51
|
Mandl J, Baumer S, Holtzem B, Theurer R, Zorger N, Pech O. [Sarcopenia in patients with pancreatic cancer, an independant prognostic factor]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:1365-1370. [PMID: 36482058 DOI: 10.1055/a-1959-2894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pancreatic cancer is despite modern diagnostic tools and treatment regimen associated with poor outcome. Many patients show cachexia and sarcopenia. METHODS In a retrospective analysis the SMI (cm²/m²) was measured by determining the skelettal muscle area in a computed tomography image at lumbar vertebrae 3. Further clinical parameters were measured to determine the outcome. RESULTS The mean survival after diagnosis in the population with sarcopenia was significantly lower (14,4 vs 17,7 months, p=0,046). Significantly shorter survival was also seen for higher age (p=0,006), no tumor resection (p=0,004), metastases (p=0,002) and high CA19-9 level (p=0,002) CONCLUSION: Sarcopenia is an indipendant prognostic factor in patients with pancreatic cancer. SMI should be measured clinical practice and further studies are necessary to asses a potential therapeutic strategy.
Collapse
Affiliation(s)
- Johanna Mandl
- Klinik für Gastroenterologie und interventionelle Endoskopie, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Sebastian Baumer
- Klinik für Gastroenterologie und interventionelle Endoskopie, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Bernadette Holtzem
- Klinik für Gastroenterologie und interventionelle Endoskopie, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Rainer Theurer
- Institut für Radiologie, Neuroradiologie und Nuklearmedizin, Krankenhaus Barmherzige Bruder Regensburg, Regensburg, Germany
| | - Niels Zorger
- Institut für Radiologie, Neuroradiologie und Nuklearmedizin, Krankenhaus Barmherzige Bruder Regensburg, Regensburg, Germany
| | - Oliver Pech
- Klinik für Gastroenterologie und interventionelle Endoskopie, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| |
Collapse
|
52
|
Gallagher H, Hendrickse PW, Pereira MG, Bowen TS. Skeletal muscle atrophy, regeneration, and dysfunction in heart failure: Impact of exercise training. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:557-567. [PMID: 37040849 PMCID: PMC10466197 DOI: 10.1016/j.jshs.2023.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 05/31/2023]
Abstract
This review highlights some established and some more contemporary mechanisms responsible for heart failure (HF)-induced skeletal muscle wasting and weakness. We first describe the effects of HF on the relationship between protein synthesis and degradation rates, which determine muscle mass, the involvement of the satellite cells for continual muscle regeneration, and changes in myofiber calcium homeostasis linked to contractile dysfunction. We then highlight key mechanistic effects of both aerobic and resistance exercise training on skeletal muscle in HF and outline its application as a beneficial treatment. Overall, HF causes multiple impairments related to autophagy, anabolic-catabolic signaling, satellite cell proliferation, and calcium homeostasis, which together promote fiber atrophy, contractile dysfunction, and impaired regeneration. Although both wasting and weakness are partly rescued by aerobic and resistance exercise training in HF, the effects of satellite cell dynamics remain poorly explored.
Collapse
Affiliation(s)
- Harrison Gallagher
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Paul W Hendrickse
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Marcelo G Pereira
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
53
|
Hu Y, Liu L, Chen Y, Zhang X, Zhou H, Hu S, Li X, Li M, Li J, Cheng S, Liu Y, Xu Y, Yan W. Cancer-cell-secreted miR-204-5p induces leptin signalling pathway in white adipose tissue to promote cancer-associated cachexia. Nat Commun 2023; 14:5179. [PMID: 37620316 PMCID: PMC10449837 DOI: 10.1038/s41467-023-40571-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Cancer-associated cachexia is a multi-organ weight loss syndrome, especially with a wasting disorder of adipose tissue and skeletal muscle. Small extracellular vesicles (sEVs) serve as emerging messengers to connect primary tumour and metabolic organs to exert systemic regulation. However, whether and how tumour-derived sEVs regulate white adipose tissue (WAT) browning and fat loss is poorly defined. Here, we report breast cancer cell-secreted exosomal miR-204-5p induces hypoxia-inducible factor 1A (HIF1A) in WAT by targeting von Hippel-Lindau (VHL) gene. Elevated HIF1A protein induces the leptin signalling pathway and thereby enhances lipolysis in WAT. Additionally, exogenous VHL expression blocks the effect of exosomal miR-204-5p on WAT browning. Reduced plasma phosphatidyl ethanolamine level is detected in mice lack of cancer-derived miR-204-5p secretion in vivo. Collectively, our study reveals circulating miR-204-5p induces hypoxia-mediated leptin signalling pathway to promote lipolysis and WAT browning, shedding light on both preventive screenings and early intervention for cancer-associated cachexia.
Collapse
Affiliation(s)
- Yong Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430062, China
| | - Liu Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaohui Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Haifeng Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Sheng Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Meixin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Siyuan Cheng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430062, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430062, China.
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
54
|
Kong Q, Yi M, Teng F, Li H, Chen Z. Sarcopenia Imperils Postoperative Long-Term Survival in HCC Patients with Metabolic Dysfunction-Associated Fatty Liver Disease: A Propensity Score Matching Analysis. J Hepatocell Carcinoma 2023; 10:1367-1377. [PMID: 37605756 PMCID: PMC10440080 DOI: 10.2147/jhc.s418885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Background Recent research has suggested that sarcopenia may have an impact on postoperative outcomes. The number of hepatocellular carcinoma (HCC) patients with metabolic dysfunction-associated fatty liver disease (MAFLD) has increased significantly over time. The main objective of this study was to investigate the impact of sarcopenia on the prognosis of HCC patients with MAFLD after hepatectomy. Methods A multivariate Cox proportional hazards model and a propensity score matching (PSM) analysis were conducted to ensure that the baseline characteristics were similar. Kaplan‒Meier survival curves were used to compare the prognosis of the two groups. Results This study involved 112 HCC patients with MAFLD undergoing hepatectomy. Sarcopenia was indicated as a risk factor for both recurrence-free survival (RFS) and overall survival (OS) in HCC patients with MAFLD after multivariate analysis (p=0.002 and 0.022, respectively). After conducting PSM analysis, Kaplan‒Meier survival curve analysis revealed significant differences in both the RFS and OS between the two groups (p=0.0002 and p=0.0047, respectively). All results showed that sarcopenia had a poor prognosis for HCC patients with MAFLD undergoing hepatectomy. Conclusion In summary, our study suggests that sarcopenia might be a risk factor for OS and RFS in HCC patients with MAFLD who underwent hepatectomy through multivariate analysis and PSM analysis. Sarcopenia imperils postoperative survival rates and this finding can guide clinical decision-making. For postoperative patients, preventing or treating sarcopenia can potentially improve survival outcomes for patients with HCC and MAFLD.
Collapse
Affiliation(s)
- Qingyan Kong
- Division of Hepatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Mengshi Yi
- Division of Hepatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Fei Teng
- Division of Hepatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Hang Li
- Division of Hepatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Zheyu Chen
- Division of Hepatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
55
|
Ji H, Englmaier F, Morigny P, Giroud M, Gräsle P, Brings S, Szendrödi J, Berriel Diaz M, Plettenburg O, Herzig S, Rohm M. Development of a peptide drug restoring AMPK and adipose tissue functionality in cancer cachexia. Mol Ther 2023; 31:2408-2421. [PMID: 37408309 PMCID: PMC10422018 DOI: 10.1016/j.ymthe.2023.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/01/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
Cancer cachexia is a severe systemic wasting disease that negatively affects quality of life and survival in patients with cancer. To date, treating cancer cachexia is still a major unmet clinical need. We recently discovered the destabilization of the AMP-activated protein kinase (AMPK) complex in adipose tissue as a key event in cachexia-related adipose tissue dysfunction and developed an adeno-associated virus (AAV)-based approach to prevent AMPK degradation and prolong cachexia-free survival. Here, we show the development and optimization of a prototypic peptide, Pen-X-ACIP, where the AMPK-stabilizing peptide ACIP is fused to the cell-penetrating peptide moiety penetratin via a propargylic glycine linker to enable late-stage functionalization using click chemistry. Pen-X-ACIP was efficiently taken up by adipocytes, inhibited lipolysis, and restored AMPK signaling. Tissue uptake assays showed a favorable uptake profile into adipose tissue upon intraperitoneal injection. Systemic delivery of Pen-X-ACIP into tumor-bearing animals prevented the progression of cancer cachexia without affecting tumor growth and preserved body weight and adipose tissue mass with no discernable side effects in other peripheral organs, thereby achieving proof of concept. As Pen-X-ACIP also exerted its anti-lipolytic activity in human adipocytes, it now provides a promising platform for further (pre)clinical development toward a novel, first-in-class approach against cancer cachexia.
Collapse
Affiliation(s)
- Honglei Ji
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Felix Englmaier
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute of Medicinal Chemistry, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Institute of Organic Chemistry, Center of Biomolecular Research, Leibniz University Hannover, 30167 Hannover, Germany
| | - Pauline Morigny
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Maude Giroud
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Pamina Gräsle
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Sebastian Brings
- Department of Internal Medicine I and Clinical Chemistry, Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; Department of Nuclear Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Julia Szendrödi
- Department of Internal Medicine I and Clinical Chemistry, Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Oliver Plettenburg
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute of Medicinal Chemistry, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Institute of Organic Chemistry, Center of Biomolecular Research, Leibniz University Hannover, 30167 Hannover, Germany; Laboratory of Nano- and Quantum Engineering (LNQE), Leibniz University Hannover, 30167 Hanover, Germany; Institute of Lung Health (ILH), 35392 Gießen, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair Molecular Metabolic Control, Technical University Munich, 81675 Munich, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Unit, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
56
|
Ji W, Liu X, Liu P, He Y, Zhao Y, Zheng K, Cui J, Li W. The efficacy of fat-free mass index and appendicular skeletal muscle mass index in cancer malnutrition: a propensity score match analysis. Front Nutr 2023; 10:1172610. [PMID: 37492594 PMCID: PMC10364448 DOI: 10.3389/fnut.2023.1172610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Background Reduced muscle mass (RMM) is a phenotypic criterion for malnutrition; the appendicular skeletal muscle mass index (ASMI) and fat-free mass index (FFMI) are both applicable indicators in the global leadership initiative on malnutrition (GLIM) guideline. However, their sensitivity and prognostic effect remain unclear. Methods Clinical data of 2,477 patients with malignant tumors were collected. Multi-frequency bioelectrical impedance analysis was used to obtain ASMI and FFMI. RMM was confirmed by ASMI (< 7.0 kg/m2 for men and < 5.7 kg/m2 for women) or FFMI (< 17 kg/m2 for men and < 15 kg/m2 for women). Propensity score match analysis and logistic regression analysis were used to evaluate the efficacy of FFMI and ASMI in diagnosing severe malnutrition and multivariate Cox regression analysis to determine the efficacy of RMM in predicting survival. Results In total, 546 (22.0%) and 659 (26.6%) participants were diagnosed with RMM by ASMI (RMM.ASMI group) and FFMI (RMM.FFMI group); 375 cases overlapped. Body mass index (BMI), midarm circumference, triceps skinfold thickness, and maximum calf circumference were all significantly larger in the RMM.FFMI group for both sexes (P < 0.05). A 1:1 matched dataset constructed by propensity score match contained 810 cases. RMM.FFMI was an influential factor of severe malnutrition with HR = 3.033 (95% CI 2.068-4.449, P < 0.001), and RMM.ASMI was a predictive factor of overall survival (HR = 1.318, 95% CI 1.060-1.639, P = 0.013 in the RMM.ASMI subgroup, HR = 1.315, 95% CI 1.077-1.607, P = 0.007 in the RMM.FFMI subgroup). Conclusion In general, RMM indicates negative clinical outcomes; when defined by FFMI, it predicts nutritional status, and when defined by ASMI, it is related to poor survival in cancer patients.
