraction for chloramphenicol enrichment in environmental water samples: a novel alternative to classical extraction techniques. Anal Bioanal Chem 2018; 411:803-812. [DOI: 10.1007/s00216-018-1486-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 11/30/2022]
|
76
|
Pirkwieser P, López-López JA, Kandioller W, Keppler BK, Moreno C, Jirsa F. Solvent Bar Micro-Extraction of Heavy Metals from Natural Water Samples Using 3-Hydroxy-2-Naphthoate-Based Ionic Liquids. Molecules 2018; 23:molecules23113011. [PMID: 30453649 PMCID: PMC6278406 DOI: 10.3390/molecules23113011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/02/2023] Open
Abstract
Developments in the liquid micro-extraction of trace metals from aqueous phases have proven to be limited when extended from pure water to more complex and demanding matrices such as sea water or wastewater treatment effluents. To establish a system that works under such matrices, we successfully tested three task-specific ionic liquids, namely trihexyltetradecyl- phosphonium-, methyltrioctylphosphonium- and methyltrioctylammonium 3-hydroxy-2-naphthoate in two-phase solvent bar micro-extraction (SBME) experiments. We describe the influence of pH, organic additives, time, stirring rate and volume of ionic liquid for multi-elemental micro-extraction of Cu, Ag, Cd and Pb from various synthetic and natural aqueous feed solutions. Highest extraction for all metals was achieved at pH 8.0. Minimal leaching of the ionic liquids into the aqueous phase was demonstrated, with values < 30 mg L−1 DOC in all cases. Sample salinities of up to 60 g L−1 NaCl had a positive effect on the extraction of Cd, possibly due to an efficient extraction mechanism of the present chlorido complexes. In metal-spiked natural feed solutions, the selected SBME setups showed unchanged stability under all conditions tested. We could efficiently (≥85%) extract Cu and Ag from drinking water and achieved high efficacies for Ag and Cd from natural sea water and hypersaline water, respectively. The method presented here proves to be a useful tool for an efficient SBME of heavy metals from natural waters without the need to pretreat or modify the sample.
Collapse
Affiliation(s)
- Philip Pirkwieser
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria.
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, Instituto de Investigación Marina (INMAR), University of Cádiz, 11510 Puerto Real, Spain.
| | - José A López-López
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, Instituto de Investigación Marina (INMAR), University of Cádiz, 11510 Puerto Real, Spain.
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Carlos Moreno
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, Instituto de Investigación Marina (INMAR), University of Cádiz, 11510 Puerto Real, Spain.
| | - Franz Jirsa
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria.
- Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa.
| |
Collapse
|
77
|
Havlikova M, Cabala R, Pacakova V, Bosakova Z. Critical evaluation of microextraction pretreatment techniques-Part 2: Membrane-supported and homogenous phase based techniques. J Sep Sci 2018; 42:303-318. [DOI: 10.1002/jssc.201800903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Martina Havlikova
- Department of Analytical Chemistry; Faculty of Science; Charles University; Prague Czech Republic
| | - Radomir Cabala
- Department of Analytical Chemistry; Faculty of Science; Charles University; Prague Czech Republic
- Toxicology Department; Institute of Forensic Medicine and Toxicology; General University Hospital in Prague and 1st Faculty of Medicine of Charles University; Prague Czech Republic
| | - Vera Pacakova
- Department of Analytical Chemistry; Faculty of Science; Charles University; Prague Czech Republic
| | - Zuzana Bosakova
- Department of Analytical Chemistry; Faculty of Science; Charles University; Prague Czech Republic
| |
Collapse
|
78
|
Taima-Mancera I, Rocío-Bautista P, Pasán J, Ayala JH, Ruiz-Pérez C, Afonso AM, Lago AB, Pino V. Influence of Ligand Functionalization of UiO-66-Based Metal-Organic Frameworks When Used as Sorbents in Dispersive Solid-Phase Analytical Microextraction for Different Aqueous Organic Pollutants. Molecules 2018; 23:E2869. [PMID: 30400309 PMCID: PMC6278427 DOI: 10.3390/molecules23112869] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 11/16/2022] Open
Abstract
Four metal-organic frameworks (MOFs), specifically UiO-66, UiO-66-NH₂, UiO-66-NO₂, and MIL-53(Al), were synthesized, characterized, and used as sorbents in a dispersive micro-solid phase extraction (D-µSPE) method for the determination of nine pollutants of different nature, including drugs, phenols, polycyclic aromatic hydrocarbons, and personal care products in environmental waters. The D-µSPE method, using these MOFs as sorbents and in combination with high-performance liquid chromatography (HPLC) and diode-array detection (DAD), was optimized. The optimization study pointed out to UiO-66-NO₂ as the best MOF to use in the multi-component determination. Furthermore, the utilization of isoreticular MOFs based on UiO-66 with the same topology but different functional groups, and MIL-53(Al) to compare with, allowed us for the first time to evaluate the influence of such functionalization of the ligand with regards to the efficiency of the D-µSPE-HPLC-DAD method. Optimum conditions included: 20 mg of UiO-66-NO₂ MOF in 20 mL of the aqueous sample, 3 min of agitation by vortex and 5 min of centrifugation, followed by the use of only 500 µL of acetonitrile as desorption solvent (once the MOF containing analytes was separated), 5 min of vortex and 5 min of centrifugation. The validation of the D-µSPE-HPLC-DAD method showed limits of detection down to 1.5 ng·L-1, average relative recoveries of 107% for a spiked level of 1.50 µg·L-1, and inter-day precision values with relative standard deviations lower than 14%, for the group of pollutants considered.