Collapse
Affiliation(s)
- Wei Ji
- Center of Cancer, The First Affiliated Hospital of Jilin University, Changchun, China
| | - XiangLiang Liu
- Center of Cancer, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Pengfei Liu
- Cancer Department, Longyan First Hospital, Fujian, Longyan, China
| | - YuWei He
- Center of Cancer, The First Affiliated Hospital of Jilin University, Changchun, China
| | - YiXin Zhao
- Center of Cancer, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Kaiwen Zheng
- Center of Cancer, The First Affiliated Hospital of Jilin University, Changchun, China
| | - JiuWei Cui
- Center of Cancer, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Wei Li
- Center of Cancer, The First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
57
|
Morena da Silva F, Lim S, Cabrera AR, Schrems ER, Jones RG, Rosa-Caldwell ME, Washington TA, Murach KA, Greene NP. The time-course of cancer cachexia onset reveals biphasic transcriptional disruptions in female skeletal muscle distinct from males. BMC Genomics 2023; 24:374. [PMID: 37403010 DOI: 10.1186/s12864-023-09462-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/17/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Cancer-cachexia (CC) is a debilitating condition affecting up to 80% of cancer patients and contributing to 40% of cancer-related deaths. While evidence suggests biological sex differences in the development of CC, assessments of the female transcriptome in CC are lacking, and direct comparisons between sexes are scarce. This study aimed to define the time course of Lewis lung carcinoma (LLC)-induced CC in females using transcriptomics, while directly comparing biological sex differences. RESULTS We found the global gene expression of the gastrocnemius muscle of female mice revealed biphasic transcriptomic alterations, with one at 1 week following tumor allograft and another during the later stages of cachexia development. The early phase was associated with the upregulation of extracellular-matrix pathways, while the later phase was characterized by the downregulation of oxidative phosphorylation, electron transport chain, and TCA cycle. When DEGs were compared to a known list of mitochondrial genes (MitoCarta), ~ 47% of these genes were differently expressed in females exhibiting global cachexia, suggesting transcriptional changes to mitochondrial gene expression happens concomitantly to functional impairments previously published. In contrast, the JAK-STAT pathway was upregulated in both the early and late stages of CC. Additionally, we observed a consistent downregulation of Type-II Interferon signaling genes in females, which was associated with protection in skeletal muscle atrophy despite systemic cachexia. Upregulation of Interferon signaling was noted in the gastrocnemius muscle of cachectic and atrophic male mice. Comparison of female tumor-bearing mice with males revealed ~ 70% of DEGs were distinct between sexes in cachectic animals, demonstrating dimorphic mechanisms of CC. CONCLUSION Our findings suggest biphasic disruptions in the transcriptome of female LLC tumor-bearing mice: an early phase associated with ECM remodeling and a late phase, accompanied by the onset of systemic cachexia, affecting overall muscle energy metabolism. Notably, ~ 2/3 of DEGs in CC are biologically sex-specific, providing evidence of dimorphic mechanisms of cachexia between sexes. Downregulation of Type-II Interferon signaling genes appears specific to CC development in females, suggesting a new biological sex-specific marker of CC not reliant on the loss of muscle mass, that might represent a protective mechanism against muscle loss in CC in female mice.
Collapse
Affiliation(s)
- Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Ronald G Jones
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA.
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
58
|
Zhang Z, Tan S, Li S, Cheng Y, Wang J, Liu H, Yan M, Wu G. Mitophagy-mediated inflammation and oxidative stress contribute to muscle wasting in cancer cachexia. J Clin Biochem Nutr 2023; 73:34-42. [PMID: 37534096 PMCID: PMC10390805 DOI: 10.3164/jcbn.23-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/12/2023] [Indexed: 08/04/2023] Open
Abstract
Cancer cachexia is commonly seen in patients with malignant tumors, which usually leads to poor life quality and negatively affects long-term prognosis and survival. Mitochondria dysfunction and enhanced autophagy are well-established to play an important role in skeletal muscle wasting. However, whether mitophagy is engaged in the pathogenesis of cancer cachexia requires further investigation. This study comprised a clinical study and animal experimentation. Clinical data such as CT images and laboratory results were obtained and analyzed. Then mice model of cancer cachexia and mitophagy inhibition were established. Data including skeletal muscle mass and function, mitochondria structure and function, inflammatory factors as well as ROS concentration. Mitophagy was enhanced in cancer cachexia patients with increased inflammatory factors. Greater disruption of skeletal muscle fiber and mitochondria structure were seen in cancer cachexia, with a higher level of inflammatory factors and ROS expression in skeletal muscle. Meanwhile, ATP production was undermined, indicating a close relationship with mitophagy, inflammation, and oxidative stress in the skeletal muscle of cancer cachexia mice models. In conclusion, mitophagy is activated in cancer cachexia and may play a role in skeletal muscle atrophy, and inflammation and oxidative stress might participate in mitophagy-related skeletal muscle injury.
Collapse
Affiliation(s)
- Zhige Zhang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Shanjun Tan
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Shuhao Li
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yuxi Cheng
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Junjie Wang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Hao Liu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Mingyue Yan
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Guohao Wu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
59
|
Guo J, Qin X, Wang Y, Li X, Wang X, Zhu H, Chen S, Zhao J, Xiao K, Liu Y. Necroptosis Mediates Muscle Protein Degradation in a Cachexia Model of Weanling Pig with Lipopolysaccharide Challenge. Int J Mol Sci 2023; 24:10923. [PMID: 37446099 DOI: 10.3390/ijms241310923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Necroptosis, an actively researched form of programmed cell death closely related to the inflammatory response, is important in a variety of disorders and diseases. However, the relationship between necroptosis and muscle protein degradation in cachexia is rarely reported. This study aimed to elucidate whether necroptosis played a crucial role in muscle protein degradation in a cachexia model of weaned piglets induced by lipopolysaccharide (LPS). In Experiment 1, the piglets were intraperitoneally injected with LPS to construct the cachexia model, and sacrificed at different time points after LPS injection (1, 2, 4, 8, 12, and 24 h). In Experiment 2, necrostatin-1 (Nec-1), a necroptosis blocker, was pretreated in piglets before the injection of LPS to inhibit the occurrence of necroptosis. Blood and longissimus dorsi muscle samples were collected for further analysis. In the piglet model with LPS-induced cachexia, the morphological and ultrastructural damage, and the release of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were dynamically elicited in longissimus dorsi muscle. Further, protein concentration and protein/DNA ratio were dynamically decreased, and protein degradation signaling pathway, containing serine/threonine kinase (Akt), Forkhead box O (FOXO), muscular atrophy F-box (MAFbx), and muscle ring finger protein 1 (MuRF1), was dynamically activated in piglets after LPS challenge. Moreover, mRNA and protein expression of necroptosis signals including receptor-interacting protein kinase (RIP)1, RIP3, and mixed lineage kinase domain-like pseudokinase (MLKL), were time-independently upregulated. Subsequently, when Nec-1 was used to inhibit necroptosis, the morphological damage, the increase in expression of pro-inflammatory cytokines, the reduction in protein content and protein/DNA ratio, and the activation of the protein degradation signaling pathway were alleviated. These results provide the first evidence that necroptosis mediates muscle protein degradation in cachexia by LPS challenge.
Collapse
Affiliation(s)
- Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangen Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| |
Collapse
|
60
|
Cariolou M, Markozannes G, Becerra-Tomás N, Vieira R, Balducci K, Aune D, Muller DC, Chan DSM, Tsilidis KK. Association between adiposity after diagnosis of prostate cancer and mortality: systematic review and meta-analysis. BMJ MEDICINE 2023; 2:e000339. [PMID: 37841967 PMCID: PMC10568122 DOI: 10.1136/bmjmed-2022-000339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/10/2023] [Indexed: 10/17/2023]
Abstract
Objective To explore the associations between adiposity indices, assessed at or after a diagnosis of prostate cancer, and mortality. Design Systematic review and meta-analysis. Data sources PubMed and Embase, from inception to 16 November 2022. Eligibility criteria for selecting studies Cohort studies or randomised controlled trials of men with a diagnosis of prostate cancer that investigated the associations between adiposity (body mass index, waist and hip circumference, waist-to-hip ratio, and subcutaneous and visceral adipose tissue) after diagnosis and mortality outcomes. A modified version of the risk of bias for nutrition observational studies tool was used to assess risk of bias. Results 79 studies were identified that investigated adiposity indices after a diagnosis of prostate cancer in relation to mortality. No randomised controlled trials were found. A non-linear dose-response meta-analysis indicated a J shaped association between body mass index and all cause mortality (33 910 men, 11 095 deaths, 17 studies). The highest rate of all cause mortality was found at the lowest and upper range of the distribution: 11-23% higher rate for a body mass index of 17-21 and 4-43% higher rate for a body mass index of 30-40. The association between body mass index and mortality specific to prostate cancer was flat until body mass index reached 26-27, and then increased linearly by 8-66% for a body mass index of 30-40 (33 137 men, 2947 deaths, 13 studies), but the 95% confidence intervals were wide. These associations did not differ in most predefined subgroups by study design, number of deaths, anthropometric assessment, follow-up time, geographical location, prostate cancer risk group, and adjustment variables. No associations were found in meta-analyses between 10 cm increases in waist circumference and all cause mortality or mortality specific to prostate cancer, but only three studies were available. The few studies with data on change in weight, waist-to-hip ratio, and subcutaneous and visceral adipose tissue reported conflicting results. Conclusions This review suggests that patients with prostate cancer might benefit from maintaining a healthy weight and avoiding obesity. Future studies should investigate adiposity across different stages of cancer survivorship and use various parameters for distribution of adipose tissue. Systematic review registration Open Science Framework https://osf.io/qp3c4.
Collapse
Affiliation(s)
- Margarita Cariolou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Georgios Markozannes
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Nerea Becerra-Tomás
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Rita Vieira
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Katia Balducci
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Nutrition, Oslo New University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - David C Muller
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Doris S M Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| |
Collapse
|
61
|
Setiawan T, Sari IN, Wijaya YT, Julianto NM, Muhammad JA, Lee H, Chae JH, Kwon HY. Cancer cachexia: molecular mechanisms and treatment strategies. J Hematol Oncol 2023; 16:54. [PMID: 37217930 DOI: 10.1186/s13045-023-01454-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Muscle wasting is a consequence of physiological changes or a pathology characterized by increased catabolic activity that leads to progressive loss of skeletal muscle mass and strength. Numerous diseases, including cancer, organ failure, infection, and aging-associated diseases, are associated with muscle wasting. Cancer cachexia is a multifactorial syndrome characterized by loss of skeletal muscle mass, with or without the loss of fat mass, resulting in functional impairment and reduced quality of life. It is caused by the upregulation of systemic inflammation and catabolic stimuli, leading to inhibition of protein synthesis and enhancement of muscle catabolism. Here, we summarize the complex molecular networks that regulate muscle mass and function. Moreover, we describe complex multi-organ roles in cancer cachexia. Although cachexia is one of the main causes of cancer-related deaths, there are still no approved drugs for cancer cachexia. Thus, we compiled recent ongoing pre-clinical and clinical trials and further discussed potential therapeutic approaches for cancer cachexia.
Collapse
Affiliation(s)
- Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Nadya Marcelina Julianto
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Jabir Aliyu Muhammad
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyeok Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ji Heon Chae
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
| |
Collapse
|
62
|
Han J, Liu X, Tang M, Yang F, Ding Z, Wu G. Abdominal fat and muscle distributions in different stages of colorectal cancer. BMC Cancer 2023; 23:279. [PMID: 36978044 PMCID: PMC10044362 DOI: 10.1186/s12885-023-10736-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The purpose of this study is to explore the difference of abdominal fat and muscle composition, especially subcutaneous and visceral adipose tissue, in different stages of colorectal cancer (CRC). MATERIALS AND METHODS Patients were divided into 4 groups: healthy controls (patients without colorectal polyp), polyp group (patients with colorectal polyp), cancer group (CRC patients without cachexia), and cachexia group (CRC patients with cachexia). Skeletal muscle (SM), subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and intermuscular adipose tissue (IMAT) were assessed at the third lumbar level on computed tomography images obtained within 30 days before colonoscopy or surgery. One-way ANOVA and linear regression were used to analyze the difference of abdominal fat and muscle composition in different stages of CRC. RESULTS A total of 1513 patients were divided into healthy controls, polyp group, cancer group, and cachexia group, respectively. In the development of CRC from normal mucosa to polyp and cancer, the VAT area of the polyp group was significantly higher than that of the healthy controls both in male (156.32 ± 69.71 cm2 vs. 141.97 ± 79.40 cm2, P = 0.014) and female patients (108.69 ± 53.95 cm2 vs. 96.28 ± 46.70 cm2, P = 0.044). However, no significant differences were observed of SAT area between polyp group and healthy controls in both sexes. SAT area decreased significantly in the male cancer group compared with the polyp group (111.16 ± 46.98 cm2 vs. 126.40 ± 43.52 cm2, P = 0.001), while no such change was observed in female patients. When compared with healthy controls, the SM, IMAT, SAT, and VAT areas of cachexia group was significantly decreased by 9.25 cm2 (95% CI: 5.39-13.11 cm2, P < 0.001), 1.93 cm2 (95% CI: 0.54-3.32 cm2, P = 0.001), 28.84 cm2 (95% CI: 17.84-39.83 cm2, P < 0.001), and 31.31 cm2 (95% CI: 18.12-44.51 cm2, P < 0.001) after adjusting for age and gender. CONCLUSION Abdominal fat and muscle composition, especially SAT and VAT, was differently distributed in different stages of CRC. It is necessary to pay attention to the different roles of subcutaneous and visceral adipose tissue in the development of CRC.
Collapse
Affiliation(s)
- Jun Han
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Clinical Nutrition Research Center, Shanghai, China
| | - Xinyang Liu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Tang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fan Yang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zuoyou Ding
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Clinical Nutrition Research Center, Shanghai, China.
| |
Collapse
|
63
|
Nicotinamide Adenine Dinucleotide Precursor Suppresses Hepatocellular Cancer Progression in Mice. Nutrients 2023; 15:nu15061447. [PMID: 36986177 PMCID: PMC10055624 DOI: 10.3390/nu15061447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Targeting Nicotinamide adenine dinucleotide (NAD) metabolism has emerged as a promising anti-cancer strategy; we aimed to explore the health benefits of boosting NAD levels with nicotinamide riboside (NR) on hepatocellular carcinoma (HCC). We established three in vivo tumor models, including subcutaneous transplantation tumor model in both Balb/c nude mice (xenograft), C57BL/6J mice (allograft), and hematogenous metastatic neoplasm in nude mice. NR (400 mg/kg bw) was supplied daily in gavage. In-situ tumor growth or noninvasive bioluminescence were measured to evaluate the effect of NR on the HCC process. HepG2 cells were treated with transforming growth factor-β (TGF-β) in the absence/presence of NR in vitro. We found that NR supplementation alleviated malignancy-induced weight loss and metastasis to lung in nude mice in both subcutaneous xenograft and hematogenous metastasis models. NR supplementation decreased metastasis to the bone and liver in the hematogenous metastasis model. NR supplementation also significantly decreased the size of allografted tumors and extended the survival time in C57BL/6J mice. In vitro experiments showed that NR intervention inhibited the migration and invasion of HepG2 cells triggered by TGF-β. In summary, our results supply evidence that boosting NAD levels by supplementing NR alleviates HCC progression and metastasis, which may serve as an effective treatment for the suppression of HCC progression.
Collapse
|
64
|
Yao QY, Zhou J, Yao Y, Xue JS, Guo YC, Jian WZ, Zhang RW, Qiu XY, Zhou TY. An integrated PK/PD model investigating the impact of tumor size and systemic safety on animal survival in SW1990 pancreatic cancer xenograft. Acta Pharmacol Sin 2023; 44:465-474. [PMID: 35953645 PMCID: PMC9889390 DOI: 10.1038/s41401-022-00960-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023]
Abstract
Survival is one of the most important endpoints in cancer therapy, and parametric survival analysis could comprehensively reveal the overall result of disease progression, drug efficacy, toxicity as well as their interactions. In this study we investigated the efficacy and toxicity of dexamethasone (DEX) combined with gemcitabine (GEM) in pancreatic cancer xenograft. Nude mice bearing SW1990 pancreatic cancer cells derived tumor were treated with DEX (4 mg/kg, i.g.) and GEM (15 mg/kg, i.v.) alone or in combination repeatedly (QD, Q3D, Q7D) until the death of animal or the end of study. Tumor volumes and net body weight (NBW) were assessed every other day. Taking NBW as a systemic safety indicator, an integrated pharmacokinetic/pharmacodynamic (PK/PD) model was developed to quantitatively describe the impact of tumor size and systemic safety on animal survival. The PK/PD models with time course data for tumor size and NBW were established, respectively, in a sequential manner; a parametric time-to-event (TTE) model was also developed based on the longitudinal PK/PD models to describe the survival results of the SW1990 tumor-bearing mice. These models were evaluated and externally validated. Only the mice with good tumor growth inhibition and relatively stable NBW had an improved survival result after DEX and GEM combination therapy, and the simulations based on the parametric TTE model showed that NBW played more important role in animals' survival compared with tumor size. The established model in this study demonstrates that tumor size was not always the most important reason for cancer-related death, and parametric survival analysis together with safety issues was also important in the evaluation of oncology therapies in preclinical studies.
Collapse
Affiliation(s)
- Qing-Yu Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Ye Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun-Sheng Xue
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yu-Chen Guo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wei-Zhe Jian
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ren-Wei Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiao-Yan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Tian-Yan Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
65
|
Raffin J, Rolland Y, Parini A, Lucas A, Guyonnet S, Vellas B, de Souto Barreto P. Association between physical activity, growth differentiation factor 15 and bodyweight in older adults: A longitudinal mediation analysis. J Cachexia Sarcopenia Muscle 2023. [PMID: 36999490 PMCID: PMC10067491 DOI: 10.1002/jcsm.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/10/2022] [Accepted: 11/27/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Late-life aging is often associated with appetite reduction and weight loss. Physical activity (PA) may prevent these processes, but the molecular mechanisms involved remain elusive. The present study investigated the putative mediating aspect of growth differentiation factor 15 (GDF-15), a stress signalling protein involved in aging, exercise and appetite control, on the association between PA and late-life-associated weight loss. METHODS One thousand eighty-three healthy adults (63.8% women) aged 70 years and over who participated in the Multidomain Alzheimer Preventive Trial were included. Bodyweight (kg) and PA levels (square root of metabolic equivalent of task-min/week) were assessed repeatedly from baseline to the 3-year visit, whereas plasma GDF-15 (pg/mL) was measured at the 1-year visit. Multiple linear regressions were performed to test the association between first-year mean PA level, 1-year visit GDF-15 concentration and subsequent bodyweight changes. Mediation analyses were used to investigate whether GDF-15 mediated the association between first-year mean PA levels and consecutive bodyweight changes. RESULTS Multiple regression analyses demonstrated that higher first-year mean PA levels significantly predicted lower GDF-15 and bodyweight at 1 year (B = -2.22; SE = 0.79; P = 0.005). In addition, higher 1-year visit GDF-15 levels were associated with faster subsequent bodyweight loss (Time × GDF-15 interaction B = -0.0004; SE = 0.0001; P = 0.003). Mediation analyses confirmed that GDF-15 mediated the association between first-year mean PA levels and subsequent bodyweight changes (mediated effect ab = 0.0018; bootstrap SE = 0.001; P < 0.05) and revealed that mean PA had no direct effect on subsequent bodyweight changes (c' = 0.006; SE = 0.008; P > 0.05). CONCLUSIONS This study suggests that GDF-15 may be one of the molecules mediating the link between PA and late-life weight loss, but mechanistic studies are necessary to further support the present findings.
Collapse
Affiliation(s)
- Jérémy Raffin
- Gérontopôle de Toulouse, Institut du VieillissementCentre Hospitalo‐Universitaire de ToulouseToulouseFrance
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du VieillissementCentre Hospitalo‐Universitaire de ToulouseToulouseFrance
- CERPOP UMR 1295, University of Toulouse III, Inserm, UPSToulouseFrance
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases, UMR1048Toulouse Cedex 4France
- Paul Sabatier UniversityToulouse Cedex 9France
| | - Alexandre Lucas
- Institute of Metabolic and Cardiovascular Diseases, UMR1048Toulouse Cedex 4France
- Paul Sabatier UniversityToulouse Cedex 9France
| | - Sophie Guyonnet
- Gérontopôle de Toulouse, Institut du VieillissementCentre Hospitalo‐Universitaire de ToulouseToulouseFrance
- CERPOP UMR 1295, University of Toulouse III, Inserm, UPSToulouseFrance
| | - Bruno Vellas
- Gérontopôle de Toulouse, Institut du VieillissementCentre Hospitalo‐Universitaire de ToulouseToulouseFrance
- CERPOP UMR 1295, University of Toulouse III, Inserm, UPSToulouseFrance
| | - Philipe de Souto Barreto
- Gérontopôle de Toulouse, Institut du VieillissementCentre Hospitalo‐Universitaire de ToulouseToulouseFrance
- CERPOP UMR 1295, University of Toulouse III, Inserm, UPSToulouseFrance
| | | |
Collapse
|
66
|
Panebianco C, Villani A, Potenza A, Favaro E, Finocchiaro C, Perri F, Pazienza V. Targeting Gut Microbiota in Cancer Cachexia: Towards New Treatment Options. Int J Mol Sci 2023; 24:ijms24031849. [PMID: 36768173 PMCID: PMC9916111 DOI: 10.3390/ijms24031849] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer cachexia is a complex multifactorial syndrome whose hallmarks are weight loss due to the wasting of muscle tissue with or without the loss of adipose tissue, anorexia, systemic inflammation, and multi-organ metabolic alterations, which negatively impact patients' response to anticancer treatments, quality of life, and overall survival. Despite its clinical relevance, cancer cachexia often remains an underestimated complication due to the lack of rigorous diagnostic and therapeutic pathways. A number of studies have shown alterations in gut microbiota diversity and composition in association with cancer cachexia markers and symptoms, thus supporting a central role for dysbiosis in the pathogenesis of this syndrome. Different tools of microbiota manipulation, including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, have been investigated, demonstrating encouraging improvements in cachexia outcomes. Albeit pioneering, these studies pave the way for future research with the aim of exploring the role of gut microbiota in cancer cachexia more deeply and setting up effective microbiota-targeting interventions to be translated into clinical practice.
Collapse
Affiliation(s)
- Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, Italy
| | - Annacandida Villani
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, Italy
| | - Adele Potenza
- Dietetic and Clinical Nutrition Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, Italy
| | - Enrica Favaro
- Department of Medical Science, University of Turin, 10124 Turin, Italy
| | - Concetta Finocchiaro
- Department of Clinical Nutrition, Città della Salute e della Scienza, 10126 Turin, Italy
| | - Francesco Perri
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, Italy
- Correspondence:
| |
Collapse
|
67
|
Abstract
Skeletal muscle plays a paramount role in physical activity, metabolism, and energy balance, while its homeostasis is being challenged by multiple unfavorable factors such as injury, aging, or obesity. Exosomes, a subset of extracellular vesicles, are now recognized as essential mediators of intercellular communication, holding great clinical potential in the treatment of skeletal muscle diseases. Herein, we outline the recent research progress in exosomal isolation, characterization, and mechanism of action, and emphatically discuss current advances in exosomes derived from multiple organs and tissues, and engineered exosomes regarding the regulation of physiological and pathological development of skeletal muscle. These remarkable advances expand our understanding of myogenesis and muscle diseases. Meanwhile, the engineered exosome, as an endogenous nanocarrier combined with advanced design methodologies of biomolecules, will help to open up innovative therapeutic perspectives for the treatment of muscle diseases.
Collapse
|
68
|
Ruan GT, Song MM, Zhang KP, Xie HL, Zhang Q, Zhang X, Tang M, Zhang XW, Ge YZ, Yang M, Zhu LC, Shi HP. A novel nutrition-related nomogram for the survival prediction of colorectal cancer-results from a multicenter study. Nutr Metab (Lond) 2023; 20:2. [PMID: 36600242 DOI: 10.1186/s12986-022-00719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Precisely predicting the short- and long-term survival of patients with cancer is important. The tumor-node-metastasis (TNM) stage can accurately predict the long-term, but not short-term, survival of cancer. Nutritional status can affect the individual status and short-term outcomes of patients with cancer. Our hypothesis was that incorporating TNM stage and nutrition-related factors into one nomogram improves the survival prediction for patients with colorectal cancer (CRC). METHOD This multicenter prospective primary cohort included 1373 patients with CRC, and the internal validation cohort enrolled 409 patients with CRC. Least absolute shrinkage and selection operator regression analyses were used to select prognostic indicators and develop a nomogram. The concordance (C)-index, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) were used to assess the prognostic discriminative ability of the nomogram, TNM stage, Patient-Generated Subjective Global Assessment (PGSGA), and TNM stage + PGSGA models. The overall survival (OS) curve of risk group stratification was calculated based on the nomogram risk score. RESULTS TNM stage, radical resection, reduced food intake, activities and function declined, and albumin were selected to develop the nomogram. The C-index and calibration plots of the nomogram showed good discrimination and consistency for CRC. Additionally, the ROC curves and DCA of the nomogram showed better survival prediction abilities in CRC than the other models. The stratification curves of the different risk groups of the different TNM categories were significantly different. CONCLUSION The novel nomogram showed good short- and long-term outcomes of OS in patients with CRC. This model provides a personalized and convenient prognostic prediction tool for clinical applications.
Collapse
Affiliation(s)
- Guo-Tian Ruan
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Meng-Meng Song
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Kang-Ping Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Hai-Lun Xie
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Qi Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Xi Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Meng Tang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Xiao-Wei Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Yi-Zhong Ge
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Ming Yang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Li-Chen Zhu
- Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China. .,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China.
| |
Collapse
|
69
|
Lefevre C, Bindels LB. Role of the Gut Microbiome in Skeletal Muscle Physiology and Pathophysiology. Curr Osteoporos Rep 2022; 20:422-432. [PMID: 36121571 DOI: 10.1007/s11914-022-00752-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the recent findings about the contribution of the gut microbiome to muscle pathophysiology and discuss molecular pathways that may be involved in such process. Related findings in the context of cancer cachexia are outlined. RECENT FINDINGS Many bacterial metabolites have been reported to exert a beneficial or detrimental impact on muscle physiology. Most of the evidence concentrates on short-chain fatty acids (SCFAs), with an emerging role for bile acids, bacterial amino acid metabolites (bAAms), and bacterial polyphenol metabolites. Other molecular players worth considering include cytokines, hormones, lipopolysaccharides, and quorum sensing molecules. The current literature clearly establishes the ability for the gut microbiome to modulate muscle function and mass. The understanding of the mechanisms underlying this gut-muscle axis may lead to the delivery of novel therapeutic tools to tackle muscle wasting in cancer cachexia, chronic kidney disease, liver fibrosis, and age-related sarcopenia.