Collapse
Affiliation(s)
- Iván Taima-Mancera
- Departament of Chemistry (Analytical Division), University of La Laguna, 38206 Tenerife, Spain.
| | | | - Jorge Pasán
- X-ray and Molecular Materials Lab (MATMOL), Physics Department, University of La Laguna, 38206 Tenerife, Spain.
| | - Juan H Ayala
- Departament of Chemistry (Analytical Division), University of La Laguna, 38206 Tenerife, Spain.
| | - Catalina Ruiz-Pérez
- X-ray and Molecular Materials Lab (MATMOL), Physics Department, University of La Laguna, 38206 Tenerife, Spain.
| | - Ana M Afonso
- Departament of Chemistry (Analytical Division), University of La Laguna, 38206 Tenerife, Spain.
| | - Ana B Lago
- X-ray and Molecular Materials Lab (MATMOL), Physics Department, University of La Laguna, 38206 Tenerife, Spain.
| | - Verónica Pino
- Departament of Chemistry (Analytical Division), University of La Laguna, 38206 Tenerife, Spain.
| |
Collapse
|
79
|
Zhao Q, Chu H, Zhao B, Liang Z, Zhang L, Zhang Y. Advances of ionic liquids-based methods for protein analysis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
80
|
Carasek E, Merib J, Mafra G, Spudeit D. A recent overview of the application of liquid-phase microextraction to the determination of organic micro-pollutants. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
81
|
Trujillo-Rodríguez MJ, Nan H, Varona M, Emaus MN, Souza ID, Anderson JL. Advances of Ionic Liquids in Analytical Chemistry. Anal Chem 2018; 91:505-531. [PMID: 30335970 DOI: 10.1021/acs.analchem.8b04710] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - He Nan
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Marcelino Varona
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Miranda N Emaus
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Israel D Souza
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Jared L Anderson
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| |
Collapse
|
82
|
Sun X, Tan J, Ding H, Tan X, Xing J, Xing L, Zhai Y, Li Z. Detection of Polycyclic Aromatic Hydrocarbons in Water Samples by Annular Platform-Supported Ionic Liquid-Based Headspace Liquid-Phase Microextraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:3765682. [PMID: 30363692 PMCID: PMC6180925 DOI: 10.1155/2018/3765682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/03/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
In this paper, a new method of annular platform-supported headspace liquid-phase microextraction (LPME) was designed using ionic liquid as an extraction solvent, wherein extraction stability and efficiency were improved by adding an annular platform inside the extraction bottle. The ionic liquid 1-silicyl-3-benzylimidazolehexafluorophosphate was first synthesized and proved to be an excellent extraction solvent. Coupled with liquid chromatography, the proposed method was employed to analysis of polycyclic aromatic hydrocarbons (PAHs) in water and optimized in aspects of extraction temperature, extraction solvent volume, extraction time, pH, stirring rate, and salt effect of solution. The results indicated that this method showed good linearity (R 2 > 0.995) within 0.5 µg·L-1 to 1000 µg·L-1 for PAHs. The method was more suitable for extraction of volatile PAHs, with recoveries from 65.0% to 102% and quantification limits from 0.01 to 0.05 µg·L-1. It has been successfully applied for detection of PAHs in seawater samples.
Collapse
Affiliation(s)
- Xiaojie Sun
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jie Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Haiyan Ding
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaojie Tan
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jun Xing
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lihong Xing
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhaoxin Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
83
|
Hexafluoroisopropanol-based hydrophobic deep eutectic solvents for dispersive liquid-liquid microextraction of pyrethroids in tea beverages and fruit juices. Food Chem 2018; 274:891-899. [PMID: 30373025 DOI: 10.1016/j.foodchem.2018.09.048] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/30/2018] [Accepted: 09/09/2018] [Indexed: 12/21/2022]
Abstract
A series of new hydrophobic deep eutectic solvents (DESs), which are liquid at room temperature and have high density (>1.4 g mL-1), were synthesized using hexafluoroisopropanol (HFIP) as hydrogen-bond donor and l-carnitine/betaine as hydrogen-bond acceptor. Then these hydrophobic DESs were used as extraction solvents to establish dispersive liquid-liquid microextraction (DLLME) method for extraction of pyrethroids. The DES extraction phase was in the bottom after DLLME, being easy to be collected for analysis. After optimization by one-variable-at-a-time and response surface methodology, the enrichment factors of 265-360 were achieved for five pyrethroids. The proposed DLLME method coupled with HPLC has good performance: linear ranges of 0.25/0.5/1-100/200/400 ng/mL (r ≥ 0.9990), limits of detection of 0.06-0.17 ng mL-1, relative recoveries of 85.1-109.4%, intra-day and inter-day RSDs below 7.5%. The novel DLLME method is simple, rapid, highly efficient and eco-friendly for extraction of pyrethroids in real tea beverages and fruit juices.
Collapse
|
84
|
Rocío-Bautista P, Pino V, Ayala JH, Ruiz-Pérez C, Vallcorba O, Afonso AM, Pasán J. A green metal-organic framework to monitor water contaminants. RSC Adv 2018; 8:31304-31310. [PMID: 35548237 PMCID: PMC9085605 DOI: 10.1039/c8ra05862h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022] Open
Abstract
The CIM-80 material (aluminum(iii)-mesaconate) has been synthetized in high yield through a novel green procedure involving water and urea as co-reactants. The CIM-80 material exhibits good thermal stability with a working range from RT to 350 °C with a small contraction upon desolvation. Moreover, this material is stable in water at different pH values (1-10) for at least one week, and shows a LC50 value higher than 2 mg mL-1. The new material has been tested in a microextraction methodology for the monitoring of up to 22 water pollutants while presenting little environmental impact: only 20 mg of CIM-80 and 500 μL of acetonitrile are needed per analysis. The analytical performance of the CIM-80 in the microextraction strategy is similar to or even better for several pollutants than that of MIL-53(Al). The average extraction efficiencies range from ∼20% for heavy polycyclic aromatic hydrocarbons to ∼70-100% for the lighter ones. In the case of the emerging contaminants, the average extraction efficiency can reach values up to 70% for triclosan and carbamazepine.