Collapse
Affiliation(s)
- Camille Lefevre
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.11, 1200, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.11, 1200, Brussels, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Avenue Pasteur 6, 1300, Wavre, Belgium.
| |
Collapse
|
70
|
Yin L, Cui J, Lin X, Li N, Fan Y, Zhang L, Liu J, Chong F, Wang C, Liang T, Liu X, Deng L, Yang M, Yu J, Wang X, Cong M, Li Z, Weng M, Yao Q, Jia P, Guo Z, Li W, Song C, Shi H, Xu H. Identifying cancer cachexia in patients without weight loss information: machine learning approaches to address a real-world challenge. Am J Clin Nutr 2022; 116:1229-1239. [PMID: 36095136 DOI: 10.1093/ajcn/nqac251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Diagnosing cancer cachexia relies extensively on patient-reported historic weight, and failure to accurately recall this information can lead to severe underestimation of cancer cachexia. OBJECTIVES The present study aimed to develop inexpensive tools to facilitate the identification of cancer cachexia in patients without weight loss information. METHODS This multicenter cohort study included 12,774 patients with cancer. Cachexia was retrospectively diagnosed using Fearon et al.'s framework. Baseline clinical features, excluding weight loss, were modeled to mimic a situation where the patient is unable to recall their weight history. Multiple machine learning (ML) models were trained using 75% of the study cohort to predict cancer cachexia, with the remaining 25% of the cohort used to assess model performance. RESULTS The study enrolled 6730 males and 6044 females (median age = 57.5 y). Cachexia was diagnosed in 5261 (41.2%) patients and most diagnoses were made based on the weight loss criterion. A 15-variable logistic regression (LR) model mainly comprising cancer types, gastrointestinal symptoms, tumor stage, and serum biochemistry indexes was selected among the various ML models. The LR model showed good performance for predicting cachexia in the validation data (AUC = 0.763; 95% CI: 0.747, 0.780). The calibration curve of the model demonstrated good agreement between predictions and actual observations (accuracy = 0.714, κ = 0.396, sensitivity = 0.580, specificity = 0.808, positive predictive value = 0.679, negative predictive value = 0.733). Subgroup analyses showed that the model was feasible in patients with different cancer types. The model was deployed as an online calculator and a nomogram, and was exported as predictive model markup language to permit flexible, individualized risk calculation. CONCLUSIONS We developed an ML model that can facilitate the identification of cancer cachexia in patients without weight loss information, which might improve decision-making and lead to the development of novel management strategies in cancer care. This trial was registered at https://www.chictr.org.cn as ChiCTR1800020329.
Collapse
Affiliation(s)
- Liangyu Yin
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China; Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Lin
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Na Li
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yang Fan
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ling Zhang
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Liu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Feifei Chong
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tingting Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiangliang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Li Deng
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mei Yang
- Department of Medical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Jiami Yu
- Department of Medical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Xiaojie Wang
- Department of Medical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Minghua Cong
- Department of Comprehensive Oncology, National Cancer Center or Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zengning Li
- Department of Clinical Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Weng
- Department of Clinical Nutrition, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qinghua Yao
- Department of Integrated Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Pingping Jia
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Zengqing Guo
- Department of Medical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chunhua Song
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China.
| | - Hongxia Xu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
71
|
Jin X, Xu XT, Tian MX, Dai Z. Omega-3 polyunsaterated fatty acids improve quality of life and survival, but not body weight in cancer cachexia: A systematic review and meta-analysis of controlled trials. Nutr Res 2022; 107:165-178. [PMID: 36283229 DOI: 10.1016/j.nutres.2022.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 12/27/2022]
Abstract
Several clinical trials have reported that patients with cancer cachexia can benefit from n-3 polyunsaturated fatty acids (n-3 PUFAs) supplements; however, the results have been conflicting. This systematic review and meta-analysis aimed to evaluate the effect of n-3 PUFAs on cancer cachexia. A search of the PubMed, Embase, and Cochrane Library databases was performed to identify the included randomized controlled trials. Trials including patients with cancer cachexia who were administered a course of n-3 PUFAs were included. A meta-analysis on body weight, lean body weight, proinflammatory factors, quality of life, and median duration of survival was conducted. A total of 12 randomized controlled trials with 1184 patients were included. No effect on body weight (standard mean difference [SMD], 0.10; 95% CI, -0.06 to 0.26; P = .236), lean body weight (SMD, -0.17; 95% CI, -0.36 to 0.03, P = .095), or proinflammatory factors (interleukin-6: SMD, 0.31; 95% CI, -0.14 to 0.75; P = .18; tumor necrosis factor-α: SMD, -0.85; 95% CI, -2.39 to 0.69; P = .28) was observed. The use of n-3 PUFAs was associated with a significant improvement in quality of life (SMD, 0.70; 95% CI, 0.01-1.40; P = .048) and median duration of survival (median survival ratio, 1.10; 95% CI, 1.02-1.19; P = .014). For patients with cancer cachexia, our meta-analysis indicated that n-3 PUFAs improved quality of life and survival, but not body weight.
Collapse
Affiliation(s)
- Xin Jin
- Department of Clinical Nutrition, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xin-Tian Xu
- Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng-Xing Tian
- Department of Clinical Nutrition, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhu Dai
- Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
72
|
Wei L, Wang R, Wazir J, Lin K, Song S, Li L, Pu W, Zhao C, Wang Y, Su Z, Wang H. 2-Deoxy-D-glucose Alleviates Cancer Cachexia-Induced Muscle Wasting by Enhancing Ketone Metabolism and Inhibiting the Cori Cycle. Cells 2022; 11:cells11192987. [PMID: 36230949 PMCID: PMC9562633 DOI: 10.3390/cells11192987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Cachexia is characterized by progressive weight loss accompanied by the loss of specific skeletal muscle and adipose tissue. Increased lactate production, either due to the Warburg effect from tumors or accelerated glycolysis effects from cachectic muscle, is the most dangerous factor for cancer cachexia. This study aimed to explore the efficiency of 2-deoxy-D-glucose (2-DG) in blocking Cori cycle activity and its therapeutic effect on cachexia-associated muscle wasting. A C26 adenocarcinoma xenograft model was used to study cancer cachectic metabolic derangements. Tumor-free lean mass, hindlimb muscle morphology, and fiber-type composition were measured after in vivo 2-DG administration. Activation of the ubiquitin-dependent proteasome pathway (UPS) and autophagic–lysosomal pathway (ALP) was further assessed. The cachectic skeletal muscles of tumor-bearing mice exhibited altered glucose and lipid metabolism, decreased carbohydrate utilization, and increased lipid β-oxidation. Significantly increased gluconeogenesis and decreased ketogenesis were observed in cachectic mouse livers. 2-DG significantly ameliorated cancer cachexia-associated muscle wasting and decreased cachectic-associated lean mass levels and fiber cross-sectional areas. 2-DG inhibited protein degradation-associated UPS and ALP, increased ketogenesis in the liver, and promoted ketone metabolism in skeletal muscle, thus enhancing mitochondrial bioenergetic capacity. 2-DG effectively prevents muscle wasting by increasing ATP synthesis efficiency via the ketone metabolic pathway and blocking the abnormal Cori cycle.
Collapse
Affiliation(s)
- Lulu Wei
- Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Ranran Wang
- Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Junaid Wazir
- Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Kai Lin
- Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Shiyu Song
- Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Li Li
- Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Wenyuan Pu
- Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Chen Zhao
- Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yong Wang
- Medical School, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Zhonglan Su
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence: (Z.S.); (H.W.)
| | - Hongwei Wang
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence: (Z.S.); (H.W.)
| |
Collapse
|
73
|
Abstract
Cachexia is a complex wasting syndrome, accompanying a variety of end-stage chronic diseases, such as cancer, heart failure and human immunodeficiency virus (HIV) infection/acquired immunodeficiency syndrome (AIDS). It significantly affects patients' quality of life and survival. Multiple therapeutic approaches have been studied over time. However, despite promising results, no drug has been approved to date. In this review, we examine and discuss the available data on the therapeutic effects of androgens and selective androgen receptor modulators (SARMs) for cachexia.
Collapse
Affiliation(s)
- Luca Giovanelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100, Milan, Italy; Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, 20100, Milan, Italy; Department of Endocrinology, Diabetes & Metabolism, Newcastle-upon-Tyne Hospitals, NE1 4LP, UK.
| | - Richard Quinton
- Department of Endocrinology, Diabetes & Metabolism, Newcastle-upon-Tyne Hospitals, NE1 4LP, UK; Translational & Clinical Research Institute, University of Newcastle-upon-Tyne, NE1 3BZ, UK.
| |
Collapse
|
74
|
Zhang B, Bi Q, Huang S, Lv S, Zong X, Wang M, Ji X. Baoyuan Jiedu decoction alleviating cancer cachexia–Induced muscle atrophy by regulating muscle mitochondrial function in ApcMin/+ mice. Front Pharmacol 2022; 13:914597. [PMID: 36060011 PMCID: PMC9437209 DOI: 10.3389/fphar.2022.914597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer cachexia is a complex syndrome that leads to an ongoing loss of skeletal muscle mass in many malignant tumors. Our previous studies have evaluated the effectiveness of Baoyuan Jiedu decoction (BJD) in alleviating cancer-induced muscle atrophy. However, the mechanisms of BJD regulating muscle atrophy could not be fully understood. Therefore, we further investigated the mechanisms of BJD mitigating muscle atrophy both in an ApcMin/+ mouse model and the Lewis-conditioned medium–induced C2C12 myotube atrophy model. We confirmed the quality of BJD extracts by HPLC. In an In vivo study, body weight loss and muscle atrophy were alleviated with BJD treatment. GO analysis suggested that ATP metabolism and mitochondria were involved. The results of the electron microscope show that BJD treatment may have a healing effect on mitochondrial structure. Moreover, ATP content and mitochondrial numbers were improved with BJD treatment. Furthermore, both in vivo and in vitro, we demonstrated that the BJD treatment could improve mitochondrial function owing to the increased number of mitochondria, balanced dynamic, and regulation of the electron transport chain according to the protein and mRNA expressions. In addition, oxidative stress caused by mitochondrial dysfunction was ameliorated by BJD treatment in ApcMin/+ mice. Consequently, our study provides proof for BJD treatment alleviating cancer cachexia–induced muscle atrophy by modulating mitochondrial function in ApcMin/+ mice.
Collapse
Affiliation(s)
- Beiying Zhang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianyu Bi
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shengqi Huang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siyuan Lv
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Zong
- Weifang Nursing Vocational College, Weifang, China
| | - Mengran Wang
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuming Ji
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xuming Ji,
| |
Collapse
|
75
|
Jung CY, Kim HW, Han SH, Yoo TH, Kang SW, Park JT. Creatinine-cystatin C ratio and mortality in cancer patients: a retrospective cohort study. J Cachexia Sarcopenia Muscle 2022; 13:2064-2072. [PMID: 35478277 PMCID: PMC9397493 DOI: 10.1002/jcsm.13006] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 02/06/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Muscle wasting is prevalent in cancer patients, and early recognition of this phenomenon is important for risk stratification. Recent studies have suggested that the creatinine-cystatin C ratio may correlate with muscle mass in several patient populations. The association between creatinine-cystatin C ratio and survival was assessed in cancer patients. METHODS A total of 3060 patients who were evaluated for serum creatinine and cystatin C levels at the time of cancer diagnosis were included. The primary outcome was 6-month mortality. The 1-year mortality, and length of intensive care unit (ICU) and hospital stay were also evaluated. RESULTS The mean age was 61.6 ± 13.5 years, and 1409 patients (46.0%) were female. The median creatinine and cystatin C levels were 0.9 (interquartile range [IQR], 0.6-1.3) mg/dL and 1.0 (IQR, 0.8-1.5) mg/L, respectively, with a creatinine-cystatin C ratio range of 0.12-12.54. In the Cox proportional hazards analysis, an increase in the creatinine-cystatin C ratio was associated with a significant decrease in the 6-month mortality (per 1 creatinine-cystatin C ratio, hazard ratio [HR] 0.35; 95% confidence interval [CI], 0.28-0.44). When stratified into quartiles, the risk of 6-month mortality was significantly lower in the highest quartile (HR 0.30; 95% CI, 0.24-0.37) than in the lowest quartile. Analysis of 1-year mortality outcomes revealed similar findings. These associations were independent of confounding factors. The highest quartile was also associated with shorter lengths of ICU and hospital stay (both P < 0.001). CONCLUSIONS The creatinine-cystatin C ratio at the time of cancer diagnosis significantly associates with survival and hospitalization in cancer patients.