Collapse
Affiliation(s)
- Priscilla Rocío-Bautista
- Department of Chemistry, Analytical Chemistry Division, Universidad de La Laguna Apartado 456 38200 La Laguna Spain
| | - Verónica Pino
- Department of Chemistry, Analytical Chemistry Division, Universidad de La Laguna Apartado 456 38200 La Laguna Spain
| | - Juan H Ayala
- Department of Chemistry, Analytical Chemistry Division, Universidad de La Laguna Apartado 456 38200 La Laguna Spain
| | - Catalina Ruiz-Pérez
- Laboratorio de Rayos X y Materiales Moleculares (MATMOL), Department of Physics, Universidad de La Laguna Apartado 456 38200 La Laguna Spain
| | - Oriol Vallcorba
- ALBA Synchrotron Light Source Cerdanyola del Vallés Barcelona 08920 Spain
| | - Ana M Afonso
- Department of Chemistry, Analytical Chemistry Division, Universidad de La Laguna Apartado 456 38200 La Laguna Spain
| | - Jorge Pasán
- Laboratorio de Rayos X y Materiales Moleculares (MATMOL), Department of Physics, Universidad de La Laguna Apartado 456 38200 La Laguna Spain
| |
Collapse
|
85
|
Chatzimitakos TG, Pierson SA, Anderson JL, Stalikas CD. Enhanced magnetic ionic liquid-based dispersive liquid-liquid microextraction of triazines and sulfonamides through a one-pot, pH-modulated approach. J Chromatogr A 2018; 1571:47-54. [PMID: 30119971 DOI: 10.1016/j.chroma.2018.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/04/2018] [Accepted: 08/04/2018] [Indexed: 02/03/2023]
Abstract
In this study, an enhanced variant of magnetic ionic liquid (MIL)-based dispersive liquid-liquid microextraction is put forward. The procedure combines a water insoluble solid support and the [P66614+][Dy(III)(hfacac)4-] MIL, in a one-pot, pH-modulated procedure for microextraction of triazines (TZs) and sulfonamides (SAs). The solid supporting material was mixed with the MIL to overcome difficulties concerning the weighing of MIL and to control the uniform dispersion of the MIL, rendering the whole extraction procedure more reproducible. The pH-modulation during extraction step makes possible the one-pot extraction of SAs and TZs, from a single sample, in 15 min. Overall, the new analytical method developed enjoys the benefits of sensitivity (limits of quantification: 0.034-0.091 μg L-1) and precision (relative standard deviation: 5.2-8.1%), while good recoveries (i.e., 89-101%) were achieved from lake water and effluent from a municipal wastewater treatment plant. Owing to all of the above, the new procedure can be used to determine the concentrations of SAs and TZs at levels below the maximum residue limits.
Collapse
Affiliation(s)
- Theodoros G Chatzimitakos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Stephen A Pierson
- Department of Chemistry, Iowa State University, Ames, IA, 50010 United States
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, 50010 United States
| | - Constantine D Stalikas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
86
|
Sadeghi S, Nasehi Z. Simultaneous determination of Brilliant Green and Crystal Violet dyes in fish and water samples with dispersive liquid-liquid micro-extraction using ionic liquid followed by zero crossing first derivative spectrophotometric analysis method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:134-142. [PMID: 29747083 DOI: 10.1016/j.saa.2018.04.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/11/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
In this study, dispersive liquid-liquid micro-extraction using ionic liquid (IL-DLLME) combined with zero crossing first derivative spectrophotometric method was applied to quantitative determination of triphenylmethane dyes in binary mixtures. The 1-methyl-3-octylimidazolium hexafluorophosphate [OMIM][PF6] ionic liquid was used to extract Brilliant Green (BG) and Crystal Violet(CV) dyes from aqueous solutions. The amplitude of the zero crossing first derivative spectra at 670 nm and 532 nm were selected for the determination of BG and CV, respectively. Significant factors influencing the extraction of BG and CV such as sample pH, kind of extraction solvent, amount of extractant, extraction and centrifuging times and ionic strength were investigated. Under the optimal conditions, the calibration curves for the simultaneous determination of both dyes were found to be linear in the range of 10-500 μg L-1 with detection limits (LODs) of 2.7 μg L-1 and 1.4 μg L-1 for BG and CV, respectively. The relative standard deviation (RSD%) for five replicate simultaneous determinations of BG and CV were 4.7% and 1.7%, respectively. Extraction efficiencies of the BG and CV dyes in the presence of interfering ions were also investigated. Sample preparation based on the quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction combined with the IL-DLLME method and zero crossing first derivative spectrophotometric detection was applied for the simultaneous analysis of BG and CV in fish and water samples with quantitative recoveries.
Collapse
Affiliation(s)
- Susan Sadeghi
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran.