Collapse
Affiliation(s)
- Chan-Young Jung
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Hyung Woo Kim
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea.,Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea.,Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
76
|
Huang Q, Wu M, Wu X, Zhang Y, Xia Y. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188761. [PMID: 35850277 DOI: 10.1016/j.bbcan.2022.188761] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023]
Abstract
Physical exercise has gradually become a focus in cancer treatment due to its pronounced role in reducing cancer risk, enhancing therapeutic efficacy, and improving prognosis. In recent decades, skeletal muscles have been considered endocrine organs, exerting their biological functions via the endocrine, autocrine, and paracrine systems by secreting various types of myokines. The amount of myokines secreted varies depending on the intensity, type, and duration of exercise. Recent studies have shown that muscle-derived myokines are highly involved the effects of exercise on cancer. Multiple myokines, such as interleukin-6 (IL-6), oncostatin M (OSM), secreted protein acidic and rich in cysteine (SPARC), and irisin, directly mediate cancer progression by influencing the proliferation, apoptosis, stemness, drug resistance, metabolic reprogramming, and epithelial-mesenchymal transformation (EMT) of cancer cells. In addition, IL-6, interleukin-8 (IL-8), interleukin-15 (IL-15), brain-derived neurotrophic factor (BDNF), and irisin can improve obesity-induced inflammation by stimulating lipolysis of adipose tissues, promoting glucose uptake, and accelerating the browning of white fat. Furthermore, some myokines could regulate the tumor microenvironment, such as angiogenesis and the immune microenvironment. Cancer cachexia occurs in up to 80% of cancer patients and is responsible for 22%-30% of patient deaths. It is characterized by systemic inflammation and decreased muscle mass. Exercise-induced myokine production is important in regulating cancer cachexia. This review summarizes the roles and underlying mechanisms of myokines, such as IL-6, myostatin, IL-15, irisin, fibroblast growth factor 21 (FGF21) and musclin, in cancer cachexia. Through comprehensive analysis, we conclude that myokines are potential targets for inhibiting cancer progression and the associated cachexia.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China.
| |
Collapse
|
77
|
Liu CA, Zhang Q, Ruan GT, Shen LY, Xie HL, Liu T, Tang M, Zhang X, Yang M, Hu CL, Zhang KP, Liu XY, Shi HP. Novel Diagnostic and Prognostic Tools for Lung Cancer Cachexia: Based on Nutritional and Inflammatory Status. Front Oncol 2022; 12:890745. [PMID: 35898878 PMCID: PMC9309732 DOI: 10.3389/fonc.2022.890745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCachexia is one of the most common complications affecting lung cancer patients that seriously affects their quality-of-life and survival time. This study aimed to analyze the predictors and prognostic factors of lung cancer cachexia as well as to develop a convenient and accurate clinical prediction tool for oncologists.MethodsIn this multicenter cohort study, 4022 patients with lung cancer were retrospectively analyzed. The patients were randomly categorized into training and verification sets (7:3 ratio). Univariate and multivariate logistic regression analyses were performed to determine the risk factors of cachexia in patients with lung cancer. Cox regression analysis was applied to determine independent prognostic factors in the patients with lung cancer cachexia. Meanwhile, two nomograms were established and evaluated by time-dependent receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA).ResultsStage, serum albumin, ALI, anemia, and surgery were independent risk factors for cachexia in patients with lung cancer. Patients with lung cancer cachexia have a shorter survival time. Sex, stage, serum albumin, ALI, KPS score, and surgery served as independent prognostic factors for patients with lung cancer cachexia. The area under the curves (AUCs) of diagnostic nomogram in the training and validation sets were 0.702 and 0.688, respectively, the AUCs of prognostic nomogram in the training set for 1-, 3-, and 5-year were 0.70, 0.72, and 0.75, respectively, while in the validation set the AUCs were 0.71, 0.75, and 0.79, respectively. The calibration curves and DCA of the two nomograms were consistent and the clinical benefit rate was high.ConclusionCachexia brings an additional economic burden and worsens the prognosis of lung cancer patients. The two nomograms can accurately screen and predict the probability of occurrence of cachexia in lung cancer and the prognosis of patients with lung cancer cachexia, and guide clinical work.
Collapse
Affiliation(s)
- Chen-An Liu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Qi Zhang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Guo-Tian Ruan
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Liu-Yi Shen
- Department of Pathology and Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, China
| | - Hai-Lun Xie
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Tong Liu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Meng Tang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Xi Zhang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Ming Yang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Chun-Lei Hu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Kang-Ping Zhang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Xiao-Yue Liu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer Food for Special Medical Purposes (FSMP) for State Market Regulation, Beijing, China
- *Correspondence: Han-Ping Shi,
| |
Collapse
|
78
|
Issa M, Tang J, Guo Y, Coss C, Mace TA, Bischof J, Phelps M, Presley CJ, Owen DH. Risk factors and predictors of immune-related adverse events: implications for patients with non-small cell lung cancer. Expert Rev Anticancer Ther 2022; 22:861-874. [PMID: 35786142 DOI: 10.1080/14737140.2022.2094772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICI) are now utilized as a standard of care treatment for multiple cancers, including in both the metastatic setting as well as in earlier stages of disease. The identification of unique immune-related adverse events (irAE) that occur during ICI treatment has led to intense research to identify potential risk factors and biomarkers that may assist in clinical decision making. Although initial studies in ICI were primarily in advanced stage disease, the use of ICI in earlier stages of disease as adjuvant therapies requires a better understanding of patient risk stratification to mitigate or prevent serious irAE. AREAS COVERED In this review, we set out to describe the current state of research regarding potential risk factors for irAE in patients with non-small cell lung cancer, as well as explore the barriers to understanding irAE. We review data from irAE that occur in large phase 3 trials and prospective studies focusing on irAE, as well as the many retrospective studies that currently form the bulk of our understanding of irAE.
Collapse
Affiliation(s)
- Majd Issa
- Division of Medical Oncology, Department of Internal Medicine, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| | - Joy Tang
- Division of Medical Oncology, Department of Internal Medicine, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| | - Yizhen Guo
- College of Pharmacy, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| | - Chris Coss
- College of Pharmacy, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| | - Thomas A Mace
- Division of Gastroenterology, Hepatology & Nutrition, Department of Internal Medicine, the Ohio State University Wexner Medical Center, Columbus, USA
| | - Jason Bischof
- Department of Emergency Medicine, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| | - Mitch Phelps
- College of Pharmacy, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| | - Carolyn J Presley
- Division of Medical Oncology, Department of Internal Medicine, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| | - Dwight H Owen
- Division of Medical Oncology, Department of Internal Medicine, the Ohio State University Wexner Medical Center - Comprehensive Cancer Center, Columbus, USA
| |
Collapse
|
79
|
Chen MM, Meng LH. The double faced role of xanthine oxidoreductase in cancer. Acta Pharmacol Sin 2022; 43:1623-1632. [PMID: 34811515 PMCID: PMC9253144 DOI: 10.1038/s41401-021-00800-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023]
Abstract
Xanthine oxidoreductase (XOR) is a critical, rate-limiting enzyme that controls the last two steps of purine catabolism by converting hypoxanthine to xanthine and xanthine to uric acid. It also produces reactive oxygen species (ROS) during the catalytic process. The enzyme is generally recognized as a drug target for the therapy of gout and hyperuricemia. The catalytic products uric acid and ROS act as antioxidants or oxidants, respectively, and are involved in pro/anti-inflammatory actions, which are associated with various disease manifestations, including metabolic syndrome, ischemia reperfusion injury, cardiovascular disorders, and cancer. Recently, extensive efforts have been devoted to understanding the paradoxical roles of XOR in tumor promotion. Here, we summarize the expression of XOR in different types of cancer and decipher the dual roles of XOR in cancer by its enzymatic or nonenzymatic activity to provide an updated understanding of the mechanistic function of XOR in cancer. We also discuss the potential to modulate XOR in cancer therapy.
Collapse
Affiliation(s)
- Man-man Chen
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ling-hua Meng
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
80
|
Which anthropometric measurement is better for predicting survival of patients with cancer cachexia? Br J Nutr 2022; 127:1849-1857. [PMID: 34325763 DOI: 10.1017/s0007114521002853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
No relevant studies have yet been conducted to explore which measurement can best predict the survival time of patients with cancer cachexia. This study aimed to identify an anthropometric measurement that could predict the 1-year survival of patients with cancer cachexia. We conducted a nested case-control study using data from a multicentre clinical investigation of cancer from 2013 to 2020. Cachexia was defined using the Fearon criteria. A total of 262 patients who survived less than 1 year and 262 patients who survived more than 1 year were included in this study. Six candidate variables were selected based on clinical experience and previous studies. Five variables, BMI, mid-arm circumference, mid-arm muscle circumference, calf circumference and triceps skin fold (TSF), were selected for inclusion in the multivariable model. In the conditional logistic regression analysis, TSF (P = 0·014) was identified as a significant independent protective factor. A similar result was observed in all patients with cancer cachexia (n 3084). In addition, a significantly stronger positive association between TSF and the 1-year survival of patients with cancer cachexia was observed in participants aged > 65 years (OR: 0·94; 95 % CI 0·89, 0·99) than in those aged ≤ 65 years (OR: 0·96; 95 % CI 0·93, 0·99; Pinteraction = 0·013) and in participants with no chronic disease (OR: 0·92; 95 % CI 0·87, 0·97) than in those with chronic disease (OR: 0·97; 95 % CI 0·94, 1·00; Pinteraction = 0·049). According to this study, TSF might be a good anthropometric measurement for predicting 1-year survival in patients with cancer cachexia.
Collapse
|
81
|
Martin A, Castells J, Allibert V, Emerit A, Zolotoff C, Cardot-Ruffino V, Gallot YS, Vernus B, Chauvet V, Bartholin L, Schaeffer L, Durieux AC, Hourdé C, Favier FB, Mazelin L, Freyssenet D. Hypothalamic-pituitary-adrenal axis activation and glucocorticoid-responsive gene expression in skeletal muscle and liver of Apc mice. J Cachexia Sarcopenia Muscle 2022; 13:1686-1703. [PMID: 35277933 PMCID: PMC9178358 DOI: 10.1002/jcsm.12939] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer patients at advanced stages experience a severe depletion of skeletal muscle compartment together with a decrease in muscle function, known as cancer cachexia. Cachexia contributes to reducing quality of life, treatment efficiency, and lifespan of cancer patients. However, the systemic nature of the syndrome is poorly documented. Here, we hypothesize that glucocorticoids would be important systemic mediators of cancer cachexia. METHODS To explore the role of glucocorticoids during cancer cachexia, biomolecular analyses were performed on several tissues (adrenal glands, blood, hypothalamus, liver, and skeletal muscle) collected from ApcMin/+ male mice, a mouse model of intestine and colon cancer, aged of 13 and 23 weeks, and compared with wild type age-matched C57BL/6J littermates. RESULTS Twenty-three-week-old Apc mice recapitulated important features of cancer cachexia including body weight loss (-16%, P < 0.0001), muscle atrophy (gastrocnemius muscle: -53%, P < 0.0001), and weakness (-50% in tibialis anterior muscle force, P < 0.0001), increased expression of atrogens (7-fold increase in MuRF1 transcript level, P < 0.0001) and down-regulation of Akt-mTOR pathway (3.3-fold increase in 4EBP1 protein content, P < 0.0001), together with a marked transcriptional rewiring of hepatic metabolism toward an increased expression of gluconeogenic genes (Pcx: +90%, Pck1: +85%), and decreased expression of glycolytic (Slc2a2: -40%, Gk: -30%, Pklr: -60%), ketogenic (Hmgcs2: -55%, Bdh1: -80%), lipolytic/fatty oxidation (Lipe: -50%, Mgll: -60%, Cpt2: -60%, Hadh: -30%), and lipogenic (Acly: -30%, Acacb: -70%, Fasn: -45%) genes. The hypothalamic pituitary-adrenal axis was activated, as evidenced by the increase in the transcript levels of genes encoding corticotropin-releasing hormone in the hypothalamus (2-fold increase, P < 0.01), adrenocorticotropic hormone receptor (3.4-fold increase, P < 0.001), and steroid biosynthesis enzymes (Cyp21a1, P < 0.0001, and Cyp11b1, P < 0.01) in the adrenal glands, as well as by the increase in corticosterone level in the serum (+73%, P < 0.05), skeletal muscle (+17%, P < 0.001), and liver (+24%, P < 0.05) of cachectic 23-week-old Apc mice. A comparative transcriptional analysis with dexamethasone-treated C57BL/6J mice indicated that the activation of the hypothalamic-pituitary-adrenal axis in 23-week-old ApcMin/+ mice was significantly associated with the transcription of glucocorticoid-responsive genes in skeletal muscle (P < 0.05) and liver (P < 0.001). The transcriptional regulation of glucocorticoid-responsive genes was also observed in the gastrocnemius muscle of Lewis lung carcinoma tumour-bearing mice and in KPC mice (tibialis anterior muscle and liver). CONCLUSIONS These findings highlight the role of the hypothalamic-pituitary-adrenal-glucocorticoid pathway in the transcriptional regulation of skeletal muscle catabolism and hepatic metabolism during cancer cachexia. They also provide the paradigm for the design of new therapeutic strategies.
Collapse
Affiliation(s)
- Agnès Martin
- Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA7424, F-42023, Saint-Etienne, France
| | - Josiane Castells
- Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA7424, F-42023, Saint-Etienne, France
| | - Valentine Allibert
- Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA7424, F-42023, Saint-Etienne, France
| | - Andréa Emerit
- Institut NeuroMyoGene (INMG), Univ Lyon, Université Lyon 1, CNRS UMR 5310, INSERM U 1217, Lyon, France
| | - Cindy Zolotoff
- Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA7424, F-42023, Saint-Etienne, France
| | - Victoire Cardot-Ruffino
- Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Yann S Gallot
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Barbara Vernus
- Dynamique Musculaire et Métabolisme, Univ Montpellier, INRA, Montpellier, France
| | - Véronique Chauvet
- Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Laurent Bartholin
- Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Laurent Schaeffer
- Institut NeuroMyoGene (INMG), Univ Lyon, Université Lyon 1, CNRS UMR 5310, INSERM U 1217, Lyon, France
| | - Anne-Cécile Durieux
- Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA7424, F-42023, Saint-Etienne, France
| | - Christophe Hourdé
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, Le Bourget du Lac, France
| | - François B Favier
- Dynamique Musculaire et Métabolisme, Univ Montpellier, INRA, Montpellier, France
| | - Laetitia Mazelin
- Institut NeuroMyoGene (INMG), Univ Lyon, Université Lyon 1, CNRS UMR 5310, INSERM U 1217, Lyon, France
| | - Damien Freyssenet
- Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA7424, F-42023, Saint-Etienne, France
| |
Collapse
|
82
|
Li X, Du L, Liu Q, Lu Z. MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review). Exp Ther Med 2022; 24:446. [PMID: 35720622 PMCID: PMC9199081 DOI: 10.3892/etm.2022.11373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cachexia denotes a complex metabolic syndrome featuring severe loss of weight, fatigue and anorexia. In total, 50-80% of patients suffering from advanced cancer are diagnosed with cancer cachexia, which contributes to 40% of cancer-associated mortalities. MicroRNAs (miRNAs) are non-coding RNAs capable of regulating gene expression. Dysregulated miRNA expression has been observed in muscle tissue, adipose tissue and blood samples from patients with cancer cachexia compared with that of samples from patients with cancer without cachexia or healthy controls. In addition, miRNAs promote and maintain the malignant state of systemic inflammation, while inflammation contributes to cancer cachexia. The present review discusses the role of miRNAs in the progression of cancer cachexia, and assess their diagnostic value and potential therapeutic value.
Collapse
Affiliation(s)
- Xin Li
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Lidong Du
- Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Qiang Liu
- Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
83
|
Halin Bergström S, Lundholm M, Nordstrand A, Bergh A. Rat prostate tumors induce DNA synthesis in remote organs. Sci Rep 2022; 12:7908. [PMID: 35551231 PMCID: PMC9098422 DOI: 10.1038/s41598-022-12131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Advanced cancers induce systemic responses. However, if such systemic changes occur already when aggressive tumors are small, have not been thoroughly characterized. Here, we examined how localized prostate cancers of different sizes and metastatic potential affected DNA synthesis in the rest of the prostate and in various remote organs. Non-metastatic Dunning R-3327 G (G) tumor cells, metastatic MatLyLu (MLL) tumor cells, or vehicle were injected into the prostate of immunocompetent rats. All animals received daily injections of Bromodeoxyuridine (BrdU), to label cells/daughter cells with active DNA synthesis. Equal sized G- and MLL-tumors, similarly increased BrdU-labeling in the prostate, lymph nodes and liver compared to tumor-free controls. Prior to metastasis, MLL-tumors also increased BrdU-labeling in bone marrow and lungs compared to animals with G-tumors or controls. In animals with MLL-tumors, BrdU-labeling in prostate, lungs, brown adipose tissue and skeletal muscles increased in a tumor-size-dependent way. Furthermore, MLL-tumors induced increased signs of DNA damage (γH2AX staining) and accumulation of CD68 + macrophages in the lungs. In conclusion, small localized prostate cancers increased DNA synthesis in several remote tissues in a tumor type- and size-dependent way. This may suggest the possibility for early diagnosis of aggressive prostate cancer by examining tumor-induced effects in other tissues.
Collapse
Affiliation(s)
- Sofia Halin Bergström
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden.
| | - Marie Lundholm
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| | - Annika Nordstrand
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| |
Collapse
|
84
|
Graca FA, Rai M, Hunt LC, Stephan A, Wang YD, Gordon B, Wang R, Quarato G, Xu B, Fan Y, Labelle M, Demontis F. The myokine Fibcd1 is an endogenous determinant of myofiber size and mitigates cancer-induced myofiber atrophy. Nat Commun 2022; 13:2370. [PMID: 35501350 PMCID: PMC9061726 DOI: 10.1038/s41467-022-30120-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Decline in skeletal muscle cell size (myofiber atrophy) is a key feature of cancer-induced wasting (cachexia). In particular, atrophy of the diaphragm, the major muscle responsible for breathing, is an important determinant of cancer-associated mortality. However, therapeutic options are limited. Here, we have used Drosophila transgenic screening to identify muscle-secreted factors (myokines) that act as paracrine regulators of myofiber growth. Subsequent testing in mouse myotubes revealed that mouse Fibcd1 is an evolutionary-conserved myokine that preserves myofiber size via ERK signaling. Local administration of recombinant Fibcd1 (rFibcd1) ameliorates cachexia-induced myofiber atrophy in the diaphragm of mice bearing patient-derived melanoma xenografts and LLC carcinomas. Moreover, rFibcd1 impedes cachexia-associated transcriptional changes in the diaphragm. Fibcd1-induced signaling appears to be muscle selective because rFibcd1 increases ERK activity in myotubes but not in several cancer cell lines tested. We propose that rFibcd1 may help reinstate myofiber size in the diaphragm of patients with cancer cachexia.
Collapse
Affiliation(s)
- Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Brittney Gordon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
- Xenograft Core, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ruishan Wang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States.
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States.
| |
Collapse
|
85
|
Divella R, Gadaleta Caldarola G, Mazzocca A. Chronic Inflammation in Obesity and Cancer Cachexia. J Clin Med 2022; 11:2191. [PMID: 35456284 PMCID: PMC9027625 DOI: 10.3390/jcm11082191] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation has long been linked to obesity and related conditions such as type 2 diabetes and metabolic syndrome. According to current research, the increased risk of cancer in people with certain metabolic diseases may be due to chronic inflammation. Adipocytokines, which are pro-inflammatory cytokines secreted in excess, are elevated in many chronic metabolic diseases. Cytokines and inflammatory mediators, which are not directly linked to DNA, are important in tumorigenesis. Cachexia, a type of metabolic syndrome linked to the disease, is associated with a dysregulation of metabolic pathways. Obesity and cachexia have distinct metabolic characteristics, such as insulin resistance, increased lipolysis, elevated free fatty acids (FFA), and ceramide levels, which are discussed in this section. The goal of this research project is to create a framework for bringing together our knowledge of inflammation-mediated insulin resistance.
Collapse
Affiliation(s)
- Rosa Divella
- ASD Nordic Walking Apulia Lifestyle, Corso Giuseppe Di Vittorio 14, 70024 Gravina in Puglia, Italy
| | | | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
86
|
Li XR, Zhang Q, Zhang KP, Zhang X, Ruan GT, Song MM, Ge YZ, Zhang XW, Song CH, Shi HP. Associations of serum total bilirubin with survival outcomes in patients with cancer cachexia: A prospective, multicenter cohort study. Nutrition 2022; 102:111711. [DOI: 10.1016/j.nut.2022.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/26/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022]
|
87
|
Kim GT, Kim EY, Shin SH, Lee H, Lee SH, Park K, Sohn KY, Yoon SY, Kim JW. PLAG alleviates cisplatin-induced cachexia in lung cancer implanted mice. Transl Oncol 2022; 20:101398. [PMID: 35339890 PMCID: PMC8957043 DOI: 10.1016/j.tranon.2022.101398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
PLAG effectively relieves cachexia symptoms caused by chemotherapy. PLAG restores leg muscles atrophy by cisplatin to normal levels. PLAG returns cachexia-related elements modulated by cisplatin to normal levels. PLAG did not downregulate the anti-tumor effect of cisplatin.
Chemotherapy-induced cachexia has been a significant challenge to the successful treatment of cancer patients. Chemotherapy leads to loss of muscle, loss of appetite, and excessive weight loss, which makes these necessary treatments intolerable for most patients. Therefore, it is necessary to alleviate cachexia to successfully treat cancer patients. In this study, tumor-implanted mouse models administered cisplatin showed rapid weight loss and reduced feeding rate by the second week of treatment, and 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) effectively alleviated cisplatin-induced cachexia. In mice treated with cisplatin on a sacrificial day after 6 weeks, the weight of the two major leg muscles (quadriceps femoris and gastrocnemius) were reduced by up to 70%, but this muscle reduction was successfully prevented in the PLAG co-treatment group. The distribution and size of muscle fibers that appear in small units in cisplatin-treated mice were restored to normal levels by PLAG co-treatment. Furthermore, myostatin expression levels were upregulated by cisplatin, whereas myostatin decreased to normal levels with muscle recovery in the PLAG co-treated group. Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), which are commonly expressed in cachexia, were significantly increased in cisplatin-treated mice but were reduced to normal levels in PLAG co-treated mice. Glucose absorption, an indicator of muscle tissue activity, decreased with cisplatin treatment and recovered to normal levels with PLAG co-treatment. Overall, PLAG effectively alleviated cisplatin-induced cachexia symptoms and reduced tumor growth in tumor-implanted mice. These findings suggest PLAG may be a promising drug to alleviate cachexia in cancer patients receiving chemotherapy.
Collapse
Affiliation(s)
- Guen Tae Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Eun Young Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Su-Hyun Shin
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Hyowon Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Se Hee Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Kaapjoo Park
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Ki-Young Sohn
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Sun Young Yoon
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea.
| | - Jae Wha Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Kwahak-ro, Daejeon, South Korea.
| |
Collapse
|
88
|
Fram J, Vail C, Roy I. Assessment of Cancer-Associated Cachexia - How to Approach Physical Function Evaluation. Curr Oncol Rep 2022; 24:751-761. [PMID: 35305209 DOI: 10.1007/s11912-022-01258-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Cachexia is a devastating syndrome that impacts a majority of cancer patients. Early assessment of cachexia is critical to implementing cachexia treatments. Our aim was to summarize the existing cachexia assessment tools for their utility in both symptom and function evaluation. RECENT FINDINGS Several tools now exist that provide a symptom-based approach for evaluating weight change, appetite, and nutrition impact symptoms in cancer patients with cachexia. However, current instruments used to assess physical function changes related to cachexia are limited in depth and breadth. Instead, we recommend a tiered approach to cachexia-related functional assessment that involves evaluation of activities of daily living, general mobility, and exercise tolerance in a prioritized sequence. Current tools for cancer-associated cachexia assessment are adept at symptom evaluation. New approaches to physical function evaluation are needed that efficiently and broadly evaluate the diverse functional needs of cachexia patients.
Collapse
Affiliation(s)
- Julia Fram
- Shirley Ryan AbilityLab, 26th floor, 355 E. Erie St, Chicago, IL, 60611, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University Feinberg School of Medicine, 710 N Lake Shore Dr #1022, Chicago, IL, 60611, USA
| | - Caroline Vail
- Shirley Ryan AbilityLab, 26th floor, 355 E. Erie St, Chicago, IL, 60611, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University Feinberg School of Medicine, 710 N Lake Shore Dr #1022, Chicago, IL, 60611, USA
| | - Ishan Roy
- Shirley Ryan AbilityLab, 26th floor, 355 E. Erie St, Chicago, IL, 60611, USA.
- Department of Physical Medicine & Rehabilitation, Northwestern University Feinberg School of Medicine, 710 N Lake Shore Dr #1022, Chicago, IL, 60611, USA.
- Robert H. Lurie Cancer Center, 675 N St Clair St Fl 21 Ste 100, Chicago, IL, 60611, USA.
| |
Collapse
|
89
|
Saha S, Singh PK, Roy P, Kakar SS. Cardiac Cachexia: Unaddressed Aspect in Cancer Patients. Cells 2022; 11:cells11060990. [PMID: 35326441 PMCID: PMC8947289 DOI: 10.3390/cells11060990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Tumor-derived cachectic factors such as proinflammatory cytokines and neuromodulators not only affect skeletal muscle but also affect other organs, including the heart, in the form of cardiac muscle atrophy, fibrosis, and eventual cardiac dysfunction, resulting in poor quality of life and reduced survival. This article reviews the holistic approaches of existing diagnostic, pathophysiological, and multimodal therapeutic interventions targeting the molecular mechanisms that are responsible for cancer-induced cardiac cachexia. The major drivers of cardiac muscle wasting in cancer patients are autophagy activation by the cytokine-NFkB, TGF β-SMAD3, and angiotensin II-SOCE-STIM-Ca2+ pathways. A lack of diagnostic markers and standard treatment protocols hinder the early diagnosis of cardiac dysfunction and the initiation of preventive measures. However, some novel therapeutic strategies, including the use of Withaferin A, have shown promising results in experimental models, but Withaferin A’s effectiveness in human remains to be verified. The combined efforts of cardiologists and oncologists would help to identify cost effective and feasible solutions to restore cardiac function and to increase the survival potential of cancer patients.