| | - Zohreh Nasehi
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
| |
Collapse
|
87
|
Saraji M, Ghambari H. Comparison of three different dispersive liquid-liquid microextraction modes performed on their most usual configurations for the extraction of phenolic, neutral aromatic, and amino compounds from waters. J Sep Sci 2018; 41:3275-3284. [DOI: 10.1002/jssc.201800133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Mohammad Saraji
- Department of Chemistry; Isfahan University of Technology; Isfahan Iran
| | - Hoda Ghambari
- Department of Chemistry; Isfahan University of Technology; Isfahan Iran
| |
Collapse
|
88
|
De Boeck M, Damilano G, Dehaen W, Tytgat J, Cuypers E. Evaluation of 11 ionic liquids as potential extraction solvents for benzodiazepines from whole blood using liquid-liquid microextraction combined with LC-MS/MS. Talanta 2018; 184:369-374. [DOI: 10.1016/j.talanta.2018.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 01/03/2023]
|
89
|
Qian H, Hu L, Liu C, Wang H, Gao H, Zhou W. Determination of four pyrethroid insecticides in water samples through membrane emulsification-assisted liquid–liquid microextraction based on solidification of floating organic droplets. J Chromatogr A 2018; 1559:86-94. [DOI: 10.1016/j.chroma.2018.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 11/28/2022]
|
90
|
In situ ionic liquid dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry for the determination of organophosphorus pesticides. J Chromatogr A 2018; 1559:95-101. [DOI: 10.1016/j.chroma.2017.12.059] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022]
|
91
|
Hits and misses in research trends to monitor contaminants in foods. Anal Bioanal Chem 2018; 410:5331-5351. [DOI: 10.1007/s00216-018-1195-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 01/26/2023]
|
92
|
Pierson SA, Trujillo‐Rodríguez MJ, Anderson JL. Rapid analysis of ultraviolet filters using dispersive liquid–liquid microextraction coupled to headspace gas chromatography and mass spectrometry. J Sep Sci 2018; 41:3081-3088. [DOI: 10.1002/jssc.201800415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
|
93
|
Recent Advances in Applications of Ionic Liquids in Miniaturized Microextraction Techniques. Molecules 2018; 23:molecules23061437. [PMID: 29899277 PMCID: PMC6099658 DOI: 10.3390/molecules23061437] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 01/10/2023] Open
Abstract
Green sample preparation is one of the most challenging aspects in green analytical chemistry. In this framework, miniaturized microextraction techniques have been developed and are widely performed due to their numerous positive features such as simplicity, limited need for organic solvents, instrumentation of low cost and short time of extraction. Also, ionic liquids (ILs) have unequivocally a “green” character, which they owe to their unique properties including the re-usage, the high reaction efficiency and selectivity in room temperature, the ability to dissolve both organic and inorganic compounds, and thermal stability. In the present review, the recent advances in the application of ionic liquids in miniaturized liquid and solid phase extraction techniques as extractants, intermediate solvents, mediators and desorption solvents are discussed, quoting the advantages and drawbacks of each individual technique. Some of the most important sample preparation techniques covered include solid-phase microextraction (SPME), dispersive liquid-liquid microextraction (DLLME), single-drop microextraction (SDME), stir bar sorptive extraction (SBSE), and stir cake sorptive extraction (SCSE).
Collapse
|
94
|
Rykowska I, Ziemblińska J, Nowak I. Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: A review. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.043] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
95
|
Zeeb M, Farahani H, Mirza B, Papan MK. Quantification of Meloxicam in Human Plasma Using Ionic Liquid-Based Ultrasound-Assisted In Situ Solvent Formation Microextraction Followed by High-Performance Liquid Chromatography. J Chromatogr Sci 2018; 56:443-451. [PMID: 31986203 DOI: 10.1093/chromsci/bmy012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 11/24/2017] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
A robust extraction method against the variations of sample ionic strength viz. ionic liquid-based ultrasound-assisted in situ solvent formation microextraction (IL-UA-ISFME) was coupled for the first time with high-performance liquid chromatography-ultraviolet detection (HPLC-UV), and successfully used as a more sustainable approach for the determination of meloxicam (MEL) in human plasma. Herein, a hydrophobic IL (1-butyl-3-methylimidazolium hexafluorophosphate) was formed by adding a hydrophilic IL (1-butyl-3-methylimidazolium tetrafluoroborate) to aqueous sample solution containing an ion-exchange reagent (sodium hexafluorophosphate). The target analyte was transferred into the IL medium while the extraction solvent was completely dispersed into the sample using ultrasonic irradiation and then, the settled enriched phase was injected to HPLC. Firstly, main factors affecting the microextraction performance were evaluated and optimized. The linearity was in the range of 5-1,500 ng mL-1 with regression coefficient corresponding to 0.997. Limits of detection (LOD; signal-to-noise ratio (S/N) = 3) and quantification (LOQ, S/N = 10) were 1 and 5 ng mL-1, respectively. An acceptable recovery range of 82.1-93.6% and satisfactory intra-assay (3.6-4.8%, n = 6) and inter-assay (3.3-5.1%, n = 9) precision as well as remarkable sample clean up exhibited good efficiency of the method. The freeze-thaw stability study was performed for samples and standard solutions. To study the applicability of the proposed method, it was employed for the determination of MEL in human plasma after oral administration of the drug and some pharmacokinetic data were achieved. The technique proved to be accurate and reliable for the screening intentions.