Collapse
Affiliation(s)
- Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (S.S.); (P.K.S.)
| | - Praveen Kumar Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (S.S.); (P.K.S.)
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India;
| | - Sham S. Kakar
- Department of Physiology and Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
- Correspondence: ; Tel.: +1-(502)-852-0812
| |
Collapse
|
90
|
Bordignon C, dos Santos BS, Rosa DD. Impact of Cancer Cachexia on Cardiac and Skeletal Muscle: Role of Exercise Training. Cancers (Basel) 2022; 14:cancers14020342. [PMID: 35053505 PMCID: PMC8773522 DOI: 10.3390/cancers14020342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cachexia is a syndrome that can be present in many patients diagnosed with cancer, especially in those with metastatic or very advanced tumors. The patient may present with weight loss, loss of muscle mass, and even cardiac dysfunction as a result of it. The aim of this review is to understand how cachexia manifests and whether physical exercise has any role in trying to prevent or reverse this syndrome in cancer patients. Abstract Cachexia is a multifactorial syndrome that presents with, among other characteristics, progressive loss of muscle mass and anti-cardiac remodeling effect that may lead to heart failure. This condition affects about 80% of patients with advanced cancer and contributes to worsening patients’ tolerance to anticancer treatments and to their premature death. Its pathogenesis involves an imbalance in metabolic homeostasis, with increased catabolism and inflammatory cytokines levels, leading to proteolysis and lipolysis, with insufficient food intake. A multimodal approach is indicated for patients with cachexia, with the aim of reducing the speed of muscle wasting and improving their quality of life, which may include nutritional, physical, pharmacologic, and psychological support. This review aims to outline the mechanisms of muscle loss, as well as to evaluate the current clinical evidence of the use of physical exercise in patients with cachexia.
Collapse
Affiliation(s)
- Cláudia Bordignon
- Oncology Center, Hospital Moinhos de Vento, Porto Alegre 90560-030, Brazil;
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-070, Brazil
| | - Bethânia S. dos Santos
- Department of Clinical Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20560-121, Brazil;
- Rede D’Or São Luiz, Rio de Janeiro 22271-110, Brazil
| | - Daniela D. Rosa
- Oncology Center, Hospital Moinhos de Vento, Porto Alegre 90560-030, Brazil;
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-070, Brazil
- Brazilian Breast Cancer Study Group (GBECAM), Porto Alegre 90619-900, Brazil
- Correspondence:
| |
Collapse
|
91
|
Pereira MG, Voltarelli VA, Tobias GC, de Souza L, Borges GS, Paixão AO, de Almeida NR, Bowen TS, Demasi M, Miyabara EH, Brum PC. Aerobic Exercise Training and In Vivo Akt Activation Counteract Cancer Cachexia by Inducing a Hypertrophic Profile through eIF-2α Modulation. Cancers (Basel) 2021; 14:cancers14010028. [PMID: 35008195 PMCID: PMC8750332 DOI: 10.3390/cancers14010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Chronic disease-related muscle atrophy is a serious public health problem since it reduces mobility and contributes to increases in hospitalization costs. Unfortunately, there is no approved treatment for muscle wasting at present. Thus, an understanding of the mechanisms underlying the control of muscle mass and function under chronic diseases can pave the way for the discovery of innovative therapeutic strategies to counteract muscle wasting. Since numerous types of cancer induce cachexia, which has no cure nor an effective treatment, the main proposal here was to study the effects of AET in cancer cachexia, and to investigate, through in vivo manipulation of the Akt/mTORC1 pathway, whether the cachectic muscle still presents conditions to respond adaptively to hypertrophic stimuli. Our results could provide a basis for innovative research lines to better understand muscle plasticity and to investigate potential therapeutic approaches necessary to prevent muscle loss. Abstract Cancer cachexia is a multifactorial and devastating syndrome characterized by severe skeletal muscle mass loss and dysfunction. As cachexia still has neither a cure nor an effective treatment, better understanding of skeletal muscle plasticity in the context of cancer is of great importance. Although aerobic exercise training (AET) has been shown as an important complementary therapy for chronic diseases and associated comorbidities, the impact of AET on skeletal muscle mass maintenance during cancer progression has not been well documented yet. Here, we show that previous AET induced a protective mechanism against tumor-induced muscle wasting by modulating the Akt/mTORC1 signaling and eukaryotic initiation factors, specifically eIF2-α. Thereafter, it was determined whether the in vivo Akt activation would induce a hypertrophic profile in cachectic muscles. As observed for the first time, Akt-induced hypertrophy was able and sufficient to either prevent or revert cancer cachexia by modulating both Akt/mTORC1 pathway and the eIF-2α activation, and induced a better muscle functionality. These findings provide evidence that skeletal muscle tissue still preserves hypertrophic potential to be stimulated by either AET or gene therapy to counteract cancer cachexia.
Collapse
Affiliation(s)
- Marcelo G. Pereira
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
- Leeds School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
- Correspondence: (M.G.P.); (P.C.B.)
| | - Vanessa A. Voltarelli
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
- Sirio-Libanes Hospital, Sao Paulo 01308050, Brazil
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel C. Tobias
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lara de Souza
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
| | - Gabriela S. Borges
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
| | - Ailma O. Paixão
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
| | - Ney R. de Almeida
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
| | - Thomas Scott Bowen
- Leeds School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Marilene Demasi
- Biochemistry and Biophysics Laboratory, Butantan Institute, Sao Paulo 05503900, Brazil;
| | - Elen H. Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508000, Brazil;
| | - Patricia C. Brum
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508030, Brazil; (V.A.V.); (G.C.T.); (L.d.S.); (G.S.B.); (A.O.P.); (N.R.d.A.)
- Correspondence: (M.G.P.); (P.C.B.)
| |
Collapse
|
92
|
Bile Acid Dysregulation Is Intrinsically Related to Cachexia in Tumor-Bearing Mice. Cancers (Basel) 2021; 13:cancers13246389. [PMID: 34945009 PMCID: PMC8699129 DOI: 10.3390/cancers13246389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer cachexia is considered a multi-organ syndrome. An improved understanding of how circulating molecules can affect tissues and mediate their crosstalk in the pathogenesis of cancer cachexia is emerging. Considering the various actions of bile acids on host metabolism and immunity, they could represent innovative targets in cancer cachexia. In this study, we investigated how bile acids could contribute to this syndrome by assessing the bile flow, by comparing the impact on bile acid pathways of cachexia-inducing and non-cachexia-inducing cell sublines, and by investigating the effects of ursodeoxycholic acid, a choleretic compound, in cachectic mice. Altogether, our analyses strengthen the importance of bile acids and their receptors as key players in the metabolic disorders associated with cancer, thereby laying the foundation for new therapeutic opportunities. Abstract Bile acids exert diverse actions on host metabolism and immunity through bile acid-activated receptors, including Takeda G protein-coupled receptor 5 (TGR5). We have recently evidenced an alteration in bile acids in cancer cachexia, an inflammatory and metabolic syndrome contributing to cancer death. This current study aims to further explore the links emerging between bile acids and cancer cachexia. First, we showed that bile flow is reduced in cachectic mice. Next, comparing mice inoculated with cachexia-inducing and with non-cachexia-inducing C26 colon carcinoma cells, we demonstrated that alterations in the bile acid pathways and profile are directly associated with cachexia. Finally, we performed an interventional study using ursodeoxycholic acid (UDCA), a compound commonly used in hepatobiliary disorders, to induce bile acid secretion and decrease inflammation. We found that UDCA does not improve hepatic inflammation and worsens muscle atrophy in cachectic mice. This exacerbation of the cachectic phenotype upon UDCA was accompanied by a decreased TGR5 activity, suggesting that TGR5 agonists, known to reduce inflammation in several pathological conditions, could potentially counteract cachectic features. This work brings to light major evidence sustaining the emerging links between bile acids and cancer cachexia and reinforces the interest in studying bile acid-activated receptors in this context.
Collapse
|
93
|
Ling M, Quan L, Lai X, Lang L, Li F, Yang X, Fu Y, Feng S, Yi X, Zhu C, Gao P, Zhu X, Wang L, Shu G, Jiang Q, Wang S. VEGFB Promotes Myoblasts Proliferation and Differentiation through VEGFR1-PI3K/Akt Signaling Pathway. Int J Mol Sci 2021; 22:13352. [PMID: 34948148 PMCID: PMC8707860 DOI: 10.3390/ijms222413352] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 01/06/2023] Open
Abstract
It has been demonstrated that vascular endothelial growth factor B (VEGFB) plays a vital role in regulating vascular biological function. However, the role of VEGFB in regulating skeletal muscle cell proliferation and differentiation remains unclear. Thus, this study aimed to investigate the effects of VEGFB on C2C12 myoblast proliferation and differentiation and to explore the underlying mechanism. For proliferation, VEGFB significantly promoted the proliferation of C2C12 myoblasts with the upregulating expression of cyclin D1 and PCNA. Meanwhile, VEGFB enhanced vascular endothelial growth factor receptor 1 (VEGFR1) expression and activated the PI3K/Akt signaling pathway in a VEGFR1-dependent manner. In addition, the knockdown of VEGFR1 and inhibition of PI3K/Akt totally abolished the promotion of C2C12 proliferation induced by VEGFB, suggesting that VEGFB promoted C2C12 myoblast proliferation through the VEGFR1-PI3K/Akt signaling pathway. Regarding differentiation, VEGFB significantly stimulated the differentiation of C2C12 myoblasts via VEGFR, with elevated expressions of MyoG and MyHC. Furthermore, the knockdown of VEGFR1 rather than NRP1 eliminated the VEGFB-stimulated C2C12 differentiation. Moreover, VEGFB activated the PI3K/Akt/mTOR signaling pathway in a VEGFR1-dependent manner. However, the inhibition of PI3K/Akt/mTOR blocked the promotion of C2C12 myoblasts differentiation induced by VEGFB, indicating the involvement of the PI3K/Akt pathway. To conclude, these findings showed that VEGFB promoted C2C12 myoblast proliferation and differentiation via the VEGFR1-PI3K/Akt signaling pathway, providing new insights into the regulation of skeletal muscle development.
Collapse
Affiliation(s)
- Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Lulu Quan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xumin Lai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Limin Lang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Yiming Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Shengchun Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (L.Q.); (X.L.); (L.L.); (F.L.); (X.Y.); (Y.F.); (S.F.); (X.Y.); (C.Z.); (P.G.); (X.Z.); (L.W.); (G.S.); (Q.J.)
- National Engineering Research Center for the Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
94
|
Miyaguti NADS, Chiocchetti GDME, Salgado CDM, Lopes-Aguiar L, Viana LR, Blanchard L, dos Santos RW, Gomes-Marcondes MCC. Walker-256 Tumour-Induced Cachexia Altered Liver Metabolomic Profile and Function in Weanling and Adult Rats. Metabolites 2021; 11:metabo11120831. [PMID: 34940589 PMCID: PMC8705353 DOI: 10.3390/metabo11120831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/05/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer cachexia occurs in up to 85% of advanced cancer patients, affecting different tissues and organs, mainly the liver, which plays a central role in body metabolism control. However, liver responses to cancer cachexia progression are still poorly understood. Considering the possible different challenges provided by the rodent’s phase of life and the cachexia progression, we evaluated the liver metabolic alterations affected by Walker-256 tumour growth in weanling and young-adult rats. For this, we applied a metabolomics approach associated with protein and gene expression analyses. Higher amino acid levels and impaired glucose metabolism were important features in tumour-bearing animals’ liver tissue. The weanling hosts had more pronounced cachexia, with higher carcass spoliation, liver lipid metabolism and impaired CII and CIV mitochondrial complexes. The liver alterations in young adult tumour-bearing rats were related to energy status and nucleotide metabolites, such as uridine, NAD+, xanthosine, hypoxanthine and inosine. In conclusion, the Walker-256 tumour-induced cachexia impaired liver metabolism, being more severe in the weanling hosts. Further studies are needed to correlate these changes in the preclinical model, which can be correlated to the clinical features of cancer cachexia, allowing for a translational potential involving the liver function and its responses to potential treatments.
Collapse
Affiliation(s)
- Natália Angelo da Silva Miyaguti
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
- Correspondence: (N.A.d.S.M.); (M.C.C.G.-M.); Tel.: +55-19-3521-6194 (M.C.C.G.-M.)
| | - Gabriela de Matuoka e Chiocchetti
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Carla de Moraes Salgado
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Leisa Lopes-Aguiar
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Lais Rosa Viana
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Lea Blanchard
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
- Biology Department, Université d’Angers, 4900 Angers, France
| | - Rogério Willians dos Santos
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Maria Cristina Cintra Gomes-Marcondes
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
- Correspondence: (N.A.d.S.M.); (M.C.C.G.-M.); Tel.: +55-19-3521-6194 (M.C.C.G.-M.)
| |
Collapse
|
95
|
Wu C, Zhu M, Lu Z, Zhang Y, Li L, Li N, Yin L, Wang H, Song W, Xu H. L-carnitine ameliorates the muscle wasting of cancer cachexia through the AKT/FOXO3a/MaFbx axis. Nutr Metab (Lond) 2021; 18:98. [PMID: 34724970 PMCID: PMC8559414 DOI: 10.1186/s12986-021-00623-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recent studies suggest potential benefits of applying L-carnitine in the treatment of cancer cachexia, but the precise mechanisms underlying these benefits remain unknown. This study was conducted to determine the mechanism by which L-carnitine reduces cancer cachexia. METHODS C2C12 cells were differentiated into myotubes by growing them in DMEM for 24 h (hrs) and then changing the media to DMEM supplemented with 2% horse serum. Differentiated myotubes were treated for 2 h with TNF-α to establish a muscle atrophy cell model. After treated with L-carnitine, protein expression of MuRF1, MaFbx, FOXO3, p-FOXO3a, Akt, p-Akt, p70S6K and p-p70S6K was determined by Western blotting. Then siRNA-Akt was used to determine that L-carnitine ameliorated cancer cachexia via the Akt/FOXO3/MaFbx. In vivo, the cancer cachexia model was established by subcutaneously transplanting CT26 cells into the left flanks of the BALB/c nude mice. After treated with L-carnitine, serum levels of IL-1, IL-6 and TNF-α, and the skeletal muscle content of MuRF1, MaFbx, FOXO3, p-FOXO3a, Akt, p-Akt, p70S6K and p-p70S6K were measured. RESULTS L-carnitine increased the gastrocnemius muscle (GM) weight in the CT26-bearing cachexia mouse model and the cross-sectional fiber area of the GM and myotube diameters of C2C12 cells treated with TNF-α. Additionally, L-carnitine reduced the protein expression of MuRF1, MaFbx and FOXO3a, and increased the p-FOXO3a level in vivo and in vitro. Inhibition of Akt, upstream of FOXO3a, reversed the effects of L-carnitine on the FOXO3a/MaFbx pathway and myotube diameters, without affecting FOXO3a/MuRF-1. In addition to regulating the ubiquitination of muscle proteins, L-carnitine also increased the levels of p-p70S6K and p70S6K, which are involved in protein synthesis. Akt inhibition did not reverse the effects of L-carnitine on p70S6K and p-p70S6K. Hence, L-carnitine ameliorated cancer cachexia via the Akt/FOXO3/MaFbx and p70S6K pathways. Moreover, L-carnitine reduced the serum levels of IL-1 and IL-6, factors known to induce cancer cachexia. However, there were minimal effects on TNF-α, another inducer of cachexia, in the in vivo model. CONCLUSION These results revealed a novel mechanism by which L-carnitine protects muscle cells and reduces inflammation related to cancer cachexia.
Collapse
Affiliation(s)
- Changpeng Wu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Mingxing Zhu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Zongliang Lu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Yaowen Zhang
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Long Li
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Na Li
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Liangyu Yin
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - He Wang
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Wei Song
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Hongxia Xu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China.
| |
Collapse
|
96
|
Araf Y, Galib M, Naser IB, Promon SK. Prospects of 3D Bioprinting as a Possible Treatment for Cancer Cachexia. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2021. [DOI: 10.29333/jcei/11289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
97
|
Morigny P, Kaltenecker D, Zuber J, Machado J, Mehr L, Tsokanos FF, Kuzi H, Hermann CD, Voelkl M, Monogarov G, Springfeld C, Laurent V, Engelmann B, Friess H, Zörnig I, Krüger A, Krijgsveld J, Prokopchuk O, Fisker Schmidt S, Rohm M, Herzig S, Berriel Diaz M. Association of circulating PLA2G7 levels with cancer cachexia and assessment of darapladib as a therapy. J Cachexia Sarcopenia Muscle 2021; 12:1333-1351. [PMID: 34427055 PMCID: PMC8517355 DOI: 10.1002/jcsm.12758] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/16/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cancer cachexia (CCx) is a multifactorial wasting disorder characterized by involuntary loss of body weight that affects many cancer patients and implies a poor prognosis, reducing both tolerance to and efficiency of anticancer therapies. Actual challenges in management of CCx remain in the identification of tumour-derived and host-derived mediators involved in systemic inflammation and tissue wasting and in the discovery of biomarkers that would allow for an earlier and personalized care of cancer patients. The aim of this study was to identify new markers of CCx across different species and tumour entities. METHODS Quantitative secretome analysis was performed to identify specific factors characteristic of cachexia-inducing cancer cell lines. To establish the subsequently identified phospholipase PLA2G7 as a marker of CCx, plasma PLA2G7 activity and/or protein levels were measured in well-established mouse models of CCx and in different cohorts of weight-stable and weight-losing cancer patients with different tumour entities. Genetic PLA2G7 knock-down in tumours and pharmacological treatment using the well-studied PLA2G7 inhibitor darapladib were performed to assess its implication in the pathogenesis of CCx in C26 tumour-bearing mice. RESULTS High expression and secretion of PLA2G7 were hallmarks of cachexia-inducing cancer cell lines. Circulating PLA2G7 activity was increased in different mouse models of CCx with various tumour entities and was associated with the severity of body wasting. Circulating PLA2G7 levels gradually rose during cachexia development. Genetic PLA2G7 knock-down in C26 tumours only partially reduced plasma PLA2G7 levels, suggesting that the host is also an important contributor. Chronic treatment with darapladib was not sufficient to counteract inflammation and tissue wasting despite a strong inhibition of the circulating PLA2G7 activity. Importantly, PLA2G7 levels were also increased in colorectal and pancreatic cancer patients with CCx. CONCLUSIONS Overall, our data show that despite no immediate pathogenic role, at least when targeted as a single entity, PLA2G7 is a consistent marker of CCx in both mice and humans. The early increase in circulating PLA2G7 levels in pre-cachectic mice supports future prospective studies to assess its potential as biomarker for cancer patients.
Collapse
Affiliation(s)
- Pauline Morigny
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Doris Kaltenecker
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Julia Zuber
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juliano Machado
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lisa Mehr
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Foivos-Filippos Tsokanos
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hanna Kuzi
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Chris D Hermann
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Michael Voelkl
- Institute of Laboratory Medicine, University Hospital Ludwig-Maximilian University, Munich, Germany
| | | | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases and Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Victor Laurent
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Bernd Engelmann
- Institute of Laboratory Medicine, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases and Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Achim Krüger
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Olga Prokopchuk
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Søren Fisker Schmidt
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Chair Molecular Metabolic Control, Technical University of Munich, Munich, Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
98
|
Han J, Harrison L, Patzelt L, Wu M, Junker D, Herzig S, Berriel Diaz M, Karampinos DC. Imaging modalities for diagnosis and monitoring of cancer cachexia. EJNMMI Res 2021; 11:94. [PMID: 34557972 PMCID: PMC8460705 DOI: 10.1186/s13550-021-00834-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Cachexia, a multifactorial wasting syndrome, is highly prevalent among advanced-stage cancer patients. Unlike weight loss in healthy humans, the progressive loss of body weight in cancer cachexia primarily implicates lean body mass, caused by an aberrant metabolism and systemic inflammation. This may lead to disease aggravation, poorer quality of life, and increased mortality. Timely detection is, therefore, crucial, as is the careful monitoring of cancer progression, in an effort to improve management, facilitate individual treatment and minimize disease complications. A detailed analysis of body composition and tissue changes using imaging modalities—that is, computed tomography, magnetic resonance imaging, (18F) fluoro-2-deoxy-d-glucose (18FDG) PET and dual-energy X-ray absorptiometry—shows great premise for charting the course of cachexia. Quantitative and qualitative changes to adipose tissue, organs, and muscle compartments, particularly of the trunk and extremities, could present important biomarkers for phenotyping cachexia and determining its onset in patients. In this review, we present and compare the imaging techniques that have been used in the setting of cancer cachexia. Their individual limitations, drawbacks in the face of clinical routine care, and relevance in oncology are also discussed.
Collapse
Affiliation(s)
- Jessie Han
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Luke Harrison
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Lisa Patzelt
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Chair of Molecular Metabolic Control, Technical University of Munich, Munich, Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
99
|
Baba MR, Buch SA. Revisiting Cancer Cachexia: Pathogenesis, Diagnosis, and Current Treatment Approaches. Asia Pac J Oncol Nurs 2021; 8:508-518. [PMID: 34527780 PMCID: PMC8420916 DOI: 10.4103/apjon.apjon-2126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
The objective of this article is to group together various management strategies and to highlight the recent treatment modifications that attempt to target the multimodal etiological factors involved in cancer cachexia. The contemporary role of nursing fraternity in psychosocial and nutritional assessment of cancer patients is briefly discussed. Cachexia is a syndrome of metabolic disturbance, characterized by the inflammation and loss of muscle with or without loss of adipose tissue. In cancer cachexia, a multifaceted condition, patients suffer from loss of body weight that leads to a negative impact on the quality of life and survival of the patients. The main cancers associated with cachexia are that of pancreas, stomach, lung, esophagus, liver, and that of bowel. The changes include increased proteolysis, lipolysis, insulin resistance, high energy expenditure, and reduced intake of food, all leading to impaired response to different treatments. There is no standardized treatment for cancer cachexia that can stabilize or reverse this complex metabolic disorder at present. The mainstay of cancer cachexia therapy remains to be sufficient nutritional supplements with on-going efforts to explore the drugs that target heightened catabolic processes and complex inflammation. There is a need to develop a multimodal treatment approach combining pharmacology, exercise program, and nutritional support to target anorexia and the severe metabolic changes encountered in cancer cachexia.
Collapse
Affiliation(s)
- Mudasir Rashid Baba
- Department of Paediatric Rehabilitation, Yenepoya Physiotherapy College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sajad Ahmad Buch
- Department of Oral Medicine and Radiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
100
|
Liu XY, Zhang X, Ruan GT, Zhang KP, Tang M, Zhang Q, Song MM, Zhang XW, Ge YZ, Yang M, Xu HX, Song CH, Shi HP. One-Year Mortality in Patients with Cancer Cachexia: Association with Albumin and Total Protein. Cancer Manag Res 2021; 13:6775-6783. [PMID: 34512017 PMCID: PMC8412822 DOI: 10.2147/cmar.s318728] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/09/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose Serum albumin can indicate the onset of cancer cachexia, provide information about a patient’s nutritional status, and serve as a biomarker for the prognosis of patients with cancer cachexia. However, the relationship between serum albumin levels and mortality in patients with cancer cachexia remains unclear. We aimed to examine the association of albumin and total protein with 1-year mortality in patients with cancer cachexia. Patients and Methods We conducted a nested case–control study using data from a multicenter cancer clinical survey from 2013 to 2018. In total, 266 patients with cancer cachexia who survived for <1 year and 266 patients who survived for ≥1 year were included in this study. The participants were matched by age, sex, tumor type, tumor stage, and hospital site. The crude and adjusted risks of 1-year survival were estimated using odds ratios (ORs) and 95% confidence intervals (95% CIs) using logistic regression, with or without adjustment for covariates. Results Logistic regression analysis revealed a significantly negative linear association between albumin level and 1-year mortality in patients with cancer cachexia (p < 0.001). An L-shaped relationship existed between total protein and 1-year mortality, with a turning point at 70.4 g/L. When albumin was divided into quartiles, Q3 (OR: 0.40; 95% CI: 0.24, 0.68; p < 0.001) and Q4 (OR: 0.33; 95% CI: 0.19, 0.55; p < 0.001) were associated with higher 1-year survival than Q1 among patients with cancer cachexia. When total protein was divided into quartiles, Q2 (OR: 0.38; 95% CI: 0.23, 0.64; p < 0.001), Q3 (OR: 0.57; 95% CI: 0.33, 0.96; p = 0.035), and Q4 (OR: 0.43; 95% CI: 0.25, 0.72; p = 0.002) were associated with higher 1-year survival than Q1 among patients with cancer cachexia. Conclusion Serum albumin and total protein may predict 1-year survival. Future clinical studies should lead to a more comprehensive understanding of the effects of serum protein levels in patients with cancer cachexia.
Collapse
Affiliation(s)
- Xiao-Yue Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, People's Republic of China.,School of Clinical Medicine, Hebei University, Baoding, 071000, People's Republic of China
| | - Xi Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, People's Republic of China.,Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, 071000, People's Republic of China
| | - Guo-Tian Ruan
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, People's Republic of China
| | - Kang-Ping Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, People's Republic of China
| | - Meng Tang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, People's Republic of China
| | - Qi Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, People's Republic of China
| | - Meng-Meng Song
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, People's Republic of China
| | - Xiao-Wei Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, People's Republic of China
| | - Yi-Zhong Ge
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, People's Republic of China
| | - Ming Yang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, People's Republic of China
| | - Hong-Xia Xu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Chun-Hua Song
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, People's Republic of China
| |
Collapse
|