Collapse
Affiliation(s)
- Mohsen Zeeb
- Department of Applied Chemistry, Faculty of Science, Islamic Azad University, South Tehran Branch, Pirouzi st., Dehhaghi st., PO Box 1777613651, Tehran, Iran
| | - Hadi Farahani
- Research Institute of Petroleum Industry (RIPI), West Blvd. of Azadi Sport Complex, PO Box 1485733111, Iran
| | - Behrooz Mirza
- Department of Chemistry, Karaj Branch, Islamic Azad University, Moazzen Blvd., PO Box 31485-313, Alborz, Iran
| | - Mohammad Kazem Papan
- Department of Chemistry, Payame Noor University, Nakhl st., PO Box 19395-4697, Tehran, Iran
| |
Collapse
|
96
|
Sereshti H, Khorram P, Nouri N. Recent trends in replacement of disperser solvent in dispersive liquid-liquid microextraction methods. SEPARATION AND PURIFICATION REVIEWS 2018. [DOI: 10.1080/15422119.2018.1460851] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hassan Sereshti
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Parisa Khorram
- Department of Quality Management Systems and Inspection, Standard Research Institute, Karaj, Iran
| | - Nina Nouri
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
97
|
Tuzen M, Uluozlu OD, Mendil D, Soylak M, Machado LO, dos Santos WN, Ferreira SL. A simple, rapid and green ultrasound assisted and ionic liquid dispersive microextraction procedure for the determination of tin in foods employing ETAAS. Food Chem 2018; 245:380-384. [DOI: 10.1016/j.foodchem.2017.10.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
|
98
|
De Boeck M, Dehaen W, Tytgat J, Cuypers E. Ionic Liquid-Based Liquid-Liquid Microextraction for Benzodiazepine Analysis in Postmortem Blood Samples. J Forensic Sci 2018; 63:1875-1879. [PMID: 29573426 DOI: 10.1111/1556-4029.13778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/18/2018] [Accepted: 02/14/2018] [Indexed: 11/30/2022]
Abstract
Sample preparation is rapidly improving to fulfill the need for faster and more environmentally friendly alternatives. In this respect, ionic liquid-based dispersive liquid-liquid microextraction (IL-DLLME) is an interesting technique. However, it has not yet been evaluated for the analysis of postmortem samples, which are frequently analyzed in forensic toxicology. This study investigates the applicability of IL-DLLME coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS), for the analysis of benzodiazepines in postmortem blood of 11 forensic cases. The method was compared with a validated solid-phase extraction (SPE) method. Bland-Altman analysis was performed on 24 benzodiazepine measurements. Both methods gave comparable results, except for flurazepam and temazepam (>55% difference). A feasible explanation is high postmortem matrix variability that was not considered during IL-DLLME validation experiments. Another issue could be the use of a single nondeuterated SPE internal standard. Overall, IL-DLLME has proven its usability for the analysis of postmortem blood.
Collapse
Affiliation(s)
- Marieke De Boeck
- Toxicology and Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven (KU Leuven), Campus Gasthuisberg O&N II, P.O. Box 922, Herestraat 49, 3000, Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, University of Leuven (KU Leuven), Campus Arenberg, P.O. Box 2404, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven (KU Leuven), Campus Gasthuisberg O&N II, P.O. Box 922, Herestraat 49, 3000, Leuven, Belgium
| | - Eva Cuypers
- Toxicology and Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven (KU Leuven), Campus Gasthuisberg O&N II, P.O. Box 922, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
99
|
Abbasi-Daronjoughi F, Tamaddon A, Ahmad Panahi H. In situ solvent formation microextraction based on a new ionic liquid for green preconcentration of trace amount of Cu (II) ions in water samples. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1448416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Atefeh Tamaddon
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
100
|
Vaghar-Lahijani G, Saber-Tehrani M, Aberoomand-Azar P, Soleimani M. Extraction and Determination of Two Antidepressant Drugs in Human Plasma by Dispersive Liquid–Liquid Microextraction‒HPLC. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818020144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|